30.09.2024

Сила и сопротивление тока: Зависимость силы тока от напряжения. Закон Ома для участка цепи (Ерюткин Е.С.)

Содержание

От чего зависит сопротивление

Сила тока в проводнике прямо пропорциональна напряжению на нем. Это значит, что с увеличением напряжения увеличивается и сила тока. Однако при одинаковом напряжении, но использовании разных проводников сила тока различна. Можно сказать по-другому. Если увеличивать напряжение, то хотя сила тока и будет увеличиваться, но везде по-разному, в зависимости от свойств проводника.

Зависимость силы тока от напряжения для данного конкретного проводника представляет собой сопротивление этого проводника. Оно обозначается R и находится по формуле R = U/I. То есть сопротивление определяется как отношение напряжения к силе тока. Чем больше сила тока в проводнике при данном напряжении, тем меньше его сопротивление. Чем больше напряжение при данной силе тока, тем больше сопротивление проводника.

Формулу можно переписать по отношению к силе тока: I = U/R (закон Ома). В таком случае нагляднее, что чем больше сопротивление, тем меньше сила тока.

Можно сказать, что сопротивление как бы мешает напряжению создавать большую силу тока.

Само сопротивление является характеристикой проводника. Оно не зависит от поданного на него напряжения. Если будет подано большое напряжение, то изменится сила тока, но не изменится отношение U/I, т. е. не изменится сопротивление.

От чего же зависит сопротивление проводника? Оно зависти от

  • длины проводника,
  • площади его поперечного сечения,
  • вещества, из которого изготовлен проводник,
  • температуры.

Чтобы связать вещество и его сопротивление, вводится такое понятие как удельное сопротивление вещества. Оно показывает, какое будет сопротивление в данном веществе, если проводник из него будет иметь длину 1 м и площадь поперечного сечения 1 м2. Проводники такой длины и толщины, изготовленные из разных веществ, будут иметь разные сопротивления. Это связано с тем, что у каждого металла (чаще всего именно они являются проводниками) своя кристаллическая решетка, свое количество свободных электронов.

Чем меньше удельное сопротивление вещества, тем лучшим проводником электрического тока оно является. Маленьким удельным сопротивлением обладают, например, серебро, медь, алюминий; куда большее у железа, вольфрама; очень большое у различных сплавов.

Чем длиннее проводник, тем большее сопротивление он имеет. Это становится понятно, если принять во внимание, что движению электронов в металлах мешают ионы, составляющие кристаллическую решетку. Чем их больше, т. е. чем длиннее проводник, тем больше у электрона шанс замедлить свой путь.

Однако увеличение площади поперечного сечения делает как бы дорогу шире. Электронам легче течь и не сталкиваться с узлами кристаллической решетки. Поэтому чем толще проводник, тем его сопротивление меньше.

Таким образом, сопротивление прямо пропорционально зависит от удельного сопротивления (ρ) и длины (l) проводника и обратно пропорционально зависит от площади (S) его поперечного сечения. Получаем формулу сопротивления:

R = ρl/S

В этой формуле на первый взгляд не отражается зависимость сопротивления проводника от его температуры. Однако удельное сопротивление вещества меряется при определенной температуре (обычно 20 °C). Поэтому температура учитывается. Для вычислений удельные сопротивления берут из специальных таблиц.

Для металлических проводников чем больше температура, тем сопротивление больше. Это связано с тем, что при повышении температуры ионы решетки начинают сильнее колебаться и больше мешать движению электронов. Однако в электролитах (растворах, где заряд несут ионы, а не электроны) с повышением температуры сопротивление уменьшается. Здесь это связано с тем, что чем выше температура, тем больше происходит диссоциация на ионы, и они быстрее двигаются в растворе.

Электрический ток — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Электрический ток. Сила тока. Сопротивление

К оглавлению…

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т. е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

 

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению…

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

 

ЭДС. Закон Ома для полной цепи

К оглавлению…

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

 

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению. ..

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

 

Энергобаланс замкнутой цепи

К оглавлению…

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

 

Электролиз

К оглавлению…

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

 

Электрический ток в газах и в вакууме

К оглавлению…

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы. Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

Сила тока | Самое простое объяснение, формула, единица измерения

Сила тока с точки зрения гидравлики

Думаю, вы не раз слышали такое словосочетание, как “сила тока“. А для чего нужна сила? Ну как для чего? Чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать.  Каждый из нас обладает какой-либо силой. У кого-то сила такая, что он может одним ударом разбить кирпич в пух и в прах, а другой не сможет поднять даже соломинку. Так вот, дорогие мои читатели, электрический ток тоже обладает силой.

Представьте себе шланг, с помощью которого вы поливаете свой огород

Давайте теперь проведем аналогию. Пусть шланг  – это провод, а вода в нем – электрический ток. Мы чуть-чуть приоткрыли краник и вода сразу же побежала по шлангу. Медленно, но все-таки побежала. Сила струи очень слабая.

А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.

В обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете ведро. Напором воды из какого шланга вы его быстрее наполните? Разумеется из зеленого, где напор воды очень сильный. Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из желтого и зеленого шланга выйдет тоже разный. Или иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Разберем еще один интересный пример. Давайте допустим, что у нас есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет  в два раза больше, чем через тонкую трубу.

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Сила тока – это количество электронов, прошедших через площадь поперечного сечения проводника за какое-либо определенное время.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Формула силы тока

Формула для чайников будет выглядеть вот так:

 

где

I – собственно сила тока, Амперы

N – количество электронов

t – период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды

Более правильная (официальная) формула выглядит вот так:

где

Δq  – это заряд за какой-то определенный промежуток времени, Кулон

Δt – тот самый промежуток времени, секунды

I – сила тока, Амперы

В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10-19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅1018 электронов. 1 Кулон = 1 Ампер · 1 секунду.

Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅1018 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).

Если преподу не понравится ваш ответ, то скажите типа что-то этого:

Сила тока  – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам,  Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе – это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет “протащить” через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

плавкий предохранитель

Как только сила тока через тонкий проводок  предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

сгоревший плавкий предохранитель

Поэтому, силовые кабели,  через которые “бегут” сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

закон Ома

 

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

задача на силу тока в проводнике

Решение:

 

Как измерить силу тока?

Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы – амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который  может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.

Более подробно как это сделать, можете прочитать в этой статье.

Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое “сила тока”.

Что такое напряжение, ток, сопротивление: разбираемся на примерах

Не имея определенных начальных знаний об электричестве, тяжело себе представить, как работают электрические приборы, почему вообще они работают, почему надо включать телевизор в розетку, чтобы он заработал, а фонарику хватает маленькой батарейки, чтобы он светил в темноте.

И так будем разбираться во всем по порядку.

Электричество

Электричество – это природное явление, подтверждающее существование, взаимодействие и движение электрических зарядов. Электричество впервые было обнаружено еще в VII веке до н.э. греческим философом Фалесом. Фалес обратил внимание на то, что если кусочек янтаря потереть о шерсть, он начинает притягивать к себе легкие предметы. Янтарь на древнегреческом – электрон.

Вот так и представляю себе, сидит Фалес, трет кусок янтаря о свой гиматий (это шерстяная верхняя одежда у древних греков), а затем с озадаченным видом смотрит, как к янтарю притягиваются волосы, обрывки ниток, перья и клочки бумаги.

Данное явление называется статическим электричеством. Вы можете повторить данный опыт. Для этого хорошенько потрите шерстяной тканью обычную пластмассовую линейку и поднесите ее к мелким бумажным кусочкам.

Следует отметить, что долгое время это явление не изучалось. И только в 1600 году в своем сочинении «О магните, магнитных телах и о большом магните – Земле» английский естествоиспытатель Уильям Гилберт ввел термин – электричество. В своей работе он описал свои опыты с наэлектризованными предметами, а также установил, что наэлектризовываться могут и другие вещества.

Далее на протяжении трех веков самые передовые ученые мира исследуют электричество, пишут трактаты, формулируют законы, изобретают электрические машины и только в 1897 году Джозеф Томсон открывает первый материальный носитель электричества – электрон, частицу, благодаря которой возможны электрические процессы в веществах.

Электрон – это элементарная частица, имеет отрицательный заряд примерно равный -1,602·10-19 Кл (Кулон). Обозначается е или е.

Напряжение

Чтобы заставить перемещаться заряженные частицы от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Единица измерения напряжения – Вольт (В или V). В формулах и расчетах напряжение обозначается буквой V. Чтобы получить напряжение величиной 1 В нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль).

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под естественным давлением покидает резервуар через трубу. Давайте условимся, что вода – это электрический заряд, высота водяного столба (давление) – это напряжение, а скорость потока воды – это электрический ток.

Таким образом, чем больше воды в баке, тем выше давление. Аналогично с электрической точки зрения, чем больше заряд, тем выше напряжение.

Начнем сливать воду, давление при этом будет уменьшаться. Т.е. уровень заряда опускается – величина напряжения уменьшается. Такое явление можно наблюдать в фонарике, лампочка светит все тусклее по мере того как разряжаются батарейки. Обратите внимание, чем меньше давление воды (напряжение), тем меньше поток воды (ток).

 

Электрический ток

Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками. А вещества, в которых таких частиц нет – диэлектриками.

Принято считать направление тока от плюса к минусу, при этом электроны движутся от минуса к плюсу!

Единица измерения силы тока – Ампер (А). В формулах и расчетах сила тока обозначается буквой I. Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·1018 электронов) за 1 секунду.

 

Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.

Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление.

Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением, током и сопротивлением. Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.

Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение. Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение. Максимальные и минимальные значения (на графике обозначены как Io) – это амплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц.

Сопротивление

Электрическое сопротивление – физическая величина, определяющая свойство проводника препятствовать (сопротивляться) прохождению тока. Единица измерения сопротивления – Ом (обозначается Ом или греческой буквой омега Ω). В формулах и расчетах сопротивление обозначается буквой R. Сопротивлением в 1 Ом обладает проводник к полюсам которого приложено напряжение 1 В и протекает ток 1 А.

Проводники по-разному проводят ток. Их проводимость зависит, в первую очередь, от материала проводника, а также от сечения и длины. Чем больше сечение, тем выше проводимость, но, чем больше длина, тем проводимость ниже. Сопротивление – это обратное понятие проводимости.

На примере водопроводной модели сопротивление можно представить как диаметр трубы. Чем он меньше, тем хуже проводимость и выше сопротивление.

Сопротивление проводника проявляется, например, в нагреве проводника при протекании в нем тока. Причем, чем больше ток и меньше сечение проводника – тем сильнее нагрев.

 

Мощность

Электрическая мощность – это физическая величина, определяющая скорость преобразования электроэнергии. Например, вы не раз слышали: «лампочка на столько-то ватт». Это и есть мощность потребляемая лампочкой за единицу времени во время работы, т.е. преобразовании одного вида энергии в другой с некоторой скоростью.

Источники электроэнергии, например генераторы, также характеризуется мощностью, но уже вырабатываемой в единицу времени.

Единица измерения мощности – Ватт (обозначается Вт или W). В формулах и расчетах мощность обозначается буквой P. Для цепей переменного тока применяется термин Полная мощность, единица измерения – Вольт-ампер (В·А или V·A), обозначается буквой S.

И в завершение про Электрическую цепь. Данная цепь представляет собой некоторый набор электрических компонентов, способных проводить электрический ток и соединенных между собой соответствующим образом.

Что мы видим на этом изображении – элементарный электроприбор (фонарик). Под действием напряжения U (В) источника электроэнергии (батарейки) по проводникам и другим компонентам обладающих разными сопротивлениями R (Ом) от плюса к минусу течет электрический ток I (А) заставляющий светиться лампочку мощностью P (Вт). Не обращайте внимания на яркость лампы, это из-за плохого давления и малого потока воды батареек.

Фонарик, что представлен на фотографии, собран на базе конструктора «Знаток». Данный конструктор позволяет ребенку в игровой форме познать основы электроники и принцип работы электронных компонентов. Поставляется в виде наборов с разным количеством схем и разного уровня сложности.

Задачи

Задачи к уроку 50/14

1.      Космическая ракета при старте с Земли движется вертикально вверх с ускорением a = 25 м/с2. Определите вес космонавта массой m = 100 кг. Ускорение свободного падения считать равным 10 м/с2.

2.      Парашютист, достигнув в затяжном прыжке скорости υ1 = 60 м/с, раскрыл парашют, после чего его скорость за t = 2 с уменьшилась до υ2 = 10 м/с. Чему равен вес парашютиста массой m = 70 кг во время торможения? Ускорение свободного падения считать равным 10 м/с2.

3.      Самолет, двигаясь с постоянной скоростью 720 км/ч, совершает фигуру высшего пилотажа – «мертвую петлю» – радиусом 1000 м. Чему равна перегрузка летчика в верхней точке петли? (g = 10 м/с2).

 

Задачи д/з к уроку 48/12

1.         Во сколько раз изменится сила Всемирного тяготения, если массу одного тела увеличить в 3 раза, а другого уменьшить в 9 раз?

2.         Во сколько раз изменится сила Всемирного тяготения, если расстояние между телами уменьшить в 5 раз?

3.         С каким ускорением всплывает тело массой 25 кг, если на него действует сила Архимеда 300 Н?

Задачи д/з к уроку 60  

1. Почему невозможно, из положения сидя прямо на стуле, встать на ноги, не наклонившись предварительно вперед?

2. Почему однородный прямоугольный кирпич можно положить на край стола, только если с края стола свисает не более половины длины кирпича?

3. Почему вы вынуждены отклоняться назад, когда несете в руках тяжелый груз?

Задачи д/з к уроку 58/7 

1. Какова средняя сила давления F на плечо при стрельбе из автомата, если масса пули m = 10 г, а скорость пули при вылете из канала ствола v = 300 м/с? Автомат делает 300 выстрелов в минуту.

2. Для проведения огневых испытаний жидкостный ракетный двигатель закрепили на стенде. С какой силой он действует на стенд, если скорость истечения продуктов сгорания из сопла 150 м/с, а расход топлива за 5 секунд составил 30 кг?

3. Ракета массой 1000 кг неподвижно зависла над поверхностью земли. Сколько топлива в единицу времени сжигает ракета, если скорость истечения продуктов сгорания из ракеты равна 2 км/с?

простое объяснение для чайников с формулой и понятиями

 

Говорят: «не знаешь закон Ома – сиди дома». Так давайте же узнаем (вспомним), что это за закон, и смело пойдем гулять.

Основные понятия закона Ома

Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.

 

Памятник Георгу Симону Ому

 

Формулировка и объяснение закона Ома

Закон немецкого учителя Георга Ома очень прост. Он гласит:

Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

Пусть  у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

Закон запишется в следующем виде:

Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе.  Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

 

Ток в проводнике

 

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

Зависимость мощности от силы тока, формула мощности, физический смысл

Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами. Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор. Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.

Выясним, что же представляет собой понятие электричество?

Если коротко, то это – направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз

И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные – притягиваются.

А теперь, перейдем к главному.

Основа-основ науки об электричестве – закон Ома.

Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению: сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R

Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах. Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах. Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах. Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом.

Вся остальная электротехника «пляшет» от этого.

О мощности электрического тока

В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.

Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.

Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:

P = U*I.

Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление.

Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.

Вот так – ничего сложного!

Сопротивление и резисторы | Безграничная физика

Закон Ома

Закон

Ома гласит, что ток пропорционален напряжению; цепи являются омическими, если они подчиняются соотношению V = IR.

Цели обучения

Контрастная форма вольт-амперных графиков для омических и неомических цепей

Основные выводы

Ключевые моменты
  • Напряжение управляет током, а сопротивление ему препятствует.
  • Закон

  • Ома относится к пропорциональному соотношению между напряжением и током.Это также относится к конкретному уравнению V = IR, которое справедливо при рассмотрении схем, содержащих простые резисторы (сопротивление которых не зависит от напряжения и тока).
  • Цепи или компоненты, которые подчиняются соотношению V = IR, называются омическими и имеют линейные зависимости тока от напряжения, проходящие через начало координат.
  • Есть неомические компоненты и цепи; их графики I-V не являются линейными и / или не проходят через начало координат.
Ключевые термины
  • простая схема : Схема с одним источником напряжения и одним резистором.
  • омический : То, что подчиняется закону Ома.

Закон Ома

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов V, которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению V. Немецкий физик Георг Симон Ом (1787-1854) был первым, кто экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению: [латекс] \ text {I} \ propto \ text {V} [/ latex ].

Это важное соотношение известно как закон Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально.Такая линейная зависимость возникает не всегда. Напомним, что хотя напряжение управляет током, сопротивление ему препятствует. Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Следовательно, ток обратно пропорционален сопротивлению: [latex] \ text {I} \ propto \ frac {1} {\ text {R}} [/ latex].

Простая схема : Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями.Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Единицей измерения сопротивления является Ом, где 1 Ом = 1 В / А. Мы можем объединить два приведенных выше соотношения, чтобы получить I = V / R. Это соотношение также называется законом Ома. В этой форме закон Ома действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими. К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах.Омические материалы имеют сопротивление R, которое не зависит от напряжения V и тока I. Объект с простым сопротивлением называется резистором, даже если его сопротивление невелико.

Падение напряжения : Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

Дополнительное понимание можно получить, решив I = V / R для V, что дает V = IR. Это выражение для V можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I.Для обозначения этого напряжения часто используется фраза «падение ИК-излучения». Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию).В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку E = qΔV, и через каждую из них протекает одинаковое q. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.

В истинно омическом устройстве одно и то же значение сопротивления будет вычислено из R = V / I независимо от значения приложенного напряжения V. То есть отношение V / I является постоянным, и когда ток отображается как В зависимости от напряжения кривая является линейной (прямая линия).Если напряжение принудительно устанавливается равным некоторому значению V, тогда это напряжение V, деленное на измеренный ток I, будет равно R. Или, если ток принудительно установлен до некоторого значения I, тогда измеренное напряжение V, деленное на этот ток I, также будет R. график I против V как прямая линия. Однако есть компоненты электрических цепей, которые не подчиняются закону Ома; то есть их взаимосвязь между током и напряжением (их ВАХ) нелинейная (или неомическая). Примером может служить диод с p-n переходом.

Кривые вольт-амперной характеристики : ВАХ четырех устройств: двух резисторов, диода и батареи.Два резистора подчиняются закону Ома: график представляет собой прямую линию, проходящую через начало координат. Два других устройства не подчиняются закону Ома.

Закон Ома : Краткий обзор закона Ома.

Температура и сверхпроводимость

Сверхпроводимость — это явление нулевого электрического сопротивления и выброс магнитных полей в некоторых материалах при температуре ниже критической.

Цели обучения

Описать поведение сверхпроводника при температуре ниже критической и в слабом внешнем магнитном поле

Основные выводы

Ключевые моменты
  • Сверхпроводимость — это сверхпроводимость. Сверхпроводимость — это термодинамическая фаза, обладающая определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.
  • В сверхпроводящих материалах характеристики сверхпроводимости проявляются при понижении температуры ниже критической. Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств.
  • Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.
  • Сверхпроводники могут поддерживать ток без приложенного напряжения.
Ключевые термины
  • высокотемпературные сверхпроводники : материалы, которые ведут себя как сверхпроводники при необычно высоких температурах (выше примерно 30 K).
  • критическая температура : В сверхпроводящих материалах характеристики сверхпроводимости проявляются при этой температуре (и сохраняются ниже).
  • сверхпроводимость : Свойство материала, при котором он не оказывает сопротивления прохождению электрического тока.

Сверхпроводимость — это явление точно нулевого электрического сопротивления и выброса магнитных полей, возникающее в некоторых материалах при охлаждении ниже критической температуры.Он был обнаружен Хайке Камерлинг-Оннес (на фото) 8 апреля 1911 года в Лейдене.

Хайке Камерлинг-Оннес : Хайке Камерлинг-Оннес (1853-1926).

Большинство физических свойств сверхпроводников варьируются от материала к материалу, например теплоемкость и критическая температура, критическое поле и критическая плотность тока, при которых сверхпроводимость разрушается. С другой стороны, существует класс свойств, не зависящих от основного материала.Например, все сверхпроводники имеют точно нулевое удельное сопротивление по отношению к низким приложенным токам, когда нет магнитного поля или если приложенное поле не превышает критического значения. Существование этих «универсальных» свойств подразумевает, что сверхпроводимость является термодинамической фазой и, таким образом, обладает определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.

В сверхпроводящих материалах характеристики сверхпроводимости проявляются при понижении температуры T ниже критической температуры T c .Возникновение сверхпроводимости сопровождается резкими изменениями различных физических свойств — отличительным признаком фазового перехода. Например, электронная теплоемкость пропорциональна температуре в нормальном (несверхпроводящем) режиме. При сверхпроводящем переходе он испытывает прерывистый скачок и после этого перестает быть линейным, как показано на.

Когда сверхпроводник помещается в слабое внешнее магнитное поле H и охлаждается ниже температуры перехода, магнитное поле выбрасывается.Эффект Мейснера не вызывает полного выброса поля. Скорее, поле проникает в сверхпроводник на очень малое расстояние (характеризуемое параметром λ), называемое лондонской глубиной проникновения. Он экспоненциально спадает до нуля в объеме материала. Эффект Мейснера — определяющая характеристика сверхпроводимости. Для большинства сверхпроводников лондонская глубина проникновения составляет порядка 100 нм.

Сверхпроводящий фазовый переход : Поведение теплоемкости (cv, синий) и удельного сопротивления (ρ, зеленый) при сверхпроводящем фазовом переходе.

Сверхпроводники также способны поддерживать ток без какого-либо приложенного напряжения — свойство, используемое в сверхпроводящих электромагнитах, таких как те, что используются в аппаратах МРТ. Эксперименты показали, что токи в сверхпроводящих катушках могут сохраняться годами без какого-либо измеримого ухудшения. Экспериментальные данные указывают на то, что в настоящее время продолжительность жизни составляет не менее 100 000 лет. Теоретические оценки времени жизни постоянного тока могут превышать расчетное время жизни Вселенной, в зависимости от геометрии провода и температуры.

Значение этой критической температуры варьируется от материала к материалу. Обычно обычные сверхпроводники имеют критические температуры в диапазоне от примерно 20 К до менее 1 К. Твердая ртуть, например, имеет критическую температуру 4,2 К. По состоянию на 2009 год самая высокая критическая температура, найденная для обычного сверхпроводника, составляет 39 К. для магния. диборид (MgB 2 ), хотя экзотические свойства этого материала вызывают некоторые сомнения в правильности его классификации как «обычного» сверхпроводника.Высокотемпературные сверхпроводники могут иметь гораздо более высокие критические температуры. Например, YBa 2 Cu 3 O 7 , один из первых открытых купратных сверхпроводников, имеет критическую температуру 92 К; Были обнаружены купраты на основе ртути с критическими температурами, превышающими 130 К. Следует отметить, что химический состав и кристаллическая структура сверхпроводящих материалов могут быть довольно сложными, как показано в.

Элементарная ячейка сверхпроводника YBaCuO : Элементарная ячейка сверхпроводника YBaCuO.Атомы обозначены разными цветами.

Сопротивление и удельное сопротивление

Сопротивление и удельное сопротивление описывают степень, в которой объект или материал препятствуют прохождению электрического тока.

Цели обучения

Определить свойства материала, которые описываются сопротивлением и удельным сопротивлением

Основные выводы

Ключевые моменты
  • Сопротивление объекта (т. Е. Резистора) зависит от его формы и материала, из которого он состоит.
  • Удельное сопротивление ρ является внутренним свойством материала и прямо пропорционально общему сопротивлению R, внешней величине, которая зависит от длины и площади поперечного сечения резистора.
  • Удельное сопротивление различных материалов сильно различается. Точно так же резисторы могут иметь разные порядки величины.
  • Резисторы расположены последовательно или параллельно. Эквивалентное сопротивление цепи последовательно включенных резисторов является суммой всех сопротивлений.Сопротивление, обратное эквивалентному сопротивлению цепи параллельно включенных резисторов, является суммой обратных сопротивлений каждого резистора.
Ключевые термины
  • Эквивалентное сопротивление серии : Сопротивление сети резисторов, расположенных таким образом, что напряжение в сети является суммой напряжений на каждом резисторе. В этом случае эквивалентное сопротивление — это сумма сопротивлений всех резисторов в сети.
  • параллельное эквивалентное сопротивление : такое сопротивление сети, при котором на каждый резистор действует одинаковая разность потенциалов (напряжение), поэтому токи, проходящие через них, складываются.В этом случае сопротивление, обратное эквивалентному сопротивлению, равно сумме обратных сопротивлений всех резисторов в сети.
  • удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.

Сопротивление и удельное сопротивление

Сопротивление — это электрическое свойство, препятствующее прохождению тока. Ток, протекающий через провод (или резистор), подобен воде, протекающей по трубе, а падение напряжения на проводе подобно перепаду давления, которое проталкивает воду по трубе.Сопротивление пропорционально тому, сколько давления требуется для достижения заданного потока, в то время как проводимость пропорциональна тому, сколько потока возникает при заданном давлении. Проводимость и сопротивление взаимны. Сопротивление объекта зависит от его формы и материала, из которого он состоит. Цилиндрический резистор легко анализировать, и таким образом мы можем получить представление о сопротивлении более сложных форм. Как и следовало ожидать, электрическое сопротивление цилиндра R прямо пропорционально его длине L, подобно сопротивлению трубы потоку жидкости.Чем длиннее цилиндр, тем больше зарядов соударяется с его атомами. Чем больше диаметр цилиндра, тем больше тока он может пропускать (опять же, аналогично потоку жидкости по трубе). Фактически, R обратно пропорционально площади поперечного сечения цилиндра A.

Цилиндрический резистор : однородный цилиндр длиной L и площадью поперечного сечения A. Его сопротивление потоку тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление.Чем больше площадь его поперечного сечения A, тем меньше его сопротивление.

Как уже упоминалось, для данной формы сопротивление зависит от материала, из которого состоит объект. Различные материалы обладают разным сопротивлением потоку заряда. Мы определяем удельное сопротивление вещества ρ так, чтобы сопротивление объекта R было прямо пропорционально ρ. Удельное сопротивление ρ является внутренним свойством материала , независимо от его формы или размера. Напротив, сопротивление R — это внешнее свойство, которое действительно зависит от размера и формы резистора.(Аналогичная внутренняя / внешняя связь существует между теплоемкостью C и удельной теплоемкостью c). Напомним, что объект, сопротивление которого пропорционально напряжению и току, называется резистором.

Типичный резистор : Типовой резистор с осевыми выводами.

Что определяет удельное сопротивление? Удельное сопротивление разных материалов сильно различается. Например, проводимость тефлона примерно в 1030 раз ниже, чем проводимость меди. Почему такая разница? Грубо говоря, металл имеет большое количество «делокализованных» электронов, которые не застревают в каком-либо одном месте, но могут свободно перемещаться на большие расстояния, тогда как в изоляторе (например, тефлоне) каждый электрон прочно связан с одним атомом и требуется большая сила, чтобы оторвать его.Точно так же резисторы могут иметь разные порядки величины. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление сухого человека может составлять 10 5 Ом, тогда как сопротивление человеческого сердца составляет примерно 10 3 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Разность потенциалов (напряжение), наблюдаемая в сети, является суммой этих напряжений, поэтому общее сопротивление (последовательное эквивалентное сопротивление) можно найти как сумму этих сопротивлений:

[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} + \ text {R} _ {2} + \ cdots + \ text {R} _ {\ text {N}} [/ латекс].

В качестве особого случая сопротивление N резисторов, соединенных последовательно, каждый из которых имеет одинаковое сопротивление R, определяется как NR. Каждый резистор в параллельной конфигурации подвержен одной и той же разности потенциалов (напряжению), однако протекающие через них токи складываются . Таким образом, можно вычислить эквивалентное сопротивление (Req) сети:

[латекс] \ frac {1} {\ text {R} _ {\ text {eq}}} = \ frac {1} {\ text {R} _ {1}} + \ frac {1} {\ text {R} _ {2}} + \ cdots + \ frac {1} {\ text {R} _ {\ text {N}}} [/ latex].

Параллельное эквивалентное сопротивление может быть представлено в уравнениях двумя вертикальными линиями «||» (как в геометрии) как упрощенное обозначение.Иногда вместо «||» используются две косые черты «//», если на клавиатуре или шрифте отсутствует символ вертикальной линии. Для случая, когда два резистора включены параллельно, это можно рассчитать по формуле:

[латекс] \ text {R} _ {\ text {eq}} = \ text {R} _ {1} \ parallel \ text {R} _ {2} = \ frac {\ text {R} _ {1 } \ text {R} _ {2}} {\ text {R} _ {1} + \ text {R} _ {2}} [/ latex].

В качестве особого случая сопротивление N резисторов, подключенных параллельно, каждый из которых имеет одинаковое сопротивление R, определяется как R / N. Сеть резисторов, которая представляет собой комбинацию параллельного и последовательного соединения, может быть разбита на более мелкие части, которые являются одним или другим, например, как показано на.

Сеть резисторов : В этой комбинированной схеме цепь может быть разбита на последовательный компонент и параллельный компонент.

Однако некоторые сложные сети резисторов не могут быть решены таким образом. Это требует более сложного анализа схем. Одним из практических применений этих соотношений является то, что нестандартное значение сопротивления обычно может быть синтезировано путем соединения ряда стандартных значений последовательно или параллельно. Это также можно использовать для получения сопротивления с более высокой номинальной мощностью, чем у отдельных используемых резисторов.В частном случае N идентичных резисторов, все подключенных последовательно или все подключенных параллельно, номинальная мощность отдельных резисторов умножается на N.

Сопротивление, резисторы и удельное сопротивление : краткий обзор сопротивления, резисторов и удельного сопротивления.

Зависимость сопротивления от температуры

Удельное сопротивление и сопротивление зависят от температуры, причем зависимость линейна для малых изменений температуры и нелинейна для больших.

Цели обучения

Сравнить температурную зависимость удельного сопротивления и сопротивления при больших и малых изменениях температуры

Основные выводы

Ключевые моменты
  • При изменении температуры на 100ºC или меньше удельное сопротивление (ρ) изменяется с изменением температуры ΔT как: [latex] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T }) [/ latex] где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент удельного сопротивления.
  • При больших изменениях температуры наблюдается нелинейное изменение удельного сопротивления с температурой.
  • Сопротивление объекта демонстрирует такую ​​же температурную зависимость, как и удельное сопротивление, поскольку сопротивление прямо пропорционально удельному сопротивлению.
Ключевые термины
  • удельное сопротивление : Обычно сопротивление материала электрическому току; в частности, степень сопротивления материала потоку электричества.
  • температурный коэффициент удельного сопротивления : эмпирическая величина, обозначаемая α, которая описывает изменение сопротивления или удельного сопротивления материала в зависимости от температуры.
  • полупроводник : Вещество с электрическими свойствами, промежуточными между хорошим проводником и хорошим изолятором.

Удельное сопротивление всех материалов зависит от температуры. Некоторые материалы могут стать сверхпроводниками (нулевое сопротивление) при очень низких температурах (см.). И наоборот, удельное сопротивление проводников увеличивается с повышением температуры. Поскольку атомы колеблются быстрее и на больших расстояниях при более высоких температурах, электроны, движущиеся через металл, например, создают больше столкновений, эффективно увеличивая удельное сопротивление.При относительно небольших изменениях температуры (около 100 ° C или меньше) удельное сопротивление ρ изменяется с изменением температуры ΔT, как выражается в следующем уравнении:

Сопротивление образца ртути : Сопротивление образца ртути равно нулю при очень низких температурах — это сверхпроводник примерно до 4,2 К. Выше этой критической температуры его сопротивление совершает внезапный скачок, а затем увеличивается почти линейно. с температурой.

[латекс] \ text {p} = \ text {p} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]

, где ρ 0 — исходное удельное сопротивление, а α — температурный коэффициент удельного сопротивления.Для более значительных изменений температуры α может изменяться, или для нахождения ρ может потребоваться нелинейное уравнение. По этой причине обычно указывается суффикс для температуры, при которой измерялось вещество (например, α 15 ), и соотношение сохраняется только в диапазоне температур вокруг эталона. Обратите внимание, что α положительно для металлов, что означает, что их удельное сопротивление увеличивается с температурой. Температурный коэффициент обычно составляет от + 3 · 10 −3 K −1 до + 6 · 10 −3 K −1 для металлов, близких к комнатной температуре.Некоторые сплавы были разработаны специально, чтобы иметь небольшую температурную зависимость. Например, манганин (состоящий из меди, марганца и никеля) имеет α, близкое к нулю, поэтому его удельное сопротивление незначительно изменяется с температурой. Это полезно, например, для создания не зависящего от температуры эталона сопротивления.

Обратите также внимание на то, что α отрицательна для полупроводников, что означает, что их удельное сопротивление уменьшается с повышением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока.Это свойство уменьшения ρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление объекта также зависит от температуры, поскольку R 0 прямо пропорционально ρ. Для цилиндра мы знаем, что R = ρL / A, поэтому, если L и A не сильно изменяются с температурой, R будет иметь ту же температурную зависимость, что и ρ. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, и поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) Таким образом,

[латекс] \ text {R} = \ text {R} _ {0} (1 + \ alpha \ Delta \ text {T}) [/ latex]

— это температурная зависимость сопротивления объекта, где R 0 — исходное сопротивление, а R — сопротивление после изменения температуры T. Многие термометры основаны на влиянии температуры на сопротивление (см.). Одним из наиболее распространенных является термистор, полупроводниковый кристалл с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Термометры : Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.

калькулятор расчета закона Ома рассчитать формулы мощности математический закон Ома круговая диаграмма падение электрического напряжения формула сопротивления электрического тока закон Ватта ЭДС магический треугольник уравнение подсказка онлайн напряжение вольт сопротивление резистора амперы аудиотехника EV = IR — P = VI вычисление зависимости удельного сопротивления проводимости

Ом закон вычисление калькулятор вычислить формулы мощности математический закон Ома круговая диаграмма электрическое падение напряжения электрический ток формула сопротивления закон Ватта ЭДС магический треугольник уравнение подсказка онлайн напряжение вольт сопротивление резистора амперы амперы аудиотехника EV = IR — P = VI calc проводимость связь удельное сопротивление связь — sengpielaudio Sengpiel Berlin

= сбросить.

Формулы: V = I R I = V / R R = V / I

Математические формулы закона Ома

Закон

Ома можно переписать тремя способами для расчета тока, сопротивления и напряжения.
Если ток I должен протекать через резистор R , можно рассчитать напряжение В .
Первая версия формулы (напряжения): V = I × R

Если есть напряжение В на резисторе R , через него протекает ток I . I можно вычислить.
Вторая версия (текущей) формулы: I = V / R

Если ток I протекает через резистор, и есть напряжение В на резисторе . R можно рассчитать.
Третья версия формулы (сопротивления): R = V / I

Все эти вариации так называемого «Закона Ома» математически равны друг другу.

Имя Знак формулы Блок Символ
напряжение V или E вольт В
текущий я ампер (ампер) А
сопротивление R Ом Ом
мощность п. Вт Вт

Какая формула для электрического тока?
При постоянном токе:
I = Δ Q / Δ t
I — ток в амперах (A)
Δ Q — электрический заряд в кулонах (C),
, который течет во время продолжительности Δ t в секундах (с).

Напряжение В = ток I × сопротивление R

Мощность P = напряжение В × ток I

В электрических проводниках, в которых ток и напряжение пропорциональны
друг другу, применяется закон Ома: В ~ I или В ⁄ ​​ I = const.

Проволока из константана или другая металлическая проволока, выдерживаемая при постоянной температуре, хорошо соответствует закону Ома.

« V ⁄ ​​ I = R = const.» ist не закон Ома. Это определение сопротивления.
После этого в каждой точке, даже с изогнутой кривой, можно рассчитать значение сопротивления.

Для многих электрических компонентов, например диодов, закон Ома не применяется.

«Закон Ома» не был изобретен господином Омом

« U ⁄ ​​ I = R = конст.»- это , а не закон Ома или закон Ома. Это определение сопротивления.
После этого в каждой точке — даже с изогнутой кривой — значение сопротивления может быть вычислено.
Закон Ома» постулирует «следующие отношения: Когда к объекту прикладывается напряжение, электрический ток
, протекающий через него, изменяет силу пропорционально напряжению. Другими словами, электрическое сопротивление
, определяемое как отношение напряжения к току, является постоянным, и оно равно
независимо от напряжения. и ток.Название закона «почитает» Георга Симона Ома, который смог
доказать эту взаимосвязь для некоторых простых электрических проводников в качестве одного из первых исследователей.
«Закон Ома» действительно не был изобретен Омом.

Совет: магический треугольник Ома

Волшебный треугольник V I R можно использовать для расчета всех формулировок закона Ома.
Используйте палец, чтобы скрыть вычисляемое значение. Затем два других значения
показывают, как производить расчет.

Обозначение I или J = латиница: приток, международный ампер и R = сопротивление. В = напряжение или
разность электрических потенциалов, также называемая падением напряжения, или E = электродвижущая сила (ЭДС = напряжение).

Расчет падения напряжения — расчет постоянного / однофазного тока
Падение напряжения В в вольтах (В) равно току в проводе I в амперах (А), умноженном на два
длины провода L в футах (футах), умноженном на сопротивление провода на 1000 футов R в омах (Ом / кфут)
деленное на 1000:
В падение (В) = I провод (A) × R провод (Ом)
= I провод (A) × (2 × L (фут) × R провод (Ом / kft) / 1000 (ft / kft))

Падение напряжения В в вольтах (В) равно току провода I в амперах (А), умноженному на два
, длина провода L в метрах (м), умноженная на сопротивление провода на 1000 метров R в омах
(Ом / км) разделить на 1000:
В падение (В) = I провод (A) × R провод (Ом)
= I провод (A) × (2 × L (м) × R провод (Ом / км) / 1000 (м / км))

Если требуется блок power P = I × V и напряжение V = I · R ,
ищите Формулы большой мощности »:
Расчеты: мощность (ватт), напряжение, ток, сопротивление

Некоторые думают, что Георг Симон Ом рассчитал «удельное сопротивление».
Поэтому они думают, что только следующее может быть истинным законом Ома.

Количество сопротивления
R = сопротивление Ом
ρ = удельное сопротивление Ом × м
l = двойная длина кабеля м
A = поперечное сечение мм 2

Электропроводность (проводимость) σ (сигма) = 1/ ρ
Удельное электрическое сопротивление (удельное сопротивление) = 1/ σ

Разница между удельным электрическим сопротивлением и электропроводностью

Проводимость в сименсах обратно пропорциональна сопротивлению в омах.

Просто введите значение слева или справа.
Калькулятор работает в обоих направлениях знака .
Величина электропроводности (проводимости) и удельного электрического сопротивления
(удельное сопротивление) зависит от температуры материала постоянной. Чаще всего его дают при 20 или 25 ° C.
Сопротивление R = ρ × ( л / A ) или R 3 3 903 σ × A )

Для всех проводников удельное сопротивление изменяется в зависимости от температуры.В ограниченном диапазоне температур
это примерно линейно:
где α — температурный коэффициент, T — температура и T 0 — любая температура,
, например, T 0 = 293,15 K = 20 ° C, при котором удельное электрическое сопротивление ρ ( T 0 ) известен.

Площадь поперечного сечения — поперечное сечение — плоскость среза

Теперь возникает вопрос:
Как можно рассчитать площадь поперечного сечения (плоскость среза) A
из диаметра проволоки d и наоборот?

Расчет поперечного сечения A (плоскость среза) от диаметра d :

r = радиус проволоки
d = диаметр проволоки

Расчетный диаметр d из поперечного сечения A (плоскость среза ) :

Поперечное сечение A провода в мм 2 , вставленное в эту формулу, дает диаметр d в мм.

Расчет — Круглые кабели и провода:
• Диаметр к поперечному сечению и наоборот •

Электрическое напряжение В = I × R (закон Ома VIR)
Электрическое напряжение = сила тока × сопротивление (закон Ома)
Введите два значения , будет рассчитано третье значение.
Электроэнергия P = I × В (степенной закон PIV)
Электроэнергия = сила тока × напряжение (закон Ватта)
Введите два значения , будет рассчитано третье значение.

Закон Ома. В = I × R , где В, — это потенциал на элементе схемы, I — это ток
через него, а R — его сопротивление. Это не общеприменимое определение сопротивления
. Это применимо только к омическим резисторам, сопротивление которых R является постоянным
в интересующем диапазоне, а В подчиняется строго линейной зависимости от I . Материалы
считаются омическими, если V линейно зависит от R .Металлы являются омическими, пока
поддерживает их постоянную температуру. Но изменение температуры металла немного меняет R
. Когда ток изменяется быстро, например, при включении света или при использовании источников переменного тока
, можно наблюдать слегка нелинейное и неомическое поведение. Для неомических резисторов
R зависит от тока, и определение R = d V / d I гораздо более полезно. Это значение
, которое иногда называют динамическим сопротивлением.Твердотельные устройства, такие как термисторы,
неомичны и нелинейны. Сопротивление термистора уменьшается по мере его нагрева, поэтому его динамическое сопротивление
отрицательно. Туннельные диоды и некоторые электрохимические процессы
имеют сложную кривую от I до В с рабочей областью отрицательного сопротивления. Зависимость сопротивления
от тока частично связана с изменением температуры устройства
с увеличением тока, но другие тонкие процессы также способствуют изменению сопротивления
в твердотельных устройствах.

Расчет: калькулятор параллельного сопротивления (резистора)

Калькулятор цветовой кодировки резисторов

Электрический ток, электрическая мощность, электричество и электрический заряд

Колесо формул — формулы электротехники

In acoustics используйте «закон Ома в качестве акустического эквивалента »

Как работает электричество.
Закон Ома ясно объяснен.

[начало страницы]

Основы закона

Ом — напряжение, ток и сопротивление

В предыдущем уроке мы обсудили применение тока, напряжения и важность закона Кулона в электричестве. Но без закона Ома работа электрической цепи становится неполной.

Для выполнения этого также задействован закон Ом . Немецкий физик Георг Симон Ом открыл закон Ома и обнаружил взаимосвязь между током, напряжением и сопротивлением.

Из этого руководства вы узнаете, как применить закон сопротивления к различным приложениям электротехники и электроники.

Как известно, электрический ток течет в виде заряженных электронов. Другими словами, меньший поток электронов означает, что в цепи присутствует высокое сопротивление. А высокий поток электронов означает низкое сопротивление.

Электронный ток — это количество электронов, движущихся за секунду. Однако для практических приложений нам нужно меньшее количество заряда электрона.Для упрощения использовались две единицы измерения, известные как ампер, и кулонов, .

Кулон, обозначенный «, выражает достаточное количество электрического заряда.

Электрический заряд равен 6 миллионам электронов, умноженным на 1 миллион электронов. Этот результирующий заряд снова умножается на один миллион электронов.

Ампер, представленный как ‘A’ , представляет собой силу единичного тока или количество электронов, перемещающихся в секунду, в данном случае один кулон в секунду.

Ампер слишком велик для некоторых приложений. Таким образом, он снова делится на части, известные как миллиампер ( мА), и микроампер ( мкА, ).

  1 А = 1000 мА = 1 000 000 мкА
1 мА = 1/1000 А = 1000 мкА
  

Теперь поговорим о сопротивлении. Поскольку состав различных материалов отличается, некоторые материалы обладают более сильным противодействием потоку электронов, чем другие металлы. Это электрическое явление известно как сопротивление .

Теперь, если мы приложим движущую силу или Электромагнитную силу (E.M.F) к проводнику, большое количество электронов потечет быстро. Это доказывает, что сопротивление проводника низкое.

С другой стороны, применение того же Э. М. Ф. к изолятору произведет меньше электронов. Следовательно, сопротивление изолятора высокое.

Сопротивление выражается в Ом и обозначается греческой заглавной буквой «Ω ». Единицей измерения E.M.F является вольт.Один вольт — это движущая сила, необходимая для создания силы тока 1 А в цепи с сопротивлением 1 Ом.

Электрический ток — это измерительный прибор, называемый амперметром, а электрическое сопротивление измеряется с помощью омметра.

Как работает закон Ома?

Закон

Ома связывает электрические величины, такие как ток, напряжение, мощность и сопротивление. Чтобы узнать о практическом применении закона Ома, приведу пример.

Подключите провод определенного сопротивления последовательно с 1.Источник батареи 5 В и предположим, что амперметр показывает ток 0,2 А. Теперь, если мы увеличим напряжение до 3 В, измеритель тока покажет большее значение тока, скажем, 0,4 А.

Это означает, что при поддержании постоянного сопротивления и увеличении напряжения ток будет удвоен. Повторяя этот процесс увеличения и уменьшения напряжения, сохраняя неизменным сопротивление, напряжение будет пропорционально току.

То же самое происходит, если мы изменяем длину проводящего провода, сохраняя приложенное напряжение постоянным.

Если мы изменим длину провода на более короткую или более длинную, это будет иметь некоторый эффект из-за сопротивления провода.

Например, если приложить постоянный ЭДС 1,5 В и длину провода 2 м, потребляемый ток составит 0,3 А.

Теперь, если мы изменим длину провода на 1 м, ток будет меньше 0,1 (но не 0,3) из-за меньшего расстояния, которое нужно преодолеть, и меньшего сопротивления, которое необходимо преодолеть.

Теория закона Ома

Когда вы берете металлический проводник и пропускаете через него ток, разность потенциалов между двумя концами проводника остается постоянной.

Определение закона Ома

Закон

Ом гласит, что «ток, протекающий через электрическую цепь, изменится при приложении напряжения, но сопротивление обратно пропорционально сопротивлению материала проводника».

Формула закона Ома представлена ​​уравнением

В = ИК

‘V’ — падение потенциала (напряжения) на резисторе.

«I» — ток, протекающий в цепи через резистор

.

‘R’ — значение сопротивления резистора, выраженное в омах.

Приведенное выше уравнение I = V / R отражает следующие факты.

  • Ток меняется в зависимости от приложенного входного напряжения

Если сопротивление проводника остается постоянным, напряжение будет увеличиваться с увеличением тока и напряжение уменьшаться с уменьшением тока.

  • Ток и сопротивление противоположны друг другу

Теперь сохраните напряжение в цепи как постоянный параметр. Если вы измените сопротивление, ток также изменится.

Например, если сопротивление увеличивается, ток в цепи уменьшается, а если сопротивление уменьшается, ток увеличивается.

  • Соотношение напряжения и тока

Связь между напряжением и током линейна. то есть с большим напряжением ток будет выше, а с меньшим напряжением — меньший ток.

Аналогия закона Ома

Связь между напряжением, током и сопротивлением можно узнать, найдя третью величину из двух известных значений.

Двумя известными значениями могут быть напряжение, ток или сопротивление.

Расчет закона Ома

Закон Ома можно представить в трех формах. Проще говоря, закон Ом, окружность или закон Ом. Треугольник используется в электрических цепях для определения третьей величины из двух других величин.

Метод круга или треугольника используется для запоминания закона Ома.

Здесь я использую круг закона Ома, чтобы узнать напряжение, ток и сопротивление.

  1. Чтобы рассчитать напряжение (В) , округлите напряжение (В), как показано ниже. Ток и сопротивление взаимосвязаны.

В = I x R

  1. Чтобы вычислить ток (амперы) , округлите ток (I), как показано ниже. Это будет ток, протекающий в цепи.

I = V / R

  1. Аналогично, , чтобы узнать сопротивление (Ом) , округлив сопротивление (R), вы получите сопротивление проводника.

R = V / I

Комбинируя напряжение, ток и сопротивление, мы можем получить общее соотношение, чтобы нарисовать график закона Ом .

Из графика видно, что если ток в электрической цепи увеличивается, напряжение увеличивается линейно и наоборот.

Для облегчения связи приведена таблица Закона Ома для быстрого ознакомления.

Закон Ома Известные значения Отношение 1 Отношение 2
V = IR Ток и сопротивление Напряжение прямо пропорционально току Напряжение прямо пропорционально сопротивлению
I = V / R Напряжение и сопротивление Ток обратно пропорционален сопротивлению Ток прямо пропорционален напряжению
R = V / I Напряжение и ток Сопротивление прямо пропорционально напряжению Сопротивление обратно пропорционально току

Теперь дайте нам знать , как использовать формулы закона Ома на практике.

Примеры закона Ома

1 . Определение тока в цепи

Дано: напряжение = 5 В, сопротивление = 500 Ом, I =?

Формула:

I = V / R = 5/500 = 0,01 А.

Итак, при приложении потенциала 5 В через резистор 500 Ом протекает ток 0,01 А.

2. Определение напряжения в цепи

Дано: Сопротивление = 100 Ом, I = 2 А, Напряжение =?

Формула:

В = ИК = 2 * 100 = 200 В

Итак, напряжение АКБ для схемы составляет 200В.

3. Нахождение сопротивления в цепи

Дано: I = 2A, напряжение = 5V, сопротивление =?

Формула:

R = V / I = 5/2 = 2,5 Ом

Таким образом, необходимо последовательно подключить к источнику батареи сопротивление 2,5 Ом.

Практическое применение закона Ома

1. Конструкция блока питания (как делитель напряжения)

Закон

Ом полезен при проектировании источников питания для электронных схем.Делители напряжения определяют регулируемый выход для правильного функционирования схемы. Это достигается выбором правильного сопротивления по закону Ома.

2. Аналоговые датчики

Некоторые типы датчиков выдают текущее значение на выходе. Например, датчик радара дает выходной ток 4-20 мА.

Этот выходной ток должен быть преобразован в напряжение с помощью уравнения сопротивления. Полученное аналоговое напряжение затем обрабатывается через АЦП (аналого-цифровой преобразователь).

3. Контроль скорости

Закон

Ом широко используется в приложениях, регулирующих скорость. Он используется в потенциометре , также известном как « POT ». Сопротивление ручки изменяется медленно, что увеличивает напряжение и вращает двигатель или вентилятор.

4. Упрощение схем

Он также используется для сокращения сложных электрических цепей с использованием закона Кирхгофа напряжения и уравнения закона Кирхгофа тока.Последовательные и параллельные цепи могут быть реализованы просто с помощью закона Ома.

Заключение

В реальной жизни важно узнать ток и напряжение для любого приложения. Небольшое отклонение выходной нагрузки может привести к возгоранию или повреждению цепи. Чтобы этого избежать, необходимо применить принципы закона Ома и построить действующую электронную систему.

электрический ток

Направленное движение носителей электрического заряда, то есть электронов, движущихся в определенном направлении, называется электрическим током.Сами электроны представляют собой чрезвычайно маленькие элементарные частицы, которые имеют одинаковый отрицательный заряд.

Электрический ток течет только в замкнутой цепи тока. Замкнутая цепь состоит, по крайней мере, из источника электроэнергии и электрического устройства или компонента, которые соединены электрическими проводниками (такими как электрические провода). Эти проводники могут быть металлами, а также жидкостями или газами. Примечание: важно проверить, где может протекать электрический ток! Иногда предмет или тело попадают случайно, если они касаются (касаются) электрических проводников.
Чем выше напряжение на источнике питания, тем больше сила тока (необходимое условие: все компоненты остаются прежними, а температура остается неизменной). Кроме того: чем сильнее сопротивление электрического проводника, тем меньше сила тока, если напряжение остается прежним.

Если вы знаете напряжение и электрическое сопротивление электрической цепи, вы можете рассчитать силу тока по следующей формуле:

Сила тока — это физическая величина, обозначающая количество электронов, которые проходят через определенную площадь поперечного сечения электрического проводника в течение одной секунды.(Вы можете представить это как затвор, который считает электроны, проходящие через определенное место в проводнике). Сила тока сокращенно обозначается формулой I . Обозначение формулы I происходит от слова интенсивности . Цель состоит в том, чтобы описать силу электрического тока. Интенсивность помогает понять, что сила тока высока, если особенно большое количество электронов проходит через площадь поперечного сечения в течение определенного периода времени.

Сила тока указывается в амперах.Своим названием он обязан французскому физику Андре-Мари Амперу, который с 1775 по 1836 год жил во Франции. Сила тока в один ампер будет достигнута, если 6,24 квинтиллиона (6.240.000.000.000.000.000) электронов пройдут через поперечное сечение проводника в течение одной секунды.

Сила электрического тока является мерой количества заряда ( Q ), который пересек площадь сечения за определенный период времени ( t ). Он описывается следующей формулой:

(Напоминание: Q — это символ заряда, а t — время.)

Эти модели проводника помогут вам понять, что означает высокая или низкая сила тока. Чем выше сила тока, тем больше электронов проходит через
кондуктор в течение определенного периода времени:

Высокая сила тока; много электронов за период времени:

Низкая сила тока; несколько электронов за период времени:

Примечание: в реальном проводнике электроны не так прямолинейны; они скорее двигаются зигзагообразно.

Вот несколько примеров сильных сторон вашей повседневной жизни:

С

С

С

лампочка около 0,4 Ампер
фонарь фонарик до 0,6 Ампер
тостер около 5,2 Ампер
печь для выпечки до 12 ампер
электровоз apbout 150 ампер
молния до 1.000.000 ампер

напряжение ток сопротивление и электрическая мощность общие основные электрические формулы математические вычисления формула калькулятора для расчета мощности энергия работа уравнение степенной закон ватт понимание общая электрическая круговая диаграмма расчет электричества электрическая ЭДС напряжение формула мощности уравнение два разных уравнения для расчета мощности общий закон омов аудио физика электричество электроника формула колесо формулы амперы ватты вольт омы косинус уравнение звуковая инженерия круговая диаграмма заряд физика мощность запись звука вычисление электротехническая формула мощность математика пи физика взаимосвязь

напряжение ток сопротивление и электрическая мощность общие основные электрические формулы математические вычисления формула калькулятора для расчета энергии энергия работа уравнение мощность закон ваттс понимание общая электрическая круговая диаграмма расчет электричества электрическая ЭДС напряжение формула мощности уравнение два разных уравнения для расчета мощности общий закон Ома аудио физика электричество электричество формула tronics колесо формулы амперы ватты вольт омы косинус уравнение аудио инженерия круговая диаграмма заряд физика мощность звук запись вычисление электротехника формула мощность математика пи физика отношение взаимосвязь — sengpielaudio Sengpiel Berlin

Электроэнергия , Электроэнергия , Электроэнергия

Электричество и Электричество

Наиболее распространенные общие формулы 128 13 Основные формулы и Расчеты

Соотношение физических и электрических величин (параметров)
Электрическое напряжение В , ампераж удельное сопротивление
R , импеданс Z ,
мощность и мощность P
Вольт В , ампер A, сопротивление и
импеданс Ом Ом и Вт Вт

Номинальный импеданс Z = 4, 8 и 16 Ом12 (для громкоговорителей часто принимается сопротивление ) Р .
Уравнение (формула) закона Ома: V = I × R и уравнение (формула) степенного закона: P = I × V .
P = мощность, I или J = латиница: приток, международный ампер или интенсивность и R = сопротивление.
В = напряжение, разность электрических потенциалов Δ В или E = электродвижущая сила (ЭДС = напряжение).

Введите любые два известных значения и нажмите «вычислить», чтобы
решить для двух других. Пожалуйста, введите только два значения.
Используемый браузер, к сожалению, не поддерживает Javascript.
Программа указана, но фактическая функция отсутствует.

Колесо формул электротехники

В происходит от «напряжения», а E от «электродвижущей силы (ЭДС)». E означает также энергии , поэтому мы выбираем V .
Энергия = напряжение × заряд. E = V × Q . Некоторым нравится лучше придерживаться E вместо V , так что сделайте это. Для R возьмите Z .
12 самых важных формул:
Напряжение В = I × R = P / I = √ ( P × R ) в вольтах В Ток I = В / = P / В = √ ( P / R ) в амперах A
Сопротивление R = В / I = P / I 6 2

    В 2 / P в Ом Ом Мощность P = В × I = R × I 2 2 = В 2 / R 2 Вт 2 Вт

См. Также: The Formula Wheel of Acoustics (Audio)

The Big Формулы мощности
Расчет электрической и механической мощности (прочности)

Формула мощности 1 — Уравнение мощности: Мощность P = I × V = R × I 2 = V 2 90
, где мощность P в ваттах, напряжение В в вольтах, а ток I в амперах (постоянный ток).
Если есть переменный ток, посмотрите также на коэффициент мощности PF = cos φ и φ = угол коэффициента мощности
(фазовый угол) между напряжением и силой тока.
Electric Energy — это E = P × t — измеряется в ватт-часах или также в кВтч. 1Дж = 1Н × м = 1Вт × с

Формула мощности 2 — Уравнение механической мощности: Мощность P = E ⁄ ​​ т где мощность P ватт,
Мощность P = работа / время ( Вт т ). Энергия E в джоулях, а время t в секундах. 1 Вт = 1 Дж / с.
Мощность = сила, умноженная на смещение, деленное на время P = F × с / т или
Мощность = сила, умноженная на скорость (скорость) P = F × v.

Неискаженного мощного звука в этих формулах нет. Пожалуйста, берегите уши!
Барабанная перепонка и диафрагмы микрофона действительно двигаются только волнами
.
звуковое давление .Это не влияет ни на интенсивность, ни на мощность, ни на энергию.
Если вы занимаетесь звукозаписывающим бизнесом, разумно не особо заботиться об энергии,
мощность и интенсивность, как вызывает , больше заботиться об эффекте звукового давления p
и уровень звукового давления в ушах и микрофонах и посмотрите на соответствующий
аудио напряжение В ~ p ; см .: Звуковое давление и звуковая мощность — Последствия и причины
Очень громко звучащие динамики будут иметь большую мощность, но лучше присмотреться к самому
важно КПД громкоговорителей.Сюда входит типичный вопрос:
Сколько децибел (дБ) на самом деле в два или три раза громче?
Действительно нет мощности RMS. Слова «среднеквадратичная мощность» неверны. Есть расчет
мощности, которая является произведением среднеквадратичного напряжения и среднеквадратичного тока.
Ватт RMS бессмысленно. Фактически, мы используем этот термин как крайнее сокращение от слова power в
.
ватт рассчитывается на основе измерения среднеквадратичного напряжения. Прочтите здесь:
Почему не существует таких понятий, как «среднеквадратичная ваттность» или «среднеквадратичная мощность», и никогда не было.
Мощность «RMS» — довольно глупый термин, получивший широкое распространение среди аудиолюбителей.
Мощность — это количество энергии, которое преобразуется в единицу времени. Ожидайте, что заплатите больше, когда
требуя более высокой мощности.

Андр-Мари Ампре был французским физиком и математиком.
Его именем названа единица измерения электрического тока в системе СИ — ампер .
Алессандро Джузеппе Антонио Анастасио Вольта был итальянским физиком.
Его именем названа единица измерения электрического напряжения в системе СИ — вольт .
Георг Симон Ом был немецким физиком и математиком.
Его именем названа единица измерения электрического сопротивления в системе СИ — Ом .
Джеймс Ватт был шотландским изобретателем и инженером-механиком.
Его именем названа единица измерения электрической мощности (мощности) в системе СИ, ватт, .

Мощность, как и все величины энергии, является в первую очередь расчетным значением.

Слово «усилитель мощности» используется неправильно, особенно в аудиотехнике.
Напряжение и ток можно усилить. Странный термин «усилитель мощности»
стал пониматься как усилитель, предназначенный для управления нагрузкой
например, громкоговоритель.
Мы называем произведение усиления по току и усилению по напряжению «усилением мощности».

Совет: треугольник электрического напряжения В = I × R (закон Ома VIR)
Введите два значения , будет рассчитано третье значение.

Треугольник мощности P = I × V (степенной закон PIV)
Введите два значения , будет рассчитано третье значение.

С помощью волшебного треугольника можно легко вычислить все формулы. Вы прячетесь с
пальцем значение, которое нужно вычислить. Два других значения показывают, как производить расчет.

Расчеты: Закон Ома — магический треугольник Ома
Измерение входного и выходного сопротивления

ПЕРЕМЕННЫЙ ТОК (AC) ~

В l = линейное напряжение (вольт), V p = фазное напряжение (вольт), I l = линейный ток (амперы), I p = фазный ток ( амперы)
Z = полное сопротивление (Ом), P = мощность (ватты), φ = угол коэффициента мощности, VAR = вольт-амперы (реактивные)

Ток (однофазный): I = P / V p × cos φ Ток (3 фазы): I = P / √3 V l × cos φ или I = P /3 V p × cos φ
Питание (однофазное): P = В p × I p × cos φ Питание (3 фазы): P = √3 V l × I l × cos φ или P = √3 V p × I p × cos φ

Коэффициент мощности PF = cos φ = R / (R2 + X2) 1/2 , φ = угол коэффициента мощности.Для чисто резистивной схемы PF = 1 (идеально).
Полная мощность S вычисляется по Пифагору, активная мощность P и реактивная мощность Q . S = √ ( P 2 + Q 2 )

Формулы питания постоянного тока
Напряжение В дюймов (В) вычисление из тока I дюймов (А) и сопротивления R дюймов (Ом):
В (В) = I (А) × R (Ом)
Мощность P в (Вт) рассчитывается исходя из напряжения В дюймов (В) и тока I дюймов (А):
P (Вт) = В (В) × I (A) = V 2 (V) / R (Ω) = I 2 (A) R (Ω)

Формулы питания переменного тока
Напряжение В в вольтах (В) равно току I в амперах (А), умноженному на импеданс Z в омах (Ом):
В (В) = I ( A) Z ((Ом) = (| I | × | Z |) и ( θ I + θ Z )
Полная мощность S в вольт-амперах (ВА) равна напряжению В, в вольтах (В), умноженному на ток I в амперах (А):
S (ВА) = В (V) I (A) = (| V | × | I |) и ( θ V θ I )
Реальная мощность P в ваттах (Вт) равна напряжению V в вольтах (В), умноженному на ток I в амперах (A), умноженному на
коэффициент мощности (cos φ ):
P (Вт) = V (V) × I (A) × cos φ
Реактивная мощность Q в вольт-амперах, реактивная (VAR) равна напряжению V в вольтах (В), умноженному на ток I
в амперах (A) на синус комплексного фазового угла мощности ( φ ):
Q (VAR) = V (V) × I (A) × sin φ
Коэффициент мощности (FP) равен абсолютному значению косинуса комплексного фазового угла мощности ( φ ):
PF = | cos φ |

Фактический коэффициент мощности, а не обычный коэффициент смещаемой мощности 50/60 Гц

Определения электрических измерений
Кол-во Имя Определение
частота f герц (Гц) 1 / с
сила F ньютон (Н) кг · м / с²
давление p паскаль (Па) = Н / м² кг / м · с²
энергия E рабочий джоуль (Дж) = N · м кг · м² / с²
мощность P ватт (Вт) = Дж / с кг · м² / с³
электрический заряд Q кулон (Кл) = A · с А · с
напряжение В вольт (В) = Вт / д кг · м² / A · сек³
ток I ампер (А) = Q / с А
емкость C фарад (Ф) = C / V = ​​A · с / В = с / Ом · с 4 / кг · м²
индуктивность L генри (H) = Wb / A = V · s / A кг · м² / A² · с²
сопротивление R Ом (Ом) = В / А кг · м²A² · с³
проводимость G сименс (S) = A / V · с³ / кг · м²
магнитный поток Φ Вебер (Wb) = V · с кг · м² / A · с²
плотность потока B тесла (T) = Вт / м² = V · с / м² кг / А · с²

Поток электрического заряда Q упоминается как электрический ток I. Размер начисления за единицу времени
изменение электрического тока. Ток протекает с постоянным значением I. за время t , он переносит
заряд Q = I × t . Для временно постоянной мощности соотношение между зарядом и током:
I = Q / t или Q = I × t. Благодаря этой взаимосвязи, основные единицы усилителя и секунды кулонов в
Установлена ​​Международная система единиц.Кулоновскую единицу можно представить как 1 C = 1 A × s.
Заряд Q , (единица измерения в ампер-часах Ач), ток разряда I , (единица измерения в амперах A), время t , (единица измерения в часах час).

В акустике используется « Акустический эквивалент закона Ома »

Соотношение акустических размеров, связанных с плоскими прогрессивными звуковыми волнами

Преобразование многих единиц, таких как мощность и энергия

префиксы |
длина |
площадь |
объем |
вес |
давление |
температура |
время |
энергия |
мощность |
плотность |
скорость |
ускорение |
сила

[начало страницы]

Мощность

— Соотношение между током, сопротивлением и напряжением согласно закону Ома, закону тепла Джоуля и P = IV

Приведем мысли по порядку…

Закон Ома касается линейного (постоянного) сопротивления. Это значит, что мы не должны допускать потепления. В этом аранжировке начинаем экспериментировать.

Сначала мы подключаем источник напряжения к резистору и начинаем изменять напряжение на нем. В результате пропорционально изменится ток через резистор — Iout = Vin / R. Если мы изменим сопротивление, ток будет пропорционально изменяться обратно — Iout = V / Rin.

Затем мы подключаем источник тока к резистору и начинаем изменять ток через него.2.Р. Если вы хотите, чтобы оно оставалось постоянным, измените сопротивление в соответствующем направлении. Это означает, что в законе Ома есть две входные переменные — Iout = Vin / Rin и Vout = Iin.Rin, или сопротивление стало «динамическим».

Такие уловки используются для создания нелинейных резисторов, которые поддерживают постоянное напряжение (например, стабилитрон) или постоянный ток (например, транзистор). Это видно по ВАХ диода и выходной характеристике транзистора.

Конечно, мы можем поддерживать постоянную мощность в соответствии с Pout = Vin.Iin. Это означает подключение источника напряжения к источнику тока. Таким образом, источник напряжения будет устанавливать напряжение на источниках, а источник тока будет устанавливать ток через них. Точнее говоря, в этом расположении только один из элементов является источником; другой — нагрузка, реализованная как нелинейный резистор.

Теперь, чтобы сохранить постоянную мощность, при увеличении напряжения мы уменьшаем ток и v.v. Но на самом деле это можно сделать, только изменив сопротивление (другого способа изменить ток или напряжение нет).Вот почему приведенные выше схемы больше подходят для интуитивного понимания.

электрического тока | Формула и определение

Электрический ток , любое движение носителей электрического заряда, таких как субатомные заряженные частицы (например, электроны с отрицательным зарядом, протоны с положительным зарядом), ионы (атомы, потерявшие или получившие один или несколько электронов), или дырки (недостаток электронов, который можно рассматривать как положительные частицы).

Британская викторина

27 истинных или ложных вопросов из самых сложных викторин «Британника»

Что вы знаете о Марсе? Как насчет энергии? Думаете, будет проще, если вам придется выбирать только истину или ложь? Узнайте, что вы знаете о науке, с помощью этой сложной викторины.

Электрический ток в проводе, носителями заряда которого являются электроны, является мерой количества заряда, проходящего через любую точку провода за единицу времени. В переменном токе движение электрических зарядов периодически меняется на противоположное; в постоянном токе это не так. Во многих контекстах направление тока в электрических цепях принимается за направление потока положительного заряда, направление, противоположное фактическому дрейфу электронов. При таком определении ток называется обычным током.

Узнайте, почему низкое сопротивление меди делает ее отличным проводником электрических токов.

Взаимосвязь между током и сопротивлением в электрической цепи.

Encyclopædia Britannica, Inc. Посмотреть все видео по этой статье

Ток обычно обозначается символом I . Закон Ома связывает ток, протекающий по проводнику, с напряжением В и сопротивлением R ; то есть V = I R .Альтернативная формулировка закона Ома: I = V / R .

Ток в газах и жидкостях обычно состоит из потока положительных ионов в одном направлении вместе с потоком отрицательных ионов в противоположном направлении. Чтобы обработать общий эффект тока, его направление обычно принимается за направление положительного носителя заряда. Ток отрицательного заряда, движущийся в противоположном направлении, эквивалентен положительному заряду такой же величины, движущемуся в обычном направлении, и должен быть включен как вклад в общий ток.Ток в полупроводниках состоит из движения дырок в обычном направлении и электронов в противоположном направлении.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Существуют токи многих других видов, такие как пучки протонов, позитронов или заряженных пионов и мюонов в ускорителях частиц.

Электрический ток создает сопутствующее магнитное поле, как в электромагнитах. Когда электрический ток течет во внешнем магнитном поле, он испытывает магнитную силу, как в электродвигателях.Потери тепла или энергия, рассеиваемая электрическим током в проводнике, пропорциональна квадрату тока.

Распространенной единицей электрического тока является ампер, который определяется как поток заряда в один кулон в секунду, или 6,2 × 10 18 электронов в секунду. Единицы тока сантиметр – грамм – секунда — это электростатическая единица заряда (esu) в секунду. Один ампер равен 3 × 10 9 esu в секунду.

Коммерческие линии электропередачи обеспечивают ток около 100 ампер в обычном доме; 60-ваттная лампочка потребляет около 0.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *