21.11.2024

Схема включения коллекторного двигателя: Схема подключения коллекторного двигателя переменного тока 220в — советы электрика

Содержание

ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРНОГО ЭЛЕКТРОДВИГАТЕЛЯ

   Возникла необходимость подключить универсальный коллекторный электродвигатель. На первый взгляд никаких проблем нет. Двигатель рабочий, ранее стоял в соответствующем устройстве и выполнял предназначенную ему функцию, то есть уже был подключён.  Но дело в том, что использовать его решил в совершенно ином по своим функциям устройстве. Изменились условия, возможности эксплуатации и требования, как к его работе, так и к сроку службы. Ведь механизм, в котором предполагалось вновь задействовать электродвигатель, должен будет быть собран именно под него. Что делать с существующей обвязкой? Можно и главное нужно ли в ней, что-то менять? В данном конкретном случае это электродвигатель от электробритвы.

электродвигатель от электробритвы

   Имеющаяся обвязка состоит из конденсаторов и дросселей предназначенных  выполнять исключительно функции помехоподавляющего фильтра.

электродвигатель от бритвы

   Непосредственно на работу двигателя они ни как не влияют. Известно, что универсальный коллекторный электродвигатель одинаково хорошо работает и на постоянном, и на переменном токе. Соответственно, не мудрствуя лукаво, при имеющимся сопротивлении секций обмоток статора (более 800 Ом) плюс  сопротивление якоря (360 Ом), подключение можно сделать по такой схеме:

ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРНОГО ЭЛЕКТРОДВИГАТЕЛЯ - схема 1

   Что и было успешно опробовано.

ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРНОГО ЭЛЕКТРОДВИГАТЕЛЯ

   Однако на постоянном токе чуточку лучше. Во первых  КПД двигателя при переменном токе меньше, во вторых меньше срок службы щёток, коллектора и всей машины. Схема подключения будет такой.

ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРНОГО ЭЛЕКТРОДВИГАТЕЛЯ - схема 2

   Был опробован и этот вариант схемы.

ПОДКЛЮЧЕНИЕ универсального КОЛЛЕКТОРНОГО ЭЛЕКТРОДВИГАТЕЛЯ

   Искрение щёток коллектора стало заметно меньше. Совсем уж решил на этом и остановиться, но тут посоветовали, что при питании  данного электродвигателя постоянным током следует добавить, после диодного моста, конденсатор.

ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРНОГО ЭЛЕКТРОДВИГАТЕЛЯ к 220В

   Ёмкость конденсатора первоначально посчитал по, показавшейся подходящей для данного случая, формуле. При подключении конденсатора с расчетной ёмкостью в 200 mkf движок взревел как небольшая электродрель, что заставило уменьшать ёмкость. Формулой для расчета, не оправдавшей себя, «делиться» смысла не вижу.

ПОДКЛЮЧЕНИЕ КОЛЛЕКТОРНОГО ДВИГАТЕЛЯ своими руками

   Остановился на конденсаторе 33mkf х 250V и диодном мосте из диодов 1N4007 (как более компактном). Работой электродвигателя доволен.

Видео работы электромотора

   Ничего необычного, но действительно лучше увидеть, чем услышать (в данном случае прочитать) как он там «гудит», как он там «искрит». Желаю удачных экспериментов, Babay.

Устройство коллекторного двигателя переменного тока

 Коллекторные двигатели переменного тока  нашли свое широкое применение в различных видах бытовой техники:

  • пылесосы;
  • стиральные машины;
  • шуруповерты;
  • электродрели;
  • строительные фены

и так далее.   Полученные Вами элементарные знания об устройстве таких электрических машин, помогут Вам в дальнейшем находить различные причины таких поломок и соответственно, находить способы их устранения.

Устройство коллекторного двигателя — переменного тока

Общее представление об устройстве коллекторного двигателя переменного тока наглядно можно получить из данного схематического изображения \рис.1\.

 

 рис.1

К характерным неисправностям данного типа электродвигателей можно отнести следующие причины:

  • износ графитовых щеток;

  • износ коллектора;

  • износ щеткодержателей;

  • повреждение изоляции

и износ подшипников.  

фото 1

Всем нам известные коллекторные электродвигатели переменного тока — от пылесоса \фото 1\ и другой бытовой техники \с наличием таких двигателей\, — подвергаются:

и тепловым перегрузкам, и в ряде случаев детали подлежат ремонту либо их полной замене.

Схема коллекторного двигателя — переменного тока

В данном рисунке представлена универсальная  схема коллекторного двигателя \рис.2\.   Схема имеет три вывода проводов от двух обмоток статора,  для подключения как к переменному так и к постоянному напряжениям, то-есть, двигатель способен работать как от постоянного так и от переменного тока. рис.2

На схеме даны следующие обозначения:

  • Е1, F2 — начала обмоток статора;

  • F1  E2 — концы обмоток статора;

  • A1  A2 — контакты графитовых щеток с коллектором;

  • N — нейтраль;

  • М — ротор электродвигателя;

  • L — фаза.

Два  конца провода из трех выводов обмоток  статора необходимы  так-же для подключения сглаживающего фильтра \конденсатора\.

Сопротивление обмоток — коллекторного двигателя

Для замера сопротивлений обмоток статора коллекторного двигателя нужно соединить поочередно щупы измерительного прибора с выводами проводов \фото 2\.

 фото 2

Замеры сопротивлений обмоток статора выполняются с целью определения их целостности либо разрыва \перегорания\ провода в обмотке.

 фото 3

Чтобы измерить сопротивление обмоток ротора коллекторного двигателя, — выполняется замер сопротивления ламелей \начала и концы обмоток ротора, соединенные с металлическими пластинами\ — на коллекторе \фото 3, рис. 3\.

 рис. 3

И чтобы проверить отсутствие либо замыкание обмотки  на корпус магнитопровода ротора, нужно соединить один конец щупа прибора с пластиной коллектора и второй щуп соединить с магнитопроводом \рис. 4\.

рис. 4

При замыкании обмотки ротора на корпус магнитопровода — сопротивление для данного участка приймет нулевое значение.

В данной теме Вы ознакомились с устройством и способами проведения диагностики коллекторного электродвигателя, и это далеко еще не все.

Следите за рубрикой сайта.

 

 

 

Схема регулятора оборотов коллекторного двигателя 220В

Схема регулятора оборотов коллекторного двигателя 220в бывает двух типов стандартная и модифицированная. Все зависит непосредственно от регулятора, который вы используете.

Зачем они нужны

Схема коллекторного двигателя и его устройствоМножество бытовых приборов и электроинструментов не обходятся без коллекторного электродвигателя. Такая популярность подобного электродвигателя обусловлена универсальностью.

Для коллекторного электродвигателя может использование питание от тока постоянного или переменного напряжения. Дополнительным преимуществом является эффективный пусковой момент. При этом работа от постоянного или переменного тока электродвигателя сопровождается высокой частотой оборотом, что подходит далеко не всем пользователям. Чтобы обеспечить более плавный пуск и иметь возможность настраивать частоту вращения, используется регулятор оборотов. Простой регулятор вполне можно изготовить своими руками.

Но прежде чем будет обсуждаться схема, сначала нужно разобраться в коллекторных двигателях.

Коллекторные электродвигатели

Конструкция любого коллекторного двигателя включает несколько основных элементов:

  • Коллектор,
  • Щетки,
  • Ротор,
  • Статор.

Работа стандартного коллекторного электродвигателя основана на следующих принципах.

  1. Осуществляется подача тока от источника напряжения 220в. Именно 220 Вольт является стандартным напряжением бытовой сети. Для большинства приборов с электромоторами более 220 Вольт не требуется. Причем подача тока идет на ротор и статор, которые соединяются один с другим.
  2. В результате подачи тока от источника 220в образуется поле магнитное.
  3. Под воздействием магнитного напряжения начинается вращение ротора.
  4. Щетки осуществляют передачу напряжения непосредственно на ротор устройства. Причем щетки обычно изготавливают на основе графита.
  5. Когда направление тока в роторе или статоре меняется, вал вращается в обратную сторону.

Кроме стандартных коллекторных электродвигателей, существуют другие агрегаты:

  • Электромотор последовательного возбуждения. Их устойчивость к перегрузкам более внушительная. Часто встречаются в бытовых электроприборах,
  • Устройства параллельного возбуждения. У них сопротивление не отличается большими показателями, количество витков существенно больше, чем у аналогов,
  • Однофазный электромотор. Его очень легко изготовить своими руками, мощность на приличном уровне, а вот коэффициент полезного действия оставляет желать лучшего.

Регуляторы оборотов

Теперь возвращаемся к теме регулятора оборотов. Все доступные сегодня схемы можно разделить на две большие категории:

  • Стандартная схема регулятора оборотов,
  • Модифицированные устройства контроля оборотов.

Разберемся в особенностях схем подробнее.

В конструкции регулятора применена интегральная схема

Стандартные схемы

Стандартная схема регулятора коллекторного электромотора имеет несколько особенностей:

  • Изготовить динистор не составит труда. Это важное преимущество устройства,
  • Регулятор отличается высокой степенью надежности, что положительно сказывается в течение его периода эксплуатации,
  • Позволяет комфортно для пользователя менять обороты двигателя,
  • Большинство моделей основаны на тиристорном регуляторе.

Если вас интересует принцип работы, то такая схема выглядит довольно просто.

  1. Заряд тока от источника 220 Вольт идет к конденсатору.
  2. Далее идет напряжение пробоя динистора через переменный резистор.
  3. После этого происходит непосредственно сам пробой.
  4. Симистор открывается. Этот элемент несет ответственность за нагрузку.
  5. Чем выше окажется напряжение, чем чаще будет происходить открытие симистора.
  6. За счет подобного принципа работы происходит регулировка оборотов электродвигателя.
  7. Наибольшая доля подобных схем регулировки электродвигателя приходится на импортные бытовые пылесосы.
  8. Но при использовании стандартной схемы регулятора оборотов важно понимать, что он обратной связью не обладает. И если с нагрузкой произойдут изменения, обороты электродвигателя придется настраивать.

Стандартная схема регулятора коллекторного электромотора

Модифицированная схема

Прогресс не стоит на месте. Несмотря на удовлетворительные характеристики стандартной схемы регулятора оборотов двигателя, усовершенствования никому еще не навредили.

Наиболее часто применяемыми схемами являются две:

  • Реостатная. Из названия становится очевидно, что здесь основой выступает реостатная схема. Такие регуляторы высокоэффективные при смене количества оборотов электродвигателя. Высокие показатели эффективности объясняются использованием силовых транзисторов, отбирающих часть напряжения. Так меньшее количество тока из источника 220 Вольт поступает на двигатель, ему не приходится работать с большой нагрузкой. При этом схема имеет определенный недостаток большое количество выделяемого тепла. Чтобы регулятор работал длительное время, для электроинструмента потребуется активное постоянное охлаждение,
  • Интегральная. Для работы интегрального устройства регулирования используется интегральный таймер, который отвечает за нагрузку на электродвигатель. Здесь могут быть задействованы всевозможные транзисторы. Это обусловлено наличием микросхемы в конструкции с большими параметрами выходного тока. При нагрузке менее 0,1 Ампер, все напряжение идет непосредственно на микросхему, обходя транзисторы. Чтобы регулятор работал эффективно, на затворе требуется наличие напряжения в 12 Вольт. Из этого вытекает, что электрическая цепь и напряжение питания обязаны отвечать данному диапазону.

Простой самодельный регулятор

Если вы не хотите покупать готовый регулятор оборотов для двигателя, его вполне можно попробовать изготовить своими руками для контроля мощности устройства.

Это дополнительные навыки для вас и определенная экономия средств для кошелька.

Для изготовления регулятора вам потребуется:

  • Набор проводков,
  • Паяльник,
  • Схема,
  • Конденсаторы,
  • Резисторы,
  • Тиристор.

Монтажная схема будет выглядеть следующим образом.

Монтажная схема

Согласно представленной схеме, регулятор мощности и оборотов будет контролировать 1 полупериод. Расшифровывается она следующим образом.

  1. Питание от стандартной сети 220в поступает на конденсатор. 220 Вольт стандартный показатель бытовых розеток.
  2. Конденсатор, получив заряд, вступает в работу.
  3. Нагрузка переходит к нижнему кабелю и резисторам.
  4. Положительный контакт конденсатора соединяется с электродом тиристора.
  5. Идет один достаточный заряд напряжения.
  6. Второй полупроводник при этом открывается.
  7. Тиристор через себя пропускает полученную от конденсатора нагрузку.
  8. Происходит разряжение конденсатора, и полупериод вновь повторяется.

При большой мощности электродвигателя, питающегося от постоянного или переменного тока, регулятор дает возможность применять агрегат более экономично.

Самодельные регуляторы оборотов имеют полное право на свое существование. Но когда речь заходит о необходимости использовать регулятор электродвигателя для более серьезного оборудования, рекомендуется купить готовое устройство. Пусть оно обойдется дороже, но вы будете уверены в работоспособности и надежности агрегата.

Схемы подключения двигателя стиральной машины

Стиральные машины, со временем, выходят из строя или морально устаревают. Как правило,
основой любой стиралки есть ее электродвигатель, который может найти свое применение и
после разборки стиралки на запчасти.

Мощность таких двигателей, как правило не меньше 200 Вт, а порой и куда больше, скорость
оборотов вала может доходить и до 11 000 оборотов в минуту что вполне может подойти для использование такого двигателя в хозяйственных или мелких промышленных нуждах.

Вот лишь несколько идей удачного применения электродвигателя от стиралки:

  • Точильный («наждачный») станок для заточки ножей и мелкого домашнего и садового инструмента.Двигатель устанавливают на прочном основание, а на вал закрепляют точильный камень или наждачный круг.
  • Вибростол для производства декоративной плитки, тротуарной плитки или других бетонных изделий где необходимо уплотнение раствора и удаление от туда воздушных пузырей. А возможно вы занимаетесь производством силиконовых форм, для этого также нужен вибростол.
  • Вибратор для усадки бетона. Самодельные конструкции которых полно в интернете, вполне могут быть реализованы с применением небольшого двигателя от стиральной машинки.
  • Бетономешалка. Вполне подойдет такой двигатель и для небольшой бетономешалки. После небольшой переделки, можно использовать и штатный бак от стиральной машинки.
  • Ручной строительный миксер. С помощью такого миксера можно замешивать штукатурные смеси, плиточный клей, бетон.
  • Газонокосилка. Отличный вариант по мощности и габаритам для газонокосилки на колесах. Подойдет любая готовая платформа на 4-х колесах с закрепленным в центре двигателем с прямым приводом на «ножы» которые будут находится снизу. Высоту газона можно регулировать посадкой, например, поднимая или опуская колеса на шарнирах по отношению к основной платформе.
  • Мельница для измельчения травы и сена или зерна. Особенно актуально для фермеров и людей занимающихся разведением домашней птицы и другой живности. Также можно делать заготовки корма на зиму.

Вариантов применения электромотора может быть очень много, суть процесса заключается в возможности вращать на высоких оборотах разные механизмы и приспособления. Но какой бы механизм сконструировать вы б не собирались, все равно вам нужно будит правильно
подключить двигатель от стиральной машинки.

Виды двигателей

В стиральных машинках разных поколений и стран производства, могут быть и разные типы
электродвигателей. Как правило это один из трех вариантов:

Асинхронный.
В основном это все трехфазные двигатели, могут быть и двухфазными но это большая редкость.
Такие двигатели просты в своей конструкции и обслуживанию, в основном все сводится к смазке подшипников. Недостатком есть большой вес и габариты при небольшом КПД.
Такие двигатели стоят в старинных, маломощных и недорогих моделях стиральных машин.


Коллекторный.
Двигатели которые пришли на смену большим и тяжелым асинхронным устройствам.
Такой двигатель может работать как от переменного так и от постоянного тока, на практике  он будет вращаться даже от автомобильного аккумулятора на 12 вольт.
Двигатель может вращаться в нужную нам сторону, для этого нужно всего лишь сменить полярность подключения щеток к обмоткам статора.
Высокая скорость вращения, плавное изменение оборотов изменением прилагаемого напряжения, небольшие размеры и большой пусковой момент — вот лишь небольшая часть преимуществ такого типа двигателей.
К недостаткам можно отнести износ коллекторного барабана и щеток и повышенный нагрев при не столь продолжительной работе. Также необходима более частая профилактика, например чистка коллектора и замена щеток.

Инверторный (бесколлекторный)
Инновационный тип двигателей с прямым приводом и небольшими габаритами при довольно не малой мощности и высоком КПД.
В конструкции двигателя все так же присутствует статор и ротор, однако количество соединительных элементов сведено к минимуму. Отсутствие элементов подверженных быстрому износу, а так же низкий уровень шума.
Такие двигателя стоят в последних моделях стиральных машин и их производство требует сравнительно больше затрат и усилий что конечно же влияет на цену.

Схемы подключения

Тип двигателя с пусковой обмоткой (старые/дешевые стиралки)

Для начала нужен тестер или мультиметр. Нужно найти две соответствующие друг другу пары выводов.
Щупами тестера, в режиме прозвонки или сопротивления, нужно отыскать два провода которые между собой прозваниваются, остальные два провода автоматически будут парой второй обмотки.

Дальше следует выяснить, где у нас пусковая, а где – рабочая обмотки. Нужно замерить их сопротивление: более высокое сопротивление укажет на пусковую обмотку (ПО), которая создает начальный крутящий момент. Более низкое сопротивление укажет нам на обмотку возбуждения (ОВ) или другими словами — рабочую обмотку, создающую магнитное поле вращения.

Вместо контактора «SB» может стоять неполярный конденсатор малой емкости (около 2-4 мкФ)
Как это обустроено в самой стиралке для удобства.

 Если же двигатель будет запускаться без нагрузки, то есть, не будит на его валу шкива с нагрузкой в момент запуска, то такой двигатель может запускаться и сам, без конденсатора и кратковременной «запитки» пусковой обмотки.

Если двигатель сильно перегревается или греется даже без нагрузки непродолжительное время, то причин может быть несколько. Возможно изношены подшипники или уменьшился зазор между статором и ротором в следствие чего они задевают друг друга. Но чаще всего причиной может быть высокая емкость конденсатора, проверить несложно — дайте поработать двигателю с отключенным пусковым конденсатором и сразу все станет ясно. При необходимости емкость конденсатора лучше уменьшить до минимума при котором он справляется с запуском электродвигателя.

В кнопке контакт «SB» строго должен быть не фиксируемым, можно попросту воспользоваться кнопкой от дверного звонка, в противном случае пусковая обмотка может сгореть.

В момент запуска кнопку «SB» зажимают до момента раскрутки вала на полную (1-2 сек.), дальше кнопка отпускается и напряжение на пусковую обмотку не подается. Если необходим реверс — нужно сменить контакты обмотки.

Иногда в такого двигателя может быть не четыре, а три провода на выходе, в таком случае  две обмотки уже соединены в средней точке между собой, как показано в схеме.
В любом случае разбирая старую стиралку, можно присмотреться как там был подключен в ней ее двигатель.

Когда возникает необходимость реализовать реверс или сменить направления вращения двигателя с пусковой обмоткой, можно подключить по следующей схеме:

Интересный момент. Если в двигателе не использовать (не задействовать) пусковую обмотку, то направление вращения может быть всевозможным (в любую из сторон) и зависить, например, от того в какую сторону провернуть вал в тот момент когда подключается напряжение.

Коллекторный тип двигателя (современные, стиралки автомат с вертикальной загрузкой)

Как правило это коллекторные двигатели без пусковой обмотки, которые не нуждаются и в пусковом конденсаторе, такие двигатели работают и от постоянного тока и от переменного.

Такой двигатель может иметь около 5 — 8 выводов на клемном устройстве, но для работы двигателя вне стиральной машинки, они нам не понадобятся. В первую очередь нужно исключить ненужные контакты тахометра. Сопротивления обмоток тахометра составляет примерно 60 — 70 Ом.

Также могут быть выведены и выводы термозащиты, которые встречаются редко, но они нам так же не понадобятся, это как правило нормально замкнутый или разомкнутый контакт с «нулевым» сопротивлением.

Дальше подключаем напряжение к одному из выводов обмотки. Второй ее вывод соединяют с
первой щеткой. Вторая щетка подключается к оставшемуся 220-вольтовому проводу. Двигатель должен заработать и вращаться в одну сторону.

Чтобы изменить направление движения двигателя, подключение щеток следует поменять местами: теперь первая будет включена в сеть, а вторая соединена с выходом обмотки.

Такой двигатель можно проверить автомобильным аккумулятором на 12 вольт, не боясь при этом «спалить» его из за того что неправильно подключили, спокойно можно и
«поэкспериментировать» и с реверсом и посмотреть как двигатель работает на малых оборотах от низкого напряжения.

Подключая к напряжению 220 вольт, имейте в виду что двигатель резко запустится с рывком,
поэтому лучше его закрепить неподвижно чтоб он не повредил и не замкнул провода.

О том как подключить трехфазные асинхронные двигатели к обычной бытовой сети 220 вольт, довольно подробно можно узнать в статье — «Подключение трехфазного двигателя»

Регулятор оборотов

Если возникает необходимость регулирования количества оборотов, можно воспользоваться
бытовым регулятором освещения (диммером).Но для этой цели нужно подбирать такой диммер который по мощности будет с запасом больше мощности двигателя, или же потребуется доработка, можно из той же стиральной машинки извлечь симистор с радиатором и впаять его на место маломощной детали в конструкции регулятора освещения. Но здесь уже нужно иметь навыки работы с электроникой.

Если же вам удастся найти специальны диммер для подобных электродвигателей то это будет
самым простым решением. Как правило их можно подыскать в точках продажа систем вентиляции и используются они для регулировки оборотов двигателей приточных и вытяжных систем вентиляции.

Коллекторный двигатель постоянного тока: конструкция и принцип действия

Коллекторные электродвигатели довольно распространены в быту и на производстве. Они используются для привода различных механизмов, электроинструмента, в автомобилях. Отчасти популярность обусловлена простой регулировкой оборотов ротора, но есть и некоторые ограничения их применения и конечно же недостатки. Давайте разберемся что такое коллекторный двигатель постоянного тока (КДПТ), какие бывают разновидности данного вида электродвигателей и где они используются.

Определение и устройство

В справочниках и энциклопедиях приводят, такое определение:

«Коллекторным называется электродвигатель, у которого датчиком положения вала и переключателем обмоток является одно и то же устройство – коллектор. Такие двигатели могут работать либо только на постоянном токе, либо и на постоянном, и на переменном.»

Коллекторный электродвигатель, как и любой другой, состоит из ротора и статора. В этом случае ротор – является якорем. Напомним, что якорем называется та часть электрической машины, которая потребляет основной ток, и в которой индуцируется электродвижущая сила.

Якорь коллекторного двигателя

Для чего нужен и как устроен коллектор? Коллектор расположен на валу (роторе), и представляет собой набор продольно расположенных пластин, изолированных от вала и друг от друга. Их называют ламелями. К ламелям подключаются отводы секций обмоток якоря (устройство якорной обмотки КДПТ вы видите на группе рисунков ниже), а точнее к каждой из них подключен конец предыдущей и начало следующей секции обмотки.

Схема обмоток якоря КДПТ

Ток к обмоткам подаётся через щетки. Щётки образуют скользящий контакт и во время вращения вала соприкасаются то с одной, то с другой ламелью. Таким образом происходит переключение обмоток якоря, для этого и нужен коллектор.

Щеточный узел состоит из кронштейна с щеткодержателями, непосредственно в них и устанавливаются графитовые или металлографитовые щетки. Для обеспечения хорошего контакта щетки прижимаются к коллектору пружинами.

На статоре устанавливаются постоянные магниты или электромагниты (обмотка возбуждения), которые создают магнитное поле статора. В литературе по электрическим машинам вместо слова «статор» чаще используют термины «магнитная система» или «индуктор». На рисунке ниже изображена конструкция ДПТ в разных проекциях. Теперь же давайте разберемся как работает коллекторный двигатель постоянного тока!

Устройство в разрезе

Принцип действия

Когда ток протекает через обмотку якоря, возникает магнитное поле, направление которого можно определить с помощью правила буравчика. Постоянное магнитное поле статора взаимодействует с полем якоря, и он начинает вращаться благодаря тому, что одноименные полюса отталкиваются, притягиваясь к разноимённым. Что отлично иллюстрирует рисунок ниже.

Магнитная схема

При переходе щеток на другие ламели ток начинает протекать в обратную сторону (если рассматривать приведенный выше пример), магнитные полюса меняются местами и процесс повторяется.

В современных коллекторных машинах не используется двухполюсная конструкция из-за неравномерности вращения, в момент переключения направления тока силы, действующие на якорь, будут минимальны. А если включить двигатель, вал которого остановился в этом «переходном» положении — он может и не начать вращаться совсем. Поэтому на коллекторе современного двигателя постоянного тока расположено значительно больше полюсов и секций обмоток, уложенных в пазах шихтованного сердечника, таким образом достигаются оптимальные плавность движения и момент на валу.

Принцип работы коллекторного двигателя простым языком для чайников раскрыт в следующем видеоролике, убедительно рекомендуем ознакомиться.

Виды КДПТ и схемы соединения обмоток

По способу возбуждения коллекторные двигатели постоянного тока различают двух типов:

  1. С постоянными магнитами (маломощные двигатели мощностью десятки и сотни Ватт).
  2. С электромагнитами (мощные машины, например, на грузоподъёмных механизмах и станках).

Различают такие типы КДПТ по способу соединения обмоток:

  • Последовательного возбуждения (в старой отечественной литературе и от старых электриков можно услышать название «Сериесные», от англ. Serial). Здесь обмотка возбуждения подключена последовательно с обмоткой якоря. Высокий пусковой момент – преимущество такой схемы, а её недостаток – падение частоты вращения с увеличением нагрузки на валу (мягкая механическая характеристика), и то что двигатель идёт вразнос (неконтролируемый рост оборотов с последующим повреждением опорных подшипников и якоря) если работают на холостом ходу или с нагрузкой на валу в меньше 20-30% от номинальной.
  • Параллельного (также называют «шунтовые»). Соответственно обмотка возбуждения подключена параллельно обмотке якоря. На низких оборотах на валу высокий момент и стабилен в относительно широком диапазоне оборотов, а с увеличением оборотов он уменьшается. Преимущество — стабильные обороты в широком диапазоне нагрузки на валу (ограничивается его мощностью), а недостаток – при обрыве в цепи возбуждения может пойти вразнос.
  • Назависимого. Обмотки возбуждения и якоря питаются от разных источников. Такое решение позволяет точнее регулировать обороты вала. Особенности работы похожи на ДПТ с параллельным возбуждением.
  • Смешанного. Часть обмотки возбуждения подключена параллельно, а часть последовательно с якорем. Совмещают достоинства последовательного и параллельного типов.

Механические характеристики

Схемы соединения обмоток якоря и статора

Условное графическое обозначение на схеме вы видите ниже.

УГО по ГОСТ

В иностранной и современной отечественной литературе, а также на схемах можно встретить и другое представление УГО для КДПТ, как было приведено на предыдущем рисунке в виде круга с двумя квадратами, где круг обозначает якорь, а два квадрата – щетки.

Схема подключения и реверс

Схема соединения обмоток статора и ротора определяется при изготовлении, и, в зависимости от того, где применяется конкретный двигатель, нужно выбирать соответствующее решение. В определенных режимах работы (тормозной режим, например) схемы включения обмоток могут изменяться или вводиться дополнительные элементы.

Включают маломощные коллекторные двигатели постоянного тока с помощью: полупроводниковых ключей (транзисторов), тумблеров или кнопок, специализированных микросхем-драйверов или с помощью маломощных реле. Крупные мощные машины подключаются к сети постоянного тока через двухполюсные контакторы.

Ниже вы видите реверсивную схему подключения двигателя постоянного тока к сети 220В. На практике, на производстве схема будет аналогичной, но диодного моста в ней не будет, поскольку все линии для подключения таких двигателей прокладываются от тяговых подстанций, где переменный ток выпрямляется.

Реверсивная схема пуска

Реверс осуществляется путем смены полярности на обмотке возбуждения или на якоре. Изменить полярность и там, и там нельзя, поскольку направление вращения вала не изменится, как это происходит с универсальными коллекторными двигателями при работе на переменном токе.

Для плавного пуска двигателя в цепь питания обмотки якоря или обмотки якоря и обмотки возбуждения (в зависимости от схемы их соединения) вводят регулировочное устройство, например, реостат, таким же образом регулируют и частоту вращения вала, но вместо реостата чаще используют набор постоянных резисторов, подключаемых с помощью набора контакторов.

Пусковой реостат в цепи якоря и статора

В современных приложениях частота оборотов изменяется с помощью широтно-импульсной модуляции (ШИМ) и полупроводникового ключа, именно так это и сделано в аккумуляторном электроинструменте (шуруповёрт, например). КПД такого способа значительно выше.
Схема ШИМ-регулятора для ДПТ

Сфера применения

Коллекторные двигатели постоянного тока применяются повсеместно как в быту, так и в промышленных устройствах и механизмах, давайте кратко рассмотрим их область применения:

  • В автомобилях используют 12В и 24В коллекторные ДПТ для привода щеток стеклоочистителей (дворников), в стеклоподъёмниках, для запуска двигателя (стартер — это коллекторный двигатель постоянного тока последовательного или смешанного возбуждения) и приводах другого назначения.
  • В грузоподъёмных механизмах (краны, лифты и пр.) используются КДПТ, которые работают от сети постоянного тока с напряжением 220В или любым другим доступным напряжением.
  • В детских игрушках и радиоуправляемых моделях малой мощности используются КДПТ с трёхполюсным ротором и постоянными магнитами на статоре.
  • В ручном аккумуляторном электроинструменте — разнообразные дрели, болгарки, электроотвертки и т.д.

Отметим, что в современный дорогой электроинструмент устанавливают не коллекторные, а бесколлекторные электродвигатели.

Достоинства и недостатки

Разберем плюсы и минусы коллекторного двигателя постоянного тока. Преимущества:

  1. Соотношение размеров к мощности (массогабаритные показатели).
  2. Простота регулировки оборотов и реализации плавного пуска.
  3. Пусковой момент.

Недостатки у КДПТ следующие:

  1. Износ щеток. Высоконагруженные двигатели, которые регулярно эксплуатируются, требуют регулярного осмотра, замены щеток и обслуживания коллекторного узла.
  2. Коллектор изнашивается из-за трения щеток.
  3. Возможно искрение щеток, что ограничивает применение в опасных местах (тогда используют КДПТ взрывозащищенного исполнения).
  4. Из-за постоянного переключения обмоток этот тип двигателей постоянного тока вносит помехи и искажения в питающие цепи или электросеть, что приводит к сбоям и проблемам в работе других элементов схемы (особенно актуально для электронных схем).
  5. У ДПТ на постоянных магнитах магнитные силы со временем ослабевают (размагничиваются) и эффективность двигателя снижается.

Вот мы и рассмотрели, что такое коллекторный двигатель постоянного тока, как он устроен и какой у него принцип действия. Если остались вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

Цепь плавного пуска двигателя с ШИМ

для предотвращения высокого потребления при включении питания

В сообщении объясняется эффективная схема плавного пуска двигателя с ШИМ, которая может использоваться для включения тяжелых двигателей с плавным пуском и, таким образом, предотвращения потребления оборудования опасными высокими токами.

Почему мягкий пуск

Двигатели высокой мощности, такие как двигатели насосов или другие виды двигателей тяжелой промышленности, имеют тенденцию потреблять большой ток во время их первоначального включения питания, что, в свою очередь, воздействует на соответствующие предохранители и переключатели, вызывая их либо перегорание, либо деградировать сверхурочно.Чтобы исправить ситуацию, крайне необходима схема плавного пуска.

В нескольких из моих предыдущих статей мы обсуждали связанные темы, которые вы можете подробно изучить в следующих сообщениях:

Схема плавного пуска для двигателей насосов

Схема плавного пуска для холодильников

Хотя приведенные выше конструкции весьма полезны , с их подходом их можно считать немного низкотехнологичными.

В этой статье мы увидим, как этот процесс может быть реализован с использованием очень сложной схемы контроллера плавного пуска двигателя на основе ШИМ.

Использование концепции ШИМ

Идея состоит в том, чтобы применять постепенно увеличивающуюся ШИМ к двигателю каждый раз, когда он включается, это действие позволяет двигателю достигать линейно возрастающей скорости от нуля до максимума в течение установленного периода времени, что может быть регулируемым.

Примечание. Используйте конфигурацию Darlington BC547 на выводе № 5 IC2 вместо одного BC547. Это обеспечит более эффективный отклик по сравнению с одним BC547

Пример схемы для регулируемого контроллера мотора 48 В с плавным пуском

## ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ 1К ОТ КОНТАКТА 5 IC2 К ЗАЗЕМЛЕНИЮ, КОТОРАЯ НЕПРАВИЛЬНО НЕ ПОКАЗАНА В ВЫШЕ ДИЗАЙНЕ ##

Как это работает

Ссылаясь на рисунок выше, создание линейно нарастающей ШИМ достигается с помощью двух ИС 555, настроенных в их стандартном режиме ШИМ.

Я уже подробно обсуждал эту концепцию в одной из своих предыдущих статей, объясняющих, как использовать IC 555 для генерации ШИМ.

Как видно из схемы, в конфигурации используются две микросхемы 555, причем IC1 подключен как нестабильный, а IC2 — как компаратор.

IC1 генерирует необходимые тактовые сигналы с заданной частотой (определяемой значениями R1 и C2), которые поступают на вывод № 2 IC2.

IC2 использует тактовый сигнал для генерации треугольных волн на своем выводе №7, так что их можно сравнить с потенциалом, доступным на его выводе управляющего напряжения №5.

Контакт № 5 получает необходимое управляющее напряжение через каскад эмиттерного повторителя NPN, созданный с помощью T2 и связанных компонентов.

При включении питания на T2 подается линейное или постепенно увеличивающееся напряжение на его базе через R9, а также из-за пропорциональной зарядки C5.

Этот линейный потенциал соответствующим образом дублируется на эмиттере T2 по отношению к напряжению питания на его коллекторе, что означает, что базовые данные преобразуются в постепенно возрастающий потенциал в диапазоне от нуля до почти уровня напряжения питания.

Это нарастающее напряжение на выводе № 5 IC 2 мгновенно сравнивается с имеющейся треугольной волной на выводе № 7 IC2, которая преобразуется в линейно нарастающий ШИМ на выводе № 3 IC2.

Процесс линейного увеличения ШИМ продолжается до тех пор, пока C5 не будет полностью заряжен и база T2 не достигнет стабильного уровня напряжения.

Приведенная выше конструкция обеспечивает генерацию ШИМ при каждом включении питания.

Видеоклип:

В следующем видео показан практический результат тестирования вышеуказанной схемы ШИМ, реализованной на двигателе 24 В постоянного тока.На видео показан отклик регулятора PWM цепи на двигателе, а также реакция светодиода дополнительного индикатора батареи, когда двигатель включен и выключен.

Интеграция контроллера симистора с переходом через ноль

Для реализации эффекта схемы плавного пуска двигателя с ШИМ выходной сигнал от контакта № 3 IC2 необходимо подать на схему драйвера питания симистора, как показано ниже: На изображении выше показано, как включение ШИМ-управления плавным пуском может быть реализовано на тяжелых двигателях по назначению.

На изображении выше мы видим, как изоляторы драйвера симистора с детектором пересечения нуля могут использоваться для управления двигателями с линейно увеличивающимися ШИМ для выполнения эффекта плавного пуска.

Вышеупомянутая концепция эффективно обеспечивает защиту от перегрузки по току при пуске на однофазных двигателях.

Однако в случае использования трехфазного двигателя, следующая идея может быть использована для реализации предлагаемого трехфазного плавного пуска двигателей.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Что такое соединение общего коллектора (или конфигурация CC)? — Определение, коэффициент усиления по току и ток коллектора

Определение : Конфигурация, в которой коллектор является общим между эмиттером и базой, известна как конфигурация CC . В конфигурации CC входная цепь подключена между эмиттером и базой, а выход берется из коллектора и эмиттера. Коллектор — это , общий для входа и выхода , схема , отсюда и название: соединение общего коллектора или конфигурация общего коллектора.

npn-transistor-cc-configuration

pnp-transistor-cc-configuration Коэффициент усиления тока (Y)

Коэффициент усиления тока определяется как отношение выходного тока к входному. В обычной конфигурации эмиттера выходной ток равен току эмиттера I E , тогда как входной ток равен базовому току I B .

Таким образом, отношение изменения тока эмиттера к изменению тока базы известно как коэффициент усиления тока. Это выражается буквой Y

.

equation-1-cc-configuration Отношение между Υ и α

Y — это коэффициент усиления тока для конфигурации с общим коллектором, а α — это коэффициент усиления по току для соединения с общей базой.

equation-2-cc-configuration и, equation-3-cc-configuration Подставляя значение ΔI B в первое уравнение выше, получаем,

equation-4-cc-configuration Приведенное выше соотношение показывает, что значение Y почти равно β. Эта схема в основном используется для усиления, так как входное сопротивление очень высокое, а выходное сопротивление очень низкое. Усиление напряжения сопротивления очень низкое. Эта схема используется в основном для согласования импеданса.

Ток коллектора

Мы знаем это,

equation-5-cc-configuration Кривая входной характеристики

Входная характеристика конфигурации общего коллектора проведена между напряжением базы коллектора V CE и током базы I B при постоянном напряжении тока эмиттера V CE .Значение выходного напряжения V CE изменяется относительно входного напряжения V BC и I B С помощью этих значений строится кривая входной характеристики. Кривая входной характеристики показана ниже.

input-characteristic-curve Кривая выходной характеристики

Выходная характеристика схемы с общим эмиттером проводится между напряжением эмиттер-коллектор V EC и выходным током I E при постоянном входном токе I B .Если входной ток I B равен нулю, то ток коллектора также становится равным нулю, и ток через транзистор не течет.

output-characteristic-curve Транзистор работает в активной области, когда ток базы увеличивается и достигает области насыщения. График построен путем сохранения постоянного тока базы I B и изменения напряжения эмиттер-коллектор V CE , значения выходного тока I E учитываются по отношению к V CE . Используя V CE и I E при постоянном I B , строится кривая выходной характеристики.

.

Примеры того, как транзистор действует как переключатель

Транзисторы состоят из полупроводникового материала, который чаще всего используется для усиления или переключения, хотя их также можно использовать для управления потоком напряжения и тока. Не все, но большинство электронных устройств содержат один или несколько типов транзисторов. Некоторые транзисторы размещены индивидуально или обычно в интегральных схемах, которые различаются в зависимости от их применения.

Если мы говорим об усилении, электронная циркуляция тока может быть изменена добавлением электронов, и этот процесс приводит к изменениям напряжения, которые пропорционально влияют на многие изменения выходного тока, вызывая усиление.

А, если говорить о коммутации, то есть два типа транзисторов NPN и PNP. В этом руководстве мы покажем вам, как использовать транзисторы NPN и PNP для переключения, на примере схемы переключения транзисторов для транзисторов типа NPN и PNP.

Необходимые материалы

  • BC547-NPN Транзистор
  • BC557-PNP Транзистор
  • LDR
  • светодиод
  • Резистор (470 Ом, 1 МОм)
  • Аккумулятор-9В
  • Соединительные провода
  • Макет

Цепь переключения транзистора NPN

Прежде чем приступить к принципиальной схеме, вы должны знать концепцию транзистора NPN как переключателя .В транзисторе NPN ток начинает течь от коллектора к эмиттеру только тогда, когда на клемму базы подается минимальное напряжение 0,7 В. Когда на клемме базы нет напряжения, она работает как разомкнутый переключатель между коллектором и эмиттером.

Working Concept of NPN transistor

Схема переключения транзисторов

NPN

NPN Transistor Switching Circuit

Теперь, как вы видите на схеме ниже, мы сделали схему делителя напряжения, используя LDR и резистор 1 МОм.Когда рядом с LDR горит свет, его сопротивление становится НИЗКИМ, а входное напряжение на клемме базы ниже 0,7 В, чего недостаточно для включения транзистора. В это время транзистор ведет себя как разомкнутый ключ.

Когда над LDR темно, его сопротивление внезапно увеличивается, следовательно, схема делителя генерирует достаточно напряжения (равное или более 0,7 В) для включения транзистора. Таким образом, транзистор ведет себя как замыкающий переключатель и начинает пропускать ток между коллектором и эмиттером.

Working Concept of PNP transistor

Цепь переключения транзистора PNP

Концепция транзистора PNP в качестве переключателя заключается в том, что ток прекращает течь от коллектора к эмиттеру только тогда, когда на клемму базы подается минимальное напряжение 0,7 В. Когда на клемме базы нет напряжения, она работает как переключатель между коллектором и эмиттером. Просто коллектор и эмиттер соединены изначально, когда подано базовое напряжение, соединение между коллектором и эмиттером разрывается.

Working Concept of PNP transistor

Схема переключения транзисторов

PNP

PNP Transistor Switching Circuit

Как вы видите на принципиальной схеме, мы сделали схему делителя напряжения, используя LDR и резистор 1 МОм. Работа этой схемы прямо противоположна переключению транзистора NPN.

Когда рядом с LDR горит свет, его сопротивление становится НИЗКОМ, а входное напряжение на клемме базы выше 0,7 В, чего достаточно для включения транзистора.В это время транзистор ведет себя как открытый переключатель, поскольку это транзистор PNP.

Когда над LDR темно, его сопротивление внезапно увеличивается, следовательно, напряжения недостаточно для включения транзистора. Таким образом, транзистор ведет себя как замыкающий переключатель и начинает пропускать ток между коллектором и эмиттером.

PNP Transistor Switching using LDR

.

3 Объяснение простых схем контроллера скорости двигателя постоянного тока

Схема, которая позволяет пользователю линейно управлять скоростью подключенного двигателя путем вращения присоединенного потенциометра, называется схемой контроллера скорости двигателя.

Здесь представлены 3 простые в сборке схемы регулятора скорости для двигателей постоянного тока: одна с использованием полевого МОП-транзистора IRF540, вторая с использованием IC 555 и третья концепция с IC 556 с обработкой крутящего момента.

Дизайн №1: Контроллер скорости двигателя постоянного тока на основе Mosfet

Очень крутая и простая схема контроллера скорости двигателя постоянного тока может быть построена с использованием всего одного МОП-транзистора, резистора и потенциометра, как показано ниже:

Использование Эмиттерный повторитель BJT

Как видно, mosfet настроен как повторитель источника или общий режим стока, чтобы узнать больше об этой конфигурации, вы можете обратиться к этому сообщению, в котором обсуждается версия BJT, тем не менее принцип работы остается тем же .

В приведенной выше конструкции контроллера двигателя постоянного тока регулировка потенциометра создает изменяющуюся разность потенциалов на затворе МОП-транзистора, а вывод истока МОП-транзистора просто следует за значением этой разности потенциалов и соответственно регулирует напряжение на двигателе.

Это означает, что источник всегда будет отставать от напряжения затвора на 4 или 5 В и будет изменяться вверх / вниз в зависимости от этой разницы, представляя переменное напряжение на двигателе от 2 до 7 В.

Когда напряжение затвора составляет около 7 В, вывод источника будет подавать минимум 2 В на двигатель, вызывая очень медленное вращение двигателя, и 7 В будет доступно на выводе источника, когда регулировка потенциометра генерирует полное напряжение 12 В на затворе. МОП-транзистора.

Здесь мы можем ясно видеть, что вывод истока mosfet, кажется, «следует» за затвором и, следовательно, за повторителем источника имени.

Это происходит потому, что разница между затвором и истоком МОП-транзистора всегда должна составлять около 5В, чтобы МОП-транзистор работал оптимально.

В любом случае, вышеуказанная конфигурация помогает обеспечить плавное регулирование скорости двигателя, и конструкция может быть построена довольно дешево.

BJT может также использоваться вместо MOSFET, и фактически BJT будет обеспечивать более высокий диапазон регулирования от 1 В до 12 В на двигателе.

Видео-демонстрация

Когда дело доходит до управления скоростью двигателя равномерно и эффективно, контроллер на основе ШИМ становится идеальным вариантом, здесь мы узнаем больше о простой схеме для реализации этой операции.

Дизайн № 2: ШИМ-управление двигателем постоянного тока с помощью IC 555

Конструкцию простого контроллера скорости двигателя, использующего ШИМ, можно понять следующим образом:
Первоначально, когда схема запитана, контакт триггера находится в низком логическом положении, поскольку конденсатор С1 не заряжен.

Вышеупомянутые условия инициируют цикл колебаний, переводя выходной сигнал на высокий логический уровень.
При высоком выходном сигнале конденсатор заряжается через D2.

При достижении уровня напряжения, составляющего 2/3 напряжения питания, вывод 6, который является порогом срабатывания триггера IC.
Момент срабатывает на контакте №6, на контактах №3 и №7 устанавливается низкий логический уровень.

При низком уровне на выводе №3 C1 снова начинает разряжаться через D1, и когда напряжение на C1 падает ниже уровня, составляющего 1/3 напряжения питания, выводы №3 и №7 снова становятся высокими, вызывая цикл следовать и продолжать повторять.

Интересно отметить, что C1 имеет два дискретно установленных пути для процесса зарядки и разрядки через диоды D1, D2 и через резистивные плечи, устанавливаемые потенциометром, соответственно.

Это означает, что сумма сопротивлений, с которыми сталкивается C1 во время зарядки и разрядки, остается неизменной независимо от того, как установлен потенциометр, поэтому длина волны выходного импульса всегда остается неизменной.

Однако, поскольку периоды времени зарядки или разрядки зависят от значения сопротивления, встречающегося на их пути, горшок дискретно устанавливает эти периоды времени в соответствии с его настройками.

Поскольку периоды времени заряда и разряда напрямую связаны с рабочим циклом выхода, они меняются в зависимости от настройки потенциометра, давая форму предполагаемым изменяющимся импульсам ШИМ на выходе.

Средний результат отношения метка / пространство дает выход ШИМ, который, в свою очередь, управляет скоростью двигателя постоянного тока.

Импульсы ШИМ подаются на затвор МОП-транзистора, который реагирует и регулирует ток подключенного двигателя в ответ на настройку потенциометра.

Уровень тока двигателя определяет его скорость и, таким образом, реализует управляющий эффект через потенциометр.

Частоту на выходе ИС можно рассчитать по формуле:

F = 1,44 (VR1 * C1)

МОП-транзистор можно выбрать в соответствии с требованиями или током нагрузки.

Принципиальную схему предлагаемого регулятора скорости двигателя постоянного тока можно увидеть ниже:

Прототип:

Тестирование на видео:

В приведенном выше видеоролике мы можем увидеть, как устроена конструкция на основе IC 555. используется для управления скоростью двигателя постоянного тока.Как вы можете видеть, хотя лампочка отлично работает в ответ на ШИМ и меняет свою интенсивность от минимального свечения до максимально слабого, двигатель этого не делает.

Двигатель изначально не реагирует на узкие ШИМ, а запускается с рывком после того, как ШИМ настроены на значительно большую ширину импульса.

Это не означает, что в цепи есть проблемы, это потому, что якорь двигателя постоянного тока плотно зажат между парой магнитов. Чтобы начать пуск, якорь должен совершить скачок своего вращения через два полюса магнита, что не может произойти при медленном и плавном движении.Он должен начинаться с укола.

Именно поэтому двигатель изначально требует более высоких настроек ШИМ, и как только начинается вращение, якорь получает некоторую кинетическую энергию, и теперь достижение более низкой скорости становится возможным с помощью более узких ШИМ.

Тем не менее, переход в состояние «еле-еле медленно» может быть невозможным по той же причине, что и объяснено выше.

Я изо всех сил старался улучшить отклик и добиться максимально медленного управления ШИМ, сделав несколько модификаций на первой диаграмме, как показано ниже:

Сказав это, двигатель мог бы показать лучшее управление на более медленных уровнях, если бы двигатель прикреплен или обвязан грузом через шестерни или систему шкивов.

Это может произойти из-за того, что нагрузка действует как демпфер и помогает обеспечить контролируемое движение во время регулировки более низкой скорости.

Дизайн № 3: Использование IC 556 для улучшенного управления скоростью

Изменение скорости двигателя постоянного тока может показаться не таким сложным, и вы можете найти множество схем для этого.

Однако эти схемы не гарантируют постоянных уровней крутящего момента при более низких скоростях двигателя, что делает их работу весьма неэффективной.

Более того, на очень низких скоростях из-за недостаточного крутящего момента двигатель имеет тенденцию останавливаться.

Еще одним серьезным недостатком является то, что в этих схемах нет функции реверсирования двигателя.

Предлагаемая схема полностью лишена вышеперечисленных недостатков и способна создавать и поддерживать высокие уровни крутящего момента даже на минимально возможных скоростях.

Работа схемы

Прежде чем обсуждать предлагаемую схему контроллера двигателя с ШИМ, мы также хотели бы изучить более простую альтернативу, которая не так эффективна. Тем не менее, это можно считать достаточно хорошим, если нагрузка на двигатель невелика, и пока скорость не снижена до минимального уровня.

На рисунке показано, как можно использовать одну микросхему 556 IC для управления скоростью подключенного двигателя, мы не будем вдаваться в подробности, единственным заметным недостатком этой конфигурации является то, что крутящий момент прямо пропорционален скорости двигателя. .

Возвращаясь к предлагаемой схеме контроллера скорости с высоким крутящим моментом, здесь мы использовали две микросхемы 555 вместо одной или, скорее, одну микросхему 556, которая содержит две микросхемы 555 в одном корпусе.

Принципиальная схема

Основные характеристики

Вкратце предлагаемый контроллер двигателя постоянного тока включает в себя следующие интересные особенности:

Скорость можно плавно изменять от нуля до максимума, без остановки.

На крутящий момент не влияют уровни скорости и он остается постоянным даже при минимальных уровнях скорости.

Вращение двигателя можно перевернуть или изменить за доли секунды.

Скорость изменяется в обоих направлениях вращения двигателя.

Две микросхемы 555 выполняют две отдельные функции. Одна секция конфигурируется как нестабильный мультивибратор, генерирующий такты прямоугольной волны 100 Гц, которые подаются на предыдущую секцию 555 внутри корпуса.

Указанная выше частота отвечает за определение частоты ШИМ.

Транзистор BC 557 используется в качестве источника постоянного тока, который поддерживает заряженным соседний конденсатор на его плече коллектора.

При этом на вышеуказанном конденсаторе создается пилообразное напряжение, которое сравнивается внутри микросхемы 556 IC с напряжением образца, приложенным извне по показанной схеме контактов.

Примерное напряжение, подаваемое извне, может быть получено с помощью простой схемы источника питания с переменным напряжением 0–12 В.

Это изменяющееся напряжение, подаваемое на микросхему 556 IC, используется для изменения ШИМ импульсов на выходе и, в конечном итоге, используется для регулирования скорости подключенного двигателя.

Переключатель S1 используется для мгновенного изменения направления вращения двигателя, когда это необходимо.

Список деталей

  • R1, R2, R6 = 1K,
  • R3 = 150K,
  • R4, R5 = 150 Ом,
  • R7, R8, R9, R10 = 470 Ом,
  • C1 = 0,1 мкФ,
  • C2, C3 = 0,01 мкФ,
  • C4 = 1 мкФ / 25VT1,
  • T2 = TIP122,
  • T3, T4 = TIP127
  • T5 = BC557,
  • T6, T7 = BC5474, D 9015 — D4 = 1N5408,
  • Z1 = 4V7 400 мВт
  • IC1 = 556,
  • S1 = тумблер SPDT

Вышеупомянутая схема была вдохновлена ​​следующей схемой драйвера двигателя, которая давно была опубликована в журнале Elecktor Electronic India.

Управление крутящим моментом двигателя с помощью IC 555

Первую схему управления двигателем можно значительно упростить, если использовать переключатель DPDT для реверсирования двигателя и транзистор эмиттерного повторителя для реализации управления скоростью, как показано ниже:

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *