22.11.2024

Соединение звезда и треугольник их достоинства и недостатки: Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя | RuAut

Содержание

Звезда или треугольник. Оптимальное подключение асинхронного электродвигателя | RuAut


Двигатели асинхронного типа имеют целый набор безусловных достоинств. Среди плюсов асинхронных двигателей в первую очередь хочется назвать высокую производительность и надежность их эксплуатации, совсем небольшую стоимость и неприхотливость ремонта и обслуживания двигателя, а также способность переносить достаточно высокие перегрузки механического типа. Все эти достоинства, которыми обладают асинхронные двигатели, обусловлена тем, что данный тип двигателей имеет очень простую конструкцию. Но, не смотря на большое число достоинств, асинхронным двигателям присущи и их определенные отрицательные моменты.


В практической работе принято использовать два основных способа подключения трёхфазных электродвигателей к электросети. Эти способы подключения носят названия: «подключение методом звезды» и «подключение методом треугольника».


Когда выполняется соединение трёхфазного электродвигателя по типу подключения «звезда», тогда соединение концов обмоток статора электродвигателя происходит в одной точке. При этом трехфазное напряжение подают на начала обмоток. Ниже, на рисунке 1, наглядно проиллюстрирована схема подключения асинхронного двигателя «звездой».


Когда выполняется соединение трёхфазного электродвигателя по типу подключения «треугольник», тогда обмотки статора электродвигателя присоединяются последовательно друг за другом. При этом начало последующей обмотки соединяется с концом предыдущей обмотки и так далее. Ниже, на рисунке 2, наглядно проиллюстрирована схема подключения асинхронного двигателя «треугольником».




Если не вдаваться в теоретические и технические основы электротехники, то можно принять на веру тот факт, что работа тех электродвигателей, у которых обмотки подключены по схеме «звезда», является более мягкой и плавной, чем у электродвигателей, обмотки которых соединены по схеме «треугольник». Но тут же стоит обратить внимание на ту особенность, что электродвигатели, обмотки которых подключены по схеме «звезда», не способны развить полную мощность, заявленную в паспортных характеристиках. В том случае, если соединение обмоток выполнено по схеме «треугольник», то электродвигатель работает на максимальную мощность, которая заявлена в техническом паспорте, но при этом имеют место быть очень высокие значения пусковых токов. Если произвести сравнение по мощности, то электродвигатели, чьи обмотки будут соединены по схеме «треугольник», способны выдавать мощность в полтора раза выше, чем те электродвигатели, обмотки которых подключены по схеме «звезда».


Основываясь на всем вышеописанном, для того, чтобы снизить токи при запуске, целесообразно применять подключение обмоток по комбинированной схеме «треугольник-звезда». Особенно такой тип подключения актуален для электродвигателей, обладающих большей мощностью. Таким образом, в связи с соединением по схеме «треугольник- звезда» изначально запуск выполняется по схеме «звезда», а после того, как электродвигатель «набрал обороты», выполняется переключение в автоматическом режиме по схеме «треугольник».


Схема управления электродвигателем представлена на рисунке 3.



Рис. 3 Схема управления 


Еще один вариант схемы управления электродвигателем заключается в следующем (рис. 4).



Рис. 4 Схема управления двигателем


На контакт NC (нормально закрытый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, подаётся напряжение питания.


После того, как произойдет включение пускателя КЗ, нормально закрытыми контактами КЗ расцепляются цепи катушки пускателя K2 (запрет случайного включения). Контакт КЗ в цепи питания катушки пускателя K1 замыкается.


Когда запускается магнитный пускатель K1, в цепи питания его катушки замыкаются контакты K1. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. А в цепи катушки пускателя K2 – замыкается.


При отключении обмотки пускателя КЗ, замкнётся контакт КЗ в цепи катушки пускателя K2. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.


Трёхфазное напряжение питания подаётся на начало каждой из обмоток W1, U1 и V1 с помощью силовых контактов пускателя K1. Когда срабатывает магнитный пускатель КЗ, тогда при помощи его контактов КЗ выполняется замыкание, посредством которого между собой соединяются концы каждой из обмоток электродвигателя W2, V2 и U2. Таким образом, выполняется подключение обмоток электродвигателя по схеме соединения «звезда».


Реле времени, объединенное с магнитным пускателем K1, сработает спустя определенное время,. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2. Таким образом силовые контакты пускателя K2 замкнутся и напряжение питания будет подано на концы каждой из обмоток U2, W2 и V2 электродвигателя. Иными словами, электродвигатель включается по схеме подключения «треугольник».


Для того, чтобы электродвигатель запустить по схеме соединения «треугольник-звезда», различные изготовители производят специальные пусковые реле. Данные реле могут носить разнообразные названия, например, реле «старт-дельта» или «пусковое реле времени», а также и некоторые другие. Но назначение всех этих реле заключается в одном и том же.


Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле «треугольник-звезда», для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.



Рис.5 Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя.


Итак, подытожим все вышеописанное. Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно:

  1. сперва электродвигатель запускают на пониженных оборотах соединённым по схеме «звезда»;
  2. затем электродвигатель соединяют по схеме «треугольник».


Первоначальный запуск по схеме «треугольник» создаст максимальный момент, а последующее соединение по схеме «звезда» (для которой в 2 раза меньше пусковой момент) с продолжением работы в номинальном режиме, когда двигатель «набрал обороты», произойдёт переключение на схему соединения «треугольник» в автоматическом режиме. Но не стоит забывать о том, какая нагрузка создается перед запуском на валу, так как вращающий момент при соединении по схеме «звезда» ослаблен. По этой причине маловероятно, что данный метод запуска будет приемлем для электродвигателей с высокой нагрузкой, так как они в таком случае могут потерять свою работоспособность.

Соединение звездой и треугольником обмоток

Здравствуйте, уважаемые гости и посетители сайта «Заметки электрика».

В прошлой статье я рассказал Вам про применение асинхронного двигателя и его устройство, а также подробно познакомились с двумя разновидностями асинхронного двигателя.

Сегодня я расскажу Вам про соединение звездой и треугольником обмоток асинхронных двигателей, т.к. это один из распространенных вопросов, который мне задают на личную почту.

Вспомним вкратце принцип действия асинхронного двигателя. Питание такого двигателя осуществляется от сети трехфазного переменного напряжения. В статоре имеются 3 обмотки, которые сдвинуты относительно друг друга на 120 электрических градуса. Это сделано с целью создания вращающегося магнитного поля.

Обозначаются вывода обмоток статора асинхронных двигателей следующим образом:

С1, С2, С3 – начала обмоток, С4, С5, С6 – конец обмоток. Но сейчас все чаще применяется новая маркировка выводов по ГОСТу 26772-85. U1, V1, W1 — начала обмоток, U2, V2, W2 – конец обмоток.

Выводы фазных обмоток асинхронного двигателя выводятся на клеммник или колодку и располагаются таким образом, чтобы соединения звездой или треугольником было удобно выполнить без перекрещивания с помощью специальных перемычек.

Клеммник, его еще называют «борно», чаще всего устанавливается сверху, реже – сбоку. Некоторые клеммники можно разворачивать на 180 градусов, для удобства подводки питающих кабелей.

Всего  на клеммник может быть выведено 3 или 6 выводов фазных обмоток статора.

Разберем каждый случай отдельно.

Пример

Если в клеммник выведено 6 выводов обмоток статора, то асинхронный двигатель можно подключить в сеть на 2 разных уровня напряжения, отличающихся на величину в 1,73 раза (√3).

Для наглядности рассмотрим пример. Допустим, у нас имеется электродвигатель, на табличке которого указано напряжение 220/380 (В).

Что это значит?

А это значит, что если в сети уровень линейного напряжения составляет 380 (В), то обмотки статора необходимо соединить в схему звезды.

 

Соединение звездой

Соединение звездой фазных обмоток статора асинхронного двигателя выполняется следующим образом. Концы всех трех обмоток нужно соединить в одну точку с помощью специальной перемычки, о которой я говорил чуть выше. А на их начала подать трехфазное напряжение сети.

Из рисунка выше видно, что напряжение на фазной обмотке составляет 220 (В), а линейное напряжение между двумя фазными обмотками составляет 380 (В).

На клеммнике соединение звездой обмоток будет выглядеть следующим образом.

Соединение треугольником

Вернемся к нашему примеру.

Если в сети уровень линейного напряжения составляет 220 (В), то обмотки статора необходимо соединить в схему треугольника.

Соединение треугольником фазных обмоток статора асинхронного двигателя выполняется следующим образом.

  • конец обмотки фазы «А» C4 (U2) необходимо соединить с началом обмотки фазы «В» С2 (V1)
  • конец обмотки фазы «В» С5 (V2)  необходимо соединить с началом обмотки фазы «С» С3 (W1)
  • конец обмотки фазы «С» С6 (W2)  необходимо соединить с началом обмотки фазы «А» С1 (U1)

Места их соединения подключаются к соответствующим фазам питающего трехфазного напряжения.

Из рисунка видно, что при линейном напряжении сети 220 (В) напряжение на фазной обмотке составляет тоже 220 (В).

На клеммнике при соединении треугольником обмоток статора асинхронного двигателя специальные перемычки нужно установить следующим образом:

В нашем примере при соединении звездой и треугольником напряжение на каждой фазной обмотке асинхронного двигателя будет 220 (В).

Частный случай

Бывают ситуации, когда на клеммник асинхронного двигателя выведено всего 3 вывода, вместо 6. В этом случае соединение звездой или треугольником выполняется внутри двигателя на лобной (торцевой) его части.

Такой асинхронный двигатель можно включать в сеть только на одно напряжение, указанное на табличке с техническими данными.

В нашем примере обмотки статора асинхронного двигателя соединяются по схеме звезда и его можно включать в сеть напряжением 380 (В).

Выводы

В конце данной статьи про соединение звездой и треугольником сделаю вывод, основанный на опыте эксплуатации электродвигателей.

При соединении звездой обмоток асинхронного электродвигателя наблюдается более мягкий запуск и плавная его работа, а также возможность кратковременной перегрузки.

При соединении треугольником обмоток асинхронного электродвигателя происходит достижение его максимальной мощности, но во время пуска пусковые токи имеют большое значение. Также замечено, что при соединении треугольником двигатель больше нагревается (выявлено опытным путем с помощью тепловизора при одной и той же нагрузке).

В связи с вышесказанным, принято асинхронные двигатели средней  мощности и выше запускать по схеме звезда. При наборе номинальной частоты вращения в автоматическом режиме происходит переключение его на схему треугольника. Эту схему мы с Вами рассмотрим в ближайших статьях. Следите за обновлениями на сайте.

P.S. А что делать, когда вывода фазных обмоток асинхронного двигателя не про маркированы соответствующим образом? Об этом Вы узнаете в моей статье про определение начала и конца обмоток электродвигателя. Чтобы не пропустить выход новой статьи, то подпишитесь. Форма подписки расположена в конце статьи или в правом сайтбаре.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Разница схемы звезда и треугольник

Специфика трехфазных электрических сетей предусматривает два варианта подключения трехфазных нагрузок – звездой и треугольником. Это касается фазных обмоток в трехфазных электродвигателях, обмоток трансформаторов или нагревательных элементов электрических котлов. При этом для звезды начала всех обмоток соединяются с фазными проводами, а концы обмоток соединены в нулевую (нейтральную) точку. В случае соединения треугольником конец предыдущей обмотки соединяется с началом последующей, образуя равносторонний треугольник, а все 3 фазы подключаются к его вершинам (точкам соединения).

Однако геометрические схемные различия не единственное, что отличает звезду от треугольника. Рассматривая на примере активной нагрузки, представленной тремя ТЕНами, видим, что в случае соединения звездой при выходе из строя одного нагревателя, двое остальных, подключенных последовательно на линейное напряжение остаются работать, а вот при поломке сразу двух перестает работать и третий. Если все три ТЕНа подключены треугольником, то каждый из них работает от линейного напряжения (380 в) и нагреватель сохраняет работоспособность даже при выходе из строя двух элементов.

Схема подключения и мощность асинхронных электродвигателей

Иначе сказываются схемы подключения обмоток статора в асинхронных двигателях. Дело в том, что при подключении их звездой или треугольником мощность двигателя меняется в три раза. То есть в случае подключения трехфазных асинхронных электродвигателей предназначенных для работы в подключении звездой при 380 вольтах трехфазного напряжения, треугольником их мощность увеличивается втрое. При таком режиме двигатель просто сгорает, но если у двигателя, рассчитанного на работу при подключении треугольником в те же 380 В обмотки статора соединены звездой, то его мощность упадет в три раза.

Последнее свойство нашло широкое применение в схемах пуска электрического двигателя. При запуске электродвигателя величина пускового тока может до 10 раз превышать номинальные значения. Влияние пусковых нагрузок негативным образом сказывается на напряжении в сети и на работе подключенного к ней оборудования.

С целью снижения пусковых токов электродвигатель включается по схеме пуска звезда-треугольник, при которой до момента разгона он подключен звездой, а при достижении номинальных оборотов на валу переключается на схему треугольника. Для возможности реализации схемы переключения звезда-треугольник большинство мощных электродвигателей имеют отдельные выводы обмоток статора, сама коммутация обеспечивается применением контакторов.

Таким образом каждая из схем включения имеет свои достоинства. Для треугольника это достижение максимальной мощности, хотя требует строгого соблюдения эксплуатационных режимов, преимуществами соединения звездой можно назвать:

  • плавный пуск;
  • работу в номинальном режиме;
  • нормальную реакцию на кратковременные перегрузки;
  • оптимальные температурные режимы.

Схемы подключения обмоток генераторов

В отношении электрогенераторов схемы подключения обмоток тоже имеют свои отличия. Как и нагрузка, они также могут включаться по схеме звезды или треугольника, однако мощность генератора при этом остается неизменной. Изменения касаются выходного напряжения, так если обмотки генератора соединяют звездой, то выходное напряжение будет в √3 раз ниже, нежели при соединении треугольником, но поскольку мощность остается неизменной, то при увеличении напряжения значение тока падает на этот же множитель.

Смотрите также другие статьи :

Перекос фаз, в чем опасность

Перекосом фазных напряжений в трехфазных электрических сетях называют несовпадение величин последних, вызванное, как правило, неравномерностью распределения нагрузок.

Подробнее…

УЗО и дифавтомат в чем разница

Если необходимо быстро определить, дифавтомат или УЗО перед вами, то необходимо обратить внимание на маркировку, на диф. автомате рядом с номинальным током стоит какая например буква С или В, что указывает на категорию расцепителя, если же стоит маркировка с указанием ампер (буква А), то это однозначно УЗО. Ниже на фото видно, в верхнем ряду установлены именно диф. автоматы, а в нижнем ряду УЗО.

Подробнее…

Способы пуска асинхронных электродвигателей. Достоинства и недостатки (2008)


В современном производстве применяют электродвигатели самых разных видов. Но наибольшее применение нашли асинхронные электродвигатели с короткозамкнутым ротором. Они относительно дешевы и требуют, как правило, небольших затрат на эксплуатацию и обслуживание.


У различных производителей пусковые параметры асинхронных электродвигателей могут существенно отличаться при одинаковой номинальной мощности. Использование систем пуска при пониженном напряжении предполагает наличие у электродвигателя высокого пускового вращающего момента при прямом включении (D.O.L). В этом случае уменьшается пусковой ток и пусковой вращающий момент. На технические характеристики оказывает влияние и число полюсов: электродвигатель с двумя полюсами зачастую имеет меньший пусковой вращающий момент, чем электродвигатели с четырьмя и более полюсами (Рис. 1а и 1б).


Напряжение


Трехфазные односкоростные электродвигатели могут использоваться на двух напряжениях. Три фазные обмотки статора соединяются звездой (Y) или треугольником (D) (Рис. 2а и 2б).


Фазные обмотки могут включаться последовательно или параллельно, например, Y или YY На шильдике электродвигателя с короткозамкнутым ротором указывают напряжения для соединения звездой или треугольником, то есть электродвигатель можно подключать к напряжениям 230 В или 400 В. Обмотки соединяются треугольником для 230 В, а при использовании напряжения питания 400 В используется соединение звездой. При изменении напряжения питания следует помнить, что при одинаковой номинальной мощности ток будет зависеть от величины напряжения.


Коэффициент мощности


Электродвигатель всегда потребляет активную мощность, которая преобразуется в механическую работу. Для намагничивания активной стали статора и ротора требуется реактивная мощность, которая является паразитной. На схеме активная и реактивная мощности представлены как P (активная) и Q (реактивная), которые совместно дают мощность S (полная). Соотношение между активной мощностью (кВт) и реактивной мощностью (кВА) называется коэффициентом мощности и обозначается как cos9. Нормальное значение этого коэффициента лежит в пределах 0,7-0,9, при этом небольшие электродвигатели имеют невысокое значение этого параметра, а мощные — высокое.


Скорость


Скорость электродвигателя переменного тока зависит от двух параметров: количество полюсов обмотки статора и частоты напряжения питания. При частоте 50 Гц, электродвигатель будет работать со скоростью равной константе 6000 об./ мин., деленной на число полюсов, а при частоте 60 Гц, константа будет равна 7200 об/мин.


Крутящий момент


Пусковой крутящий момент мотора зависит от мощности электродвигателя. Для небольших электродвигателей мощностью до 30 кВт, он в 2,5-3 раза больше номинального крутящего момента. Для электродвигателей мощностью до 250 кВт типовое значение в 2-2,5 раза больше номинального крутящего момента. Более мощные электродвигатели имеют еще меньший пусковой крутящий момент, иногда даже меньше номинального. Такой электродвигатель невозможно пустить под нагрузкой даже путем пуска прямой подачи напряжения.


Пуск прямой подачей напряжения


Это метод один из самых распространенных способов пуска электродвигателей. Пусковое оборудование состоит из главного контактора и теплового или электронного реле перегрузки. Недостатком этого метода является самый большой пусковой ток, превышающий номинальный в 6-7, а в некоторых случаях и в 10-12 раз. Помимо пускового тока возникает импульсный ток, превышающий номинальный ток в 14 раз. Эти величины зависят от конструкции и размера электродвигателя, при этом менее мощные электродвигатели имеют большие относительные пусковой и импульсный токи. При пуске прямой подачей напряжения пусковой крутящий момент также весьма велик и в большинстве случаев больше необходимого, что приводит к износу и выходу из строя приводимого оборудования.


Пуск переключением соединения звезда-треугольник


Этот способ уменьшает пусковой ток и пусковой крутящий момент. Пусковое устройство обычно состоит из трех контакторов, реле перегрузки и таймера, задающего время нахождения в пусковом положении. Чтобы можно было использовать этот метод пуска, обмотки статора электродвигателя, соединенные треугольником, должны быть рассчитаны на работу в номинальном режиме. В этом случае пусковой ток составляет около 30 % от пускового тока, возникающего при пуске прямой подачей напряжения, а пусковой крутящий момент на 25 % меньше возникающего при пуске прямой подачей напряжения (Рис. 3а, 3б и 3в).


Частотные преобразователи и системы плавного пуска


Развитие элементной базы позволило создать новые классы оборудования для управления режимом электродвигателя. Были созданы частотные системы и системы плавного пуска, которые отличаются назначением и принципом работы.


Частотные преобразователи управляют режимом работы электродвигателя в течении всего периода работы, контролируя основные электромеханические параметры. Принцип работы основан на преобразовании переменного тока 50 Гц в постоянный, и далее методом высокочастотной модуляции (ЧИМ или ШИМ) преобразуется напряжение постоянного тока в переменное с регулируемой частотой (Рис. 4 а). Это позволяет управлять режимом работы электродвигателя изменением частоты на выходе привода. За счет управления частотой при пуске номинальный вращающий момент может быть достигнут на низкой скорости. Другой полезной функцией является мягкая остановка. Также данное устройство позволяет стабилизировать пользовательский параметр при изменяемых внешних характеристиках — например, давление в трубопроводе высотного дома поддерживается неизменным независимо от потребления.


В основе работы системы плавного пуска лежит принцип фазового регулирования, что позволяет при малом напряжении на электродвигателе минимизировать пусковой ток и крутящий момент (Рис. 4 б). На первом этапе запуска напряжение, подаваемое на электродвигатель, настолько мало, что механические усилия минимальны. Постепенно напряжение и крутящий момент возрастают, и механизмы начинают разгоняться. Одним из преимуществ этого метода пуска является возможность точной регулировки крутящего момента, независимо от наличия нагрузки. Особенностью является бережное отношение к приводимому механизму. Другой функцией системы мягкого пуска является мягкая остановка.


Пуск прямой подачей напряжения


Осуществляется подачей полного напряжения без последующей коммутации. Характеризуется максимальными пусковыми токами и ударным воздействием на приводимые механизмы. Применяется для маломощных устройств без особых требований к оборудованию.


Пуск переключением звезда-треугольник


Обеспечивает снижение бросков пускового тока, пониженный пусковой крутящий момент, что обеспечит плавный разгон оборудования. Данный способ пуска позволяет производить пуск оборудования в условиях ограниченного питания, когда технические характеристики питающей сети не позволяют произвести пуск прямой подачей электроэнергии


Кстати, в ассортименте продукции ТМ IЕК есть автомат, позволяющий решить задачу пуска электродвигателя независимо от схемы включения. Это контакторы КМИ в оболочке. Для реализации схемы «звезда-треугольник» нужно использовать реверсивные пускатели, тепловые реле и различного рода дополнительное оборудование к ним. Для систем частотного регулирования и плавного пуска выпускается широкий ассортимент автоматических выключателей серии ВА88-ХХ.


Оборудование Пускового устройства на примере автоматов ТМ IEK


Пусковое устройство состоит из 2-х силовых контакторов типа КМИ или КТИ ( в зависимости от мощности электродвигателя) и промежуточного контактора КМИ с пневматической приставкой ПВИ, позволяющей получать выдержку времени на время разгона электродвигателя при пуске.


Пуск по схеме звезда-треугольник


Пуск производится при срабатывании контактора К1 (к питающей сети подключаются обмотки электродвигателя соединенные звездой). Электродвигатель начинает разгоняться.


В зависимости от типа механизма, приводимого в движение электродвигателем, и возможности питающей сети, производится регулировка выдержки времени на приставке ПВИ, установленной на промежуточном контакторе. По истечении времени происходит отключение контактора К1 и включение контактора К2, обмотки электродвигателя переключаются на соединение «треугольник», и электродвигатель достигает номинальной частоты вращения.


Схема (Рис. 5) спроектирована с учетом изготовления из стандартных комплектующих, минимизации расходов и повышения надежности конечного изделия. Законченное устройство может быть размещено в стандартной металлооболочке подходящего размера из ассортимента ТМ IEK.

в чем разница, особенности и основные отличия

Существует множество схем, которые помогут не терять напряжение в процессе работы того или иного прибора. В этой статье рассказано о том, как выполняется подключение трёхфазного двигателя «звездой» и «треугольником».

Плюсы и минусы подключения двигателя «звездой» и «треугольником»

Применение данного вида подключения помогает сделать неразрывную линию в электрической цепи. Схема называется так благодаря своей треугольной форме. Основные плюсы следующие:

  • при подключении получается наибольшая мощность приборов во время использования;
  • используется реостат для включения мотора;
  • заметно повышается крутящий момент;
  • создается сильное тяговое поле.

Внешний вид переключателя

Среди минусов выделяют только максимальные показатели пусковых токов, а также постоянное тепловыделение во время эксплуатации.

Обратите внимание! Этот вид соединения широко используется в мощных приборах, в которых есть максимальные токи нагрузки. Именно благодаря этому повышается электродвижущая сила, которая влияет на мощность крутящего момента.

Обозначение выводов как соединять

Основные различия между схемами

Ключевая разница между двумя видами соединений заключается в том, что при применении одной питающей электросети появляется возможность переключать различные значения напряжения на подсоединяемом приборе. В основном используется соединение обмоточных деталей по типу «звезды».

Применение подключения по треугольному принципу необходимо при включении в трехфазную цепь механизмов большой мощности, имеющих максимальные пусковые токи.

К главным плюсам соединения обмоточных элементов по схеме «звезды» относят такие параметры данного типа коммутации:

  • понижение мощностного параметра для увеличения надежности эксплуатируемого прибора;
  • стойкость и стабильность системы при беспрерывной работе привода;
  • вероятность плавного включения электромотора;
  • отсутствие нагрева корпуса агрегатов.

Схема переключения «звезда треугольник» асинхронного двигателя

Обратите внимание! Некоторые приборы в электрике имеют в своем составе внутреннее подсоединение концов обмоток в «звезду». Такие агрегаты не предназначены для использования при других вариантах соединения обмоток, и их нельзя переключить в сети.

Какая схема соединения лучше

Многие профессионалы рекомендуют в электродвигателях, где применяются одновременно два типа подключения — «звезда-треугольник», к подключению обмоток по схеме «звезда». Проще говоря, к их общей точке соединения подключать нейтраль от электросети. Это необходимо, потому что во время эксплуатации появляется большой риск асимметрии амплитуд разных фаз.

Как правильно подключать в трехфазную сеть

«Звезда» предусматривает, что края обмоток статора заключаются в одной точке, которая называется нулевой либо нейтральной, а начало обмоток — L. Поэтому двигатели небольшой мощности необходимо запускать только «звездой». Но при этом нельзя достигнуть паспортной мощности электрического двигателя.

Комбинированная схема

При соединении двигателя «треугольником» конец первой обмотки последовательно подключается к началу второй. Но такая схема сильно повышает пусковые токи, из-за чего прибор перегревается, и повреждается изоляционный слой.

Соединить при помощи конденсатора

Для применения асинхронного двигателя от обычной электросети 220 В используют фазосдвигающий конденсатор. Благодаря этому агрегат более плавно запускается. Способы подключения конденсаторов к электросети 220 В:

  • с выключателем;
  • без выключателя;
  • с использованием трансформаторов;
  • параллельный запуск двух электролитов.

Схема обмоток электродвигателя

В любом случае использование вышеописанных схем необходимо, чтобы потребитель мог корректно подключить приборы к любой сети и запустить их без потери напряжения. Также с помощью схем можно увеличить напряжение и понизить пульсацию.

Соединение по схеме звезда и треугольник.

Соединение звездой и треугольником генераторных обмоток

Для работы электрического прибора, двигателя, трансформатора в трехфазной сети необходимо соединить обмотки по определенной схеме. Наиболее распространенными схемами соединения являются треугольник и звезда, хотя могут применяться и другие способы соединения.

Что представляет собой соединение обмоток звездой?

Трехфазный двигатель или трансформатор имеет 3 рабочих
, независимых друг от друга обмоток. Каждая обмотка имеет два вывода — начало и конец. Соединение «звезда» подразумевает собой, что все концы трех обмоток соединяются в один узел, часто называемый нулевой точкой. Отсюда выходит и понятие — нулевая точка.

Начало каждой обмотки соединяются непосредственна с фазами питающей сети. Соответственно начало каждой обмотки соединяется с одной из фаз А, В, С. Между любыми двумя началами обмоток прилаживается фазное напряжение питающей сети, зачастую 380 или 660 В.

Что представляет собой соединение обмоток в треугольник?

Соединение обмоток в треугольник заключается в соединении конца каждой обмотки с началом следующей. Конец первой обмотки, соединяется с началом второй. Конец второй — с начало третей. Конец третей обмотки создает электрический контур, поскольку замыкает электрическую цепь.

При таком соединении к каждой обмотки прилаживается линейное напряжение, обычно равное 220 или 380 В. Такое соединение физически реализуется с помощью металлических перемычек, которые должны быть предусмотрены заводской комплектацией электрического оборудования.

Разница между соединением обмотки в треугольник и звезду

Основная разница заключается в том, что, используя одну питающую сеть, можно достигать разных параметров электрического напряжения и тока в приборе или аппарате. Конечно, данные способы соединения отличаются реализацией, но важна именно физическая составляющая отличия.

Наиболее часто применяется соединение обмоток в звезду, что объясняется щадящим режимом для электрического привода или трансформатора. При соединении обмоток в звезду, ток протекающий по обмоткам имеет меньшие значение нежели при соединении в треугольник. В тот момент, как напряжение больше на величину корня из 1,4.

Применение способа соединения треугольник, зачастую используется в случаях мощных механизмов и больших пусковых нагрузок. Имея большие показатели тока, протекающего по обмотки, двигатель получает большие показатели ЕДС самоиндукции, что в свою очередь гарантирует больший вращающий момент. Имея большие пусковые нагрузки и одновременно используя схему соединения звезда, можно нанести урон двигателю. Это связано с тем, что двигатель имеет меньшие значение тока, что приводит к меньшим показателям величины вращающегося момента.

Момент пуска такого двигателя и выход его на номинальные параметры может быть продолжительным, что может привести к тепловому воздействию тока, которые во время коммутации может превышать номиналы тока в 7-10 раз
.

Преимущества соединения обмоток в звезду

Основные преимущества соединения обмоток в звезду заключаются в следующем:

  • Понижения мощности оборудования с целью повышения надежности.
  • Устойчивый режим работы.
  • Для электрического привода такое соединение дает возможность плавного пуска.

Некоторое электрическое оборудование, которое не предназначены для работы на других способах соединения, имеет внутренне соединение концов обмоток. На клеммник выводится лишь три вывода, которые представляют собой начало обмоток. Такое оборудование легче в подключении и может монтироваться в отсутствии грамотных специалистов.

Преимущества соединения обмоток в треугольник

Основными преимуществами соединения обмоток в треугольник являются:

  1. Повышения мощности оборудования.
  2. Меньшие пусковые токи.
  3. Большой вращающийся момент.
  4. Увеличенные тяговые свойства.

Оборудование с возможностью переключения типа соединения со звезды на треугольник

Зачастую электрическое оборудование имеет возможность работать как на звезде, так и на треугольнике. Каждый пользователь должен самостоятельно определить необходимость соединения обмоток в звезду или треугольник.

В особо мощных и сложных механизмах, может применяться электрическая схема с комбинированием треугольника и звезды
. В таком случае, в момент пуска, обмотки электрического двигателя соединяются в треугольник. После выхода двигателя на номинальные показатели, с помощью релейно-контакторной схемы треугольник переключается на звезду. Таким способом достигается максимальная надежность и продуктивность электрической машины, без риска нанести ей урон или вывести её из строя.

Посмотрите так-же интересное видео на эту тему:

Сегодня асинхронные электромоторы пользуются популярностью благодаря надежности, отличной производительности и сравнительно невысокой стоимости. Двигатели этого типа обладают конструкцией, способной выдерживать сильные механические нагрузки. Чтобы пуск агрегата прошел успешно, его необходимо правильно подключить. Для этого используется соединения типа «звезда» и «треугольник», а также их комбинация.

Виды соединений

Конструкция электромотора достаточно проста и состоит из двух главных элементов — неподвижного статора и расположенного внутри, вращающегося ротора
. Каждая из этих частей имеет собственные обмотки, проводящие ток. Статорная уложена в специальные пазы при обязательном соблюдении расстояния в 120 градусов.

Принцип работы двигателя прост — после включения пускателя и подачи напряжения на статор возникает магнитное поле, заставляющее ротор вращаться. Обе оконечности обмоток выводятся в распределительную коробку и располагаются в два ряда. Их выводы маркируются буквой «С» и получают цифровое обозначение в пределах от 1 до 6.

Чтобы их соединить, можно использовать один из трех способов:

  • «Звезда»;
  • «Треугольник»;
  • «Звезда-треугольник».

Однако комбинированную схему нельзя использовать, если необходимо уменьшить показатель пускового тока, но одновременно требуется большой крутящий момент. В таком случае следует применять электромотор с фазным ротором, оснащенный реостатом.

Если говорить о преимуществах сочетания двух методов подключения, то можно отметить два:

  • Благодаря плавному пуску увеличивается срок эксплуатации.
  • Можно создать два уровня мощности агрегата.

Сегодня наиболее широко применяются электромоторы, рассчитанные на работу в сетях на 220 и 380 вольт. Именно от этого и зависит выбор схемы подключения. Таким образом, «треугольник» рекомендуется использовать при напряжении в 220 В, а «звезду» — при 380 В.

Двигатели асинхронного типа имеют целый набор безусловных достоинств. Среди плюсов асинхронных двигателей в первую очередь хочется назвать высокую производительность и надежность их эксплуатации, совсем небольшую стоимость и неприхотливость ремонта и обслуживания двигателя, а также способность переносить достаточно высокие перегрузки механического типа. Все эти достоинства, которыми обладают асинхронные двигатели, обусловлена тем, что данный тип двигателей имеет очень простую конструкцию. Но, не смотря на большое число достоинств, асинхронным двигателям присущи и их определенные отрицательные моменты.

В практической работе принято использовать два основных способа подключения трёхфазных электродвигателей к электросети. Эти способы подключения носят названия: «подключение методом звезды» и «подключение методом треугольника».

Когда выполняется соединение трёхфазного электродвигателя по типу подключения «звезда», тогда соединение концов обмоток статора электродвигателя происходит в одной точке. При этом трехфазное напряжение подают на начала обмоток. Ниже, на рисунке 1, наглядно проиллюстрирована схема подключения асинхронного двигателя «звездой».

Когда выполняется соединение трёхфазного электродвигателя по типу подключения «треугольник», тогда обмотки статора электродвигателя присоединяются последовательно друг за другом. При этом начало последующей обмотки соединяется с концом предыдущей обмотки и так далее. Ниже, на рисунке 2, наглядно проиллюстрирована схема подключения асинхронного двигателя «треугольником».

Если не вдаваться в теоретические и технические основы электротехники, то можно принять на веру тот факт, что работа тех электродвигателей, у которых обмотки подключены по схеме «звезда», является более мягкой и плавной, чем у электродвигателей, обмотки которых соединены по схеме «треугольник». Но тут же стоит обратить внимание на ту особенность, что электродвигатели, обмотки которых подключены по схеме «звезда», не способны развить полную мощность, заявленную в паспортных характеристиках. В том случае, если соединение обмоток выполнено по схеме «треугольник», то электродвигатель работает на максимальную мощность, которая заявлена в техническом паспорте, но при этом имеют место быть очень высокие значения пусковых токов. Если произвести сравнение по мощности, то электродвигатели, чьи обмотки будут соединены по схеме «треугольник», способны выдавать мощность в полтора раза выше, чем те электродвигатели, обмотки которых подключены по схеме «звезда».

Основываясь на всем вышеописанном, для того, чтобы снизить токи при запуске, целесообразно применять подключение обмоток по комбинированной схеме «треугольник-звезда». Особенно такой тип подключения актуален для электродвигателей, обладающих большей мощностью. Таким образом, в связи с соединением по схеме «треугольник- звезда» изначально запуск выполняется по схеме «звезда», а после того, как электродвигатель «набрал обороты», выполняется переключение в автоматическом режиме по схеме «треугольник».

Схема управления электродвигателем представлена на рисунке 3.

Рис. 3 Схема управления

Еще один вариант схемы управления электродвигателем заключается в следующем (рис. 4).

Рис. 4 Схема управления двигателем

На контакт NC (нормально закрытый) реле времени K1, а также на контакт NC реле K2, в цепи катушки пускателя КЗ, подаётся напряжение питания.

После того, как произойдет включение пускателя КЗ, нормально закрытыми контактами КЗ расцепляются цепи катушки пускателя K2 (запрет случайного включения). Контакт КЗ в цепи питания катушки пускателя K1 замыкается.

Когда запускается магнитный пускатель K1, в цепи питания его катушки замыкаются контакты K1. Реле времени включается в то же самое время, контакт этого реле K1 в цепи катушки пускателя КЗ размыкается. А в цепи катушки пускателя K2 – замыкается.

При отключении обмотки пускателя КЗ, замкнётся контакт КЗ в цепи катушки пускателя K2. После того, как пускатель K2 включится, он размыкает своими контактами K2 цепь питания катушки пускателя КЗ.

Трёхфазное напряжение питания подаётся на начало каждой из обмоток W1, U1 и V1 с помощью силовых контактов пускателя K1. Когда срабатывает магнитный пускатель КЗ, тогда при помощи его контактов КЗ выполняется замыкание, посредством которого между собой соединяются концы каждой из обмоток электродвигателя W2, V2 и U2. Таким образом, выполняется подключение обмоток электродвигателя по схеме соединения «звезда».

Реле времени, объединенное с магнитным пускателем K1, сработает спустя определенное время,. При этом происходит отключение магнитного пускателя КЗ и одновременное включение магнитного пускателя K2. Таким образом силовые контакты пускателя K2 замкнутся и напряжение питания будет подано на концы каждой из обмоток U2, W2 и V2 электродвигателя. Иными словами, электродвигатель включается по схеме подключения «треугольник».

Для того, чтобы электродвигатель запустить по схеме соединения «треугольник-звезда», различные изготовители производят специальные пусковые реле. Данные реле могут носить разнообразные названия, например, реле «старт-дельта» или «пусковое реле времени», а также и некоторые другие. Но назначение всех этих реле заключается в одном и том же.

Типовая схема, выполненная с реле времени, предназначенном для запуска, то есть реле «треугольник-звезда», для осуществления управления запуска трехфазного электродвигателя асинхронного типа представлена на рисунке 5.

Рис.5 Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя.

Итак, подытожим все вышеописанное. Для того, чтобы понизить пусковые токи осуществлять запуск электродвигателя требуется в определенной последовательности, а именно:

  1. сперва электродвигатель запускают на пониженных оборотах соединённым по схеме «звезда»;
  2. затем электродвигатель соединяют по схеме «треугольник».

Первоначальный запуск по схеме «треугольник» создаст максимальный момент, а последующее соединение по схеме «звезда» (для которой в 2 раза меньше пусковой момент) с продолжением работы в номинальном режиме, когда двигатель «набрал обороты», произойдёт переключение на схему соединения «треугольник» в автоматическом режиме. Но не стоит забывать о том, какая нагрузка создается перед запуском на валу, так как вращающий момент при соединении по схеме «звезда» ослаблен. По этой причине маловероятно, что данный метод запуска будет приемлем для электродвигателей с высокой нагрузкой, так как они в таком случае могут потерять свою работоспособность.

Содержание:


Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнит ных потоков. За счет этих потоков, ротор двигателя начинает вращаться.

В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

Соединение обмоток звездой и треугольником

У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

Запуск трехфазного электродвигателя с переключением со звезды на треугольник

Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при .

Когда нужно переключаться с треугольника в звезду

Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

Трехфазный электродвигатель — это электрическая машина, предназначенная для работы в переменного тока. Такой двигатель состоит из статора и ротора. Статор имеет три обмотки, сдвинутые на сто двадцать градусов. При появлении в цепи обмоток трехфазного напряжения на полюсах образуются магнитные потоки, происходит вращение ротора. Электродвигатели бывают синхронными и асинхронными. Трехфазные получили широкое применение в промышленности и в быту. Такие двигатели бывают односкоростными, в таком случае обмотки двигателя соединяют по схеме «звезда» или «треугольник», и многоскоростными. Последние агрегаты переключаемые, в таком случае происходит переход с одной схемы подключения на другую.

Трехфазные электродвигатели разделяют по схемам соединения обмоток. Существует две схемы подключения — соединение «звездой» и «треугольником». Подключение обмоток двигателя по типу «звезда» представляет собой соединение концов обмоток двигателя в одну точку (нулевой узел): получается дополнительный вывод — нулевой. Свободные концы подключаются к фазам сети электрического тока 380 В. Внешне такое подключение напоминает трехконечную звезду. На фото показана следующая схема: соединение «звездой» и «треугольником».Подключение обмоток электродвигателя по типу «треугольник» представляет собой обмоток: конец первой соединяют с началом второй обмотки, конец второй — с началом третьей, а конец третьей с началом первой. На узлы соединения обмоток подается трехфазное напряжение. При таком подключении обмоток нулевой вывод отсутствует. Внешне оно напоминает треугольник.

Соединение «звездой» и «треугольником» одинаково распространены, они не имеют значительных отличий. Для соединения обмоток по типу «звезда» (при работе двигателя в номинальном режиме) линейное напряжение должно быть больше, чем при подключении по типу «треугольник». Поэтому в характеристиках трехфазного двигателя указывают следующим образом: 220/380 В либо 127/220 В. В случае необходимости с номинальным обмотки требуется соединять по типу «звезда», а номинальным напряжением двигателя будет 380/660 В (по типу «треугольник»).

Следует отметить, что часто используется комбинированное подключение «звездой» и «треугольником». Это делается с целью более плавного пуска электродвигателя. При пуске используется подключение типа «звезда», а затем с помощью специального реле происходит переключение на «треугольник», таким образом, уменьшается пусковой ток. Подобные схемы рекомендуется применять для пуска электродвигателей большой мощности, требующих большого пускового тока. Важно помнить, что при этом пусковой ток превышает номинальный в семь раз.

Существуют и другие комбинации при подключении электродвигателей, например соединение «звездой» и «треугольником» может заменяться двойной, тройной «звездой», а также иными вариантами подключения. Такие способы применяют для многоскоростных (двух-, четырех- и т. д.) электродвигателей.

Лекция по теме «СОЕДИНЕНИЕ «ЗВЕЗДА» И «ТРЕУГОЛЬНИК». ПРИНЦИП ПОДКЛЮЧЕНИЯ. ОСОБЕННОСТИ И РАБОТА»

СОЕДИНЕНИЕ «ЗВЕЗДА» И «ТРЕУГОЛЬНИК».

ПРИНЦИП ПОДКЛЮЧЕНИЯ. ОСОБЕННОСТИ И РАБОТА.

До сих пор мы изучали переменный ток, который создавался одной э. д. с. Такой ток называется однофазным переменным током. Система из трех однофазных токов, создаваемых тремя э. д. с. одной частоты, но сдвинутых один относительно другого на одну треть периода (120°), называется трехфазным током.

Нагрузка в трехфазной электрической цепи подразделяется на симметричную и несимметричную.

 При симметричной нагрузке сопротивления фаз совпадают как по величине, так и по характеру.

Нагрузка считается несимметричной, когда сопротивление хотя бы одной из фаз не равно сопротивлениям других фаз.

Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей («звезда» и «треугольник»).

Схемы.

Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току.  Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — «звезда» и «треугольник».

Схема «звезда».

Соединение различных обмоток по схеме «звезда» предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.

Схема «треугольника».

При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на «треугольник», и соединение обмоток в ней идет последовательно друг с другом.

Нужно отметить отличие от схемы «звезда» в том, что в схеме «треугольник» система бывает только 3-проводной, так как общая точка отсутствует.

В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.

Фазные и линейные величины.

В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные.

Фазное напряжение – это его величина между концом и началом фазы приемника.

Фазный ток протекает в одной фазе приемника.

При применении схемы «звезда» фазными напряжениями являются Ua, Ub, Uc,

а фазными токами являются a, I b, I c.

При применении схемы «треугольник» для обмоток нагрузки или генератора фазные напряжения — U, U, U, фазные токи – ac, I , I .

Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.

В случае схемы «звезда» линейные токи равны фазным, а линейные напряжения равны ab, Ubc, ca.

В схеме «треугольник» получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны a, I b, I c.

Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.

Особенности схем.

Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.

Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.

Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.

Для этого можно применить некоторые методы:

  • Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.

  • Изменить вид соединения обмоток ротора электродвигателя.

В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность. Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник». Этот процесс переключения в промышленных условиях научились автоматизировать.

В электромоторах целесообразно применение сразу двух схем — «звезда» и «треугольник». К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.

Построение векторных диаграмм ( см. видео по ссылке:

https://www.youtube.com/ ›watch?v=wcyQvK84lsU

youtube.com›watch?v=XBoF0gFU_FI)

Достоинства схем.

Соединение по схеме звезды имеются важные преимущества:

  • Плавный пуск электрического мотора.

  • Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.

  • Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.

  • При эксплуатации корпус электродвигателя не перегреется.

Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя. При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.

При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.

Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.

Процессы, происходящие при изменении схемы «звезда» и «треугольник» в разных случаях.

Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.

Обмотки генератора и трансформатора.

При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.

При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.

Лампы освещения.

При переходе со «звезда» в «треугольник» лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.

Рассмотрим примеры решения задач.

Задача 1.

Освещение здания питается от четырехпроводной трехфазной сети с линейным напряжением UЛ = 380 В. Первый этаж питается от фазы «А» и потребляет мощность 1760 Вт, второй – от фазы «В» и потребляет мощность 2200 Вт, третий – от фазы «С», его мощность 2640 Вт. Составить электрическую схему цепи, рассчитать токи, потребляемые каждой фазой, и ток в нейтральном проводе, вычислить активную мощность всей нагрузки. Построить векторную диаграмму.

Анализ и решение задачи 1

Схема цепи показана на рис. 1

Лампы освещения соединяются по схеме звезда с нейтральным проводом.

 
Рис. 1

Расчет фазных напряжений и токов. При соединении звездой UЛ = UФ, отсюда UФ = UЛ /  = 380 /  = 220 В. Осветительная нагрузка имеет коэффициент мощности cos φ = 1, поэтому PФ = UФ · IФ и фазные токи будут равны:

IА = PА / UФ = 1760 / 220 = 8 А; IB = PB / UФ = 2200 / 220 = 10 А; IC = PC / UФ = 2640 / 220 = 12 А.

Построение векторной диаграммы и определение тока в нейтральном проводе.

Векторная диаграмма показана на рис. 6.27. Ее построение начинаем с равностороннего треугольника линейных напряжений ÚAB, ÚBC, ÚCA, и симметричной звезды фазных напряжений Úa, Úb, Úc. При таком построении напряжение между любыми точками схемы можно найти как вектор, соединяющий соответствующие точки диаграммы, поэтому диаграмму называют топографической.

Токи фаз ÍA, ÍB, ÍC связаны каждый со своим напряжением; в нашем случае по условию φ = 0, и токи совпадают по фазе с напряжениями. Ток в нейтральном проводе ÍN = ÍA + ÍB + ÍC. По построению (в масштабе) по величине ÍN = 2,5 А.

Вычисление активной мощности в цепи.

Активная мощность цепи равна сумме мощностей ее фаз:

P = PA + PB + PC = 1760 + 2200 + 2640 = 6600 Вт.

Домашнее задание:

1.Выучить лекцию.

2. Ответьте на вопросы для самоконтроля:

Вопросы для самоконтроля:

1. Что такое симметричная трехфазная система напряжений? Чем отличаются друг от друга системы с прямым и обратным следованием (чередованием) фаз? Показать на векторных диаграммах.

2. Как обозначаются (маркируются) начала и концы фаз трехфазных источников и потребителей? Как осуществить их соединение звездой и треугольником?

3.  Дать определение фазных и линейных напряжений. Каково соотношение между линейными и фазными напряжениями на зажимах генератора, соединенного по схеме звезда?

4. Дать определение фазных и линейных токов. Каково соотношение между этими токами при соединении приемника по схеме звезда?

5. Какая нагрузка называется симметричной?

6. Как вычислить фазные токи приемника, соединенного звездой, если известны линейные напряжения источника и сопротивления фаз приемника?

7. В каких случаях применяется четырехпроводная система электроснабжения? Каково значение нейтрального провода?

8. Как вычислить ток в нейтральном проводе?

9. Каково соотношение между линейными и фазными напряжениями при соединении фаз источника или приемника треугольником?

10. Как вычислить фазные и линейные токи приемника, соединенного треугольником, если известно линейное напряжение источника и сопротивление фаз приемника?

11. Каково соотношение между линейными и фазными токами симметричного приемника, соединенного треугольником?

12.  Может ли ток в нейтральном проводе быть равным нулю?

13. Как изменится режим работы цепи, если в одну из фаз вместо освещения включить двигатель?

14. Какие токи изменятся, если в одной из фаз произойдет обрыв?

15. Как изменится режим работы цепи при обрыве нейтрального провода?

Связь между методами соединения треугольником и звездой и сравнение их преимуществ и недостатков. — joymost.com

Один и тот же трехфазный двигатель может быть подключен по методу треугольного соединения, соответствующему низкому напряжению, или по методу соединения звездой, соответствующему высокому напряжению; высокое напряжение в 3 раза больше корневого знака низкого напряжения.

Например, если двигатель 380 В с треугольным подключением подключен по схеме звезды, соответствующее напряжение составляет 660 В.

Конкретный способ подключения должен соответствовать напряжению источника питания.

После тщательного наблюдения мы также можем обнаружить, что большинство двигателей малого размера соединены звездой, в то время как двигатели большого размера имеют треугольную форму; мы также можем обнаружить, что все металлургические двигатели кранов используют метод соединения звездой.

Некоторые люди могут спросить, помимо требований к напряжению источника питания, для самого двигателя, в чем разница между двумя подключениями?

В принципе, в двигателе, соединенном звездой, нет циркулирующего тока, что теоретически лучше, чем соединение треугольником.

Поскольку трехфазная обмотка не может быть абсолютно сбалансирована, всегда есть небольшая разница в трехфазном напряжении, которая будет формировать циркуляцию внутри треугольника, что приведет к нагреву двигателя и снижению эффективности.

Существуют также исторические причины для создания треугольных соединений, то есть так называемый запуск звезда-треугольник, запуск звезда-треугольник может эффективно снизить пусковой ток, но также уменьшить пусковой крутящий момент, поэтому его можно использовать только при свете. -нагрузка или пусковое состояние без нагрузки.

Анализ преимуществ и недостатков соединения треугольником и звездой:
Мы видим, что двигатель насоса вентилятора может быть запущен звездой-треугольником, но, конечно, на кране нет запуска звезда-треугольник, и в большинстве подъемников используется намотка последовательное сопротивление ротора запуску. Есть причина, по которой это так хлопотно.

Конечно, запуск преобразования частоты в текущих условиях полностью решил эту проблему.

Треугольное соединение использует три горячих провода, а напряжение, приложенное к фазной обмотке, является линейным напряжением (полностью называемым линейным напряжением на клеммах или напряжением между внешними фидерами).В звездообразном соединении используются три провода под напряжением и нулевой провод, и одна треть корневого знака линейного напряжения подается на фазную обмотку.

Они очень разные в использовании, в основном в зависимости от нагрузки и источника питания.

1. Разница между силовой стороной
Независимо от того, трехпроводная или четырехпроводная система (исключая заземляющий провод), в идеальных условиях электрический угол между трехфазными напряжениями составляет 120 градусов разности фаз.

Предполагается, что 3N-я гармоника и 3N * 120 = 360N генерируются в фазных обмотках клемм нагрузки соответственно из-за периодических помех, что указывает на то, что фаза трехфазных 3N-й гармоники точно такая же. Если амплитуда также одинакова, 3N-я гармоника трех групп линейных напряжений будет полностью смещена, то есть в межстрочном напряжении не будет целых кратных гармоник 3.

При треугольном соединении ток 3N-й гармоники в той же фазе закорачивается в треугольнике и бесконечно циркулирует в треугольнике, образуя циркуляцию.
Следовательно, в случае гармоник соединение треугольником или звездой может быть выбрано в зависимости от наличия 3N гармоник в напряжении или токе.

2. Из сравнительного анализа ситуации нагрузки
Фактически, три провода абстрагируются от четырех проводов. Когда N линий вообще не имеют тока, три провода равны четырем проводам.

Поскольку наша нагрузка или источник питания в основном полностью сбалансированы по трем фазам, в случае игнорирования тока утечки заземляющего провода средняя линия не имеет тока, поэтому трехконтактная нагрузка может быть преобразована в треугольную цепь звездой. -треугольник преобразование. то есть треугольное соединение.

Если нагрузка несимметрична или напряжение несимметрично, на самом деле существует разность потенциалов между средней точкой нагрузки и средней точкой источника питания, и напряжение нагрузки будет колебаться.

Если средняя точка источника питания заземлена, нагрузка в это время должна быть изолирована. Если он не заземлен должным образом, защита от утечки будет немедленно пропущена в легких случаях, а оборудование будет сожжено в серьезных случаях.

Таким образом, если эти две точки «закорочены», то есть часть тока генерируется на проводе, и неравный потенциал вынужден подтягиваться к электрической точке, так что земля может быть заземлен, нет опасности утечки, а электромагнитная совместимость легче обеспечить. Этот «короткий маршрут» является средней линией, поэтому это соединение звездой.

Разница между соединением звездой и треугольником

Сравнение соединений звездой и треугольником

Мы в основном используем термины звезда и треугольник в электрических системах при обсуждении трехфазных цепей переменного тока и электродвигателей. Ниже приведена таблица, в которой сравниваются соединения «звезда» и «треугольник», показывающая точную разницу между соединениями звезда (Y) и треугольник (Δ).

Звездное соединение:

Соединение звездой «Y» получается путем соединения одинаковых концов катушек, либо «пусковых», либо завершающих. Остальные концы присоединяются к линейным проводам. Общая точка называется нейтральной или звездной точкой. Эта трехфазная 4-проводная система используется в распределительных сетях и трансформаторах.

Соединение треугольником

Дельта или Сетчатое соединение «Δ» получается путем соединения начального конца первой катушки с конечным концом второй катушки и так далее (для всех трех катушек), что делает его похожим на замкнутый контур или сетчатую схему. . Эта трехфазная трехпроводная система используется в передаче энергии и трансформаторах.

В обеих системах напряжение между двумя фазами (от линии к линии) называется линейным напряжением, а напряжение между фазой и нейтралью (от линии к нейтрали) называется фазным напряжением. Напряжение между любой линией (или фазой) и нейтралью однофазное, а напряжение между всеми тремя линиями (или фазами) известно как трехфазное напряжение.

В следующей таблице лучше представлены различия и сравнение между соединением «звезда» и «треугольник».

ЗВЕЗДНОЕ соединение (Y) Соединение ТРЕУГОЛЬНИКОМ (Δ)
В STAR Connection начальный или конечный концы (аналогичные концы) трех катушек соединяются вместе, образуя нейтральную точку.Из нейтральной точки выводится общий провод, который называется Neutral . В соединении треугольником противоположные концы трех катушек соединены вместе. Другими словами, конец каждой катушки соединяется с начальной точкой другой катушки, а из соединений катушек выводятся три провода.
Имеется нейтраль или Star Point . Нет нейтральной точки в соединении треугольником.
Трехфазная четырехпроводная система является производной от Star Connections (3-фазная, 4-проводная система ).Мы также можем получить 3-фазную 3-проводную систему от Star Connection Трехфазная трехпроводная система является производным от Delta Connections (3-фазная, 3-проводная система) . то есть трехфазная, проводная система невозможна при соединении треугольником.
Линейный ток равен фазному току. т.е.

Линейный ток = фазный ток

I L = I PH

Линейный ток в √3 в раз больше фазного тока.т.е.

I L = √3 I PH

Линейное напряжение в √3 раз больше фазного напряжения. т.е.

В L = √3 V PH

Линейное напряжение равно фазному напряжению. т.е.

Линейное напряжение = фазное напряжение

V L = V PH

При соединении звездой общую мощность трех фаз можно определить по:

P = √3 x V L x I L x CosФ….Или

P = 3 x V PH x I PH x CosФ

P = √3 В x 1

При подключении по схеме «треугольник» полную мощность трех фаз можно определить по:

P = √3 x V L x I L x CosФ… Или

P = 3 x V PH x I PH x CosФ

P = 3 x V (1 / √3)

Двигатели, подключенные звездой, имеют низкую скорость, поскольку они получают напряжение 1 / √3 . Скорость двигателей, соединенных треугольником, высока, потому что каждая фаза получает общее линейное напряжение.
При соединении звездой, плавном пуске и работе с номинальной мощностью может быть достигнута нормальная работа без перегрева. При соединении треугольником двигатель получает максимальную выходную мощность.
При соединении звездой фазное напряжение составляет 1 / √3 от линейного напряжения. Следовательно, требуется небольшое количество витков, что позволяет сэкономить на меди. При соединении треугольником фазное напряжение равно линейному напряжению, следовательно, требуется большее количество витков, что увеличивает общую стоимость.
Требуется низкая изоляция, поскольку фазное напряжение низкое по сравнению с Delta. Требуется высокая изоляция, так как фазное напряжение = линейное напряжение.
Соединение звездой — это обычная и общая система, которая используется при передаче энергии. Delta Connection — типичная система, используемая в системах распределения и промышленности.

Та же таблица, показывающая различия между конфигурациями звезды и треугольника, может быть увидена ниже, если у вас возникнут какие-либо трудности при чтении текста.

Щелкните изображение для увеличения

Основное различие между соединением «звезда» и «треугольник»

Похожие сообщения:

Объяснение на простом английском | Electrical4U

Что такое пускатель звезда-треугольник

Пускатель звезда-треугольник запускает двигатель с обмоткой статора, соединенной звездой.Когда двигатель достигает примерно 80% от своей полной скорости нагрузки, он начинает работать с обмоткой статора, соединенной треугольником.

А s Тар-дельта-пускатель — это тип пускателя пониженного напряжения. Мы используем его для уменьшения пускового тока двигателя без использования каких-либо внешних устройств или устройств. Это большое преимущество пускателя со звезды на треугольник, поскольку он обычно имеет около 1/3 пускового тока по сравнению с пускателем с прямым включением.

Пускатель в основном состоит из переключателя TPDP, который расшифровывается как трехполюсный переключатель двойного действия. Этот переключатель переключает обмотку статора со звезды на треугольник. В пусковом режиме обмотка статора соединена в виде звезды. Теперь посмотрим, как пускатель со звезды на треугольник снижает пусковой ток трехфазного асинхронного двигателя.

Для этого давайте рассмотрим,

В L = напряжение линии питания, I LS = ток линии питания и, I PS = ток обмотки на фазу и Z = импеданс на фазу обмотки в состоянии покоя.

Поскольку обмотка соединена звездой, ток обмотки на фазу (I PS ) равен току питающей сети (I LS ).

Поскольку обмотка соединена звездой, напряжение на каждой фазе обмотки составляет

Следовательно, ток обмотки на каждую фазу составляет

Поскольку здесь ток обмотки на каждую фазу (I PS ) равен току питающей сети. (I LS ), мы можем написать,

Теперь давайте рассмотрим ситуацию, когда двигатель запускается с подключенной треугольником обмотки статора от тех же трех фазных точек питания,

Здесь I LD = ток линии питания и , I PD = Ток обмотки на фазу и Z = Импеданс на фазу обмотки в состоянии покоя.
Поскольку обмотка соединена треугольником, ток питающей сети (I LD ) в три раза больше тока обмотки на фазу (I PD )

Поскольку обмотка соединена треугольником, напряжение на каждой фазе обмотки равен

Следовательно, ток обмотки на каждую фазу равен

Теперь мы можем написать:

Теперь, сравнивая токи в линии питания, потребляемые асинхронным двигателем с обмоткой, соединенной звездой и треугольником, мы получаем

Таким образом, мы можем сказать, что пусковой ток от сети при схеме звезда-треугольник составляет одну треть от прямого переключения в треугольник.Опять же, мы знаем, что пусковой момент асинхронного двигателя пропорционален квадрату напряжения, приложенного к обмотке на фазу.

Уравнение показывает, что стартер звезда-треугольник снижает пусковой крутящий момент до одной трети от крутящего момента, создаваемого прямым пускателем. Пускатель звезда-треугольник эквивалентен автотрансформатору с ответвлением 57,7%.

Преимущества пускателя звезда-треугольник

К преимуществам пускателя звезда-треугольник относятся:

  1. Недорогой
  2. Не выделяется тепло или необходимо использовать устройство переключения ответвлений, что увеличивает эффективность.
  3. Пусковой ток снижен до 1/3 от постоянного пускового тока.
  4. Обеспечивает высокий крутящий момент на ампер линейного тока.

Недостатки пускателя со звезды на треугольник

К недостаткам пускателей со звезды на треугольник относятся:

  1. Пусковой крутящий момент снижен до 1/3 крутящего момента при полной нагрузке.
  2. Требуется определенный набор двигателей.

Применение пускателя звезда-треугольник

Как обсуждалось в вышеупомянутых преимуществах и недостатках, пускатель дельта-треугольник с больше всего подходит для приложений, где требуемый пусковой ток низкий, а линейный ток должен быть минимальным. .

Пускатель со звезды на треугольник не подходит для применений, где требуется передача высокого пускового момента. Для этих приложений вместо этого следует использовать стартер DOL.

Если двигатель слишком нагружен, крутящего момента не хватит для разгона двигателя до скорости до переключения в положение треугольника. Примером применения пускателя со звезды на треугольник является центробежный компрессор.

Пуск звезды треугольником преимущества и недостатки

Звезда треугольник запуск преимущества и недостатки 2009-11-23 и двигателя Когда метод запуска звезда треугольник подходит для нормальной работы обмотки для треугольного соединения двигателя, трехфазная обмотка двигателя будет вести на шесть розеток и выключатель.При запуске будет работать нормально, если соединение треугольником соединителя обмотки статора для соединения звездой снова изменится после начала треугольного соединения. Этот метод применим только к

малый и средний асинхронный двигатель с короткозамкнутым ротором. Звездное соединение, обмотка статора, падение напряжения статора на 1/3, квадратный корень, треугольник, соединение обеспечивается мощностью пускового тока только 1/3 от треугольника соединения обмотки статора . Есть возможность уменьшить стартовые

ток, это его преимущество.Однако, поскольку пусковой момент и каждая фазная обмотка составляет

пропорционально квадрату напряжения и напряжения обмотки при соединении y уменьшает в 1/3 раза

квадратный корень, поэтому пусковой момент упадет до 1/3 от соединения треугольником, это его недостатки. Так как принцип развязки понижающего пуска и уменьшения пуска статора

напряжение, пускатель звезда-треугольник — путем изменения соединения обмотки, чтобы изменить пусковое напряжение, поэтому

Коэффициент фиксирован, но поскольку коэффициент трансформатора корня лотоса регулируется, следите за тем же падением напряжения

К, закон текущего спада К кв.Начало звездообразного треугольника относится к понижающему началу, понижающее

Целью запуска является снижение пускового тока, уменьшение воздействия на другие электрические приборы. Относительно wholesalemotor.blogspot.com самосцепление Автомобиль понижающий пуск, стартовый треугольник звезды подходит для малой мощности двигателя, широко используется в 4 ~ 100 кВт асинхронного двигателя преимущества небольшого объема, низкая стоимость, долгий срок службы, надежная работа и т. д. 1, тот же двигатель, ветер может быть установлен в обмотке типа Y, а ветер также может быть установлен в типе треугольника обмотка;

2, тот же двигатель , установка, тип в обмотке треугольником вокруг поперечного сечения проводника небольшое, серийное количество витков, высокое рабочее фазное напряжение, фазный ток низкий; 3, тот же двигатель, установка обмотки типа Y, сечение провода, порядковый номер витков небольшой, рабочее напряжение низкое, фазный ток высокий; 4, обмотка треугольного типа требуется трехфазная симметрия, балансировочная машина ротора симметрия мощности также выше, так что нет

появится циркуляция, иначе будет лихорадка, возрастающие потери; 5, обмотка типа Y в трехфазная симметрия плохая, симметрия мощности невысока, циркуляции не будет, но будет ноль

дрейф, трехфазная работа серьезная асимметрия; 6, при использовании, обмотка типа дельта может использовать Y — способ запуска треугольника, но не может использовать обмотку типа Y Y — начало пути треугольника; 7, сопротивление непосредственно

пропорционально квадрату тепловых потерь и тока, поэтому тот же двигатель, установка в треугольник

тип обмотки вокруг теплопотерь малая

Основы соединений звезды и треугольника

Сравнение соединений звездой и треугольником

Отличия:

У этих двух систем совершенно разные приложения. Да, в некоторых областях между ними есть много общего, но они больше подходят для определенных приложений.

Возьмем, к примеру, моторы. Дельта намного лучше для приводных двигателей, чем звезда. С помощью дельты вы можете визуализировать волну, циркулирующую вокруг треугольника, и именно эта волна вращает двигатель. Когда волна движется по фазам, она эффективно увлекает за собой двигатель. Это делает конструкцию двигателя действительно простой и эффективной. Не так со звездой, где вы, по сути, должны попытаться объединить три однофазных двигателя вместе,

Однако, когда дело доходит до ситуации, когда вы хотите распределить нагрузку между несколькими цепями или устройствами, а нагрузка на каждую фазу может быть не одинаковой ( несимметричная система ), то расположение звездой имеет огромные преимущества.Каждая ветвь звезды ( фаза ) представляет собой отдельную цепь. Нагрузка на каждой фазе специфична для этой фазы, и они мало влияют друг на друга.

Существует также третья схема, которая представляет собой нечто среднее между звездой и треугольником — в этой схеме каждая фаза треугольника подключена к своему собственному полностью отдельному трансформатору, и нет общей нейтральной точки. На самом деле такое редко можно увидеть, но я подумал, что все равно должен здесь упомянуть.Он в основном сочетает в себе расположение звезды с полной изоляцией, поэтому может иметь некоторые преимущества безопасности (например, наличие изолирующего трансформатора на обычном однофазном источнике питания), но не стоит хлопот системы без общей нейтральной точки.

Чтобы прояснить, что я имею в виду, говоря о волне, вращающейся вокруг дельты, вот небольшая анимация, которую я создал:

Что такое пускатель со звезды на треугольник и как он работает?

Пусковой ток любого тяжелого электродвигателя может более чем в 4 раза превышать ток нормальной нагрузки, который он потребляет, когда он набирает скорость и достигает своей нормальной рабочей выходной мощности и температуры.

Итак, если бы он запускался просто при подключении в треугольник, пусковой ток был бы огромным и — только для того, чтобы запустить двигатель, а не запускать его в обычном режиме — потребовалось бы:

  • большие автоматические выключатели, достаточно большие, чтобы пропустить пусковой импульсный ток без немедленного его отключения. (Но в этом случае автоматические выключатели будут слишком большими, чтобы защитить двигатель от перегрузок по току при нормальной работе.)
  • очень толстые 3-фазные силовые кабели. (Но тогда кабель будет намного больше, чем необходимо, пока двигатель работает нормально.)
  • очень большие катушки и контакты на реле или контакторах, используемых для управления двигателем. (Но тогда они были бы намного больше, чем необходимо, пока двигатель работает нормально.)

Одним из решений этой проблемы является запуск двигателя в режиме ЗВЕЗДЫ, а затем, когда двигатель набирает достаточную скорость, изменить его соединения на ТРЕУГОЛЬНИК, чтобы позволить двигателю с этого момента работать на полной скорости и крутящем моменте.Это немного похоже на использование шестерен автомобиля.

Обновление

: электронные системы управления двигателем, которые предлагают плавный пуск в конфигурации ДЕЛЬТА, теперь заменяют использование ручных или полуавтоматических пускателей со звезды на треугольник.

Техническое описание

Когда обмотки трехфазного двигателя подключены в STAR:

  • напряжение, приложенное к каждой обмотке, уменьшается только до (1 /. / 3) [1 делится на тройной корень] напряжения, приложенного к обмотке, когда она подключена непосредственно к двум входящим линиям электроснабжения. фазы в ДЕЛЬТА.
  • , ток на обмотку уменьшается только до (1 /. / 3) [1 деленное на тройной корень] нормального рабочего тока, потребляемого при ее подключении по схеме ТРЕУГОЛЬНИК.
  • поэтому, в соответствии с законом мощности V [в вольтах] x I [в амперах] = P [в ваттах], общая выходная мощность, когда двигатель подключен в STAR, составляет:

    P S = [V L x (1 /. / 3)] x [I D x (1 /. / 3)] = P D x (1/3) [одна треть мощности в треугольнике]

    , где:
    В L — линейное напряжение входящей трехфазной электросети
    I D — линейный ток, потребляемый в DELTA
    P S — общая мощность, которую двигатель может производить, когда работа в STAR
    P D — это общая мощность, которую он может произвести при работе в режиме ТРЕУГОЛЬНИКА.

  • , еще один недостаток, когда двигатель подключен по схеме ЗВЕЗДА, заключается в том, что общий выходной крутящий момент составляет только 1/3 от общего крутящего момента, который он может создать при работе в режиме ТРЕУГОЛЬНИКА.

Также читайте: Принцип работы частотно-регулируемых приводов

Трехфазное питание: объяснение треугольника и звезды

Электричество используется для питания множества устройств, которые предназначены для удобства и необходимости людей и процессов по всему миру.Трехфазное питание играет ключевую роль в проектировании электрических систем, а трехфазные фильтры электромагнитных помех являются важной частью электрических устройств на различных рынках, в первую очередь в тяжелых промышленных приложениях. Большинству устройств в промышленных приложениях требуется большая мощность для обеспечения достаточного количества электроэнергии для поддержки больших двигателей, систем обогрева, инверторов, выпрямителей, источника питания и индукционных цепей. Из-за этого высокомощное оборудование обычно проектируется для трехфазного или многофазного переменного тока, в котором общая потребляемая мощность делится между многими фазами, оптимизируя систему энергоснабжения (генерацию и распределение) и конструкцию оборудования.

В трехфазной системе есть три проводника, по которым протекает переменный ток. Они называются фазами и обычно обозначаются как A, B и C. Каждая фаза настроена на одну и ту же частоту и амплитуду напряжения, но сдвинута по фазе на 120 °, обеспечивая постоянную передачу мощности во время электрических циклов.

Конфигурации с трехфазным питанием особенно важны, поскольку они могут поддерживать в три раза больше мощности, используя всего в 1 ½ — 2 раза больше проводов, чем конфигурация с однофазным питанием. Это может помочь снизить стоимость и количество материалов, необходимых для проектирования системы. Это также может упростить конструкцию двигателя, исключив необходимость в пусковых конденсаторах.

Однако преобразование большой мощности (инвертирование, выпрямление) генерирует шум с чрезмерно высокими частотами (EMI), который обычно представляет собой гармоники высшего порядка различных частот переключения.

По этой причине трехфазные фильтры электромагнитных помех становятся особенно важными в трехфазных приложениях, поскольку они снижают уровень электромагнитных помех, предотвращают нарушения в работе оборудования и помогают компаниям соблюдать правила электромагнитной совместимости.

Различия между Delta и WYE

Трехфазные системы могут быть сконфигурированы двумя различными способами для поддержания равных нагрузок; они известны как конфигурации Delta и WYE. Названия «Дельта» и «WYE» представляют собой специфические индикаторы форм, на которые напоминают провода при соединении друг с другом. «Дельта» происходит от греческого символа «Δ», а «WYE» напоминает букву «Y» и также известна как «звездная» цепь. Обе конфигурации, Delta и WYE обладают гибкостью для подачи питания по трем проводам, но основные различия между ними основаны на количестве проводов, доступных в каждой конфигурации, и протекании тока.Конфигурация WYE приобрела популярность в последние годы, потому что она имеет нейтральный провод, который позволяет подключать как фазу к нейтрали (однофазное), так и линейное (2/3 фазы).

Что такое трехфазные фильтры линии питания?

Трехфазные фильтры электромагнитных помех

разработаны в соответствии со строгими требованиями норм электромагнитной совместимости для промышленных приложений. Правила определяют максимально допустимые уровни шума (в дБ), разрешенные на линиях электропередач. Общие требования к конструкции 3-фазного фильтра электромагнитных помех включают входные токи, линейное напряжение, ограничение размера и требуемые вносимые потери.В дополнение к этому, конфигурация 3-фазного фильтра электромагнитных помех играет важную роль в конструкции.

Дельта-трехфазный фильтр электромагнитных помех

3-фазные фильтры электромагнитных помех

Delta предназначены для уменьшения электромагнитных помех в устройствах, подключенных к трехфазному питанию, подключенному по схеме «треугольник». Конфигурация Delta состоит из четырех проводов; три токопроводящих жилы и один заземляющий провод. Фазовые нагрузки (например, обмотки двигателя) соединены друг с другом в форме треугольника, где соединение выполняется от одного конца обмотки к начальному концу другого, образуя замкнутую цепь.

В этой конфигурации нет нейтрального провода, но он может питаться от трехфазной сети WYE, если нейтральная линия опущена / заземлена. Дельта-система используется для передачи энергии из-за более низкой стоимости из-за отсутствия нейтрального кабеля. Он также используется в приложениях, требующих высокого пускового момента.

Из-за отсутствия нейтрального провода конденсаторы, используемые в трехфазных фильтрах электромагнитных помех Delta, должны быть рассчитаны на линейное (междуфазное) напряжение, что может увеличить размер, вес и стоимость. Однако отсутствие нейтрального провода позволяет получить более высокие номинальные токи, чем WYE, и лучшую производительность при том же заданном кубическом объеме.

Проектирование и трехфазный дельта-фильтр электромагнитных помех
  1. Определите максимальную мощность, требуемую нагрузкой.
  2. Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на каждую фазу.
  3. Разделите ответ на линейное напряжение.
  4. Умножьте предыдущий ответ на квадратный корень из 3.
Преимущества дельта-конфигурации
  • Дельта-конфигурации обычно могут быть разработаны для работы с более высоким током и более эффективны.
  • Защита для дельта-конфигураций может быть простой.
  • Конфигурации

  • Delta обычно устанавливаются для тяжелых условий эксплуатации и предпочтительны для выработки и передачи электроэнергии.

WYE 3-фазный фильтр для защиты от электромагнитных помех

Фильтры EMI

WYE разработаны для фильтрации типичных устройств преобразования мощности в режиме переключения и других приложений, требующих нейтрального подключения. Эта конфигурация состоит из пяти проводов; три проводника под напряжением, нейтраль и земля.В конфигурации WYE фазные нагрузки подключаются в единственной (нейтральной) точке, к которой подключается нейтральный провод.

Когда нагрузки WYE-конфигурации полностью сбалансированы, через нейтральный провод ток не течет. Когда нагрузки неуравновешены, через нейтральный провод проходит ток. Эта конфигурация позволяет использовать конденсаторы более низкого напряжения (120 В переменного тока в системе 208 В переменного тока и 277 В переменного тока в системе 480 В переменного тока) в фильтре, что может привести к экономии затрат, веса и объема.

Во многих случаях нейтральный провод можно оставить плавающим.Однако, как упоминалось ранее, конфигурация WYE обеспечивает гибкость для подключения нагрузок в цепи между фазой и нейтралью или между фазами. В отличие от Delta, эта конфигурация может использоваться как четырехпроводная схема или пятипроводная схема. Конфигурации WYE обычно используются в сетях распределения электроэнергии. Это в первую очередь требуется в приложениях, требующих меньшего пускового тока и перемещаемых на большие расстояния.

Проектирование и трехфазный фильтр электромагнитных помех WYE
  1. Определите максимальную мощность, требуемую нагрузкой.
  2. Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на каждую фазу.
  3. Разделите ответ на напряжение фаза-нейтраль / земля.
Преимущества конфигураций WYE
  • Предпочтительно для распределения энергии, поскольку он может поддерживать однофазные (фаза-нейтраль), 2-фазные (междуфазные) и трехфазные нагрузки.
  • Точка звезды обычно заземлена, что делает ее идеальной для несимметричных нагрузок.
  • Для той же поддержки напряжения требуется меньшая изоляция.

Стоимость трехфазных фильтров линии питания Delta по сравнению с WYE

Конфигурация трехфазного дельта-фильтра электромагнитных помех может быть технически более рентабельной, чем конфигурации WYE, поскольку для нее требуется только трехжильный кабель вместо четырех, что снижает стоимость материалов для изготовления блоков. Однако некоторые из этих рентабельности могут быть компенсированы необходимостью в компонентах, рассчитанных на высокое напряжение.

Astrodyne TDI Трехфазный фильтр электромагнитных помех Дельта- и WYE-конфигурации

Astrodyne TDI предлагает 3-фазные фильтры электромагнитных помех в конфигурациях Delta и WYE, чтобы помочь снизить электромагнитные помехи в различных приложениях и обеспечить соответствие международным стандартам излучения.Наши трехфазные фильтры электромагнитных помех находятся в диапазоне от 480/520 до 600 В переменного тока с номинальным током до 2500 А. Сетевые фильтры предлагаются в одно-, двух- и многоступенчатом исполнении, с более высокими значениями тока и напряжения, доступными по запросу.

Благодаря нашему обширному ассортименту фильтров и сильным конструкторским возможностям наша команда инженеров может гарантировать, что найдет наиболее эффективное решение для трехфазного фильтра электромагнитных помех, соответствующее любой спецификации и самым сложным приложениям.

Просмотрите нашу подборку трехфазных фильтров электромагнитных помех или свяжитесь с нашей командой, чтобы узнать больше о продукте, который поможет удовлетворить ваши требования.

Подробное описание пускателя электродвигателя звезда-треугольник

Введение в устройство пуска электродвигателя звезда-треугольник

Большинство асинхронных электродвигателей запускаются непосредственно от сети, но когда очень большие электродвигатели запускаются таким образом, они вызывают нарушение напряжения в линиях питания из-за больших скачков пускового тока.

Панель пускателя электродвигателя звезда-треугольник

Чтобы ограничить скачок пускового тока, большие асинхронные двигатели запускаются при пониженном напряжении, а затем снова подключаются к полному напряжению питания, когда они набирают скорость, близкую к скорости вращения.

Панель пускателя со звезды на треугольник

Для снижения пускового напряжения используются два метода: Пуск со звезды на треугольник и Пуск с автотрансформатора .

Принцип работы пускателя со звезды на треугольник

Это метод пуска при пониженном напряжении. Снижение напряжения при пуске со звезды на треугольник достигается путем физического изменения конфигурации обмоток двигателя, как показано на рисунке ниже. Во время пуска обмотки двигателя соединяются звездой, что снижает напряжение на каждой обмотке 3.Это также снижает крутящий момент в три раза. Схема

— Принцип работы пускателя звезда-треугольник

По прошествии некоторого времени обмотка переконфигурируется как треугольник, и двигатель работает нормально. Пускатели звезда / треугольник, вероятно, являются наиболее распространенными пускателями пониженного напряжения. Они используются в попытке уменьшить пусковой ток, подаваемый на двигатель во время пуска, как средство уменьшения помех и помех в электроснабжении.

Традиционно во многих регионах поставок существует требование устанавливать пускатель пониженного напряжения на все двигатели мощностью более 5 л. с. (4 кВт).Пускатель звезда / треугольник (или звезда / треугольник) — один из самых дешевых электромеханических пускателей пониженного напряжения, которые могут быть применены.

Пускатель звезда / треугольник состоит из трех контакторов, таймера и устройства защиты от тепловой перегрузки. Контакторы меньше, чем одиночный контактор, используемый в пускателях прямого включения, поскольку они регулируют только токи обмоток. Токи в обмотке составляют 1 / корень 3 (58%) тока в линии.

Есть два контактора, которые замыкаются во время работы, часто называемые главным подрядчиком и контактором треугольника.Это AC3 с номиналом 58% от номинального тока двигателя. Третий контактор — это контактор звезды, который пропускает ток звезды только при подключении двигателя звездой.

Ток в звездочке составляет одну треть тока в треугольнике, поэтому этот контактор может быть рассчитан на AC3 на одну треть (33%) номинала двигателя.

Пускатель звезда-треугольник Состоит из следующих блоков:

  1. Контакторы (главные, звездообразные и треугольные контакторы) 3 НР (для пускателя с разомкнутым состоянием) или 4 НР (пускатель с переходным замкнутым режимом).
  2. Реле времени (с задержкой срабатывания) 1 №
  3. Трехполюсный тепловой расцепитель максимального тока 1 №
  4. Плавкие элементы или автоматические выключатели для главной цепи 3 №
  5. Плавкий элемент или автоматический выключатель для цепь управления 1No.

Силовая цепь стартера звезда-треугольник

Главный автоматический выключатель служит главным выключателем источника питания, который подает электричество в силовую цепь.

Главный контактор подключает опорное напряжение источника R , Y , B к первичной клемме двигателя U1 , V1 , W1 .

Во время работы главный контактор ( KM3 ) и контактор звезды ( KM1 ) сначала замыкаются, а затем, через некоторое время, размыкается контактор звезды, а затем контактор треугольника ( KM2 ) закрыто. Управление контакторами осуществляется таймером ( K1T ), встроенным в пускатель. Звезды и треугольники электрически взаимосвязаны и предпочтительно механически взаимосвязаны.

Силовая цепь пускателя звезда-треугольник

Фактически, есть четыре состояния:

Контактор звезды служит для первоначального замыкания вторичной клеммы двигателя U2, V2, W2 для последовательности запуска во время начального запуска двигателя. мотор с места.Это обеспечивает одну треть прямого прямого тока двигателя, тем самым снижая высокий пусковой ток, свойственный двигателям большой мощности при запуске.

Управление переключаемым соединением звезды и треугольника асинхронного двигателя переменного тока достигается с помощью схемы управления звезда-треугольник или звезда-треугольник. Схема управления состоит из кнопочных переключателей, вспомогательных контактов и таймера.

Цепь управления пускателем звезда-треугольник (разомкнутый переход) Схема

— цепь управления пускателем звезда-треугольник (разомкнутый переход)

Кнопка ON запускает цепь путем первоначального включения катушки контактора звезды (KM1) цепи звезды и цепь катушки таймера (KT). Когда на катушку контактора звезды (KM1) подается питание, главный и вспомогательный контакторы звезды меняют свое положение с NO на NC.

Когда вспомогательный контактор звезды (1) (который находится в цепи катушки главного контактора) становится нормально разомкнутым на нормально замкнутый, это завершается Цепь катушки главного контактора (KM3), поэтому на катушку главного контактора подается напряжение, а главный и вспомогательный контакторы главного контактора меняют свое положение с НЕТ в НЗ. Эта последовательность происходит во времени.

После нажатия кнопочного переключателя ON вспомогательный контакт катушки главного контактора (2), который подключен параллельно к кнопке ON, станет нормально разомкнутым на нормально замкнутый, тем самым обеспечивая защелку для удержания катушки главного контактора в активном состоянии. что в конечном итоге поддерживает цепь управления в активном состоянии даже после отпускания кнопочного переключателя ON.

Когда главный контактор звезды (KM1) замыкает свое соединение, двигатель подключается к STAR, а он подключается к STAR до тех пор, пока вспомогательный контакт KT (3) с выдержкой времени не перейдет в состояние NC на NO.

Как только время задержки достигнет заданного значения Time, вспомогательные контакты таймера (KT) (3) в цепи звездообразной катушки изменят свое положение с NC на NO, и в то же время вспомогательный контактор (KT) в цепи катушки Delta (4 ) измените свое положение с NO на NC, чтобы катушка Delta была под напряжением, а главный контактор Delta стал NO на NC.Теперь клеммы двигателя меняются со звезды на треугольник.

Нормально замкнутый вспомогательный контакт от контакторов звезды и треугольника (5 и 6) также размещается напротив катушек контактора как звезды, так и треугольника, эти контакты блокировки служат в качестве предохранительных выключателей для предотвращения одновременной активации катушек контакторов как звезды, так и треугольника, так что одна не может быть активирован, если сначала не будут деактивированы другие. Таким образом, катушка контактора треугольником не может быть активна, когда катушка контактора звезды активна, и аналогично катушка контактора звезды не может быть активной, пока активна катушка контактора треугольника.

В приведенной выше схеме управления также есть два прерывающих контакта для отключения двигателя. Кнопочный переключатель OFF при необходимости отключает цепь управления и двигатель. Контакт тепловой перегрузки представляет собой защитное устройство, которое автоматически размыкает цепь управления STOP в случае, когда ток перегрузки двигателя обнаруживается тепловым реле перегрузки, это необходимо для предотвращения возгорания двигателя в случае чрезмерной нагрузки, превышающей номинальную мощность двигатель обнаружен тепловым реле перегрузки.

В какой-то момент во время пуска необходимо переключиться с обмотки, соединенной звездой, на обмотку, соединенную треугольником. Цепи питания и управления могут быть организованы для этого одним из двух способов — открытый переход или закрытый переход.

Что такое запуск открытого или закрытого перехода

1. Стартеры открытого перехода

Обсудите, что упомянутое выше называется переключением с открытым переходом, потому что существует открытое состояние между состоянием звезды и состоянием треугольника.

При разомкнутом переходе питание двигателя отключается, а конфигурация обмотки изменяется посредством внешнего переключения.

Когда двигатель приводится в действие источником питания на полной или частичной скорости, в статоре возникает вращающееся магнитное поле. Это поле вращается с линейной частотой. Поток от поля статора индуцирует ток в роторе, что, в свою очередь, приводит к возникновению магнитного поля ротора.

Когда двигатель отключен от источника питания (открытый переход), внутри статора находится вращающийся ротор, и ротор имеет магнитное поле. Из-за низкого импеданса цепи ротора постоянная времени довольно велика, и действие поля вращающегося ротора внутри статора является действием генератора, который генерирует напряжение с частотой, определяемой скоростью ротора.

Когда двигатель снова подключается к источнику питания, он переключается на несинхронизированный генератор, и это приводит к очень высоким переходным процессам по току и крутящему моменту. Величина переходного процесса зависит от соотношения фаз между генерируемым напряжением и линейным напряжением в точке замыкания. может быть намного выше, чем прямой ток и крутящий момент, и может привести к электрическим и механическим повреждениям.

Запуск открытого перехода является наиболее простым для реализации с точки зрения стоимости и схемотехники, и если время переключения хорошее, этот метод может хорошо работать.На практике, однако, сложно установить необходимое время для правильной работы, и отключение / повторное включение источника питания может вызвать значительные переходные процессы напряжения / тока.

В открытом переходе есть четыре состояния:

  1. Состояние ВЫКЛ. : Все контакторы разомкнуты.
  2. Состояние звезды: Главный контактор [KM3] и контактор звезды [KM1] замкнуты, а контактор треугольника [KM2] разомкнут. Двигатель подключен по схеме звезды и будет вырабатывать одну треть крутящего момента прямого тока при одной трети прямого тока.
  3. Открытое состояние: Этот тип операции называется переключением с открытым переходом, потому что существует открытое состояние между состоянием звезды и состоянием треугольника. Главный подрядчик закрыт, а контакторы Delta и Star разомкнуты. На одном конце обмотки двигателя есть напряжение, но другой конец открыт, поэтому ток не может течь. Двигатель имеет вращающийся ротор и ведет себя как генератор.
  4. Delta State: Главный и треугольный контакторы замкнуты. Контактор звезды разомкнут.Двигатель подключен к полному линейному напряжению, и доступны полная мощность и крутящий момент.

2. Пускатель звезда / треугольник с замкнутым переходом

Существует методика уменьшения величины переходных процессов переключения. Это требует использования четвертого контактора и набора из трех резисторов. Резисторы должны иметь такие размеры, чтобы в обмотках двигателя мог протекать значительный ток, пока они включены в цепь.

Вспомогательный контактор и резисторы подключаются через контактор треугольника.Во время работы, непосредственно перед размыканием контактора звездой, вспомогательный контактор замыкается, в результате чего ток через резисторы протекает через звезду. Как только контактор звезды размыкается, ток может течь через обмотки двигателя к источнику питания через резисторы. Затем эти резисторы замыкаются контактором треугольником.

Если сопротивление резисторов слишком велико, они не будут подавлять напряжение, генерируемое двигателем, и не будут служить никакой цели.

При закрытом переходе питание на двигатель поддерживается все время.

Это достигается за счет установки резисторов, компенсирующих ток во время переключения обмотки. Четвертый подрядчик должен вставить резистор в цепь перед размыканием контактора звезды, а затем удалить резисторы после замыкания контактора треугольником.

Эти резисторы должны быть рассчитаны на ток двигателя. В дополнение к необходимости большего количества переключающих устройств, схема управления более сложна из-за необходимости выполнять переключение резистора

В закрытом переходе есть четыре состояния:

  1. Состояние ВЫКЛ. Все контакторы разомкнуты
  2. Состояние звезды. Главный контактор [KM3] и контактор звезды [KM1] замкнуты, а контактор треугольника [KM2] разомкнут. Двигатель подключен по схеме звезды и будет вырабатывать одну треть крутящего момента прямого тока при одной трети прямого тока.
  3. Звездное переходное состояние. Двигатель подключается звездой, а резисторы подключаются к контактору треугольником через вспомогательный контактор [KM4].
  4. Закрытое переходное состояние. Главный контактор [KM3] замкнут, а контакторы Delta [KM2] и Star [KM1] разомкнуты.Ток протекает через обмотки двигателя и переходные резисторы через KM4.
  5. Штат Дельта. Контакторы Main и Delta замкнуты. Короткое замыкание переходных резисторов. Контактор звезды разомкнут. Двигатель подключен к полному линейному напряжению, и доступны полная мощность и крутящий момент.

Эффект переходного процесса в пускателе (разомкнутый пускатель переходного процесса)

Важно, чтобы пауза между выключением контактора звезды и переключателем контактора треугольником была правильной.Это связано с тем, что контактор звезды должен быть надежно отключен до включения контактора треугольника. Также важно, чтобы пауза переключения была не слишком длинной.

Для 415 В звездное напряжение эффективно снижено до 58% или 240 В. Эквивалент 33%, который получается при запуске Direct Online (DOL).

Если соединение звездой имеет достаточный крутящий момент для работы до 75% или 80% от скорости полной нагрузки, то двигатель можно подключить в режиме треугольника.

При подключении по схеме «треугольник» фазное напряжение увеличивается на V3 или на 173%. Фазные токи увеличиваются в таком же соотношении. Линейный ток увеличивается в три раза по сравнению с его значением при соединении звездой.

Во время переходного периода переключения двигатель должен работать свободно с небольшим замедлением. Пока это происходит «выбегом», он может генерировать собственное напряжение, и при подключении к источнику питания это напряжение может произвольно складываться или вычитаться из приложенного сетевого напряжения. Это называется переходным током . Всего несколько миллисекунд он вызывает скачки и скачки напряжения.Известен как переходный процесс переключения.

Размер каждой части пускателя звезда-треугольник

1. Размер реле перегрузки

Для пускателя звезда-треугольник есть возможность разместить защиту от перегрузки в двух положениях: в строке или в обмотки .

Реле перегрузки в линии:

В линии аналогично установке перегрузки перед двигателем, как с прямым пускателем.

Рейтинг перегрузки (линейный) = FLC двигателя.

Недостаток: Если перегрузка установлена ​​на FLC, то она не защищает двигатель, пока он находится в треугольнике (значение x1,732 слишком велико).

Реле перегрузки в обмотке:

В обмотках означает, что перегрузка находится после точки, где проводка к контакторам разделена на основную и треугольную. В этом случае перегрузка всегда измеряет ток внутри обмоток.

Настройка реле перегрузки (в обмотке) = 0,58 X FLC (линейный ток).

Недостаток: мы должны использовать отдельные защиты от короткого замыкания и перегрузки.

2. Размер главного подрядчика и подрядчика треугольника

Есть два контактора, которые замыкаются во время работы, часто называемые основным подрядчиком и контактором треугольника. Это AC3 с номиналом 58% от номинального тока двигателя.

Размер главного контактора = IFL x 0,58

3.

Размер Star Contractor

Третий контактор — это контактор звезды, который пропускает ток звезды только при подключении двигателя звездой.Ток в звездочке составляет 1 / √3 = (58%) тока в треугольнике, поэтому этот контактор может быть рассчитан на AC3 на одну треть (33%) номинала двигателя.

Размер контактора звезды = IFL x 0,33

Пусковые характеристики двигателя пускателя звезда-треугольник

  • Доступный пусковой ток: 33% тока полной нагрузки.
  • Пиковый пусковой ток: от 1,3 до 2,6 ток полной нагрузки.
  • Пиковый пусковой крутящий момент: 33% крутящего момента при полной нагрузке.

Преимущества пускателя звезда-треугольник

  • Метод звезда-треугольник прост и надежен.
  • Он относительно дешев по сравнению с другими методами пониженного напряжения.
  • Хорошие характеристики крутящего момента / тока.
  • Он потребляет пусковой ток в 2 раза превышающий ток полной нагрузки подключенного двигателя.

Недостатки пускателя звезда-треугольник

  1. Низкий пусковой крутящий момент (крутящий момент = (квадрат напряжения) также уменьшается).
  2. Обрыв питания — возможные переходные процессы
  3. Требуется шестиконтактный двигатель (соединение треугольником).
  4. Требуется 2 комплекта кабелей от стартера к двигателю.
    .
  5. Он обеспечивает только 33% пускового момента, и если нагрузка, подключенная к рассматриваемому двигателю, требует более высокого пускового момента во время пуска, чем при переходе со звезды на треугольник возникают очень тяжелые переходные процессы и напряжения, а также из-за этих переходных процессов и напряжений. происходит много электрических и механических поломок.
    .
  6. При этом способе пуска сначала двигатель подключается по схеме «звезда», а затем после переключения двигатель подключается по схеме «треугольник». Дельта двигателя формируется в пускателе, а не на клеммах двигателя.
    .
  7. Высокая передача и пики тока: Например, при запуске насосов и вентиляторов крутящий момент нагрузки низкий в начале пуска и увеличивается пропорционально квадрату скорости. При достижении прибл. 80-85% номинальной скорости двигателя, момент нагрузки равен крутящему моменту двигателя, и ускорение прекращается.Для достижения номинальной скорости необходимо переключение в положение треугольником, и это очень часто приводит к сильным токам передачи и пикам. В некоторых случаях текущий пик может достигать значения, даже большего, чем для пуска D.O.L.
    .
  8. Приложения с крутящим моментом нагрузки, превышающим 50% номинального крутящего момента двигателя, не смогут запускаться с использованием пускателя по схеме треугольник.
    .
  9. Низкий пусковой момент: Метод пуска звезда-треугольник (звезда-треугольник) определяет, будут ли выводы электродвигателя настроены на электрическое соединение звездой или треугольником.Первоначальное соединение должно быть выполнено по схеме звезды, что приведет к снижению линейного напряжения в двигателе в 1 / √3 (57,7%) раз, а ток уменьшится до 1/3 от тока при полном напряжении, но пусковой момент также уменьшается с 1/3 до 1/5 пускового момента прямого тока.
    .
  10. Переход от звезды к треугольнику обычно происходит при достижении номинальной скорости, но иногда выполняется на уровне 50% от номинальной скорости, что вызывает кратковременные искры.

Особенности пуска со звезды на треугольник

  1. Для трехфазных двигателей малой и большой мощности.
  2. Пониженный пусковой ток
  3. Шесть соединительных кабелей
  4. Пониженный пусковой момент
  5. Пик тока при переключении со звезды на треугольник
  6. Механическая нагрузка при переключении со звезды на треугольник

Применение пускателя звезда-треугольник

Звезда- Дельта-метод обычно применяется только к двигателям низкого и среднего напряжения и двигателям с малым пусковым моментом.

Полученный пусковой ток составляет примерно 30% пускового тока при прямом пуске от сети, а пусковой крутящий момент снижается примерно до 25% крутящего момента, доступного при D.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *