Экономим на замене: ремонт светодиодных ламп своими руками. Схема светодиодной лампочки на 220в
Подробная схема светодиодной лампы на 220в, ремонт, советы, делаем своими руками
Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.
Светодиодные светильники на 220 В
Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.
Типы светодиодов
Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.
Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.
Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:
- DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
- «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
- SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
- СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.
Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.
Устройство LED-лампы
В состав лампы входят:
- корпус;
- цоколь;
- рассеиватель;
- радиатор;
- блок светодиодов LED;
- бестрансформаторный драйвер.
Устройство LED-лампы на 220 вольт
На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.
По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.
Под общее освещение выбираются светильники с цветовой температурой 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.
Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.
Простейшая схема подключения LED-лампы в сеть 220 вольт
Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.
На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.
Классическая схема включения LED-лампы в сеть 220 В
На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.
Ремонт своими руками
В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.
Лампа светодиодная на 220 вольт
Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.
Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.
Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.
Изготовить своими руками
Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.
Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.
Драйвер LED-лампы
Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.
Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.
Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.
Настольная лампа на светодиодах
Лампа на 220 В. Видео
Об изготовлении светодиодной лампы на 220 В своими руками можно узнать из этого видео.
Правильно изготовленная самодельная схема светодиодной лампы позволит эксплуатировать ее многие годы. Для нее бывает возможным ремонт. Источники питания могут быть любые: от обычной батарейки до сети на 220 вольт.
Источник: https://elquanta.ru/lampa/ckhema-svetodiodnojj-lampy.html
Устройство светодиодной лампы на 220В значительно сложнее, чем у аналогичной лампы накаливания. Пытаясь сохранить привычную грушевидную форму, инженерам пришлось немало потрудиться. И, как оказалось, не зря! Новые осветительные приборы практически не греются, потребляют малое количество электроэнергии и стали значительно менее хрупкими. Но чего же особенного в светодиодной лампе и в чем сложность ее схемы? Давайте разберемся.
Конструктивная схема
Конструктивно схема светодиодной лампы на 220В состоит из трех основных частей: корпуса, электронной части и системы охлаждения. Сетевое напряжение через цоколь поступает на драйвер, где преобразуется в сигнал постоянного тока, необходимый для свечения светодиодов. Свет от излучающих диодов обладает широким углом рассеивания и поэтому не требует установки дополнительных линз. Достаточно обойтись рассеивателем. В процессе работы детали драйвера и светодиоды нагреваются. Поэтому в конструкции лампы обязательно должен быть продуман отвод тепла.
К корпусной части светодиодной лампы относится цоколь, оболочка из пластика, внутри которой размещен драйвер, и полупрозрачная крышка в виде полусферы, по совместительству являющаяся рассеивателем света. В дорогих моделях ламп большую часть корпуса занимает ребристый радиатор из алюминия или специального теплопроводящего пластика. В лампочках бюджетного класса радиатор либо вовсе отсутствует, либо расположен внутри, а по окружности корпуса сделаны отверстия. Дешёвая китайская продукция мощностью до 7 Вт вовсе имеет сплошной корпус, без какого-либо отвода тепла.
В фирменных светодиодных лампах на 220В печатная плата с SMD светодиодами крепится к радиатору через термопасту для эффективного отвода тепла.
В дешевых китайских моделях эта плата либо просто вставлена в пазы корпуса, либо прикреплена саморезами к металлической пластине для охлаждения кристаллов. Эффективность такого охлаждения крайне низкая, так как пластина имеет малую площадь, да и наносить термопасту китайские производители, как правило, забывают. Вывод излучения происходит через рассеиватель, как правило, из матового пластика. А в дешевых светодиодных лампах на 220В такой корпус ещё надёжно скрывает недостатки китайской сборки от любопытных глаз потребителя. Крепится рассеиватель к основанию либо герметиком, либо резьбовым соединением.
Электрическая схема
Касательно электрической части между светодиодными лампами на 220В разных ценовых категорий также много отличий. В этом можно убедиться сразу после демонтажа рассеивателя. Достаточно рассмотреть качество пайки SMD элементов и соединительных проводов.
Недорогой китайской лампы на 220В
В лампочках стоимостью 2-3$ отсутствует какая-либо симметрия на плате со светодиодами, что свидетельствует о ручной пайке, а провода выбраны с минимально возможным сечением. Вместо надежного драйвера в них собрана простая схема бестрансформаторного питания с конденсаторами и выпрямителем. Напряжение сети сначала снижается неполярным металлопленочным конденсатором, выпрямляется, а затем сглаживается и повышается до нужного уровня. Ток нагрузки ограничивается обычным SMD резистором, который расположен на печатной плате со светодиодами.
При диагностике и ремонте светодиодных ламп такого типа важно соблюдать технику безопасности, т.к. все элементы электрической цепи потенциально находятся под высоким напряжением. Прикоснувшись пальцем к токоведущей части схемы по неосторожности можно получить электрический удар, а соскользнувший щуп мультиметра может закоротить провода с неприятными последствиями.
Фирменной светодиодной лампы
Фирменная светодиодная продукция отличается не только приятным внешним видом, но и качеством элементной базы. Непосредственно драйвер имеет более сложное устройство и зачастую собирается одним из двух способов. Первый предусматривает наличие импульсного трансформатора, импульсного преобразователя напряжения с последующей стабилизацией тока нагрузки.
Во втором случае обходятся без трансформатора, а основная функциональная нагрузка ложится на специальную микросхему – сердце драйвера. Её универсальность в том, что она стабилизирует входное напряжение, поддерживает выходной ток с заданной частотой (ЧИМ) или шириной импульса (ШИМ), допускает возможность диммирования, имеет систему отрицательной обратной связи. В качестве примера можно назвать, например, CPC9909.
Светодиоды в лампе на 220В с токовым драйвером надёжно защищены от перепадов напряжения и помех в сети, ток через них соответствует номинальному паспортному значению, а радиатор обеспечивает качественный теплоотвод. Такие лампочки прослужат намного дольше дешёвых китайских аналогов, тем самым доказывая преимущество светодиодов на деле.
Источник: http://ledjournal.info/shemy/shema-svetodiodnoj-lampy-na-220-v.html
Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.
С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:
Список номиналов:
- C1 – значение емкости по таблице, 275 В или больше
- C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
- R1 – 100 Ом
- R2 – 1 MОм (для разряда конденсатора C1)
- VD1 .. VD4 – 1N4007
Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.
Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.
количество светодиодов последовательно, шт | 1 | 10 | 20 | 30 | 50 | 70 |
напряжение на сборке из светодиодов, В | 3,5 | 35 | 70 | 105 | 165 | 230 |
ток через светодиоды, мА (С1=1000нФ) | 64 | 57 | 49 | 42 | 32 | 20 |
ток через светодиоды, мА (С1=680нФ) | 44 | 39 | 34 | 29 | 22 | 14 |
ток через светодиоды, мА (С1=470нФ) | 30 | 27 | 24 | 20 | 15 | — |
ток через светодиоды, мА (С1=330нФ) | 21 | 19 | 17 | 14 | — | — |
ток через светодиоды, мА (С1=220нФ) | 14 | 13 | 11 | — | — | — |
Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.
По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.
Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.
Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.
Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.
Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.
Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.
Источник: http://hardelectronics.ru/sxema-svetodiodnoj-lampy-na-220-v.html
oremonte72.ru
Схема светодиодной лампы на 220 в, как сделать лампочку своими руками
Прежде чем продолжить читать, обязательно ознакомьтесь с этой информацией. Любой источник электроэнергии опасен для жизни, если не соблюдать правила безопасности. Описанные здесь схемы создания LED не имеют трансформаторов и, следовательно, представляют опасность. Сборку таких схем можно выполнять людям, которые имеют элементарные знания основ электротехники.
Светоизлучающий диод — это электронное устройство, излучающее свет, когда через него проходит ток. Светодиоды при своих небольших размерах чрезвычайно эффективны, очень яркие, при этом состоят из дешёвых и доступных электронных компонентов. Многие думают, что светодиоды — просто обычные светоизлучающие лампочки, но это совсем не так.
История светодиодов
Капитан Генри Джозеф Раунд, один из пионеров радио, во время эксперимента заметил необычное свечение, испускаемое карбидом кремния. Свои наблюдения он опубликовал в General World, но объяснить природу явления он не мог.
Русский учёный Олег Лосев наблюдал излучение света кристаллами — диодами. В 1927 году он опубликовал подробности своей работы в российском журнале и оформил патент на «Световое реле».
В 1961 году инфракрасный диод создали Б. Биард и Г. Питмен. Однако отцом-основателем светодиода по праву считывается Ник Холоняк. Его ученик Дж. Крэфорд в 1972 г. создал светодиод жёлтого цвета. В конце 80-х годов благодаря исследованиям русского учёного Ж. И. Алферова были открыты новые светодиодные материалы, которые дали толчок дальнейшему развитию светодиодов.
В начале 70-х впервые были изобретены светодиоды зелёного цвета, в 1971 году появился синий светодиод, который был очень неэффективным. Прорыв сделали японские учёные только в 1996 году, которые изобрели дешёвый светодиод синего цвета.
Принцип работы LED
Наиболее распространённые светодиоды состоят из галлия (Ga), мышьяка (As) и фосфора (P). Светодиод представляет собой диодный PN-переход, который излучает свет вместо тепла, генерируемого обычным диодом. Когда PN- переход находится в прямом смещении, некоторые из дырок объединяются с электронами N-области, а некоторые из электронов N объединяются с дыркой из P-области. Каждая комбинация излучает свет или фотоны.
Как устроена светодиодная лампа на 220 вольт? Светодиоды имеют полярность и, следовательно, не работают, если они подключены в обратном направлении. Самый простой способ проверить полярность общего светодиода — это определить на глаз толщину электродов. Более толстым является катод (-). Свет излучается от катода. Более тонкий электрод представляет собой анод (+). Некоторые производители выпускают светодиоды таким образом, что длина проводов катода и анода различна, анод (+) длиннее катода (-). Это также облегчает определение полярности. Некоторые изготовители изготавливают оба провода электродов одинаковой длины, в этом случае можно определить полярность, воспользовавшись мультиметром.
Преимущества и недостатки светодиодных ламп
Достоинства LED:
- Энергоэффективный источник света;
- небольшой размер, прочность и устойчивость к ударам и вибрации;
- очень быстро включаются без прогрева;
- хорошее разрешение цвета;
- могут интегрироваться в систему управления;
- могут работать от портативной батареи;
- нет вредных веществ, таких как свинец или ртуть;
- производят холодный свет, могут быть идеальными для роста растений;
- не имеют мощных разрядов, которые могут оказать пагубное воздействие на глаза;
- в качестве датчика температуры различают горячую и холодную воду;
- не имеют ультрафиолетового излучения, устраняя возможность повреждения кожи;
- они не обжигают;
- залиты толстой эпоксидной смолой, невероятно прочные;
- не ржавеют;
- не привлекают насекомых;
- работают до 50 000 часов;
- подлежат вторичной переработке;
- не излучают радиочастотные помехи.
Недостатки светодиодов LED:
- Могут быть ненадёжным для наружных применений с большими температурными перепадами.
- Необходимость дополнительно использовать радиаторы для защиты полупроводников от теплового воздействия.
Светодиод используется в самых разных областях применения:
- Уличное освещение и светофоры;
- индикаторные огни на устройствах, игрушках, одежде;
- медицина;
- освещение;
- автомобиль;
- сигнализаторы;
- компьютерная техника;
- телерадиотехника.
Светодиодное освещение с питанием от сети
Но для построения светодиодной схемы освещения необходимо построить специальные источники питания с регуляторами, трансформаторами или без них. В качестве решения нижеприведенная схема демонстрирует конструкцию светодиодного контура с питанием от сети без использования трансформаторов.
Схема светодиодной лампы на 220 В
Для питания этой цепи используется переменный ток 220 В, который подаётся в качестве входного сигнала. Ёмкостное реактивное сопротивление понижает напряжение переменного тока. Переменный ток поступает на конденсатор, пластины которого непрерывно заряжаются и разряжаются, а связанные токи всегда поступают в пластинки и выходят из них, что вызывает реактивное сопротивление, направленное против потока.
Реакция, создаваемая конденсатором, зависит от частоты входного сигнала. R2 сбрасывает накопленный ток из конденсатора, когда вся цепь выключена. Он способен хранить до 400 В, а резистор R1 ограничивает этот поток. Следующий этап схемы светодиодной лампы своими руками — это мостовой выпрямитель, который предназначен для преобразования сигнала переменного тока в постоянный ток. Конденсатор C2 служит для устранения пульсации в выпрямленном сигнале постоянного тока.
Резистор R3 служит в качестве ограничителя тока для всех светодиодов. В схеме использованы белые светодиоды, которые имеют падение напряжения около 3,5 В и потребляют 30 мА тока. Поскольку светодиоды подключены последовательно, потребление тока очень мало. Поэтому эта схема становится энергоэффективной и имеет бюджетный вариант изготовления.
Светодиодная лампа из отходов
LED 220 В может быть легко выполнена из неработающих ламп, ремонт или восстановление которых нецелесообразны. Лента из пяти светодиодов приводится в действие с использованием трансформатора. В цепи 0,7 uF / 400V полиэфирный конденсатор C1 снижает напряжение сети. R1 — это резистор для разрядки, который поглощает накопленный заряд от C1, когда вход переменного тока выключен.
Резисторы R2 и R3 ограничивают подачу тока при включении схемы. Диоды D1 — D4 образуют мост-выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает управление светодиодами.
Порядок изготовления настольной лампы своими руками:
- Разберите и осторожно удалите разбитые стекла.
- Аккуратно откройте сборку.
- Снимите электронику и удалите её.
- Соберите схему на 1 мм ламинатном листе.
- Отрежьте круглый лист ламината (ножницами).
- Отметьте положение шести круглых отверстий на листе.
- Просверлите отверстия в соответствии со светодиодами заподлицо в шести отверстиях.
- Используйте наконечник клея, чтобы удерживать светодиодную сборку в нужном положении.
- Закройте сборку.
- Убедитесь, что внутренняя проводка не касается друг друга.
- Теперь осторожно протестируйте на 220 В.
LED для автомобиля
Используя ленту LED, можно легко изготовить самодельную красивую наружную подсветку автомобиля. Нужно использовать 4 светодиодных полосыы по одному метру для чёткого и яркого свечения. Для обеспечения водонепроницаемости и прочности соединения тщательно обрабатывают термоклеем. Правильное выполнение электрических соединений проверяется мультиметром. Реле IGN получает питание, когда двигатель работает и выключается после отключения двигателя. Чтобы понизить автомобильное напряжение, которое может достигать 14,8 V, в схему включается диод, обеспечивающий долговечность светодиодов.
Светодиодная лампа своими руками на 220в
Цилиндрическая лампа LED обеспечивает правильное и равномерное распределение генерируемой освещённости на всех 360 градусах, так что все помещение равномерно освещено.
Лампа оснащена интерактивной функцией защиты от перенапряжений, обеспечивающей идеальную защиту устройства от всех импульсов переменного тока.
40 светодиодов объединены в одну длинную цепь светодиодов, соединённых последовательно одна за другой. Для входного напряжения 220 В можно подключить около 90 светодиодов в ряд, для напряжения 120 В — 45 светодиодов.
Расчёт получен путём деления выпрямленного напряжения 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода. 310/3,3 = 93 единиц, а для входов 120 В — 150/3,3 = 45 единиц. Если уменьшить количество светодиодов ниже этих цифр, возникнет риск перенапряжения и выход со строя собранной схемы.
Как сделать лампочку своими руками
Схема состоит из высоковольтного конденсатора, низкореактивного сопротивления для понижения тока, двух резисторов и конденсатора на положительном источнике для снижения входного напряжения и колебаний сети. Фактически коррекция всплеска производится C2, установленным после моста (между R2 и R3). Все мгновенные скачки напряжения эффективно поглощаются этим конденсатором, обеспечивая чистое и безопасное напряжение для встроенных светодиодов на следующем этапе схемы.
Список деталей:
- R1 = 1M ¼ Вт;
- R2, R3 = 100 Ом, 1 ватт;
- C1 = 474/400 В или 0,5 мкФ/400 В PPC;
- C2, C3 = 4,7 мкФ/250 В;
- D1-D4 = 1N4007;
- рассеиватель.
Самодельные LED имеют защиту, а их срок службы увеличен путём добавления стабилитрона по линиям питания. Показанное значение zener составляет 310 В/2 Вт, и подходит, если LED включает в себя светодиоды от 93 до 96 В. Для другого, меньшего количества светодиодных строк необходимо уменьшить значение zener в соответствии с общим вычислением прямого напряжения светодиодной строки.
Например, если используется 50 светодиодная строка, а светодиод имеет 3,3 В, то рассчитываем 50×3,3 = 165 В, поэтому стабилизатора на 170 В будет достаточно, чтоб защитить светодиод.
Автоматическая цепь ночного освещения LED
Схема автоматически включит ночью лампу и отключит через заданное время, используя несколько транзисторов и таймер NE555. Схема недорогая и простая в установке. В качестве датчика здесь используется LDR. В дневное время сопротивление LDR будет низким, напряжение на нем упадет, а транзистор Q1 будет находиться в режиме проводки. Когда освещённость в помещении падает, сопротивление LDR увеличивается, как и напряжение на нем. Транзистор Q1 выключается. База Q2 подключена к эмиттеру Q1 и поэтому Q2 смещается и, в свою очередь, включает IC1.
NE555 автоматически включается при включении питания. Автоматический запуск происходит с помощью конденсатора C2. Выход IC1 остаётся высоким в течение времени, определяемого резистором R5 и конденсатором C4. Когда на выходе IC1 поступает транзистор Q3, он включается, запускает триггер T1 и лампа светится. В цепь входит 9-вольтная батарея для питания таймера во время сбоёв питания. Резистор R1, диод D1, конденсатор C1 и Zener D3 образуют секцию питания схемы. R7 и R8 являются токоограничивающими резисторами .
Схема светодиодного освещения своими руками
Примечания:
- Предустановка R2 может использоваться для настройки чувствительности схемы.
- Предустановку R5 можно использовать для настройки времени включения лампы.
- При R5 @ 4,7M время включения будет около трёх часов.
- Мощность L1 не должна превышать 200 Вт.
- Для BT136 рекомендуется использовать радиатор.
- IC1 должен быть установлен на держателе.
Мероприятия по борьбе с мерцанием светодиодов
Светодиодная лампа из энергосберегающей своими руками имеет огромное преимущество, но нужно потрудиться, чтобы при работе самоделки пользователей не беспокоило излишнее мерцание LED:
- Управляйте светодиодными продуктами с использованием источника питания светодиода, который предназначен для их расчётной нагрузки.
- Убедитесь, что все используемые продукты LED совместимы с цепями управления и источником питания.
- Проверьте отсутствие проводов и других неисправностей светильника и убедитесь, что диммеры не перегружены.
- Рассмотрите возможность использования постоянного тока светодиодного драйвера.
- При установке системы поэкспериментируйте, чтобы узнать, есть ли минимальный уровень затемнения, который вам мешает.
Чтобы избежать влияния мерцания светодиодов, нужно всегда помнить о вышеуказанных моментах.
Оцените статью: Поделитесь с друзьями!elektro.guru
Ремонт светодиодных ламп своими руками: пошаговая инструкция
При многообразии осветительных приборов на прилавках страны, светодиоды остаются вне конкуренции по причине экономичности и долговечности. Однако не всегда приобретается качественное изделие, ведь в магазине товар не разберешь для осмотра. Да и в этом случае не факт, что каждый определит, из каких деталей она собрана. Лампы перегорают, а покупать новые становится накладно. Выходом становится ремонт светодиодных ламп своими руками. Работа эта под силу даже начинающему домашнему мастеру, а детали недороги. Сегодня разберемся, как проверить осветительный прибор, в каких случаях изделие ремонтируется и как это сделать.
Светодиодные осветительные приборы прочно вошли в нашу жизньСодержание статьи
Как устроены светодиодные лампы 220 В
Известно, что светодиоды не могут работать напрямую от сети 220 В. Для этого им нужно дополнительное оборудование, которое, чаще всего, и выходит из строя. О нем сегодня и поговорим. Рассмотрим схему светодиодного драйвера, без которого невозможна работа осветительного прибора. Попутно и проведем ликбез для тех, кто ничего не понимает в радиоэлектронике.
Драйвер в светодиодной лампе выполняет основную работуСхема драйвера светодиодной лампы 220 В состоит из:
- диодного моста;
- сопротивлений;
- резисторов.
Диодный мост служит для выпрямления тока (превращает его из переменного в постоянный). На графике это выглядит как отсекание полуволны синусоиды. Сопротивления ограничивают ток, а конденсаторы накапливают энергию, увеличивая частоту. Рассмотрим принцип действия на схеме светодиодной лампы на 220 В.
Принцип работы драйвера в лампе на светодиодах
Вид на схеме | Порядок работы |
Напряжение 220 В подается на драйвер и проходит через сглаживающий конденсатор и сопротивление, ограничивающее ток. Это нужно для того, чтобы обезопасить диодный мост. | |
Напряжение подается на диодный мост, состоящий из четырех разнонаправленных диодов, которые отсекают полуволну синусоиды. На выходе ток постоянный. | |
Теперь, посредством сопротивления и конденсатора, ток снова ограничивается и ему задается нужная частота. | |
Напряжение с необходимыми параметрами поступает на равнонаправленные световые диоды, которые служат и как ограничение тока. Т.е. при перегорании одного из них напряжение повышается, что приводит к выходу из строя конденсатора, если он недостаточно мощный. Такое происходит в китайских изделиях. Качественные приборы от этого защищены. |
Поняв принцип работы и схему драйвера, решение как починить светодиодную лампу на 220V уже не будет казаться сложным. Если говорить о качественных световых приборах, то неприятностей от них ждать не стоит. Они работают весь положенный срок и не тускнеют, хотя есть «болезни», которым подвержены и они. Как с ними справиться сейчас поговорим.
Причины выхода из строя осветительных LED-приборов
Чтобы проще было разобраться с причинами, обобщим все данные в одной общей таблице.
Причина поломки | Описание | Решение проблемы |
Перепады напряжения | Такие светильники в меньшей мере подвержены поломкам из-за перепадов напряжения, однако чувствительные скачки могут «пробить» диодный мост. В результате перегорают LED-элементы. | Если скачки чувствительны, нужно установить стабилизатор напряжения, который значительно продлит срок службы светового оборудования, но и остальных бытовых приборов. |
Неправильно подобран светильник | Отсутствие должной вентиляции влияет на драйвер. Выделяемое им тепло не отводится. В результате происходит перегрев. | Выбрать светильник с хорошей вентиляцией, которая обеспечит нужный теплообмен. |
Ошибки монтажа | Неправильно выбранная система освещения, его подключение. Неверно высчитанное сечение электропроводки. | Здесь выходом будет разгрузить линию освещения или заменить осветительные приборы устройствами, потребляющие меньше мощности. |
Внешний фактор | Повышенная влажность, вибрации, удары или запыленность при неправильном подборе IP. | Правильный подбор степени защиты или устранение негативных факторов. |
Полезно знать! Ремонт светодиодных светильников невозможно выполнять до бесконечности. Намного проще исключит негативные факторы, влияющие на долговечность и не приобретать дешевые изделия. Экономия сегодня обернется затратами завтра. Как говорил экономист Адам Смит: «Я не настолько богат, чтобы покупать дешевые вещи».
Есть и такие приборы, но ремонту они не подлежатРемонт светодиодной лампы на 220 В своими руками: нюансы производства работ
Перед тем, как отремонтировать светодиодную лампу своими руками, обратите внимание на некоторые детали, требующие меньшего количество трудозатрат. Проверка патрона и напряжения в нем – первое, что стоит сделать.
Важно! Ремонт ЛЕД-ламп требует наличия мультиметра – без него не получится прозвонить элементы драйвера. Так же потребуется паяльная станция.
Паяльная станция необходима для ремонта светодиодных люстр и светильников. Ведь перегрев их элементов приводит к выходу из строя. Температура нагрева при пайке должна быть не выше 2600, в то время как паяльник разогревается сильнее. Но выход есть. Используем кусок медной жилы, сечением 4 мм, который наматывается на жало паяльника плотной спиралью. Чем сильнее удлинить жало, тем ниже его температура. Удобно, если на мультиметре присутствует функция термометра. В этом случае ее можно отрегулировать точнее.
Так выглядит паяльная станция. Стоимость ее довольно высокаНо перед тем, как выполнить ремонт светодиодных прожекторов, люстр или ламп нужно определить причину выхода из строя.
Как разобрать светодиодную лампочку
Одна из проблем, с которой сталкивается начинающий домашний мастер – как разобрать светодиодную лампочку. Для этого понадобится шило, растворитель и шприц с иглой. Рассеиватель LED-лампы приклеен к корпусу герметиком, который нужно удалить. Проводя аккуратно вдоль кромки рассеивателя шилом, шприцем вводим растворитель. Через 2÷3 минуты, легко покручивая, рассеиватель снимается.
Проверка светодиодной лампочки в разобранном состоянии. Не стоит так делать – это опасноНекоторые световые приборы изготовлены без проклейки герметиком. В этом случае достаточно провернуть рассеиватель и снять его с корпуса.
Выявляем причину выхода из строя светодиодной лампочки
Разобрав осветительный прибор, обратите внимание на LED-элементы. Часто сгоревший определяется визуально: на нем имеются подпалины или черные точки. Тогда меняем неисправную деталь и проверяем работоспособность. Подробно о замене мы расскажем в пошаговой инструкции.
Если LED-элементы в порядке, переходим к драйверу. Для проверки работоспособности его деталей нужно их выпаять из печатной платы. Номинал резисторов (сопротивлений) указывается на плате, а параметры конденсатора – на корпусе. При прозвонке мультиметром в соответствующих режимах отклонений быть не должно. Однако часто конденсаторы, вышедшие из строя, определяются визуально – они вздуваются либо лопаются. Решение – замена подходящим по техническим параметрам.
Светодиод можно прозвонить мультиметром не выпаивая из печатной платыЗамену конденсаторов и сопротивлений, в отличие от светодиодов, часто выполняют обычным паяльником. При этом следует соблюдать осторожность, не перегревать ближайшие контакты и элементы.
Замена светодиодов лампочки: насколько это сложно
При наличии паяльной станции или фена работа эта проста. Паяльником работать сложнее, но тоже возможно.
Полезно знать! Если под рукой нет рабочих LED-элементов можно установить перемычку вместо сгоревшего. Долго такая лампа не проработает, но некоторое время выиграть удастся. Однако такой ремонт производится только если количество элементов более шести. В противном случае день – это максимум работы ремонтного изделия.
Современные лампы работают на SMD LED-элементах, которые можно выпаять из светодиодной ленты. Но стоит подбирать подходящие по техническим характеристикам. Если таковых нет, лучше поменять все.
Китайский драйвер – эти ребята любят минимализмСтатья по теме:
Для правильного выбора LED-приборов надо знать не только общие характеристики светодиодов. Пригодятся сведения о современных моделях, электрических схемах рабочих устройств. В этой статье вы найдете ответы на эти и другие практические вопросы.
Ремонт драйвера светодиодной лампы при наличии электрической схемы устройства
Если драйвер состоит из SMD-компонентов, которые имеют меньший размер, воспользуемся паяльником с медной проволокой на жале. При визуальном осмотре выявлен сгоревший элемент – выпаиваем и подбираем подходящий по маркировке. Нет видимых повреждений – это сложнее. Придется выпаивать все детали и прозванивать по отдельности. Найдя сгоревший, меняем на работоспособный и монтируем элементы на места. Удобно использовать для этого пинцет.
Полезный совет! Не стоит удалять с печатной платы все элементы одновременно. Они похожи по внешнему виду, можно перепутать впоследствии местоположение. Лучше выпаивать элементы по одному и, проверив, монтировать на место.
Ремонт светодиодной трубки в форме люминесцентной лампы ничем не отличается от работы с простойКак проверить и заменить блок питания светодиодных светильников
При монтаже освещения в помещениях с повышенной влажностью (ванная комната или кухня) используются стабилизирующие блоки питания, которые понижают напряжение до безопасного (12 или 24 вольта). Стабилизатор может выйти из строя по нескольким причинам. Основные из них – это избыточная нагрузка (потребляемая мощность светильников) или неправильный выбор степени защиты блока. Ремонтируются такие устройства в специализированных сервисах. В домашних условиях это нереально без наличия оборудования и знаний в области радиоэлектроники. В этом случае БП придется заменить.
Блок питания для светодиодов выглядит такОчень важно! Все работы по замене стабилизирующего блока питания светодиодов производятся при снятом напряжении. Не стоит надеяться на выключатель – он может быть неправильно скоммутирован. Напряжение отключается в распределительном щитке квартиры. Помните, что прикосновение рукой к токоведущим частям опасно для жизни.
Нужно обратить внимание на технические характеристики устройства – мощность должна превышать параметры ламп, которые от него запитаны. Отключив вышедший из строя блок, подключаем новый согласно схеме. Она находится в технической документации прибора. Сложностей это не представляет – все провода имеют цветовую маркировку, а контакты – буквенное обозначение.
Расшифровка степеней защиты IP для электроприборовИграет роль и степень защиты устройства (IP). Для ванной комнаты прибор должен иметь маркировку не ниже IP45.
Статья по теме:
Чтобы освещение было стабильным, а установленные изделия прослужили как можно дольше, следует правильно подобрать блок питания 12 В для светодиодной ленты. В данной публикации мы рассмотрим виды устройств, как правильно их рассчитать, как сделать своими руками, как подключить, популярные модели.
Причины моргания светодиодных ламп: методы устранения
Если причиной мерцания светодиодной лампы является выход из строя конденсатора (его нужно заменить), то периодическое моргание при выключенном свете решается проще. Причина такому «поведению» светильника – подсветка-индикатор на клавише выключателя.
Находящийся в схеме драйвера конденсатор накапливает напряжение, а при достижении предела выдает разряд. Подсветка клавиши пропускает малое количество электричества, которое никак не сказывается на лампочках накаливания или «галогенках», однако этого напряжения хватает, чтобы конденсатор начал его накапливать. В определенный момент он выдает разряд на светодиоды, после чего снова переходит к накоплению. Решить эту проблему можно двумя способами:
- Вытаскиваем клавишу из выключателя и отключаем подсветку. Метод прост, но индикация, увеличивающая стоимость выключателя теперь бесполезна.
- Разбираем люстру и на каждом патроне меняем фазный провод с нулевым местами. Способ сложнее, но он сохраняет функционал выключателя. В темноте его видно хорошо, и это плюс.
Миганию подвержены не только светодиодные лампы, но и КЛЛ. Устройство их ПРУ (пуско-регулирующего устройства) работает по похожему принципу, что позволяет конденсатору накапливать энергию.
Ремонт светодиодных ламп своими руками: пошаговая инструкция
Рассмотрим на примере простой ремонт светодиодной лампы:
Как можно понять, ремонт светодиодной лампы 220 В своими руками не так уж и сложен. При отсутствии новых деталей можно воспользоваться сгоревшими лампочками, выпаяв элементы из них. Из 2-3 старых собирается один рабочий световой прибор.
Заключение
Стоимость светодиодных ламп медленно, но верно снижается. Однако цена все же остается высокой. Не каждому по карману менять некачественные, но дешевые, лампы или покупать дорогостоящие. В этом случае ремонт таких осветительных приборов — неплохой выход. Если соблюдать правила и меры предосторожности, то экономия составит приличную сумму.
Лампа «кукуруза» дает больше света, но и потребление энергии у нее вышеНадеемся, что информация, изложенная в сегодняшней статье, будет полезна читателям. Вопросы, возникшие по ходу прочтения, можно задать в обсуждениях. Мы ответим на них как можно полно. Если у кого-либо был опыт подобных работ, будем благодарны, если Вы им поделитесь с другими читателями.
А напоследок, уже по традиции, короткое познавательное видео по сегодняшней теме:
Понравилась статья? Сохраните, чтобы не потерять!
ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:
homius.ru
Схема светодиодной лампы на 220 В
Светодиодные лампы находят все более широкое применение в повседневной жизни. Они используются для освещения и подсветки, подчеркивают детали интерьера. Особое значение имеет схема светодиодной лампы на 220 В, технические характеристики которой значительно превосходят другие виды источников света.
Элементы светодиодной лампы
В состав стандартной светодиодной лампы входят следующие элементы:
- Основные внешние детали – рассеиватель и цоколь.
- Светодиоды, установленные на плате. Вся конструкция называется. кластером.
- Радиатор.
- Светодиодный источник питания – драйвер.
В большинстве ламп используются стандартные цоколи типа Е27. Его крепление к корпусу происходит точечными углублениями, наносимыми по окружности. Для снятия цоколя места углублений высверливаются или пропиливаются ножовкой.
К центральному контакту цоколя подключается провод красного цвета. Черный провод припаивается к резьбе. Оба проводника имеют очень короткую длину и в случае возможного ремонта лампы нужно иметь запас для наращивания. После снятия цоколя, в рассеивателе открывается отверстие, через которое хорошо заметно драйвер. Его крепление к корпусу выполняется силиконом, а его извлечение возможно только через рассеиватель.
Питание кластера, представляющего собой светодиодную плату, осуществляется с помощью драйвера. Под его действием происходит преобразование переменного напряжения 220 вольт в постоянный ток. У драйверов существуют такие параметры, как выходной ток и мощность.
Таким образом, взаимодействие всех элементов обеспечивает устойчивую и бесперебойную работу всей лампы. Выход из строя хотя бы одного из них вызовет отказ в работе всей системы.
Схемы светодиодных источников питания
Наиболее простая схема выполняется с использованием резистора, выполняющего функцию ограничителя светодиодного тока. Нормальная работа схемы в данном случае зависит лишь от правильного выбора сопротивления этого резистора. Такое питание в основном используется, когда нужно сделать светодиодную подсветку в выключателе.
Более сложные схемы выполняются с применением диодного моста. С его выхода происходит подача выпрямленного напряжения к светодиодам, включенным последовательно. Сглаживание пульсаций выпрямленного напряжения осуществляется с помощью электролитического конденсатора, установленного на выходе диодного моста.
Главными преимуществами обеих схем является их низкая стоимость, небольшие размеры и довольно простой ремонт. Тем не менее, у них очень низкий коэффициент полезного действия и высокий коэффициент пульсаций.
Совершенные источники питания – драйверы
Самые новые светодиодные лампы комплектуются драйверами, основой которых является импульсный преобразователь. Они обладают высоким КПД и минимальным уровнем пульсаций. Однако их стоимость значительно выше, чем уже рассмотренные простые варианты.
Для крепления драйвера к корпусу используется силиконовая паста. Чтобы получить доступ к этому элементу, вначале отпиливается рассеиватель, а затем вынимается светодиодная плата. Подача питания на 220 вольт происходит с помощью проводов красного и черного цвета с цоколя лампы. На плату светодиодов питание подается бесцветными проводниками.
Драйвер может устойчиво работать при перепадах напряжения сети от 85 до 265 вольт. Кроме того, схема светодиодной лампы на 220 В предусматривает защиту от коротких замыканий, а также наличие электролитических конденсаторов, обеспечивающих работу при высокой температуре, вплоть до 105 градусов.
Для изготовления корпусов ламп используется алюминий и специальный пластик, хорошо рассеивающий тепло. Благодаря качественному теплоотведению, срок службы основных элементов лампы увеличивается до 40 тыс. часов. Более мощные лампы оборудуются радиаторами, прикрепляемыми к светодиодной плате слоем термопасты.
electric-220.ru
Устройство светодиодной лампы EKF на 220 (В)
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Сегодня я решил рассказать Вам об устройстве светодиодной лампы EKF серии FLL-A мощностью 9 (Вт).
Эту лампу я сравнивал в своих экспериментах (часть 1, часть 2) с лампой накаливания и компактной люминесцентной лампой (КЛЛ), и по многим показателям она имела явные преимущества.
А теперь давайте разберем ее и посмотрим, что же находится внутри. Думаю, что Вам будет не менее интересно, чем мне.
Итак, устройство современных светодиодных ламп состоит из следующих компонентов:
- рассеиватель
- плата со светодиодами (кластер)
- радиатор (в зависимости от модели и мощности лампы)
- источник питания светодиодов (драйвер)
- цоколь
А теперь рассмотрим каждый компонент в отдельности по мере разбора лампы EKF.
У рассматриваемой лампы используется стандартный цоколь Е27. Он крепится к корпусу лампы с помощью точечных углублений (кернений) по окружности. Чтобы снять цоколь, нужно высверлить места кернения или сделать пропил ножовкой.
Красный провод соединяется с центральным контактом цоколя, а черный — припаян к резьбе.
Питающие провода (черный и красный) очень короткие, и если Вы разбираете светодиодную лампу для ремонта, то это нужно учесть и запастись проводами для их дальнейшего наращивания.
Через открывшееся отверстие виден драйвер, который крепится с помощью силикона к корпусу лампы. Но извлечь его можно только со стороны рассеивателя.
Драйвер — это источник питания светодиодной платы (кластера). Он преобразовывает переменное напряжение сети 220 (В) в источник постоянного тока. Для драйверов свойственны параметры мощности и выходного тока.
Существует несколько разновидностей схем источников питания для светодиодов.
Самые простые схемы выполняются на резисторе, который ограничивает ток светодиода. В этом случае нужно лишь правильно выбрать сопротивление резистора. Такие схемы питания чаще всего встречаются в выключателях со светодиодной подсветкой. Это фото я взял из статьи, в которой рассказывал о причинах мигания энергосберегающих ламп.
Схемы чуть посложнее выполняются на диодном мосте (мостовая схема выпрямления), с выхода которого выпрямленное напряжение подается на последовательно-включенные светодиоды. На выходе диодного моста также установлен электролитический конденсатор для сглаживания пульсаций выпрямленного напряжения.
В перечисленных выше схемах нет гальванической развязки с первичным напряжением сети, они обладают низким КПД и большим коэффициентом пульсаций. Их главное преимущество заключается в простоте ремонта, низкой стоимости и малых габаритах.
В современных светодиодных лампах чаще всего применяются драйверы, выполненные на основе импульсного преобразователя. Их главные достоинства — это высокий КПД и минимум пульсаций. Зато они по стоимости в несколько раз дороже предыдущих.
Кстати, в скором времени я планирую провести замеры коэффициентов пульсаций светодиодных и люминесцентных ламп различных производителей. Чтобы не пропустить выход новых статей — подписывайтесь на рассылку.
В рассматриваемой светодиодной лампе EKF установлен драйвер на микросхеме BP2832A.
Драйвер крепится к корпусу с помощью силиконовой пасты.
Чтобы добраться до драйвера, мне пришлось отпилить рассеиватель и вынуть плату со светодиодами.
Красный и черный провода — это питание 220 (В) с цоколя лампы, а бесцветные — это питание на плату светодиодов.
Вот типовая схема драйвера на микросхеме BP2832A, взятая из паспорта. Там же Вы можете ознакомиться с ее параметрами и техническими характеристиками.
Рабочий режим драйвера находится в пределах от 85 (В) до 265 (В) напряжения сети, в нем имеется защита от короткого замыкания, применяются электролитические конденсаторы, предназначенные для продолжительной работы при высоких температурах (до 105°С).
Корпус светодиодной лампы EKF выполнен из алюминия и теплорассеивающего пластика, который обеспечивает хороший отвод тепла, а значит увеличивает срок службы светодиодов и драйвера (по паспорту заявлено до 40000 часов).
Максимальная температура нагрева этой LED-лампы составляет 65°С. Об этом читайте в экспериментах (ссылки я указал в самом начале статьи).
У более мощных светодиодных ламп, для лучшего отвода тепла, имеется радиатор, который крепится к алюминиевой плате светодиодов через слой термопасты.
Рассеиватель выполнен из пластика (поликарбоната) и с помощью него достигается равномерное рассеивание светового потока.
А вот свечение без рассеивателя.
Ну вот мы добрались до платы светодиодов или другими словами, кластера.
На круглой алюминиевой пластине (для лучшего отвода тепла) через слой изоляции размещено 28 светодиодов типа SMD.
Светодиоды соединены в две параллельные ветви по 14 светодиодов в каждой ветви. Светодиоды в каждой ветви соединяются между собой последовательно. Если сгорит хоть один светодиод, то не будет гореть вся ветвь, но при этом вторая ветвь останется в работе.
А вот видео, снятое по материалам данной статьи:
P.S. В завершении статьи хочется отметить то, что конструкция LED-лампы EKF с точки зрения ремонта не очень удачная, лампу невозможно разобрать без отпиливания рассеивателя и высверливания цоколя.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
zametkielectrika.ru
Устройство светодиодной лампы на 220 вольт | Электирика
» Электирика
Светодиодная лампа: устройство и принцип работы
Устройство и принцип работы светодиодных ламп. Основные части осветительного прибора:
- светодиоды
- драйвер
- цоколь
- корпус.
Светоизлучающий диод. Буквенно его обозначают сокращением СИД (СД) в русском языке или LED в английском. Собственно, это и есть источник света светодиодной лампы .
Принцип его работы полностью повторяет процессы, происходящие в обыкновенном полупроводниковом диоде с p-n переходом из кремния или германия: при подаче положительного потенциала к аноду, а отрицательного к катоду в материалах начинается движение отрицательно заряженных электронов к аноду, а дырок к катоду. В итоге, диод пропускает электрический ток только одного прямого направления.
Однако, светодиод выполнен из других полупроводниковых материалов, которые при бомбардировке в прямом направлении носителями зарядов (электронами и дырками) осуществляют их рекомбинацию с переводом на другой энергетический уровень. В итоге происходит выделение фотонов - элементарных частиц электромагнитного излучения светового диапазона.
Даже в электрических схемах в качестве их обозначений используются обозначения обычных диодов, только с добавлением двух стрелочек, обозначающих излучение света.
Полупроводниковые материалы обладают разными свойствами выделения фотонов. Такие вещества, как арсенид галия (GaAs) и нитрид галлия (GaN), являясь прямозонными полупроводниками, одновременно прозрачны для видимого спектра световых волн. При замене ими слоев p-n перехода происходит выделение света.
Расположение слоев, используемых в светодиоде, показано на рисунке ниже. Их маленькая толщина порядка 10÷15 нм (наномикрон) создается специальными методами химического осаждения из газовой фазы. В слоях размещены контактные площадки для анода и катода.
Как при любом физическом процессе, во время преобразования электронов в фотоны существуют потери энергии, обусловленные следующими причинами:
- часть световых частиц просто теряется внутри даже такого тонкого слоя
- при выходе из полупроводника возникает оптическое преломление световых волн на границах кристалл/воздух, искажающее длину волны.
Применение специальных мер, например, использование сапфировой подложки, позволяет создать бо́льший световой поток. Такие конструкции применяются для установки в лампы освещения, но не для обычных светодиодов, используемых в качестве индикаторов, показанных на рисунке ниже.
Они имеют линзу, выполненную из эпоксидной смолы и рефлектор для направления света. В зависимости от назначения свет может распространяться в широких диапазонах угла 5-160°.
Дорогие светодиоды, выпускаемые для ламп освещения, производители изготавливают с ламбертовской диаграммой. Это означает, что их яркость постоянна в пространстве, не зависит от направления излучения и угла наблюдения.
Габариты кристалла весьма маленькие и от одного источника можно получить небольшой поток света. Поэтому для ламп освещения такие светодиоды объединяют довольно большими группами. При этом, создать от них равномерное освещение во все стороны весьма проблематично: каждый светодиод является точечным источником.
Частотный спектр световых волн от полупроводниковых материалов значительно уже, чем от обычных ламп накаливания или солнца, что утомляет глаза человека, создает определенный дискомфорт. С целью исправления этого недостатка в отдельные конструкции светодиодов для освещения вводится слой люминофора.
Величина излучаемого светового потока полупроводниковых материалов зависит от тока, проходящего через p-n переход. Чем больше ток, тем выше излучение, но до определенного значения.
Маленькие габариты, как правило, не позволяют использовать токи, превышающие 20 миллиампер для индикаторных конструкций. У мощных осветительных ламп применяется теплоотвод и дополнительные меры защиты, использование которых, однако, строго ограничено.
При запуске световой поток лампы пропорционально возрастает с увеличением тока, но затем из-за образования тепловых потерь начинает снижаться. Следует понимать, что процесс выделения фотонов из проводника не связан с тепловой энергией, светодиоды относятся к источникам холодного света.
Однако, проходящий через светодиод ток в местах контактов различных слоев и электродов преодолевает переходное сопротивление этих участков, вызывающее нагрев материалов. Выделяемое тепло вначале только создает потери энергии, но при увеличении тока может повредить конструкцию.
Количество светодиодных кристаллов, установленных в одну лампу, может превышать сотню работающих элементов. На каждый из них необходимо подвести оптимальный ток. Для этого создают стеклотекстолитовые платы с токопроводящими дорожками. Они могут иметь самую различную конструкцию.
К контактным площадкам плат припаиваются светодиодные кристаллы. Чаще всего их формируют в определенные группы и запитывают последовательно друг с другом. Через каждую созданную цепочку пропускают один и тот же ток.
Такую схему проще реализовать технически, но она обладает одним главным недостатком - при нарушении одного любого контакта вся группа перестает светить, что является основной причиной поломки лампы.
Драйверы. Подвод постоянного напряжения к каждой группе светодиодов выполняется от специального устройства, которое раньше называли блоком питания, а сейчас — термином “драйвер”.
Данное устройство несет функции преобразования входного напряжения сети, например,
220 Вольт квартирной или 12 Вольт автомобильной сети в оптимальную величину питания каждой последовательной группы.
Подвод одного стабилизированного тока к каждому кристаллу по параллельной схеме технически сложен и применяется в редких случаях. Работа драйвера может проводиться на основе трансформаторной или иной схемы. Среди них распространены следующие варианты. В зависимости от конфигурации и количества примененных элементов они могут быть разными:
Самые простые и дешевые драйверы рассчитаны на питание от стабилизированного напряжения, сеть которого защищена от бросков и импульсов перенапряжений. У них даже может отсутствовать токоограничивающий резистор в выходной цепи питания, что характерно для аккумуляторных фонариков, светодиоды которых зачастую подключены непосредственно к выходу АКБ .
В результате, пиолучается, что они питаются завышенным током и хотя светят довольно ярко, очень часто перегорают. При использовании дешевых ламп с драйверами без защиты от перенапряжений осветительной сети светодиоды тоже часто выгорают, не выработав заявленного ресурса.
Качественно сконструированные блоки питания практически не выделяют тепло при работе, а у дешевых или перегруженных драйверов часть электроэнергии расходуется на нагрев. Причем, такие бесполезные потери электрической мощности могут быть сопоставимы, а в отдельных случаях превышать энергию, расходуемую на выделение фотонов.
Цоколь. Осветительные лампы для квартирного освещения на российском рынке снабжаются цоколем Е27, который позволяет использовать их в обычных патронах от ламп накаливания.
Лампы зарубежных производителей, предназначенные для эксплуатации в своих странах могут иметь другие цоколи, отличающиеся диаметром или шагом резьбы. К тому же, они могут выпускаться на напряжение
110 Вольт. Автомобильные светодиодные лампы освещения тоже могут снабжаться разными типами цоколя.
Корпус. Для защиты светодиодов осветительных ламп не требуется создавать каких-либо герметичных колб, как у ламп накаливания, из которых выкачан воздух и создана специальная газовая среда.
Работающие светодиоды закрываются светопропускающими пластиковыми материалами, например, из поликарбоната.
Общая компоновка элементов. Размещение составных частей светодиодной осветительной лампы у разных производителей может отличаться в зависимости от специфических задач, но все они монтируются от цоколя в последовательности драйвер - платы светодиодов - защитное стекло. Между ними устанавливаются специальные защитные экраны, теплоотвод и другие элементы.
Устройство светодиодной лампы у каждого производителя может иметь серьезные отличия от аналогичных моделей. Однако, все они подчиняются общим принципам конструирования.
Схема и устройство светодиодной лампы на 220 вольт
Светодиодная лампа на 220в, частота сети 50Гц, мощность 3Вт, тип LED3-JDR, производитель Camelion, цоколь E14, потребляемый ток 26mA, световой поток 235Лм. Температура свечения 4500 К. Это параметры заявленные производителем.
Внимание! Соблюдайте правила электробезопасности. Электротравмы, могут быть смертельными, а неправильный ремонт пожароопасным.
Яркость свечения светильника визуально сопоставима с энергосберегающей лампой на 7-9 Вт. Разобрать лампу оказалось не просто. Защитное стекло приклеено на совесть, прорезал склейку по контуру, но снять его без потерь не получилось – стекло плафона очень хрупкое.
На плате с наружной стороны установлены 6 smd светодиодов неизвестного типа. На обратной стороне «драйвер». Схема питания светодиодов этой лампы не удивила: для гашения избыточного напряжения используется реактивное сопротивление конденсатора С2, далее выпрямительный мост и сглаживающий конденсатор С3, а не импульсный драйвер, как в светодиодной лампе GL5,5.
Принципиальная электрическая схема светодиодной лампы LED3-JDR во многом совпадает со схемой лампы Selecta-G9-220v-5w.
Конденсатор С2 полистирольный металлопленочный типа CBB22 рассчитан на использование в цепях постоянного тока и импульсных схемах, обладает эффектом самовосстанавления, хорошей изолирующей способностью и минимальными потерями на высокой частоте. Советские аналоги - конденсаторы типов К73-17, К73-44, К71-7
Десятиомный резистор ограничивает пиковый ток заряда С3 для исключения перегрузки выпрямительного диодного моста при включении. Через резистор R1 разряжается конденсатор С3 после выключения. С1 на плате не установлен, предназначен для увеличения тока через светодиоды при необходимости. При обрыве в цепи светодиодов напряжение на С3 без резистора R2 может достигнуть 350 вольт, а с этим резистором оно хоть и превысит номинальное для конденсатора, но не настолько, чтобы тот вышел из строя.
При напряжении в сети 237 вольт напряжение на всей цепочке диодов составило 93 В, на каждом светодиоде 15,3 вольта соответственно. Корпуса излучателей на плате типоразмера 6730 (6,7х3 мм), похоже, в каждом корпусе находится матрица из 4-х последовательно включенных светодиодов. Для светодиодов белого свечения падение напряжения при номинальном токе порядка 3,5 вольт. В нашем случае получается 3,8 вольта на каждом диоде, т.е. диоды работают в жестком режиме. Об этом говорит и то, что их температура при работе составляет 50-60 градусов Цельсия. В таком режиме диоды подвержены усиленной деградации и срок их службы будет в разы меньше, чем при номинальных токах. Производитель никогда не будет делать «вечную» лампу, иначе он разорится.
Фактический ток потребления при напряжении сети 237 вольт составил 30 мА, т.е. лампа потребляет от сети порядка 6 Вт, хотя написано 3 Вт. Таким образом производитель лукавит, выдавая желаемое за действительное.
На этом фото, для сравнения, показаны однокристальные светодиоды 3528 (3,5х2,8 мм) у которых номинальный ток 20 мА.
Более эффективные (но больших габаритов) светодиодные светильники на 220 вольт можно сделать своими руками из диодной ленты. Для этого нужно взять 20 отрезков ленты 3528 на 12 вольт и спаять их последовательно, соблюдая полярность. Конденсаторы С1, С2 и резисторы R1, R2 исключаются из схемы. Вместо R1 надо поставить перемычку, а С3 должен быть на напряжение не менее 310 вольт. В данной схеме 10-тиомный резистор будет служить еще и предохранителем в случае короткого замыкания моста. На такой светильник понадобиться 1 метр открытой ленты с 60 диодами (20 отрезков по 5 сантиметров) или 0,5 метра с 120 диодами (20 отрезков по 2,5 см). Конструкция и размеры могут быть различными, главное соблюдать технику безопасности и, конечно, такой светильник должен иметь корпус с хорошей изоляцией.
Светодиодная лампа на 220 вольт своими руками
Светодиодные лампы (лампы на светоизлучающих диодах) иногда их также называют твердотельные лампы, становятся очень популярными в последние годы. Они являются достаточно экономичным источником света. И хотя их световой поток, как правило, (в 2010 году) слабее, чем у тех же ламп накаливания или энергосберегающих ламп дневного света, их преимуществом является очень низкое энергопотребление, которое в большинстве случаев составляет 0,5…3 ватт. К счастью, благодаря новым технологиям, выпуск новых светодиодов с большим световым потоком растет из года в год.
Доступны светодиоды различных цветов, но наиболее востребованными остаются светодиоды белого цвета. Белые светодиоды обладают различными значениями температуры спектра, начиная от теплого белого, имитируя обычные лампы дневного света (2700 10 000 K).
Помимо этого необходимо делать различие между точечными и рассеивающими светодиодами, которые имеют угол рассеивания от 10 до 150 градусов.Цены на светодиоды, с техническим прогрессом, продолжают снижаться, а световая отдача становится все больше.
Питание светодиодной лампы от сети 220 вольт
Для питания светодиодной лампы от сети 220 вольт необходимо, создать подходящий источник питания или балласт. Для снижения энергопотребления и минимизации размеров лампы, применение трансформатора не является хорошим выбором. Поэтому, как правило, применяют гасящий конденсатор в цепи переменного тока. Так же в цепь включают сопротивление для ограничения пускового тока. Параллельно гасящему конденсатору подключают резистор, для того чтобы обеспечить разряд после выключения.
Большинство светодиодов имеют ток потребления не более 20мА, этот соответствует току (в случае использования в лампе небольшого числа светодиодов) полученному при использовании конденсатора в 330нФ. Светодиоды могут быть подключены группами в различном количестве, не превышая общего количества в 20 светодиодов.
Для бОльшего количества светодиодов необходимо подобрать большую емкость гасящего конденсатора. Рассчитать необходимую емкость поможет онлайн калькулятор .
Наиболее распространенный размер светодиода 5мм. Для первой светодиодной лампы использованы 5 миллиметровые светодиоды белого холодного свечения 5 штук с током 20 мА и с большим углом рассеивания в 150 градусов.
Для второй светодиодной лампы – 15шт. 5 мм светодиодов с типовой яркостью 15000 мкд и углом рассеивания 25 30 градусов. Максимальный ток потребления светодиода составляет 30 мА, а падение на одном светодиоде около 3,1 В.
Источник питания светодиодной лампы улучшается с применением электролитического конденсатора подключенного параллельно цепи светодиодов. Это устраняет стробоскопический эффект, а также защищает светодиоды от пусковых токов и помех в электросети.
Внимание! Источник питания светодиодной лампы не имеет гальванической развязки с электроцепи 220 вольт. Поэтому наладку и эксплуатацию данного устройства необходимо проводить с особой осторожностью.
Источники: http://forum220.ru/led-construction.php, http://firstelectro.ru/led-lampa.html, http://fornk.ru/1141-svetodiodnaya-lampa-na-220-volt-svoimi-rukami/
Комментариев пока нет!restart24.ru
Светодиодная лампа своими руками на 220 вольт. Схема и описание
В наше время все чаще встает вопрос энергосбережения. Для решения этого вопроса производители выпускают энергосберегающие лампы (люминесцентные), имеющие цоколь как у стандартных ламп накаливания на 220 вольт.
Потребление электроэнергии данным видом электроламп, бесспорно, значительно меньше, чем у простых ламп накаливания на 220 вольт. В свою очередь обозначенный срок службы их составляет приблизительно 5000 часов, то есть приблизительно в 5 раз больше срок службы обычной лампы.
При всех плюсах в этой электролампе имеется и недостаток - высокая цена. В данных лампах применяется особый электронный балласт, но, хотя он ломается весьма редко, а вот нити данной электролампы сгорают достаточно часто, зачастую не проработав даже заявленного срока службы.
Но сейчас выпускаются сверхяркие светодиоды, которые в свою очередь можно использовать для изготовления самодельной светодиодной лампы своими руками. Срок службы нынешних светодиодов доходит приблизительно до 50000 часов, это почти 6 лет постоянной работы.
Описываемая в данной статье светодиодная лампа своими руками на 220в специально создавалась для питания от электросети напряжением 220 В.
Описание источника питания на 220 вольт для самодельной светодиодной лампы
Электросхема довольно проста, и не требует наладки. Особенностью данной лампы служит использование светодиодов с большим углом излучения, в результате чего создается ровный и яркий свет. В свою очередь к плюсам этой лампы возможно отнести очень небольшое энергопотребление (около 2 Вт) и повышенный КПД.
Главным элементом электрической схемы являются ультраяркие светодиоды (25 штук) белого спектра излучения. В роли HL1 - HL25 лучше применить светодиоды с углом излучения 160 градусов, например, марки 5WW4SC. Их возможно поменять на другие светодиоды с прямым напряжением от 3,2 до 3,7 вольт и током потребления около 20 мА.
Светодиоды запитаны от бестрансформаторного модуля питания, который состоит из гасящего конденсатора С1, резистора R1, выпрямительного моста на диодах VD1...VD4, сглаживающей емкости С2 и ограничительного сопротивления R2.
Сетевое напряжение 220 вольт гасится цепью элементов R1, С1, R2. Емкость С1 должна быть на напряжение не менее 250 В. Затем пониженное напряжение идет на выпрямительный мост, и дальше через емкостный фильтр С2 напряжение поступает на последовательно соединенные светодиоды HL1 - HL25. При использовании в схеме 37-и светодиодов можно убрать сопротивление R2.
В данной схеме предусмотрена возможность защиты светодиодов от скачка повышенного напряжения 220 вольт. Она состоит из предохранителя на 80 мА и варистора (TVR05361 или FNR05361). При увеличении сетевого напряжения сопротивление варистора резко падает, что приводит к перегоранию предохранителя.
www.joyta.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.