21. Схемы включения реле направления мощности. Схемы включения реле
Типовые релейные схемы
Наиболее широкое применение получили следующие типовые релейные схемы:
1. Самоблокировки.
2. Взаимной блокировки.
3. Экономичного включения.
4. Искробезопасного включения.
5. Замедления (реле времени).
В схеме самоблокировки реле при кратковременном замыкании кнопки SB1 Пуск реле срабатывает (рис. 7.6) и своим замыкающим контактом блокирует цепь питания этой кнопки, благодаря чему последующее отпускание кнопки SB1 не приведет к отключению реле. Для отключения реле необходимо разорвать общую цепь питания нажатием кнопки SB2.
Схема взаимной блокировки, показанная на рис.7.7, не допускает одновременного включения реле, так как в цепь обмотки каждого реле введен размыкающий контакт другого реле.
Рис. 7.6. Релейная схема самоблокировки
Необходимость взаимной блокировки встречается в схемах, предохраняющих от возможной аварии. Например, одно реле служит для включения двигателя в прямом направлении вращения, а другое — на реверс.
Рис. 7.7. Релейная схема взаимной блокировки
Рис. 7.8. Схема и график экономичного включения реле
На рис.7.8 показаны схема и график экономичного включения реле. Если в обычных схемах реле срабатывает при напряжении срабатывания Uср и остается в этом состоянии при таком напряжении за счет цепи самоблокировки, то в рассматриваемой схеме реле, срабатывающее также при напряжении Uср, при отпускании кнопки SB1 остается в рабочем состоянии через цепь резистора R при напряжении Uр. На графике видно, что Uср> Uр, поэтому и потребление энергии в рабочем состоянии реле намного меньше, чем в ранее рассмотренных схемах. Необходимым условием работы схемы является Uр> Uот, в противном случае при отпускании кнопки SB1 реле будет отключаться.
Отличительная особенность схемы искробезопасного включения реле, широко применяющейся в различной рудничной и шахтной аппаратуре автоматизации (рис. 7.9), заключается в том, что цепь питания реле осуществляется искробезопасным напряжением Uиск.
Искробезопасные параметры цепи питания достигаются выполнением обмотки II проводом высокого удельного сопротивления или включением в цепь питания ограничительного резистора R2. В исходном положении при поданном питании реле К не работает, так как Uср> Uр. При нажатии кнопки SB1 реле срабатывает и остается во включенном состоянии. При этом выполняется соотношение Uср> Uр > Uот. Через обмотку реле протекает однополупериодный постоянный ток, второй полупериод закорачивается в цепи искробезопасного напряжения через диод VD1. Сопротивление обмотки реле однополупериодному току мало и реле работает устойчиво.
Рис. 7.9. Схема искробезопасного включения реле
При нажатии кнопки SB2 сопротивление обмотки реле для переменного тока возрастает, реле отключается и схема возвращается в исходное положение. Следует отметить, что когда работает реле К, диод VD1 переводит его в режим замедления — реле времени (за счет ЭДС самоиндукции, которая действует от однополупериодного тока в обмотке), что предотвращает вибрацию якоря реле.
На рис.7.10 показана схема замедления срабатывания реле с помощью шунтирования его обмотки конденсатором. В этом случае при замыкании ключа заряд конденсатора происходит за определенный промежуток времени.
Рис. 7.10. Схема замедления срабатывания реле
В схеме на рис.7.11 время отпускания реле увеличивается за счет того, что при размыкании ключа в цепи, состоящей из параллельного соединения обмотки реле, конденсатора и резистора, некоторое время сохраняется ток разряда конденсатора.
Рис. 7.11. Схема увеличения времени отпускания реле
Чтобы переходный процесс в этой цепи имел апериодический характер, применяют достаточно большую емкость конденсатора и большое значение сопротивления резистора.
studfiles.net
Как подключить через реле. Схемы
Начинающим автоэлектрикам и людям, дорабатывающим свой автомобиль, зачастую сложно понять фразу «подключить через реле». Что означает подключение через реле и как это сделать? Разберемся в этом.
Прежде чем изучать схему подключения какого-либо автомобильного устройства через реле, нужно знать, что такое реле вообще и как оно работает. Об этом подробно написано здесь. После того, как вы поймете принцип работы этого несложного устройства, разобраться с его подключением будет гораздо легче.
Общий смысл подключения через реле – нагрузка на выключатель, который управляет устанавливаемым оборудованием. Все мощные потребители электричества в автомобиле (например, лампы фар, стартер, бензонасос, подогрев заднего стекла, электроусилитель руля) подключены через реле. Благодаря этому, данными устройствами можно управлять маленькими красивыми кнопочками вместо грубых и больших рубильников. Кроме этого, в отдельных случаях, реле позволяет экономить на проводах.
Реле подключают в «разрыв» электрической цепи. Рассмотрим установку реле на примере бензонасоса. Питание на него подается блоком управления двигателем (дальше – компьютером) и, чтобы дорожки платы компьютера выдержали ток, потребляемый насосом, их пришлось бы делать чересчур мощными. Прохождение сильного тока рядом с чувствительными электронными компонентами компьютера, может влиять на их работу. Чтобы избежать подобных проблем, между компьютером и бензонасосом устанавливается реле и компьютер подключается не к насосу, а к этому маленькому «помощнику».
Реле как бы разделяет провод, идущий от блока предохранителей к насосу на две части, которые могут замыкаться внутри реле при подаче напряжения на управляющие контакты магнита. Как уже было сказано в статье про устройство реле, управляющий ток очень мал и никак не сможет повредить компьютеру. Компьютер подает напряжение на управляющие контакты реле, а уже оно «соединяет» внутри себя силовую цепь и подключает бензонасос.
По такому же принципу реле устанавливается и на любые другие потребители электричества в автомобиле. Рассмотрим подключение противотуманок.
Провода на противотуманные фары идут от блока предохранителей, но по пути они проходят через реле. Управляет процессом включения/выключения фар кнопка на торпеде. При ее нажатии напряжение подается на один из управляющих контактов реле, и оно замыкает силовую цепь – лампы в фарах зажигаются. Второй управляющий контакт реле – «массовый», то есть по нему напряжение уходит на кузов автомобиля, создавая электрическую цепь.
Используя данную схему можно подключить практически любое мощное устройство и управлять им небольшой красивой клавишей. В некоторых случаях реле может стать спасением от заводских недоработок. Так, например, в ВАЗ-2106 ток, идущий на втягивающее реле стартера через замок зажигания, достаточно быстро приводит к неисправности контактной группы замка. Избавляются от данной неприятности установкой промежуточного реле и изменением питания втягивающего реле. После доработки, через контактную группу замка начинает проходить слабый управляющий ток, а уже реле подключает мощное питание стартера.
russia-avto.ru
СХЕМА УПРАВЛЕНИЯ РЕЛЕ
Многие современные радиоэлектронные устройства оснащаются небольшими реле, которые, в свою очередь, коммутируют другие, в том числе и сетевые узлы и приборы. А вот как управлять самими реле - мы и разберёмся на примере трёх схем. Все они довольно просты - меньше десяти деталей.
Схема драйвера управления для реле
Технические характеристики:
- Питание драйвера - 12 В на 40 мА
- Выход реле - 5 A на 230 В
- Управление входа - 2-15 В постоянного тока
- Светодиодный индикатор показывает состояние реле
- Габариты платы 27 x 70 мм
Это одноканальный релейный драйвер, подходящий для разнообразных проектов. Очень простой и удобный способ взаимодействия реле для переключения мощных потребителей, которое само управляется слабым током и напряжением.
Схема управления реле одной кнопкой
Данная электрическая схема управления реле выполняется всего одной кнопкой с одной контактной группой на замыкание и без фиксации. Работает схема следующим образом: при подаче питания конденсатор С1 через резистор R1 и замкнутые контакты К1.1 заряжается практически до напряжения питания. При нажатии на кнопку S1 через её замкнувшиеся контакты, через замкнутые контакты K1.1 и резистор R1 напряжение питания подается на катушку реле К1, что приводит к включению реле. Контактная группа К1.1 переключается и теперь питание на реле поступает через резистор R1 и замкнувшиеся контакты К1.1. На время пролёта контактов реле при переключении питание катушки осуществляется за счёт накопленного заряда конденсатора С1.
После замыкания контактов реле конденсатор С1 разряжается через резистор R2. При следующем нажатии на кнопку S1, происходит заряд конденсатора С1 из-за чего напряжение на катушке реле падает и происходит размыкание её контактов. Схема возвращается в исходное состояние. Элементы R1 и C1 образуют цепь с постоянной времени в 150 миллисекунд, что достаточно для срабатывания большинства типов электромагнитных реле.
Обратите внимание, что резистор R1 является подстроечным, и следует подбирать под каждое реле индивидуально.
Схема реле с управлением одной кнопкой
Эта схема представляет собой аналог кнопки с фиксацией. Вся конструкция очень проста и реализована на самом реле и одном транзисторе. При первом нажатии на кнопку транзистор открывается током разряда конденсатора, реле замыкается и блокируется по базовой цепи транзистора своими же контактами. Конденсатор при этом отключается от питания и, если отпустить кнопку, быстро разряжается через диод и резистор. Если теперь нажать на кнопку вторично, то транзистор запрется и отключит реле. Естественно, реле должно иметь вторую пару контактов.
Правда если надо таким образом управлять включением сетевого питания, то возникает проблема, заключающаяся в том, что в начале схема обесточена. В телевизорах при включении их от пульта или в компьютерах с корпусами АТХ это решается тем, что при подключении шнура питания подобная схема сразу получает питание, а уж включать основное питание будем позже. Что касается твердотельных реле - информация по ним находится в этой статье.
Форум по автоматике
Схемы автоматики
elwo.ru
Схемы включения реле и пускателей
Программа КИП и А
Здесь представлены и рассматриваются типовые схемы включения реле / пускателей в устройствах КИП и А.
Схемы достаточно тривиальны и широко распространены, но тем не менее могут представлять интерес для начинающих работников КИП и А.
Внимание! Так как все схемы работают под напряжением 220 Вольт, опробование и наладка должна производиться квалифицированным персоналом с соответствующей группой допуска по электробезопасности.
Простая схема управления реле / пускателем
Простая схема управления (включение / выключение) трехфазным электродвигателем приведена на рисунке 1.
Рисунок 1. Простая схема управления реле / пускателем
K1 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами. SB1 – кнопка «Пуск» с 1 нормально разомкнутым контактом SB2 – кнопка «Стоп» с 1 нормально замкнутым контактом K1.1 – нормально разомкнутый контакт реле K1 K1.2...K1.4 – контакты реле K1 для коммутации силовых цепей
Принцип действия
При нажатии кнопки «Пуск» (SB1), напряжение ~220 Вольт между фазой и нулевым проводом подается через нормально замкнутый контакт SB2 кнопки «Стоп» на катушку реле / пускателя K1.
Реле срабатывает и замыкает как три силовых контакта, подключая электродвигатель к трехфазной цепи, так и контакт самоподхвата K1.1, удерживающий реле во включенном состоянии.
При нажатии кнопки «Стоп» (SB2), питание катушки реле K1 прекращается, и оно переходит в исходное состояние разрывая как контакты силовой цепи, так и контакт самоподхвата K1.1.
Хотя на схеме показан процесс включения трехфазного электродвигателя, эта схема является классической и пригодна для различных целей, где используются две кнопки «Пуск» и «Стоп», с соответствующими изменениями в силовой части схемы.
Схема управления реверсивным электродвигателем
Еще одна широко используемая схема включения реле / пускателей для управления реверсивным электродвигателем приведена на рисунке 2.
Рисунок 2. Схема управления реверсивным электродвигателем
K1, K2 – реле / пускатель ~220 Вольт с 4 нормально разомкнутыми контактами и одним нормально замкнутым. SB1, SB2 – кнопки «Вперед», «Назад» с одним нормально разомкнутым контактом. SB3 – кнопка «Стоп» с 1 нормально замкнутым контактом
Принцип действия
При нажатии кнопки SB1 («Вперед»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K2.2 реле K2 на катушку реле K1.
Оно замыкает свой контакт самоподхвата K1.1, удерживая таким себя во включенном состоянии.
Кроме того, оно размыкает нормально замкнутый контакта K1.2 в цепи кнопки SB2 «Назад», предотвращая этим самым срабатывание реле K2 при нажатии кнопки «Назад». Иначе бы произошло короткое замыкание между фазами «B» и «С».
При нажатии кнопки SB3 («Стоп»), цепь питания катушки реле K1 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.
При нажатии кнопки SB2 («Назад»), напряжение ~220 Вольт подается через нормально замкнутый контакт SB3 кнопки «Стоп» и нормально замкнутый контакт K1.2 реле K1 на катушку реле K2. Оно замыкает свой контакт самоподхвата K2.1, удерживая таким себя во включенном состоянии.
Кроме того, оно размыкает нормально замкнутый контакта K2.2 в цепи кнопки SB2 «Вперед», предотвращая этим самым срабатывание реле K1 при нажатии кнопки «Вперед».
Силовые цепи питания электродвигателя собраны так, что при срабатывании реле K2, фазы «B» и «С» меняются местами и электродвигатель вращается в обратную сторону.
При нажатии кнопки SB3 («Стоп»), цепь питания катушки реле K2 разрывается, оно переходит в исходное состояние, отключая силовые цепи питания электродвигателя.
Замечания.
Для повышения надежности схемы, существуют промышленные блоки управления реверсивным электродвигателем, в которых кроме электрического блокирования включения противоположных реле / пускателей, применяются и механические рычаги блокирования одновременного срабатывания двух реле K1 и K2. В редких случаях это может происходить, когда силовые контакты одного из реле подгорели (залипли).
www.axwap.com
21. Схемы включения реле направления мощности
реле мощности, реагирует на величину и направление (знак) мощности к. з., проходящий через место установки защиты.
Реле мощности имеет две обмотки (тока и напряжения). Через обмотки реле воспринимает изменение той электрической величины, на которую оно реагирует.
Реле направления мощности реагируют на значение и знак мощности, подведенной к их зажимам. Они используются в схемах защит как орган, определяющий по направлению (знаку)
мощности (протекающей по защищаемой линии), где произошло повреждение — на защищаемой линии или на других присоединениях, отходящих от шин подстанции (рис. 2-34, а). В первом случае при к. з. в К1 мощность к. з. Sк1 направлена от шин в линию и реле направления мощности должно замыкать свои контакты, во втором при к, з. в К2 — мощность к. з. Sк2 направлена к шинам, в этом случае реле не должно замыкать контакты.
Реле мощности имеет две обмотки: одна питается напряжением Uр, а другая — током сети Iр (рис. 2-34, б). Взаимодействие токов, проходящих по обмоткам, создает электромагнитный момент, значение и знак которого зависят от напряжения Uр, тока Iри угла сдвига φр между ними.
Реле направления мощности применяются в направленных защитах (см. гл. 7). Они должны обладать высокой чувствительностью, так как при к. з. вблизи места установки защиты напряжения Uр резко снижается, достигая в пределе нуля; при этом мощность, подводимая к реле,, оказывается очень малой и при недостаточной чувствительности реле может не сработать, т. е. может иметь «мертвую» зону.
Чувствительность реле оценивается минимальной мощностью, при которой реле замыкает свои контакты. Эта мощность называется мощностью срабатывания и обозначается Sс.р.
Реле направления мощности выполняются мгновенными, поскольку они могут применяться в защитах, работающих без выдержки времени. Собственное время реле направления мощности должно быть минимальным, что особенно важно для реле, применяемых в схемах быстродействующих защит.
Схемы включения РМН
900 схема включения РНМ (а)
300 схема включения РНМ (б)
22. Назначение и принцип действия дистанционной защиты
Принцип действия дистанционной защиты основан на контроле изменения сопротивления. Например, если защищаемым объектом является линия, то в нормальном режиме параметры напряжения на шинах и тока в линии близки к номинальным: UЛ = UHОРМ, IЛ = IНОРМ, отношениесоответствует нормальному режиму.
При возникновении короткого замыкания напряжение на шинах уменьшается, ток в линии увеличивается, контролируемое сопротивление уменьшается .
В свою очередь, ZK = Z0 LK ,
где Z0 - сопротивление 1 км линии;
LK - длина линии (км).
Следовательно, контролируя изменение сопротивления, можно определить факт возникновения короткого замыкания и оценить удаленность точки короткого замыкания.
Обычно дистанционная защита выполняется в виде трех ступеней, характеристика ее времени срабатывания представлена на рис. Первая ступень предназначена для работы при коротких замыканиях на защищаемой линии ZСЗ < ZЛ, то есть сопротивление срабатывания защиты должно быть меньше сопротивления линии.
Для идеальных трансформаторов тока и трансформаторов напряжения и при отсутствии погрешностей измерительных органов в последнем выражении должен стоять знак равенства, однако наличие погрешностей может привести к ложной работе защиты при коротком замыкании на смежных присоединениях.
Как правило, первая ступень охватывает 85 % длины защищаемой линии. При коротких замыканиях в зоне действия первой ступени защита работает без выдержки времени, t1 = 0.Вторая ступень предназначена для надежной защиты всей линии. Ее зона действия попадает на смежную линию, поэтому для исключения неселективного срабатывания защиты при коротком замыкании на отходящей линии в точке К2 , вводится замедление на срабатывание, t2 = 0.4 – 0.5 сек.
Третья ступень выполняет функции ближнего и дальнего резервирования.
Принцип действия дистанционной защиты основан на контроле сопротивления.
Дистанционная защита удовлетворяет требованиям селективности в сетях любой конфигурации с любым числом источников питания.
Защита отличается сравнительно высоким быстродействием. В типовом исполнении дистанционная защита линий содержит три ступени.
Дистанционная защита в качестве основной защиты линий от междуфазных коротких замыканий находит применение в сетях напряжением 110 - 220 кВ.
studfiles.net
Схемы импульсного включения и отключения реле с помощью конденсаторов - Статьи по электротехнике - Каталог статей
Схемы импульсного включения и отключения реле за счет токов заряда или разряда конденсаторов получили распространение на автоматических линиях в машиностроении.
В схеме, приведенной на рис. 1, а, реле К срабатывает при замыкании контакта командного реле KQ за счет тока заряда конденсатора С и возвращается в исходное состояние после окончания заряда. Длительность включенного состояния реле определяется емкостью конденсатора и питающим напряжением.
Резистор R служит для разряда конденсатора С после размыкания контакта KQ. Резистор R выбирается таким, чтобы ток через него был меньше тока удержания реле К. Однако увеличение сопротивления приводит к увеличению времени разряда конденсатора, т. е. длительности паузы между двумя импульсными включениями реле К. Этого недостатка лишена схема рис. 1, б, в которой в цепь резистора с небольшим сопротивлением R введен размыкающий контакт реле KQ.
Для уменьшения паузы можно также использовать схему рис. 1, в, в которой разряд конденсатора С происходит по цепи R2—R1—VD. Однако в этой схеме при небольшом сопротивлении резистора R2 на нем выделяется значительная мощность.
Более совершенной является схема рис. 1, г с вспомогательным реле К2. При замыкании контакта KQ срабатывает основное реле К1, а затем — реле К2, отключающее резистор R в цепи катушки К1. Последнее удерживается некоторое время за счет тока заряда конденсатора С. Реле К2 возвращается при размыкании контакта KQ.
Рис. 1. Схемы импульсного включения реле токами заряда конденсатора
Описанные схемы чувствительны к резким колебаниям питающего напряжения, которые могут приводить к ложным срабатываниям реле. В сетях с нестабильным напряжением рекомендуются схемы импульсного включения реле током разряда конденсатора (рис. 2, а—д).
В схеме рис. 2, а при подаче напряжения питания заряжается конденсатор С. При срабатывании командного реле KQ конденсатор разряжается на обмотку реле К, которое импульсно включается. Резистор R ограничивает зарядный ток конденсатора.
![](/img/shemy-vklyucheniya-rele_9.jpg)
Рис. 2. Схемы импульсного включения и отключения реле токами разряда конденсатора
В схеме рис. 2, б конденсатор С заряжается при срабатывании реле KQ, а разряжается на обмотку выходного реле К после отключения KQ.
В схеме рис. 2, в после включения первого командного реле KQ1 реле К срабатывает и самоблокируется. Когда срабатывает второе командное реле KQ2, реле К возвращается с выдержкой времени, определяемой временем разряда конденсатора С.
Для импульсного включения выходного реле К при отключении командного реле KQ применяют схему рис. 2,г. При срабатывании KQ конденсатор С заряжается по цепи VD1 — R — KQ — С — VD2. Когда реле KQ возвращается, конденсатор разряжается на обмотку реле К, которое импульсно срабатывает.
В схеме рис. 2, д реле К импульсно срабатывает при срабатывании и возврате реле KQ за счет тока заряда и разряда конденсатора С соответственно.
"Школа для электрика: электротехника и электроника. Статьи, советы, полезная информация.
elektromehanika.org
Устройство, схема и подключение промежуточного реле. Часть 2
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о промежуточном электромагнитном реле. В первой части статьи мы рассмотрели устройство, принцип работы, электрическую схему реле и обозначение реле на принципиальных электрических схемах, а в этой части рассмотрим основные параметры и схемы включения реле.
5. Основные параметры электромагнитных реле.
Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.
Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.
1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.
Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:
2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.
Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.
3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.
4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.
Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.
5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).
Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.
Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.
6. Подключение промежуточных реле.
Схемы включения промежуточных реле практически ни чем не отличаются от схем включения контакторов и магнитных пускателей. Разница состоит лишь в мощности коммутируемой нагрузки. Если контакты промежуточных реле ограничены коммутационной мощностью контактов, составляющей около 5 А, то магнитные пускатели и контакторы способны коммутировать токи более 50 А и напряжения свыше 1000 В.
Разберем подключение реле на примере простых схем.
6.1. Схема с нормально разомкнутым контактом.
Схема питается от источника постоянного тока GB1 напряжением 12 В и состоит из кнопочного выключателя SB1, катушки реле KL1 и лампы накаливания HL1.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, напряжение питания на катушке реле KL1 отсутствует. Контакт реле KL1.1, стоящий в цепи питания лампы HL1, разомкнут, и на лампу не поступает напряжение.
При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 замыкается и включает лампу HL1.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.
6.2. Схема с нормально замкнутым контактом.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено, его нормально замкнутый контакт KL1.1 замкнут и напряжение питания 12 В поступает на лампу HL1. Лампа горит.
При замыкании контактов выключателя SB1 напряжение поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 размыкается и разрывает цепь питания лампы HL1. Лампа гаснет.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.
6.3. Схема с нормально замкнутым и нормально разомкнутым контактами.
В этой схеме используются сразу два контакта реле KL1.В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено и его нормально разомкнутый контакт KL1.1 разомкнут, а нормально замкнутый KL1.2 замкнут. При этом лампа HL1 не горит, а лампа HL2 горит.
При замыкании контактов выключателя SB1 реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкается и включает лампу HL1, а контакт KL1.2 размыкается и выключает лампу HL2.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в первоначальное положение.
Рассмотренная схема включения реле не обеспечивает гальваническую развязку между обмоткой реле и нагрузкой, так как они питаются от общего источника напряжения. Т.е. если необходимо коммутировать нагрузку, например, с рабочим переменным напряжением 220 В, то и реле необходимо использовать с обмоткой, рассчитанной на такое же рабочее напряжение. Если же разделить управление обмоткой и нагрузкой, то их можно применять с любым напряжением.
6.4. Схема с гальванической развязкой.
На схеме показаны две цепи – управляющая и исполнительная (силовая):
управляющая цепь питается напряжением 12 В и включает в себя источник постоянного тока GB1, кнопочный выключатель SB1 и катушку реле KL1;
исполнительная цепь, или ее еще называют силовой, питается переменным напряжением 220 В. В нее входят две лампы накаливания HL1 и HL2, рассчитанные на рабочее напряжение 220 В, и два контакта реле KL1.1 и KL1.2, служащие для управления лампами.
При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкаясь включает лампу HL1, а контакт KL1.2 размыкаясь выключает лампу HL2.
6.5. Схема технологической сигнализации.
А теперь рассмотрим схему технологической сигнализации, используемую в системах управления технологическими процессами. Работа такой схемы заключается в контролировании технологических параметров (температура, давление, уровень) и выдаче световой и звуковой информации об отклонении этих параметров за пределы заданных значений.
Для контроля за технологическими параметрами применяют специализированные датчики и приборы, например, сигнализаторы, электроконтактные манометры и т.д., контакты которых задействованы в схеме сигнализации. При выходе параметра за пределы допустимого значения контакт датчика или прибора замыкается или размыкается и этот сигнал запускает сигнализацию в работу.
Рассмотрим упрощенную схему с одним контролируемым параметром.
Схема состоит из двух кнопок SB1 и SB2, двух промежуточных реле KL1 и KL2, сирены HA1, лампы накаливания HL1 и контакта датчика Р1.
При отклонении технологического параметра от заданного значения замыкается контакт датчика Р1 и включаются световая и звуковая сигнализации. Световая сигнализация HL1 включается при срабатывании реле KL2, которое своим нормально разомкнутым контактом KL2.1 подает фазу А1 на лампу. Звуковая сигнализация НА1 включается через замкнутый контакт датчика Р1 и нормально разомкнутый контакт KL1.2. И пока контакт Р1 не разомкнется лампа будет светить, а сирена звенеть.
Чтобы сирена постоянно не звенела, ее отключают нажатием кнопки SB2. При этом фаза А1 через контакт Р1 и контакты кнопки SB2 поступит на катушку реле KL1. Реле сработает и своим нормально разомкнутым контактом KL1.1 встанет на самоподхват, а нормально замкнутым контактом KL1.2 разорвет цепь питания звонка НА1. При возвращении технологического параметра в норму контакт датчика Р1 разомкнется и схема сигнализации вернется в первоначальное состояние.
Для проверки работоспособности сигнализации предусмотрена кнопка SВ1. При ее нажатии фаза А1 через нормально замкнутый контакт KL1.2 поступает на сирену НА1 и сирена начинает звенеть. И одновременно фаза А1 поступает на катушку реле KL2, которое срабатывает и своим контактом KL2.1 включает лампу HL1.
И в дополнение к статье видеоролик о промежуточных реле.
Ну вот в принципе и все, что хотел сказать о промежуточных реле.Удачи!
Литература:
1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.
sesaga.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.