Для начинающих. Схемы включения транзистора. Схему включения транзистора с общим эмиттером
Лекция 12 микроэлектроника
6.2 Включение транзистора по схеме с общим эмиттером
Схема включения биполярного транзистора с общим эмиттером приведена на рис. 6.13:
Лучше с землей и двумя источниками |
Рис. 6.13. Схема включения транзистора с общим эмиттером |
В транзисторе, включенном по схеме с общим эмиттером, имеет место усиление не только по напряжению, но и по току. Входными параметрами для схемы с общим эмиттером будут ток базы IБ, и напряжение на базе относительно эмиттера UБЭ, а выходными характеристиками будут ток коллектора IК и напряжение на коллекторе UКЭ. Для любых напряжений:
Отличительной особенностью режима работы с ОЭ является одинаковая полярность напряжения смещения на входе (базе) и выходе (коллекторе): отрицательный потенциал в случае pnp-транзистора и положительный в случае npn-транзистора. При этом переход база-эмиттер смещается в прямом направлении, а переход база-коллектор – в обратном.
Ранее при анализе биполярного транзистора в схеме с общей базой была получена связь между током коллектора и током эмиттера в следующем виде:. В схеме с общим эмиттером дляpnp-транзистора (в соответствии с первым законом Кирхгофа) (6.1): , отсюда получим:
| (6.36) |
После перегруппирования сомножителей получаем:
| (6.37) |
Коэффициент α/(1-α) называется коэффициентом усиления по току биполярного транзистора в схеме с общим эмиттером. Обозначим этот коэффициент знаком β, итак:
| (6.38) |
Коэффициент передачи тока для транзистора, включенного по схеме с общим эмиттером β показывает, во сколько раз изменяется ток коллектора IК при изменении тока базы IБ. Поскольку величина коэффициента передачи α близка к единице (α<1), то из уравнения (6.38) следует, что коэффициент усиления β будет существенно больше единицы (β>>1). При значениях коэффициента передачи α=0,98÷0,99 коэффициент усиления тока базы будет лежать в диапазоне β=50÷100.
6.2.1 Статические вольт-амперные характеристики транзистора, включенные по схеме с общим эмиттером
Рассмотрим ВАХ pnp-транзистора в режиме ОЭ (рис. 6.13, 6.14).
Рис. 6.13. Выходные ВАХ ОЭ | Рис. 6.14. Входные ВАХ ОЭ |
Входные ВАХ.
Рекомбинационный ток базы составляет часть тока эмиттера:
(6.36) |
При UКЭ=0 . Сувеличением напряжения UБЭ концентрация на переходе ЭБ растет(рис. 6.15,а), градиент концентрации инжектированных дырок растет, диффузионный ток дырок, как и в прямо смещенном pn-переходе, растет экспоненциально (т. А) и отличается от тока эмиттера только масштабом (6.36).
При обратных напряжениях на коллекторе и фиксированном напряжении на ЭП |UБЭ| (рис. 6.15,б) постоянной будет и концентрация дырок в базе вблизи эмиттера. Увеличение напряжения UКЭ будет сопровождаться расширением ОПЗ коллекторного перехода и уменьшением ширины базы (эффект Эрли) и, следовательно, уменьшением общего количества дырок, находящихся в базе.
|
|
UКЭ=const,UБЭ– переменное | UБЭ=const,UКЭ– переменное |
Рис. 6.15 Распределение неосновных носителей в базе pnp-транзистора при включении в схеме с ОЭ |
При этом градиент концентрации дырок в базе будут расти, что приводит к дальнейшему уменьшению их концентрации. Поэтому число рекомбинаций электронов и дырок в базе в единицу времени уменьшается (возрастает коэффициент переноса ). Так как электроны для рекомбинации приходят через базовый вывод, ток базы уменьшается и входные ВАХ смещаются вниз.
При UБЭ=0 и отрицательном напряжении на коллекторе (Uкб<<0) ток через эмиттерный переход равен нулю, в базе транзистора концентрация дырок меньше равновесной, так как у КП эта концентрация равна нулю, а у ЭП ее величина определяется равновесным значением. Через коллекторный переход протекает ток экстрагированных из коллектора дырок IКЭ0.
В базе, как и в pn-переходе при обратном смещении, процесс тепловой генерации будет преобладать над процессом рекомбинации. Генерированные электроны уходят из базы через базовый вывод, что означает наличие электрического тока, направленного в базу транзистора (т. В). Это – режим отсечки, он характеризуется сменой направления тока базы.
Выходные ВАХ.
В активном режиме (|UКЭ|>|UБЭ|>0) поток инжектированных эмиттером дырок p экстрагируется коллекторным переходом также, как и в режиме ОБ, с коэффициентом . Часть дырок(1-α) p рекомбинирует в базе в электронами, поступающими из омического контакта базы.
При увеличении тока базы отрицательный заряд электронов уменьшает потенциальный барьер эмиттерного перехода, вызывая дополнительную инжекцию дырок в базе.
Проанализируем, почему малые изменения тока базы IБ вызывают значительные изменения коллекторного тока IК. Значение коэффициента β, существенно большее единицы, означает, что коэффициент передачи α близок к единице. В этом случае коллекторный ток близок к эмиттерному току, а ток базы (по физической природе рекомбинационный) существенно меньше и коллекторного и эмиттерного тока. При значении коэффициента α = 0,99 из 100 дырок, инжектированных через эмиттерный переход, 99 экстрагируются через коллекторный переход, и лишь одна прорекомбинирует с электронами в базе и даст вклад в базовый ток.
Увеличение базового тока в два раза (должны прорекомбинировать две дырки) вызовет в два раза большую инжекцию через эмиттерный переход (должно инжектироваться 200 дырок) и соответственно экстракцию через коллекторный (экстрагируется 198 дырок). Таким образом, малое изменение базового тока, например, с 5 до 10 мкА, вызывает большие изменения коллекторного тока, соответственно с 500 мкА до 1000 мкА. Ток базы стократно вызывает увеличение тока коллектора.
По аналогии с (6.34) можно записать:
(6.37) |
Учитывая (6.1): , получим:
Учитывая, что
где - сквозной тепловой ток отдельно взятого коллекторногоpn-перехода в режиме оторванной базы (при , т. С, режим отсечки). За счет прямого смещения базового перехода (рис. 6.16) ток
много больше теплового тока коллектора Iк0.
|
Рис. 6.16 UБЭ=const,UКЭ– переменное |
В режиме насыщения база должна быть обогащена неосновными носителями. Критерием этого режима является равновесная концентрация носителей на КП (UКБ=0). В силу уравнения UКЭ=UКБ+UБЭ, равенство напряжения на коллекторном переходе нулю может иметь место при небольших отрицательных напряжениях между базой и эмиттером. При UКЭ0 иUБЭ<0, оба перехода смещаются в прямом направлении, их сопротивление падает. При малых напряжениях на коллекторе (UКЭ<UБЭ) UКБ меняет свой знак, сопротивление коллекторного перехода резко уменьшается, коллектор начинает инжектировать дырки в базу. Поток дырок из коллектора компенсирует поток дырок из эмиттера. Ток коллектора меняет свой знак (на выходных ВАХ эта область обычно не показывается).
При больших напряжениях на коллекторе возможен пробой коллекторного перехода за счет лавинного умножения носителей в ОПЗ (т. D). Напряжение пробоя зависит от степени легирования областей транзистора. В транзисторах с очень тонкой базой возможно расширение ОПЗ на всю базовую область (происходит прокол базы).
Сравнивая выходные ВАХ транзистора, включенного по схеме с ОЭ и ОБ (рис. 6.17), можно заметить две наиболее существенные особенности: во-первых, характеристики в схеме с ОЭ имеют больший наклон, свидетельствующий об уменьшении выходного сопротивления транзистора и, во-вторых, переход в режим насыщения наблюдается при отрицательных напряжениях на коллекторе.
Рост тока коллектора с увеличением UКЭ определяется уменьшением ширины базы. Коэффициенты переноса æ и передачи тока эмиттера α растут, но коэффициент передачи тока базы в схеме с ОЭ растет быстрееα. Поэтому при постоянном токе базы ток коллектора увеличивается сильнее, чем в схеме с ОБ.
| |
Рис. 6.23 Выходные характеристики pnp-транзистора а – в схеме с ОБ, б – в схеме с ОЭ |
6.3 Включение транзистора по схеме с общим коллектором
Если входная и выходная цепи имеют общим электродом коллектор (ОК) и выходным током является ток эмиттера, а входным ток базы, то для коэффициента передачи тока справедливо:
(6.42) |
Вв таком включении коэффициент передачи тока несколько выше, чем во включении ОЭ, а коэффициент усиления по напряжению незначительно меньше единицы, так как разность потенциалов между базой и эмиттером практически не зависит от тока базы. Потенциал эмиттера практически повторяет потенциал базы, поэтому каскад, построенный на основе транзистора с ОК, называют эмиттерным повторителем. Однако этот тип включения используется сравнительно редко.
Сопоставляя полученные результаты, можно сделать выводы:
Схема с ОЭ обладает высоким усилением как по напряжению, так и по току, У нее самое большое усиление по мощности. Отметим, что схема изменяет фазу выходного напряжения на 180. Это самая распространенная усилительная схема.
Схема с ОБ усиливает напряжение (примерно, как и схема с ОЭ), но не усиливает ток. Фаза выходного напряжения по отношению к входному не меняется. Схема находит применение в усилителях высоких и сверхвысоких частот.
Схема с ОК (эмиттерный повторитель) не усиливает напряжение, но усиливает ток. Основное применение данной схемы - согласование сопротивлений источника сигнала и низкоомной нагрузки.
studfiles.net
Транзистор и Биполярный транзистор, расчёт транзисторного каскада | Meanders.ru
ТРАНЗИСТОР — это полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (Si – кремния, или Gе — германия), содержащего не менее трёх областей с различной — электронной (n) и дырочной (p) — проводимостью. Изобретён в 1948 американцами У. Шокли, У. Браттейном и Дж. Бардином. По физической структуре и механизму управления током различают транзисторы биполярные (чаще называют просто транзисторами) и униполярные (чаще называют полевыми транзисторами). В первых, содержащих два, или более электронно-дырочных перехода, носителями заряда служат как электроны, так и дырки, во вторых — либо электроны, либо дырки. Термн «транзистор» нередко используют для обозначения портативных радиовещательных приёмников на полупроводниковых приборах.
Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).
Биполярный транзистор
Биполярный транзисторБиполярный транзистор может быть n-p-n и p-n-p проводимости. Не заглядывая во внутренности транзистора, можно отметить разницу проводимостей лишь в полярности подключения в практических схемах источников питания, конденсаторов, диодов, которые входят в состав этих схем. На рисунке справа графически изображены n-p-n и p-n-p транзисторы.
У транзистора три вывода. Если рассматривать транзистор как четырёхполюсник, то у него должно быть два входных и два выходных вывода. Следовательно, какой то из выводов должен быть общим, как для входной, так и для выходной цепи.
Схемы включения транзистора
Схема включения транзистора с общим эмиттеромСхема включения транзистора с общим эмиттером – предназначена для усиления амплитуды входного сигнала по напряжению и по току. При этом входной сигнал, усиливаясь транзистором, инвертируется. Другими словами фаза выходного сигнала поворачивается на 180 градусов. Эта схема, является основной, для усиления сигналов разной амплитуды и формы. Входное сопротивление транзисторного каскада с ОЭ бывает от сотен Ом до единиц килоом, а выходное — от единиц до десятков килоом.
Схема включения транзистора с общим коллекторомСхема включения транзистора с общим коллектором – предназначена для усиления амплитуды входного сигнала по току. Усиления по напряжению в такой схеме не происходит. Правильнее сказать, коэффициент усиления по напряжению даже меньше единицы. Входной сигнал транзистором не инвертируется.Входное сопротивление транзисторного каскада с ОК бывает от десятков до сотен килоом, а выходное в пределах сотни ом — единиц килоом. Благодаря тому, что в цепи эмиттера находится, как правило, нагрузочный резистор, схема обладает большим входным сопротивлением. Кроме того, благодаря усилению входного тока, она обладает высокой нагрузочной способностью. Эти свойства схемы с общим коллектором используются для согласования транзисторных каскадов — как «буферный каскад». Так как, входной сигнал, не усиливаясь по амплитуде «повторяется» на выходе, схему включения транзистора с общим коллектором ещё называют Эмиттерный повторитель.
Схема включения транзистора с общей базойИмеется ещё Схема включения транзистора с общей базой. Эта схема включения в теории есть, но в практике она реализуется очень тяжело. Такая схема включения используется в высокочастотной технике. Особенность её в том, что у неё низкое входное сопротивление, и согласовать такой каскад по входу сложно. Опыт в электронике у меня не малый, но говоря об этой схеме включения транзистора, я извините, ничего не знаю! Пару раз использовал как «чужую» схему, но так и не разбирался. Объясню: по всем физическим законам транзистор управляется его базой, вернее током, протекающим по пути база-эмиттер. Использование входного вывода транзистора — базы на выходе — не возможно. На самом деле базу транзистора через конденсатор «сажают» по высокой частоте на корпус, а на выходе её и не используют. А гальванически, через высокоомный резистор, базу связывают с выходом каскада (подают смещение). Но подавать смещение, по сути можно откуда угодно, хоть от дополнительного источника. Всё равно, попадающий на базу сигнал любой формы гасится через тот же самый конденсатор. Чтобы такой каскад работал, входной вывод — эмиттер через низкоомный резистор «сажают» на корпус, отсюда и низкое входное сопротивление. В общем, схема включения транзистора с общей базой — тема для теоретиков и экспериментаторов. На практике она встречается крайне редко. За свою практику в конструировании схем никогда не сталкивался с необходимостью использования схемы включения транзистора с общей базой. Объясняется это свойствами этой схемы включения: входное сопротивление — от единиц до десятков Ом, а выходное сопротивление — от сотен килоом до единиц мегаом. Такие специфические параметры — редкая потребность.
Биполярный транзистор может работать в ключевом и линейном (усилительном) режимах. Ключевой режим используется в различных схемах управления, логических схемах и др. В ключевом режиме, транзистор может находиться в двух рабочих состояниях – открытом (насыщенном) и закрытом (запертом) состоянии. Линейный (усилительный) режим используется в схемах усиления гармонических сигналов и требует поддержания транзистора в «наполовину» открытом, но не насыщенном состоянии.
Усилительный каскад на биполярном транзисторе с ОЭДля изучения работы транзистора, мы рассмотрим схему включения транзистора с общим эмиттером, как наиболее важную схему включения.
Схема изображена на рисунке. На схеме VT – собственно транзистор. Резисторы Rб1 и Rб2 – цепочка смещения транзистора, представляющая собой обыкновенный делитель напряжения. Именно эта цепь обеспечивает смещение транзистора в «рабочую точку» в режиме усиления гармонического сигнала без искажений. Резистор Rк – нагрузочный резистор транзисторного каскада, предназначен для подвода к коллектору транзистора электрического тока источник
meanders.ru
Схемы включения транзистора. » Хабстаб
При любом включении транзистора в схему, через один из его выводов, будет течь входной и выходной ток, этот вывод называют общим.Существуют три схемы включения биполярного транзистора:- с общим эмиттером;
- с общим коллектором;
- с общей базой;
- входной сигнал подаётся на базу;
- выходной сигнал снимается с коллектора;
- большим коэффициентом усиления по току;
- большим коэффициентом усиления по напряжению;



Схема с общим коллектором.
- входной сигнал подаётся на базу;
- выходной сигнал снимается с эмиттера;
- большим коэффициент усиления по току;
- напряжения входного и выходного сигнала отличаются примерно на 0,6 V;


Схема с общей базой.
- входной сигнал подаётся на эмиттер;
- выходной сигнал снимается с коллектора;
- большим коэффициентом усиления по напряжению;
- близким к нулю усилением по току, ток эмиттера больше тока коллектора на ток базы;



hubstub.ru
Для начинающих. Схемы включения транзистора. / Блог им. Nikolay / Блоги по электронике
Рассмотрим схему включения транзистора с общим эмиттером. — сам термин названия данного включение уже говорит о специфике данной схемы. Общий эмиттер а в крации это ОЭ, подразумевает тот факт, что у входа данной схемы и выхода общий эмиттер. Рассмотрим схему:


electronics-lab.ru
Усилитель с общим эмиттером
Прежде чем использовать транзистор в качестве усилителя, на него нужно подать правильные напряжения смещения (задать режим работы по постоянному току), как показано на рис. 22.1(а) для прп-транзистора. Два напряжения смещения — VBE(обеспечивающее прямое смещение эмиттерного перехода) и VCB(обеспечивающее обратное смещение коллекторного перехода) — подаются от последовательно соединенных источников. Эти источники можно заменить делителем напряжения R1 – R2, как показано на рис. 22.l(б). Теперь можно обойтись одним источником питания постоянного тока с напряжением VCC. Отношение сопротивлений резисторов R1 и R2 выбирается таким, чтобы на базе транзистора устанавливалось требуемое значение напряжения смещения.
Протекание тока покоя Is = VCC / (R1 – R2) через цепь смещения R1 – R2 связано с потреблением дополнительной мощности от источника питания. Для уменьшения тока покоя применяются высокоомные резисторы R1 – R2. Однако, как будет показано далее, очень большое сопротивление R1 приводит к снижению стабильности транзистора по постоянному току.
Потенциал базы транзистора отсчитывается относительно провода с нулевым потенциалом или шасси (поэтому допустимо говорить «напряжение на базе») и, следовательно, равен падению напряжения на резисторе R2.
Рис. 22.1. Базовое смещение npn-транзистора.
Рис. 22.2. Базовое смещение pnp-транзистора.
Потенциал базы
Например, при VСС = 10 В, R1 = 15 кОм, R2, = 1 кОм получаем
Изменяя номиналы резисторов R1 и R2, можно изменять напряжение на базе.
Тот же самый способ смещения применяется и для рпр-транзистора (рис. 22.2). В этом случае используется источник питания с напряжением отрицательной полярности (-VСС). Делитель напряжения R1 – R2 выполняет ту же функцию, что и в случае прп-транзистора. Тот факт, что питающее напряжение отрицательно, нужно обязательно принимать во внимание, но в расчетах можно не учитывать. Таким образом,
Напряжение на базе равно -0,625 В.
Для получения прямого смещения эмиттерного перехода потенции базы должен быть «выше» потенциала эмиттера, т. е. быть более положительным, чем эмиттер в прп-транзисторе, и более отрицательным в рпр-транзисторе. Вообще, независимо от типа используемого транзистор потенциал базы всегда выше потенциала эмиттера, но ниже потенциал коллектора.
Как объяснялось в предыдущем разделе, величина тока, протекающего через транзистор, определяется напряжением прямого смещения эмиттерного перехода, т. е. разностью потенциалов базы и эмиттера VBE= Vb – Ve. Изменение потенциалов базы или эмиттера приводит к изменению тока транзистора. В рассматриваемой транзисторной схемеэмиттер имеет потенциал шасси, следовательно, изменяться может только потенциал базы.
Например, если потенциал базы Vb возрастает относительно потенциала эмиттера (становится более положительным для npn-транзистора или более отрицательным для pnp-транзистора), то разность потенциалов VBE увеличивается, что приводит к увеличению тока транзистора. Уменьшение потенциала базы Vbотносительно потенциала эмиттера сопровождается уменьшением величины VBEи, следовательно, уменьшением тока транзистора.
Коллекторный (нагрузочный) резистор
Чтобы снять выходное напряжение с коллектора, в цепь коллектора включается нагрузочный резистор R3, называемый также коллекторным резистором (рис. 22.3). Коллекторный ток Ic, протекая через коллекторный резистор R3, создает на нем падение напряжения. Следовательно,
Так как все напряжения измеряются относительно шасси или потенциала земли, то коллекторное напряжение VCEесть разность потенциалов между коллектором и шасси. Как видно из схемы,
где VCC — напряжение источника питания, следовательно, VCE= VCC – VR3. Для типичных величин, указанных на схеме, получаем
(приблизительно),
VCE= VCC – VR3,= 10 – 4 = 6 В.
Тепловой пробой
Как уже отмечалось, неосновные носители образуют так называемый ток утечки обратносмещенного перехода. Ток утечки ICB0 (часто называемыйобратным коллекторным током) протекает через обратносмещенный коллекторный переход транзистора так, как показано на рис. 22.4. Этот ток усиливается точно так же, как входной (базовый) ток, с коэффициентомусиления β. При увеличении температуры транзистора ток утечки возрастает. Он усиливается транзистором и увеличивает коллекторный ток, что приводит к дальнейшему повышению температуры транзистора и, следовательно, тока утечки и т. д. Описанный процесс, называемый тепловым пробоем, носит лавинообразный характер, и если его оставив без контроля, может привести к разрушению транзистора.
Рис. 22.3. Нагрузочный резистор R3.
Рис. 22.4. Ток утечки ICB0.
Стабилизация рабочего режима по постоянному току
В усилителе с ОЭ наличие тока утечки коллекторного перехода приводит к нестабильности режима работы транзистора по постоянному току (статического режима). Эту нестабильность можно преодолеть, включи резистор R4 в эмиттерную цепь транзистора, как показано на рис. 22.5. Потенциал эмиттера в этом случае становится равным падению напряжения на резисторе R4, которое создается при протекании эмиттерного тока Ie через этот резистор. Таким образом, Ve = Ie·R4. Стабилизации режима по постоянному току осуществляется следующим образом.
Предположим, что из-за возрастания тока утечки увеличились токи Ic и Ie. Тогда вместе с ними увеличивается и потенциал эмиттера Ve. Поскольку VBE= Vb- Ve, то увеличение Ve приводит к уменьшению VBE. В результате уменьшается базовый ток, и величины токов Ic и Ie возвращаются к своим первоначальным значениям. С помощью эмиттерного резистора R4 вводится отрицательная обратная связь, обеспечивающая стабилизацию статического режима усилителя. Используя типичные номиналы резисторов, указанные на рис. 22.5, и принимая ток эмиттера Ie = 1,2 мА, получаем
Рис. 22.5. Стабилизация усилителя с Рис. 22.6
общим эмиттером на прп-транзисторе с
помощью резистора R4 в цепи эмиттера.
В этом видео рассказывается о схеме включения транзистора с общим эмиттером:
Добавить комментарий
radiolubitel.net
Схема с общим эмиттером
В схеме с общим эмиттером (рис.3.4,б) общим электродом является эмиттер. Входным током является ток базы iБ , входным напряжением – напряжение uБЭ , выходным током – ток коллектора iК , выходным напряжением – напряжение uКЭ . Входные ВАХ определяются при постоянном выходном напряжении:
,
выходные ВАХ при постоянном входном базовом токе:
.
Пример входных и выходных ВАХ для транзистора ОЭ приведен на рис.3.7.
Рис. 3.7
Они естественно отличаются от входных и выходных ВАХ транзистора ОБ. На входных ВАХ это отличие проявляется в том, что при увеличении выходного напряжения из-за эффекта модуляции базы характеристики сдвигаются вправо. Выходные ВАХ расположены в одном квадранте, в активном режиме идут с бóльшим наклоном, что означает меньшую величину дифференциального выходного сопротивления транзистора ОЭ по сравнению с ОБ.
Учитывая, что
и
,
имеем
.
Величина называется статическим коэффициентом передачи базового тока. Для малых изменений переменных вводится динамический коэффициент передачи базового тока
.
Так как несколько меньше 1 (0.9…0,995), то величина коэффициента базового тока значительно больше 1 (9…200).
В транзисторе ОЭ выполняются в соотношения:
где rK*- выходное дифференциальное сопротивление, - обратный ток транзистора ОЭ. Область отсечки (ток базы равен нулю) характеризуется током . Область насыщения ограничивается линией насыщения при небольших значениях выходного напряжения.
Для нормальной работы транзистора должны выполняться условия:
,
где правые части характеризуют максимально допустимые значения соответствующих переменных.
Схема включения ОЭ применяется наиболее часто, так как здесь имеет место усиление как по току, так и по напряжению. Поэтому в справочниках обычно задаются параметры именно для этого типа включения транзистора.
jstonline.narod.ru
Сравнение схем включения транзисторов | Основы электроакустики
Сравнение схем включения транзисторов

Таблица 132
Параметры | Сравнительные показатели свойств транзисторов в схемах | ||
с общей базой | с общим эмиттером | с общим коллектором | |
Коэффициенты передачи по току | 0,6 — 0,95
| Десятки — сотни | Больше, чем в схеме с ОЭ |
усиления по напря жению | Тысячи | Меньше, чем в схеме с ОБ | 0,7 — 0,99 |
усиления по мощности | Менее чем на схеме с ОЭ | Большое (тысячи) | Меньше, чем в схеме с ОЭ |
Сопротивление: |
|
|
|
входное
| Малое (единицы — десятки омов) | Большое (десятки —тысячи омов) | Большое (сотни килоомов)
|
выходное
| Большое (тысячи омов - единицы мегаомов) | Сотни омов, — десятки килоомов | Единицы омов — десятки килоомов |
Сдвиг фаз | 0° | 180° | 0° |
В схеме с ОБ входным (управляющим) является ток Iэ, а выходным — ток Iк. Последний всегда меньше тока эмиттера, так как часть инжектируемых носителей заряда рекомбинирует в базе, поэтому а=ДIк/ДIэ<1. Коэффициент усиления по напряжению Kн в схеме велик, поскольку изменения токов на входе ДIэ и выходе ДIк почти одинаковы, а rВЫх>rвх. Коэффициент усиления по мощности также велик (Kм=аKн=1000). Эмиттерный переход включается в проводящем направлении, поэтому изменения тока 13, а следовательно, и тока Iк происходят без фазового сдвига (Ф=0°).
В схеме с общим эмиттером управляющим служит ток базы Is — Is — Iк. Поскольку большинство носителей зарядов, инжектируемых эмиттером, достигает коллекторной области [Iк= (0,9 ч-0,99) Iэ] и лишь незначительная часть рекомбинирует в базе, ток базы мал: Iб=(0,01-0,1) Iэ. При этих условиях Kтэ = ДIк/ДIб>Kтб=ДIк/ДIэ и составляет 10 — 150. Усиление по напряжению примерно такое же, как и в схеме с ОБ. Благодаря высокому коэффициенту передачи тока эта схема обеспечивает большое (Kм до 10000) усиление по мощности.
Напряжение в схеме с ОЭ на входе U3 и выходе UK одного порядка, поэтому гВх=ДUэ/ДIэ здесь больше, чем в схеме с ОБ, и достигает десятков — тысяч омов. В этой схеме напряжение коллекторного источника Ек частично приложено к эмиттерному переходу, поэтому изменения ДUк вызывают большие изменения тока ДIк, вследствие чего rвых=ДUк/ДIк при Iб=const меньше, чем в схеме с ОБ, что облегчает согласование каскадов в многокаскадных усилителях.
В схеме с ОЭ положительные полуволны подводимого напряжения сигнала действуют в противофазе с напряжением смещения, поэтому ток Iэ, а следовательно, и Iк уменьшаются; отрицательные полуволны сигнала действуют согласованно с напряжением смещения, и токи 1д и Iк возрастают. В результате напряжение сигнала, снимаемое с нагрузки в выходной цепи, будет (по отношению к общей точке схемы) противофазным с напряжением подводимого сигнала (т. е. ф=180°).
В схеме с общим коллектором входным является ток Iб, а выходным Iэ. Так как во входной цепи проходит малый ток базы, входное сопротивление rВX=ДUвх/ДIвх достигает десятков килоомов, Выходное напряжение в схеме приложено к эмиттерному переходу, поэтому малые изменения этого напряжения вызывают большие изменения Iэ, вследствие чего rВых=ДUвых/ДIвых мало (десятки омов).
Напряжение подводимого сигнала Uвх и выходное напряжение Uвых в схеме действуют встречно, т. е. U36 = Uвx — Uвых. Для получения на эмиттерном переходе требуемого напряжения необходимо скомпенсировать выходное напряжение, что достигается при Uвх>Uвых. В этих условиях схема с ОК не дает усиления по напряжению (Kн<1). Коэффициент передачи по току Kт=ДIэ/ДIб =ДIэ/(ДIэ — ДIк) = 1/(1 — а) здесь несколько больше, чем в схеме с ОЭ. Отсутствие усиления по напряжению приводит к снижению усиления по мощности против схем с ОБ и ОЭ.
В схеме отрицательные полуволны подводимого напряжения сигнала Uвх действуют встречно напряжению смещения, поэтому результирующее прямое напряжение на эмиттерном переходе и ток Iэ=Iб+Iк уменьшаются. При этом напряжение сигнала, снимаемое с нагрузки в цепи эмиттера, повторяет фазу напряжения подводимого сигнала, т. е. Ф=0 (эмиттерный повторитель).
Схема с ОИ является инвертирующим усилителем, способным усиливать сигналы по напряжению и току и обладает сравнительно небольшими междуэлектродными емкостями, (Сзи=1-20 пФ; Сзс=0,5-8 пФ; Сси<Сзи). Входная емкость СВх.и = Сзи+СэС, проходная Спр.и = Сзс, выходная СВых.и=Сзс+ССи. Крутизна S характеристики Iс=Ф(Uз) представляет собой внешнюю проводимость прямой передачи и для транзисторов малой мощности составляет 0,5 — 10 мСм. Выходное сопротивление сравнительно велико (обычно многократно превышает сопротивление нагрузки), поэтому коэффициент усиления каскада &»5Rн достигает десятков единиц. Входное сопротивление (если пренебречь областями очень низких и высоких частот) .носит емкостной характер; входная емкость Свх= — Сэя+SRнСзс. Поскольку междуэлектродные емкости малы, на параметры схемы существенно влияют емкости монтажа См= 1-5-3 пФ. Общая шунтирующая емкость С0=СЕ1+См определяет частоту верхнего среза fв.ср=1/(2пС0Rн).
Схема с ОЗ подобно схеме с ОБ не изменяет полярности сигнала и обеспечивает его-усиление по напряжению аналогично усилению сигнала в схеме с ОИ. Входное сопротивление гвх= U3m/Iит вследствие потребления от источника сигнала сравнительно большого тока Iст=Iит=SUзот оказывается незначительным. Выходное сопротивление rвых~rси(1+SRи) из-за влияния отрицательной обратной связи по току (элементом которой является внутреннее сопротивление источника сигнала RИ) велико. Влияние емкостной составляющей входной проводимости мало (так как она шунтирована сравнительно большой активной проводимостью gВх=1/rвх=S), поэтому каскад с ОЗ более широкополосен, чем схема с ОИ.
Схема с ОС не меняет фазу входного сигнала на выходе (истоковый повторитель), значительно усиливает ток (но не может усиливать напряжение), обладает высоким активным входным сопротивлением, малой входной емкостью СВх = Сзс+С3и(1 — K), где K. = Ucm/UC3m=SRн/(1+SRн), и небольшим выходным сопротивлением r=l/S (близким к входному сопротивлению схемы с, ОЗ), большой широкополосностью благодаря малой входной емкости.
Схемы составных транзисторов. Составной транзистор представляет собой комбинацию двух (и более) транзисторов, соединенных таким образом, что число внешних выводов этой комбинированной схемы равно числу выводов одиночного транзистора. Составной транзистор, выполненный по схеме сдвоенного эмиттер-ного повторителяне изменяет полярности сигнала, обладает большим коэффициентом передачи тока hzi=hziVihziVz, имеет большое входное и малое выходное сопротивления.
Составной транзистор в виде усилителя на разноструктурных (р-n-р и n-р-n) транзисторах содержит два каскада с ОЭ с глубокой последовательной ООС по напряжению. Поскольку каждый каскад изменяет полярность сигнала, в целом схема представляет собой неинвертирующий усилитель. С выхода схемы напряжение подается на вход (эмиттер первого транзистора) в про-тивофазе с входным сигналом, подводимым к цепи базы. Приведенный составной транзистор обладает свойствами эмиттерного повторителя. Его коэффициент усиления меньше единицы, а из-за ОС входное сопротивление велико, выходное мало. Точкой малого выходного сопротивления является коллектор транзистора V2, так как от него начинается цепь ОС по напряжению, поэтому вывод коллектора транзистора V2 играет роль эмиттера составного транзистора, а вывод эмиттера V2 — роль его коллектора. При выбранных структурах транзисторов, VI и V2 схема обладает свойствами р-n-р-транзистора.
Составной транзистор, выполненный по каскодной схеме представляет собой усилитель, в котором транзистор VI включен по схеме с ОЭ, a V2 — по схеме с ОБ. Схема эквивалентна одиночному транзистору, включенному по схеме с ОЭ с пара* метрами, близкими к параметрам транзистора VI. Последний обладает высоким выходным сопротивлением, что обеспечивает транзи« стору V2 получение широкой полосы частот
audioakustika.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.