17.09.2024

Солнечные батареи новая российская технология: В России предложена технология создания высокоэффективных солнечных батарей

Содержание

новые технологии и особенности производства солнечных батарей

В этой статье мы расскажем о видах современных солнечных батарей и новейших технологиях производства фотоэлементов, предлагаемых ведущими производителями. Также перечислим некоторые наиболее новые популярные солнечные панели, с использованием этих инноваций, которые уже доступны к продаже.


Солнечные батареи с использованием новейших инноваций


Большинство производителей панелей предлагают ряд моделей, это могут быть монокристаллические и поликристаллические варианты продукции с различной номинальной мощностью. За последние несколько лет эффективность панелей существенно возросла благодаря многим достижениям в технологии и материалах, из которых делают солнечные батареи.


На текущий момент можно отметить 8 основных технологий, при производстве высокоэффективных солнечных батарей:

  • PERC (Passivated Emitter Rear Cell) — диэлектрический слой на обратной стороне ячейки;
  • Bifacial — Двухсторонние;
  • Multi Busbar — Многолинейные;
  • Split panels – Половинчатые;
  • Dual Glass — Безрамочные, с двойным стеклом;
  • Shingled Cells — Безразрывные элементы;
  • IBC (Interdigitated Back Contact cells) — переплетеные контакты сзади ячейки;
  • HJT (Heterojunction cells) — гетероструктурные ячейки.

Пять основных типов солнечных панелей с использованием новейших технологий солнечных фотоэлементов в 2020 году:


Применяя инновационные решения, в производстве солнечных модулей, постоянно происходят различные улучшения эффективности, уменьшения влияния затенения и повышения надежности, при этом несколько производителей в настоящее время дают гарантию производительности до 30 лет.

Учитывая все новые доступные варианты выбора современных солнечных батарей, стоит провести некоторые исследования, прежде чем инвестировать в солнечную установку. В нашей полной обзорной статье о солнечных панелях мы расскажем, как выбрать надежную солнечную панель и на что обратить внимание.

Технология PERC, в чем особенность?


Профессор Мартин Грин, директор Австралийского центра передовой фотогальваники UNSW, изобрел концепцию PERC, которая в настоящее время широко используется многими ведущими производителями солнечных батарей во всем мире.


За последние два года PERC стал предпочтительной технологией для многих производителей как моно, так и поликристаллических ячеек. PERC буквально расшифровывается как «Пассивированный Эммитер Сзади Ячейки». Представляет собой более продвинутую архитектуру ячейки, использующую дополнительные слои на задней стороне ячейки для поглощения большего количества световых фотонов и увеличения «квантовой эффективности». Особенностью технологии PERC является алюминиевый задний слой Al-BSF — Local Aluminium Back Surface Field (см. Диаграмму ниже). Еще были разработаны несколько других вариантов, таких как PERT (Passivated Emitter Rear Totally Diffused) и PERL (Passivated Emitter and Rear Locally-diffused), но они пока не получили широкого применения.


LeTID — потенциальная проблема PERC

Обычные клетки PERC P-типа могут страдать от так называемого LeTID или деградации, вызванной светом и повышенной температурой. Явление LeTID похоже на хорошо известную деградацию, вызванную LID или светом, когда панель может потерять 2-3% от номинальной мощности в первый год воздействия УФ-излучения и от 0,5% до 0,8% в год после. К сожалению, потери из-за LeTID могут быть выше — до 6% в первые 2 года. Если эта потеря не будет полностью учтена производителем, это может привести к снижению производительности и потенциальным претензиям по гарантии.


К счастью, кремниевые элементы N-типа, не страдают от воздействия LeTID. Кроме того, некоторые производители поли и моно PERC ячееек P-типа, разработали процессы уменьшения или устранения LeTID. Некоторые производители заявили о применении технологии анти-LeTID на своей продукции и утверждают, что уменьшили или устранили эффекты LeTID.


Multi Busbar — Многолинейные солнечные элементы

Busbar или токоведущие шины представляют собой тонкие провода или ленты, которые проходят по каждой ячейке и переносят электроны (ток) от солнечных элементов. Поскольку фотоэлементы становятся более эффективными, они, в свою очередь, генерируют больше тока, и за последние годы большинство производителей перешли с 3 шин на 5 или 6 шин. Некоторые производители, сделали еще один шаг вперед и разработали многопроволочные системы, использующие до 12 очень тонких круглых проводов, а не плоских шин. Выгода заключается в том, что сборные шины фактически затеняют часть ячейки и поэтому могут немного снизить производительность, поэтому их необходимо тщательно проектировать. Несколько тонких шин обеспечивают более низкое сопротивление и более короткий путь перемещения электронов, что приводит к более высокой производительности.

Маленькие дорожки ( тонкие шины) на каждой ячейке передают ток на 5 ленточных шин:

Если в ячейке возникли микротрещины из-за ударов или высоких нагрузок, большее количество шин помогает снизить вероятность того, что трещина перерастет в горячую точку, поскольку они обеспечивают альтернативные пути прохождения тока.


В модулях LG Neon 2 впервые использовались 12 маленьких круглых проводных шин, LG называет свою технологию «Cello», которая означает соединение элементов, с низкими электрические потерями. Многопроволочная технология Cello снижает электрическое сопротивление, тем самым уменьшаются потери напряжения, а уменьшение площади и применение закругленных шин дает лучшее оптическое поглощение света, тем самым повышается эффективность.


Trina Solar вместе со многими другими производителями недавно начали предлагать тонкие круглые шинные ячейки под названием multi-bus (MBB) в качестве опции для ряда модулей на 2019 год. Как объяснялось ранее, еще одним преимуществом наличия большего количества шин является то, что при микротрещинах возникновение в ячейке из-за внешних напряжений, меньше вероятность того, что это создаст горячую точку, так как электроны имеют много альтернативных шин для протекания тока. Это показано на рисунке:


Split panels – Новые половинчатые солнечные батареи

Еще одно недавнее новшество — использование ячеек с половинным размером вместо квадратных ячеек полного размера и перемещение распределительной коробки в центр модуля. Тем самым разделяя солнечную панель на 2 меньшие панели по 50% площади, каждая из которых работает параллельно. Это имеет множество преимуществ, в том числе повышение производительности благодаря снижению резистивных потерь через шины (токосъемники). Поскольку каждая ячейка имеет половинный размер, она производит половину тока при одном и том же напряжении, что означает, что ширина шины может быть уменьшена наполовину, уменьшая затенение и потери ячейки. Снижение тока также приводит к снижению температуры в ячейке, что, в свою очередь, уменьшает потенциальное образование и серьезность горячих точек из-за локального затенения, загрязнения или повреждения ячейки.


Кроме того, более короткое расстояние до центра панели сверху и снизу повышает эффективность в целом, повышая выходную мощность панели аналогичного размера до 20 Вт. Другое преимущество заключается в том, что при частичном затенении верхней или нижней части панели, затененная часть не влияет на выработку электроэнергии от другой половины солнечной батареи.



Bifacial — Двухсторонние солнечные батареи


Технология двухсторонних солнечных батарей была известна уже нескольких лет, но сейчас начинает становиться популярной, поскольку стоимость производства монокристаллических элементов очень высокого качества продолжает снижаться. Двухсторонние элементы поглощают свет с обеих сторон панели и в таких условиях могут производить до 27% больше энергии, чем традиционные односторонние панели. В двухсторонних солнечных панелях обычно применяют стекло на передней стороне, а сзади, для герметизации ячеек — прозрачный полимерный слой. Он позволяет отраженному свету проникать с задней стороны панели. Двухсторонние модули также могут иметь стеклянный задний слой, который имеет больший срок службы и может значительно снизить риск отказа, поэтому некоторые производители теперь предлагают 30-летнюю гарантию на свою продукцию.


Традиционно двухсторонние солнечные панели использовались только в наземных установках, где солнечный свет легко отражался от окружающих поверхностей, в частности заснеженных районов. Хотя было доказано, что они хорошо работают и при монтаже на светлые поверхности, что позволяет увеличить выработку до 10%.

Двухсторонние модули поглощают отраженный солнечный свет обратной стороной панели:

Dual Glass – Солнечные батареи с двойным стеклом


Многие производители в настоящее время производят так называемые стеклянные или двойные стеклянные солнечные панели, которые не следует путать с двухсторонними. Задний традиционный белый EVA (пластиковый) слой заменяют стеклом. Таким образом получается сэндвич стекло-стекло, которое не реагирует и не портится со временем и не страдает от ультрафиолетового излучения. Из-за более длительного срока службы стеклянных панелей некоторые производители предлагают 30-летнюю гарантию производительности.

Безрамочные солнечные батареи

Многие двойные стеклянные панели являются безрамными (без алюминиевой рамы), что может усложнить монтаж панелей, так как требуются специальные системы креплений. Тем не менее, бескаркасные модули имеют ряд преимуществ, особенно в отношении очистки: отсутствует рама, которая создает ступеньку, об нее задерживается пыль и грязь. Соответственно, без ступеньки получается плоская поверхность, которую проще мыть и способствующая самоочищению с помощью дождя и ветра, что приводит к большей производительности. Однако без прочности алюминиевой рамы двойные стеклянные панели, хотя и более долговечные, не такие жесткие и могут изгибаться, особенно при горизонтальном монтаже.


Умные панели и оптимизаторы мощности


Технология, которая становится все более популярной — это добавление в солнечную панель оптимизаторов мощности постоянного тока. Оптимизаторы наряду с микроинверторами, обычно известны как MLPE (Module Level Power Electronics), которые состоят из небольших блоков преобразования энергии, прикрепленных непосредственно к солнечным батареям. Оптимизаторы предназначены для подачи оптимального напряжения для максимальной выработки электроэнергии. Если панель затенена, загрязнена или не работает, что приводит к низкому напряжению или току, оптимизаторы могут обойти или компенсировать плохую работу панели, чтобы обеспечить оптимальное напряжение для инвертора.


Оптимизаторы мощности от таких компаний, как Tigo и SolarEdge, были доступны в качестве дополнительного компонента в течение многих лет, но теперь и SolarEdge, и Tigo разрабатывают панели со встроенными оптимизаторами в распределительной коробке на задней панели. SolarEdge отличается от Tigo тем, что оптимизаторы SolarEdge должны использоваться вместе с инверторами SolarEdge, а оптимизаторы Tigo могут быть подключены к любым существующим панелям в качестве дополнительного оптимизатора.



Большим преимуществом «дополнительных» оптимизаторов, таких как Tigo и SolarEdge, является возможность контролировать производительность каждой солнечной панели в отдельности, что также может помочь выявить любые неисправности и проблемы в солнечной батарее. Микроинверторы также предлагают это преимущество перед обычными сетевыми инверторами.


Maxim Integrated пошли еще дальше и разработали чипы для оптимизации подмодулей. Эти интеллектуальные чипы от Maxim Integrated выходят за рамки традиционного дополнительного оптимизатора и разделяют панель на 3 ряда ячеек, что позволяет панели работать при оптимальном напряжении MPPT при частичном затенении или загрязнении. Стоит отметить, что некоторые установщики сообщают о том, что клиенты сталкиваются с проблемами помех RFI (ТВ и радио), используя эту новую технологию, однако чипы Maxim следующего поколения, как утверждается, решили проблему.


Shingled Cells — Безразрывные солнечные элементы

Безразрывные ячейки — это новая технология, в которой для солнечных панелей используются перекрывающиеся узкие ячейки, которые группируются горизонтально или вертикально по всему модулю. Безразрывная ячейка изготавливается путем лазерной резки нормального полноразмерного элемента на 5 или 6 полос и наслоения их друг с другом, с использованием специального клея. Небольшое перекрытие каждой полосы ячеек скрывает одну шину, которая соединяет полосы ячеек. Применение такого новшества позволяет покрывать большую площадь поверхности панели, ведь так не требуются располагать соединительные шины поверх элемента, которые частично затеняют ячейку. Таким образом увеличивается эффективность панели так же, как ячейки IBC, описанные ниже.

Другое преимущество состоит в том, что длинные безразрывные ячейки обычно соединяются параллельно, что значительно снижает эффект затенения — каждая длинная ячейка эффективно работает независимо. Кроме того, ячеистые ячейки относительно дешевы в изготовлении, поэтому они могут быть очень экономически эффективным вариантом, особенно если частичное затенение является проблемой.

Seraphim был одним из первых производителей, выпустивших ячейки с гибкой ячейкой с высокопроизводительными панелями Eclipse. Серия SunPower P — это новейшее дополнение к линейке SunPower, предлагающее более дешевый вариант, прежде всего для крупномасштабных станций. Другие производители, производящие безразрывные солнечные панели Yingli Solar и Znshine.


Прочность солнечных ячеек

Наряду с многочисленными усовершенствованиями элементов для повышения эффективности, существуют также новые технологии для повышения надежности и производительности в течение ожидаемого 25-летнего срока службы солнечного модуля. Солнечные панели могут подвергаться экстремальным нагрузкам из-за сильного ветра, вибраций, сильной жары и морозов, вызывающих расширение и сжатие. Это может привести к появлению микротрещин, горячих точек и деградации PID (Potential induced degradation) элементов, что приводит к снижению производительности и ускорению отказа.


Производители, такие как Winaico и LG energy, разработали чрезвычайно прочные алюминиевые рамы, чтобы помочь уменьшить нагрузку на элементы и модули. Win Win Technology, материнская компания Winaico, сделала еще один шаг вперед и разработала так называемую технологию «HeatCap», которая, по сути, представляет собой упрочняющую структуру элемента, которая помогает предотвращать образование микротрещин и горячих точек, когда элементы находятся в условиях экстремальных нагрузок. Эта технология также имеет дополнительное преимущество улучшенной производительности при более высоких температурах ячейки.


Солнечные элементы IBC — высокая прочность и долговечность

IBC не только более эффективны, но и прочность намного выше, чем у обычных элементов, так как задние слои укрепляют весь элемент и помогают предотвратить микротрещины, которые в конечном итоге могут привести к выходу из строя.

Sunpower использует высококачественный задний слой IBC из твердой меди на своей запатентованной ячейке Maxeon вместе с высокоотражающей металлической зеркальной поверхностью, чтобы отражать любой свет, который проходит обратно в ячейку. Задняя сторона ячейки IBC Maxeon, показанная ниже, чрезвычайно устойчива к нагрузкам и изгибам, в отличие от обычных ячеек, которые по сравнению с ними относительно хрупкие.


Высокоэффективные солнечные элементы N-типа

В то время как PERC и Bifacial появились в солнечном мире, самой эффективной и надежной технологией по-прежнему остается монокристаллическая ячейка N-типа. В первом типе солнечных элементов, разработанном в 1954 году лабораториями Bell, использовалась кремниевая пластина N-типа, но со временем более экономичный кремний P-типа стал доминирующим типом элементов: в 2017 году более 80% мирового рынка с использованием P-типа клетки. Поскольку большой объем и низкая стоимость являются основным движущим фактором, стоящим за P-типом, ожидается, что N-тип станет более популярным, так как производственные затраты снижаются, а эффективность увеличивается.


Гетероструктурная технология HJT

Технология HJT используется несколькими производителями солнечных батарей. В настоящее время и российская компания Хевел производит серийные панели с использованием гетеропереходных элементов, а так же Panasonic и ряд других компаний. Группа компаний REC недавно анонсировала новые панели серии Alpha, в которых используются ячейки HJC с 16 микро шинами для достижения впечатляющей эффективности в 21,7%. Вслед за первоначальной разработкой HJC, проделанной UNSW и Sanyo, Panasonic создала эффективную серию панелей ‘HIT’ и уже много лет является лидером в технологии ячеек HJT.

Солнечные элементы HJT используют основу из обычного кристаллического кремния с дополнительными тонкопленочными слоями аморфного кремния по обе стороны ячейки, образуя так называемый гетеропереход. В отличие от обычных P-N-соединительных ячеек, многослойные гетеропереходные ячейки могут значительно повысить эффективность. В лабораторных испытаниях достигается эффективность до 26,5% в сочетании с технологией IBC.


В Panasonic разработали ячейку HIT, с использованием высокопроизводительной кремниевой основы N-типа для производства солнечных батарей с КПД более 20,0% и превосходными характеристиками при высоких температурах. Кремниевые элементы N-типа также обеспечивают исключительную долговременную производительность, гарантирующую 90,76% остаточной мощности через 25 лет, что является вторым по величине из доступных после SunPower.

HJT лидер при высоких температурах

Наиболее впечатляющей характеристикой ячеек Panasonic HIT является невероятно низкий температурный коэффициент, который на 40% меньше, чем у обычных поли и монокристаллических ячеек. Выходная мощность панелей приводится при температуре на элементах 25 градусов Цельсия, при стандартных условиях STC (Standard Test Conditions), и каждый градус выше немного снижает выходную мощность.

Температурный коэффициент влияет на снижение мощности при увеличении температуры на солнечных элементах.


В обычных поли и моноэлементах это значение составляет от 0,38% до 0,42% на градус C, что может привести к снижению общей производительности на 20% или более в очень жаркие безветренные дни. Для сравнения, у HIT от Panasonic очень низкий температурный коэффициент 0,26% на градус, что является самым низким показателем среди всех производимых сегодня элементов.


На температуру панели и ячейки также влияют цвет крыши, угол наклона и скорость ветра, поэтому установка плоских панелей на очень темной крыше обычно снижает производительность панели по сравнению с крышами более светлого цвета.


Уникальные панели Panasonic HIT доступны только в Японии и Северной Америке и, к сожалению, в настоящее время недоступны в России, но не стоит расстраиваться на этот счет, ведь стоимость таких панелей пока очень высока и благо существуют альтернативные варианты.

Купить солнечные батареи по новым технологиям, можно у нас в магазине, пройди по ссылке: https://mywatt.ru/solnechnie_batarei/

Петербургские ученые создали высокоэффективные солнечные батареи

https://ria.ru/20200204/1564243961.html

Петербургские ученые создали высокоэффективные солнечные батареи

Петербургские ученые создали высокоэффективные солнечные батареи — РИА Новости, 04.02.2020

Петербургские ученые создали высокоэффективные солнечные батареи

Ученые из Санкт-Петербурга предложили и экспериментально опробовали технологию создания высокоэффективных солнечных батарей на основе полупроводниковых. .. РИА Новости, 04.02.2020

2020-02-04T15:15

2020-02-04T15:15

2020-02-04T15:15

наука

физика

химия

открытия — риа наука

санкт-петербургский университет информационных технологий

санкт-петербург

энергетика

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdn22.img.ria.ru/images/152030/94/1520309442_0:160:3072:1888_1920x0_80_0_0_925210923989fb28ca47d040917e8cec.jpg

МОСКВА, 4 фев — РИА Новости. Ученые из Санкт-Петербурга предложили и экспериментально опробовали технологию создания высокоэффективных солнечных батарей на основе полупроводниковых соединений на кремниевой подложке, которые в будущем могут иметь эффективность в полтора раза больше и при этом более низкую себестоимость, чем нынешние фотовольтаические преобразователи. Описание технологии приведено в журнале Solar Energy Materials and Solar Cells.Сегодня ученые все больше внимания уделяют развитию альтернативной энергетики и так называемых «зеленых технологий». Одна из самых популярных среди них — солнечная энергетика. Однако более широкому использованию солнечных батарей препятствует ряд проблем. Ставшие традиционными кремниевые солнечные батареи имеют сравнительно небольшую эффективность — около 20-25 процентов. Более эффективные технологии требуют заметно более сложных полупроводниковых соединений, что значительно повышает цену самих солнечных элементов.Исследователи из Университета ИТМО, Академического университета им. Ж. И. Алферова и Физико-технического института им. А. Ф. Иоффе показали, что полупроводниковые A3B5 структуры — материалы, состоящие из элементов III и V групп Периодической системы — можно вырастить на дешевой кремниевой подложке, что позволит существенно сократить стоимость многокаскадного солнечного элемента. Появление подобной технологии некогда было предсказано нобелевским лауреатом Жоресом Ивановичем Алферовым. «Главная сложность синтеза полупроводниковых соединений на кремниевой подложке состоит в том, что полупроводник должен обладать таким же параметром кристаллический решетки, как у кремния, — приводятся в пресс-релизе слова одного из авторов исследования Ивана Мухина, сотрудника ИТМО и заведующего лабораторией Академического университета. — Грубо говоря, атомы этого материала должны находиться на таком же расстоянии друг от друга, что и атомы кремния. К сожалению, полупроводников, отвечающих этому требованию, немного. К примеру — фосфид галлия (GaP). Однако сам он не очень подходит для создания солнечных элементов, так как плохо поглощает солнечный свет. Но вот если взять фосфид галлия и добавить азот, мы получим раствор GaPN. Уже при малых концентрациях азота данный материал становится прямозонным и хорошо поглощает свет, он может быть интегрирован на кремниевую подложку. При этом кремний является не просто фундаментом, на который синтезируется фотоматериал, но и сам может выступать одним из фотоактивных слоев солнечного элемента, поглощающим света в ИК-диапазоне». В лаборатории ученым удалось получить верхний слой солнечной батареи, интегрированный на кремниевую подложку. Если таких фотоактивных слоев будет больше, то и эффективность солнечной батареи станет существенно выше, так как каждый слой будет эффективно поглощать свою часть солнечного спектра. Пока в лаборатории был создан первый небольшой прототип солнечной батареи на основе элементов А3В5 на кремниевой подложке. Сейчас перед учеными стоит задача создать элементы, имеющие в своем составе несколько фотоактивных слоев. Такие солнечные батареи заметно эффективнее поглощают солнечный свет и генерируют электрическую энергию.»Мы научились растить самый верхний слой. Эта система материалов потенциально может быть использована и для промежуточных слоев. Если добавить мышьяк, то получится GaPNAs — из него на кремниевой подложке можно вырастить несколько каскадов, работающих в разных частях солнечного спектра. Как показали наши предыдущие работы, потенциально эффективность таких солнечных батарей может превышать 40 процентов, то есть быть в полтора раза выше, нежели в современных кремниевых технологиях», — отмечает Иван Мухин.

https://ria.ru/20190603/1555149115.html

https://ria.ru/20180717/1524700609.html

санкт-петербург

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og. xn--p1ai/awards/

2020

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn25.img.ria.ru/images/152030/94/1520309442_171:0:2902:2048_1920x0_80_0_0_191c4542b6420dfaedd6499fd590c78b.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

физика, химия, открытия — риа наука, санкт-петербургский университет информационных технологий, санкт-петербург, энергетика

МОСКВА, 4 фев — РИА Новости. Ученые из Санкт-Петербурга предложили и экспериментально опробовали технологию создания высокоэффективных солнечных батарей на основе полупроводниковых соединений на кремниевой подложке, которые в будущем могут иметь эффективность в полтора раза больше и при этом более низкую себестоимость, чем нынешние фотовольтаические преобразователи. Описание технологии приведено в журнале Solar Energy Materials and Solar Cells.

Сегодня ученые все больше внимания уделяют развитию альтернативной энергетики и так называемых «зеленых технологий». Одна из самых популярных среди них — солнечная энергетика. Однако более широкому использованию солнечных батарей препятствует ряд проблем. Ставшие традиционными кремниевые солнечные батареи имеют сравнительно небольшую эффективность — около 20-25 процентов. Более эффективные технологии требуют заметно более сложных полупроводниковых соединений, что значительно повышает цену самих солнечных элементов.

Исследователи из Университета ИТМО, Академического университета им. Ж. И. Алферова и Физико-технического института им. А. Ф. Иоффе показали, что полупроводниковые A3B5 структуры — материалы, состоящие из элементов III и V групп Периодической системы — можно вырастить на дешевой кремниевой подложке, что позволит существенно сократить стоимость многокаскадного солнечного элемента. Появление подобной технологии некогда было предсказано нобелевским лауреатом Жоресом Ивановичем Алферовым.

«Главная сложность синтеза полупроводниковых соединений на кремниевой подложке состоит в том, что полупроводник должен обладать таким же параметром кристаллический решетки, как у кремния, — приводятся в пресс-релизе слова одного из авторов исследования Ивана Мухина, сотрудника ИТМО и заведующего лабораторией Академического университета. — Грубо говоря, атомы этого материала должны находиться на таком же расстоянии друг от друга, что и атомы кремния.

3 июня 2019, 09:00НаукаУченые улучшили элементы новейших солнечных батарей

К сожалению, полупроводников, отвечающих этому требованию, немного. К примеру — фосфид галлия (GaP). Однако сам он не очень подходит для создания солнечных элементов, так как плохо поглощает солнечный свет. Но вот если взять фосфид галлия и добавить азот, мы получим раствор GaPN. Уже при малых концентрациях азота данный материал становится прямозонным и хорошо поглощает свет, он может быть интегрирован на кремниевую подложку. При этом кремний является не просто фундаментом, на который синтезируется фотоматериал, но и сам может выступать одним из фотоактивных слоев солнечного элемента, поглощающим света в ИК-диапазоне».

В лаборатории ученым удалось получить верхний слой солнечной батареи, интегрированный на кремниевую подложку. Если таких фотоактивных слоев будет больше, то и эффективность солнечной батареи станет существенно выше, так как каждый слой будет эффективно поглощать свою часть солнечного спектра.

Пока в лаборатории был создан первый небольшой прототип солнечной батареи на основе элементов А3В5 на кремниевой подложке. Сейчас перед учеными стоит задача создать элементы, имеющие в своем составе несколько фотоактивных слоев. Такие солнечные батареи заметно эффективнее поглощают солнечный свет и генерируют электрическую энергию.

«Мы научились растить самый верхний слой. Эта система материалов потенциально может быть использована и для промежуточных слоев. Если добавить мышьяк, то получится GaPNAs — из него на кремниевой подложке можно вырастить несколько каскадов, работающих в разных частях солнечного спектра. Как показали наши предыдущие работы, потенциально эффективность таких солнечных батарей может превышать 40 процентов, то есть быть в полтора раза выше, нежели в современных кремниевых технологиях», — отмечает Иван Мухин.

17 июля 2018, 09:00НаукаУченые создали «идеальный резонатор» для солнечных батарей

В ИТМО нашли доступный способ сделать солнечные батареи прозрачными без потери эффективности

Физики Университета ИТМО нашли доступный способ превратить солнечные батареи в прозрачные, сохранив их эффективность. Новая технология основана на методе легирования, изменении свойств материалов с помощью добавления примесей, но без использования специального дорогостоящего оборудования. Результаты опубликованыв журнале ACS Applied Materials & Interfaces

Одна из самых интересных задач в солнечной энергетике  — создание прозрачных тонкопленочных фотоактивных материалов. Такую пленку можно наклеить на обычное окно и получить из него генератор энергии без ущерба для внешнего облика здания. Однако сделать солнечные элементы, сочетающие высокую эффективность и хорошую светопроницаемость, достаточно сложно. 

«У обычных тонкопленочных солнечных батарей есть непрозрачный металлический задний контакт, позволяющий дополнительно захватить больше света в структуре. В прозрачных солнечных элементах используют светопропускающий задний электрод. В этом случае часть фотонов неизбежно теряется на пропускание, поэтому и КПД у них намного ниже. Кроме того, изготовление заднего электрода с необходимыми характеристиками обходится дорого», — рассказывает научный сотрудник Нового Физтеха ИТМО Павел Ворошилов.

Проблему малой эффективности можно решить с помощью легирования. Но чтобы примеси правильно «прилипли» к нужному материалу, требуются сложные подходы и дорогое оборудование. В ИТМО предложили более доступную технологию создания «невидимых» солнечных панелей — легирование материалов с помощью ионной жидкости, меняющей характеристики обработанного слоя. 

«Для своих опытов мы взяли солнечный элемент на основе малых молекул, на который нанесли нанотрубки в качестве прозрачного электрода. Далее легировали покрытие из нанотрубок при помощи ионного затвора. Обработке подвергся и транспортный слой, который отвечает за то, чтобы заряд из активного слоя успешно достиг электрода. Нам удалось обойтись без вакуумных камер, работали в воздушной атмосфере. Нужно было просто капнуть ионной жидкостью и подать немного напряжения, чтобы получить необходимые свойства», — добавляет Павел Ворошилов.

В результате апробации новой технологии ученым удалось поднять эффективность батареи в несколько раз. Авторы проекта полагают, что таким же образом можно улучшить свойства и других солнечных элементов. Теперь в планах ученых эксперименты с различными материалами, а также совершенствование самой технологии легирования.


Пресс-служба Университета ИТМО

 

Российские ученые нашли способ удешевить солнечные батареи

Ученые из Санкт-Петербурга изобрели солнечные батареи на основе А3В5 полупроводниковых соединений на кремниевой подложке, которые могут быть в полтора раза эффективнее аналогов с одним каскадом. Технология была предсказана нобелевским лауреатом Жоресом Алферовым. Результаты работы ученые опубликовали в журнале Solar Energy Materials and Solar Cells.

Эффективность традиционных кремниевых солнечных батарей сравнительно невелика — около 20-25%. Для ее увеличения нужны сложные полупроводниковые соединения, которые стоят очень дорого. Исследователи из Университета ИТМО, Академического университета им. Ж. И. Алферова и Физико-технического института им. А. Ф. Иоффе показали, что A3B5 структуры можно вырастить на дешевой кремниевой подложке, сократив стоимость многокаскадного солнечного элемента.

«Главная сложность синтеза полупроводниковых соединений на кремниевой подложке состоит в том, что полупроводник должен обладать таким же параметром кристаллический решетки, как у кремния. Грубо говоря, атомы этого материала должны находиться на таком же расстоянии друг от друга, что и атомы кремния. К сожалению, полупроводников, отвечающих этому требованию, немного. К примеру, фосфид галлия (GaP). Однако он сам не очень подходит для создания солнечных элементов, так как плохо поглощает солнечный свет. Но вот если взять GaP и добавить азот N, мы получим раствор GaPN. Уже при малых концентрациях N данный материал становится прямозонным и хорошо поглощает свет, при этом может быть интегрирован на кремниевую подложку. И кремний является не просто фундаментом, на который синтезируется фотоматериал, — кремний сам может выступать одним из фотоактивных слоев солнечного элемента, поглощающим свет в ИК-диапазоне. Одним из первых идея совмещения A3B5 структур и кремния была озвучена Жоресом Ивановичем Алферовым», — рассказывает соавтор работы Иван Мухин, сотрудник ИТМО и заведующий лабораторией Академического университета.

В экспериментальных условиях ученым удалось получить верхний слой солнечной батареи на кремниевой подложке и создать небольшой прототип батареи. По той же технологии можно наращивать и промежуточные, к примеру, добавив мышьяк. Если таких фотоактивных слоев будет больше, то каждый слой солнечной батареи будет лучше поглощать свою часть солнечного спектра. Потенциальную эффективность новой батареи ученые оценили в 40%, что в полтора раза выше кремниевых аналогов.

В поле света: фермерские угодья смогут вырабатывать энергию | Статьи

Российские сельскохозяйственные поля оснастят солнечными панелями. Это позволит производить энергию, не выделяя специальный участок под электростанцию. Идею планируется реализовать с помощью установки батарей на специальных мачтах — они не будут мешать выращиванию растений и проезду техники, при этом давая возможность получать 1,5 МВт энергии с 1 га земли. Этого будет достаточно для полного самообеспечения фермерских хозяйств электричеством и продажи ее излишков в общую сеть — при условии принятия соответствующих поправок в законодательство. Однако, по мнению экспертов, установка солнечных батарей прямо на территории полей может усложнить уход за оборудованием.

Урожай с неба

Идея российских инженеров состоит в размещении на сельскохозяйственных полях специальных шестиметровых мачт с таким расчетом, чтобы они не мешали выращиванию растений и проезду техники. Далее на них будут устанавливаться солнечные панели, способные эффективно вырабатывать электроэнергию.

Как рассказали создатели проекта, используемые батареи работают на основе технологии PERC, которая позволяет добиться КПД ячеек в 21,5% при мощности солнечного модуля от 300 до 375 Вт. Таким образом, совокупная установленная мощность для 1 га земли составит около 1,5 МВт, отметил представитель разработчика Илья Лихов. По его словам, этого будет достаточно для полного удовлетворения потребностей хозяйств в электроэнергии.

Фото: Global Look Press/Reporters/ZUMAPRESS.com

Интерес вызывает и конфигурация батарей: они представляют собой безрамочные солнечные панели, состоящие из двух слоев стекла, между которыми находятся генерирующие элементы. Благодаря такой конструкции они могут пропускать часть солнечного света, который проходит через промежутки между солнечными ячейками. В конечном счете это позволяет создать легкое затенение, которое обеспечивает защиту растений от выгорания при сохранении доступа к свету.

Кроме того, установка большого количества панелей мешает распространению ветра и способствует повышению влажности, что помогает увеличить плодородность земли.

Помимо мачт и батарей для создания полноценной электростанции необходим инвертор (он переводит постоянный ток от солнечных элементов в переменный), а в некоторых случаях еще и аккумуляторные батареи, которые позволяют сохранить энергию для последующего использования (например, в ночное время).

Гарантия на батареи составляет 30 лет при сроке службы около полувека. При этом инверторы и аккумуляторы необходимо менять каждые 15–20 лет.

Специалисты уже приступили к реализации первого проекта строительства новой солнечной электростанции в Краснодарском крае — местного сельхозпроизводителя планируется оснастить системой батарей суммарной мощностью в 200 КВт.

Битва за гектары

Традиционно под станцию в 1 МВт требуется 2–3 га земли, отметил генеральный директор АО «Белгородский институт альтернативной энергетики» Владимир Бредихин. Решение использовать солнечные панели на основе технологии PERC с довольно высоким КПД должно уменьшить срок окупаемости солнечных электростанций и повысить привлекательность технологии для потребителей.

Панели Майминской солнечной электростанции в Республике Алтай

Фото: РИА Новости/Александр Кряжев

Однако некоторые эксперты выразили сомнение в целесообразности установки солнечных батарей прямо на территории сельскохозяйственных полей, поскольку это может усложнить уход за оборудованием.

Во время вспашки, культивирования, уборки урожая и других сельскохозяйственных работ, в ходе которых используется техника, будет происходить сильное запыление панелей, что неизбежно приведет к снижению эффективности их работы, — считает заведующая кафедрой «Электрические станции, сети и системы электроснабжения» Южно-Уральского государственного университета Ирина Кирпичникова. — В результате поверхность батарей нужно будет регулярно чистить, что может стать достаточно сложной задачей, учитывая высоту их расположения.

По расчетам специалистов, срок строительства одной солнечной станции (в зависимости от размера участка) составит от одной недели до месяца — без учета времени на доставку оборудования. При этом ее цена для удаленных регионов во множестве случаев не превысит стоимости подключения к электрической сети или установки автономного дизельного генератора сопоставимой мощности, обещают разработчики.

Частная электростанция

Доступность солнечной электростанции можно повысить также благодаря отказу от использования дорогостоящих аккумуляторов (обычно на них уходит половина стоимости системы), наладив поставку излишков вырабатываемой энергии в общую сеть. Однако пока эту возможность нельзя реализовать из-за отсутствия необходимой законодательной базы.

— Судя по характеристикам проекта, при установке новой электростанции мы могли бы получать со своих 2 га 3 МВт электроэнергии, однако для растениеводства такие мощности излишни, — отметил глава одного из хозяйств станицы Казанская (Кавказский район Краснодарского края) Виктор Коломийцев. — Думаю, более актуально это будет для хозяйств, которые совмещают выращивание растений с птицеводством и содержанием скота, поскольку это требует больших затрат электричества. Также установка большого количества батарей может быть интересна, если появится возможность продавать излишки энергии в общую сеть, как это делают фермеры в Германии и Франции.

Панели Майминской солнечной электростанции в Республике Алтай

Фото: РИА Новости/Александр Кряжев

Как писали «Известия», в прошлом году Минэнерго разработало законопроект о частной «зеленой» микрогенерации. Согласно предложениям ведомства, монтировать солнечные панели и ветряные установки смогут только собственники домов. Энергию с них они будут продавать так называемым гарантирующим поставщикам — это основные энергосбытовые компании регионов. Таких поставщиков обяжут заключать с жителями договоры купли-продажи электричества. В документе сказано, что таким образом они возместят теряющуюся при передаче по сетям энергию. По оценкам экспертов, создание таких частных электростанций окупится как минимум за пять лет в Южном федеральном округе, где пасмурных дней меньше, и за 7–8 лет в регионах Поволжья и Сибири. По мнению аналитиков, процесс развития возобновляемых источников энергии в России во многом будет зависеть от дальнейшего удешевления оборудования и темпов роста цен на электричество. Законопроект о частной «зеленой» микрогенерации в конце прошлого года был направлен в Госдуму, в первом чтении он пока не рассматривался.

ЧИТАЙТЕ ТАКЖЕ

В солнечную энергетику приходит металлоорганика | Статьи

Мир болен гелиоэнергетикой. Солнечные электростанции (СЭС), гелиопанели на крышах домов, питающие всю бытовую электронику, транспорт на солнечной энергии — это уже не только перспективные исследования, но реальные направления бурно развивающейся промышленной отрасли. Причем Россия в этой области не только не отстает, но прорвалась на самый передний край. Сегодня «Известия» рассказывают о том, что заставляет солнечную энергетику развиваться с головокружительной скоростью, какие перемены нас ждут в жилищном строительстве, из чего будут сделаны солнечные батареи будущего.

Прообразом идеального мира альтернативной энергетики будущего сегодня считается германская Бавария. Солнечная батарея установлена там на крыше каждого дома, а хозяин, который не хочет пользоваться гелиоэнергией, платит отдельный немаленький сбор за эту прихоть. Излишки энергии каждое баварское домохозяйство отдает в общую электрическую сеть и даже зарабатывает на этом.

В Германии обязанность граждан пользоваться солнечной энергией уже закреплена законодательно, но и другие европейцы не отстают. На наших глазах в развитых странах всего мира происходит стремительный переход от топливной энергетики, расходующей природные ископаемые, к использованию возобновляемой энергии, прежде всего солнечной. Совокупная мощность СЭС в мире растет экспоненциально. Рынок требует всё больше и больше солнечных батарей.

Еще несколько лет назад основными производителями гелиопанелей считались Япония, США и некоторые страны Европы. Но сейчас подавляющая часть производства солнечных батарей сосредоточилась в Китае: эта страна долгое время занималась сознательным отраслевым демпингом и добилась успеха на этом пути. Лишь два завода по производству солнечных батарей сохранились в Европе: один в Италии, другой — в России. Завод по производству солнечных батарей компании «Хевел» находится в городе Новочебоксарске и производит как классические солнечные модули, устанавливаемые на ровную поверхность, так и полугибкие и гибкие элементы, которые можно встраивать в любые конструкции.

— По совокупности природно-климатических факторов потенциал развития солнечной энергетики в России в разы превышает запланированные показатели, — рассказал «Известиям» генеральный директор «Хевел» Игорь Шахрай. — Центральная часть России по уровню инсоляции (количеству солнечного облучения) ничем не уступает Германии, — европейскому лидеру в области солнечной энергетики. А огромные территории Урала, Сибири и Дальнего Востока по этому показателю значительно превосходят южноевропейские регионы. Не забудем и про юг России. Волгоградская, Ростовская, Астраханская области, Краснодарский край, Кавказ необыкновенно привлекательны для развития солнечной энергетики: в этих регионах количество солнечных дней в году достигает трех сотен.

По оценке Игоря Шахрая, российские производители, при поддержке на внутреннем рынке, могли бы обеспечить от 1 до 5% мирового производства солнечных модулей, несмотря на чрезвычайно острую конкуренцию в мире.

— Еще два года назад наша страна сильно отставала по эффективности и стоимости новых разработок в области солнечной энергетики, — рассказал «Известиям» директор Научно-технического центра тонкопленочных технологий в энергетике Дмитрий Орехов. — Но благодаря государственной программе поддержки возобновляемой энергетики, вызвавшей в нашей стране стремительный рост производства солнечных модулей, возник спрос на разработку качественно новых технологий и поиск новых материалов.

Несгибаемый кремний

Гелиоэнергетику по технологическому признаку принято делить на два направления — фотовольтаику и концентраторную солнечную энергетику. Последняя означает преобразование энергии светила в электрическую опосредованно, с применением теплового носителя — например, воды. Нагревание носителя с помощью отраженных солнечных лучей приводит в движение генерирующие установки.

Но магистральное направление современной солнечной энергетики — фотовольтаика, технология непосредственного преобразования энергии в электрическую. Она основана на так называемом фотовольтаическом эффекте: при попадании света на некоторые полупроводниковые структуры между их частями возникает разность потенциалов, которую можно использовать для получения электрического тока. Именно этот принцип лежит в основе работы абсолютного большинства СЭС и домашних преобразователей солнечной энергии.

Материалов для фотовольтаики предложено великое множество, но пока самым главным остается кремний — тот самый, который используется для изготовления электронных микросхем. Кремниевая фотовольтаика, опять же, бывает очень разной, но 90% рынка занимают сегодня фотоэлектронные устройства, построенные на кремниевых гетероструктурах: на тонкую подложку из кристаллического кремния наносится кремний аморфный, который хорошо поглощает свет. Между слоями этого бутерброда возникает p-n-переход, как в транзисторе, который с помощью энергии света собирает электроны (отрицательные заряды) в верхнем слое, а дырки (положительные заряды) — в нижнем. Остается только снять это напряжение с помощью электродов и подать его в аккумулятор, накапливающий электроэнергию.

КПД таких батарей, то есть та доля солнечной энергии, которую с их помощью удается превратить в электрическую, составляет сейчас в лабораторных условиях 25–26%, а в реальных коммерческих устройствах — 16–20%. Это очень много: никакая другая технология фотовольтаики к этим показателям пока даже не приблизилась.

Но КПД — не единственный ключевой показатель для солнечных батареек: не менее важна стоимость квадратного метра готового модуля. Для современной батареи, изготовленной по описанной технологии, она составляет в среднем $50–60. Впрочем, основателю компании SolarCity Элону Маску удается продавать сделанную по той же технологии кровлю для «солнечной крыши» аж по $200 за 1 кв. м — такова сила маркетинга.

Утонченные технологии

Главный недостаток описанной кремниевой — мейнстримной — технологии: солнечные батареи получаются очень хрупкими. Панели могут легко треснуть при сгибе или ударе, поэтому для их установки необходимы специальные жесткие алюминиевые рамы и прочный крепеж. Это здорово ограничивает область применения кремниевой фотоэнергетики.

Поэтому пришлось изобрести солнечные батареи второго поколения — основанные на так называемых тонкопленочных технологиях. Ученым удалось найти такие фотоэлектрические материалы, которые можно напылять на гибкую подложку, сгибать ее, придавать ей любую форму без ущерба для функциональности.

Одним из таких материалов оказался классический полупроводник арсенид галлия. Он дает высокий — до 30% — КПД, но увы, чрезвычайно дорог: $30–50 тыс. приходится заплатить за квадратный метр батарейки на его основе. Подобные цены могут устроить разве что космическую отрасль, где крайне важна эффективная солнечная энергетика, а экономия имеет меньшее значение.

Пришлось искать что-нибудь подешевле. Нашли два неорганических соединения — кадмий-теллур и селенид меди-индия-галлия (CIGS). Они дают сравнительно невысокий КПД — 10–15% (в лаборатории — до 20%). Но зато — при возможности их напыления на тонкие пленки — они феноменально экономичны: в полтора раза дешевле кремниевых!

Это второе поколение солнечных батарей — CIGS и кадмий-теллур — уже продается и занимает сейчас те 10% рынка, которые не добирает кремний. Но беда этих технологий в том, что кадмий-теллур токсичен, а индий и селен трудно утилизируются. Поэтому тонкопленочные солнечные батареи — любимая добыча гринписовцев и других защитников природы.

Органический подход

И тут на сцену выходит третье поколение солнечных батарей — устройств, основанных на органических материалах. Им нет еще и 10 лет, они нигде пока не производятся в промышленных количествах. Но динамика научных исследований в этой области позволяет вполне уверенно говорить о том, что будущее фотовольтаики — за третьим поколением, и в первую очередь за фотоэлектрическими преобразователями на основе материала под названием перовскит.

Этот металлорганический полупроводник обладает уникальными оптоэлектронными свойствами: под действием света в нем возникают свободные заряды — положительные (дырки) и отрицательные (электроны). Слой перовскита помещают между двумя транспортными слоями, один из которых отфильтровывает электроны и передает их на катод, другой выделяет дырки и отдает на анод. Так между катодом и анодом возникает электрическое напряжение, которое передается в цепь.

Первый такой элемент был создан японскими учеными в конце первого десятилетия нашего века. Он прожил не более получаса и имел КПД всего 3%.

— В процессе изучения данного соединения и улучшения архитектуры самого перовскита учеными всего мира удалось поднять КПД до 22% менее чем за 10 лет, и потолок еще не достигнут, — рассказал «Известиям» руководитель лаборатории перспективной солнечной энергетики Национального исследовательского технологического университета МИСиС Альдо ди Карло. — У кремния на достижение КПД более 20% ушло лет 40–50.

Стоимость ватта энергии для кремниевых солнечных батарей составляет примерно полдоллара. Ожидается, что для перовскитной фотовольтаики этот показатель составит менее 20 центов. Побеждают перовскиты и по стоимости квадратного метра солнечной панели: менее $20 против $50–60 для кремния.

Перовскитная фотовольтаика сочетает высокий КПД с возможностями тонкопленочных технологий: фотоэлектрический слой можно напылять практически на что угодно, печатая солнечные батареи, как на струйном принтере. Одна беда: перовскиты всё еще остаются недостаточно стабильными. Молекула перовскита быстро распадается под воздействием света. Сейчас срок жизни высокопроизводительной солнечной батареи на основе перовскита составляет не более года.

— Теперь нужно заниматься инженерией молекулы, искать оптимальный состав материала, — пояснил «Известиям» ведущий инженер лаборатории перспективной солнечной энергетики Данила Саранин.

Он напомнил, что когда разрабатывались органические светодиоды OLED, установленные теперь в каждом смартфоне, их срок службы поначалу измерялся чуть ли не секундами. Потом довели его до минут, часов, суток. Сейчас он составляет уже несколько лет. А ведь перовскитная фотовольтаика развивается намного более быстрыми темпами, чем технологии OLED.

По мнению Данилы Саранина, ожидать выхода перовскитных — дешевых, эффективных и технологичных — солнечных батарей на рынок можно уже в начале 1920-х годов, и это будет означать революцию в гелиоэнергетике.

Революция эта коснется в первую очередь градостроительства. Технология печати фотоэлектрических элементов на гибких подложках позволит буквально облепить жилое или офисное здание солнечными батареями со всех сторон. Причем не только снаружи, но и изнутри: энергию внутреннего освещения тоже можно использовать повторно. Если, например, обклеить стены офиса солнечными пленками, как обоями, то вырабатываемой энергии хватит на питание беспроводных устройств, всевозможных датчиков и даже на подзарядку телефонов.

На фасадах же зданий будут развешаны солнечные батареи, как рекламные баннеры. Окна зданий тоже превратятся в солнечные панели: со стороны они будут выглядеть как тонированное стекло, но эта тонировка в дневное время будет производить электроэнергию, достаточную для ночного освещения.

Справка «Известий»

Сегодня суммарное производство солнечной энергии в мире превышает 400 ГВт. В течение следующих пяти лет этот показатель, по прогнозам экспертов, достигнет 1 тераватт (1000 гигаватт). Два ключевых фактора — снижение себестоимости выработки солнечной электроэнергии и повышение эффективности солнечных модулей — сохранят тренд на стремительный прирост новых мощностей солнечной генерации.

 

В России, благодаря государственной программе развития возобновляемых источников энергии, уже построены станции, мощностью более 250 МВт, а ежегодный прирост новых мощностей солнечной генерации составляет порядка 240 МВт. Таким образом к 2024 году в России будут построены солнечные электростанции мощностью 1,7 ГВт.

По оценке директора информационно-аналитического центра «Новая энергетика» Владимира Сидоровича, к 2050 году в России 20% электроэнергии будет вырабатываться СЭС и солнечными батареями.

ЧИТАЙТЕ ТАКЖЕ

 

Ученые повысили эффективность солнечных батарей — Энергетика и промышленность России — № 06 (386) март 2020 года — WWW.

EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 06 (386) март 2020 года

Возобновляемые источники энергии становятся устойчивым трендом в мировой электроэнергетике. По данным BloombergNEF, в 2019 году рынок ВИЭ вырос на 44 %, а в ряде стран доля «зеленой» энергии уже достигает 20‑30 % в общем объеме энергопотребления. Значительная часть выработки возобновляемой энергии приходится на электростанции, преобразующие солнечный свет в энергию, и этот сегмент ВИЭ продолжает расти. В 2019 году объем продаж солнечных панелей превысил 121 ГВт, в этом году они могут увеличиться еще на 60 ГВт, по данным PV InfoLink. При этом пять лет назад суммарная мощность всех солнечных батарей в мире не превышала 50 ГВт, а десять лет назад составляла всего около 1 ГВт.

В конструкции большинства применяемых преобразователей массового производства используются неорганические полупроводниковые материалы на основе кремния с КПД около 20 %. Еще большая эффективность (до 40 %) получена для каскадных преобразователей, которые используются для энергоснабжения космических аппаратов, но их производство обходится в несколько раз дороже, чем выпуск солнечных панелей наземных электростанций. Каскадные панели, в которых каждый фотоактивный слой поглощает свою часть солнечного спектра, остаются лучшим вариантом для снабжения космического аппарата энергией из года в год. Ежегодный объем производства гетероструктурных космических батарей измеряется тысячами кв. метров, в то же время выпуск солнечных панелей – сотнями миллионов кв. метров.

Усилия разработчиков во всем мире направлены на получение новых и доступных перспективных материалов для фотовольтаики, включая органические и наногибридные полупроводники. Один из многообещающих вариантов повышения эффективности солнечных батарей – использование гетероструктурных элементов из арсенида галлия и родственных ему соединений группы А3В5. Такие солнечные элементы впервые в мире были предложены и созданы в Физико-техническом институте им. А. Ф. Иоффе еще в 1969 году. Полупроводниковые соединения А3В5, которые образуются в результате взаимодействия элементов III и V Периодической системы, обеспечивают более широкий выбор основных полупроводниковых параметров, ширины запрещенной зоны и подвижности носителей заряда по сравнению с элементарными полупроводниками.

Группа исследователей из Университета ИТМО, Академического университета им. Ж. И. Алферова РАН и ФТИ им. А. Ф. Иоффе РАН показали, что структуры A3B5 можно вырастить на относительно дешевой кремниевой подложке, сократив стоимость многокаскадного солнечного элемента.

По словам заведующего лабораторией возобновляемых источников энергии Академического университета и соавтора научной работы к.ф.‑м.н. Ивана Мухина, главная сложность синтеза полупроводниковых соединений на кремниевой подложке состоит в том, что полупроводник должен обладать таким же параметром кристаллический решетки, как у кремния.

– К сожалению, полупроводников, отвечающих этому требованию, немного, – сообщил ученый. – К примеру, фосфид галлия (GaP) не очень подходит для создания солнечных элементов, так как плохо поглощает солнечный свет. Но вот если взять GaP и добавить азот N, мы получим раствор GaPN. Уже при малых концентрациях N данный материал становится прямозонным и хорошо поглощает свет, при этом может быть интегрирован на кремниевую подложку. И кремний является не просто фундаментом, на который синтезируется фотоматериал, – кремний сам может выступать одним из фотоактивных слоев солнечного элемента, поглощающим свет в инфракрасном диапазоне.

В экспериментальных условиях ученым удалось получить верхний слой солнечной батареи на кремниевой подложке и создать прототип батареи. Потенциальную эффективность новой батареи ученые оценили в 40 %, что в 1,5 раза выше кремниевых аналогов.

Проведенное исследование является начальным этапом на пути к разработке технологии выращивания материалов с прямой запрещенной зоной на основе GaP для фотонных и фотоэлектрических применений, говорится в публикации для Solar Energy Materials and Solar Cells.

Одним из первых идея совмещения A3B5 структур и кремния была озвучена нобелевским лауреатом Жоресом Ивановичем Алферовым, отмечает Иван Мухин. Напомним, известный ученый оценивал теоретическую эффективность преобразования солнечной энергии на основе системы гетероструктур с большим количеством p-n переходов на уровне 86 %. Он полагал, что в ближайшие 10‑15 лет фотоэлектроэнергетика станет экономически выгодной, а к середине XXI века может вытеснить углеводородную и атомную энергетику.

Мнение


Евгений Теруков, заместитель генерального директора Научно-технического центра тонкопленочных технологий в энергетике:


– Теоретически добиться высокой эффективности солнечных элементов можно, и работы в этом направлении ведутся по всему миру. Однако зачастую практический процесс получения сложен и, что самое главное, трудно масштабируем. Для большой энергетики нужны гигаватты энергии, и практическая эффективность технологии определяется не только энергоэффективностью, но и стоимостью каждого ватта.


К примеру, разработки, которые ведет НТЦ тонкопленочных технологий, касаются самой эффективной на сегодня гетероструктурной технологии солнечного элемента на основе кремния. В рамках этой технологии уже реализованы лабораторные образцы фотоэлектрических панелей с КПД более 26 %, а на промышленной линии чувашского предприятия «Хевел» освоен серийный выпуск панелей с КПД более 23 %. Кремний обладает теоретическим пределом КПД на уровне 29 %, но мы связываем его дальнейшее увеличение с разработкой тандемного солнечного элемента на основе кремния и перовскита. Перовскитные технологии активно развиваются и дают надежду на рост эффективности до 40 %. Эта технология хорошо встраивается в гетероструктурный процесс получения кремниевых фотоэлектрических панелей и является экономически более оправданной.

российских ученых предлагают технологию удешевления высокоэффективных солнечных элементов

Группа петербургских ученых предложила и экспериментально опробовала технологию изготовления высокоэффективных солнечных элементов на основе полупроводников A3B5, интегрированных на кремниевую подложку, что в будущем может повысить эффективность существующих однопереходных фотоэлектрических преобразователей. в 1,5 раза. Развитие технологии прогнозировал лауреат Нобелевской премии Жорес Алферов.Результаты были опубликованы в журнале Solar Energy Materials and Solar Cells .

Сегодня, в связи с быстрым истощением запасов углеводородного топлива и растущей озабоченностью проблемами окружающей среды, ученые уделяют все больше внимания развитию так называемых «зеленых технологий». Одна из самых популярных тем в этой сфере — развитие технологий солнечной энергетики.

Однако более широкому использованию солнечных панелей препятствует ряд факторов.Обычные кремниевые солнечные элементы имеют относительно невысокий КПД — менее 20%. Более эффективные технологии требуют гораздо более сложных полупроводниковых технологий, что значительно увеличивает стоимость солнечных элементов.

Петербургские ученые предложили решение этой проблемы. Исследователи из Университета ИТМО, Санкт-Петербургского академического университета и Института Иоффе показали, что структуры A3B5 можно выращивать на недорогой кремниевой подложке, что снижает стоимость многопереходных солнечных элементов.

«Наша работа сосредоточена на разработке эффективных солнечных элементов на основе материалов A3B5, интегрированных на кремниевую подложку», — комментирует Иван Мухин, научный сотрудник Университета ИТМО, заведующий лабораторией Академического университета и соавтор исследования. «Основная трудность в эпитаксиальном синтезе на кремниевой подложке состоит в том, что осаждаемый полупроводник должен иметь тот же параметр кристаллической решетки, что и кремний. Грубо говоря, атомы этого материала должны находиться на том же расстоянии друг от друга, что и атомы кремния.К сожалению, есть несколько полупроводников, отвечающих этому требованию, например, фосфид галлия (GaP). Однако он не очень подходит для изготовления солнечных элементов, поскольку плохо поглощает солнечный свет. Но если мы возьмем GaP и добавим азот (N), мы получим раствор GaPN. Даже при низких концентрациях N этот материал демонстрирует свойство прямой полосы и хорошо поглощает свет, а также имеет возможность встраиваться в кремниевую подложку. В то же время кремний не просто служит строительным материалом для фотоэлектрических слоев — он сам может действовать как один из фотоактивных слоев солнечного элемента, поглощая свет в инфракрасном диапазоне.Жорес Алферов одним из первых озвучил идею объединения структур ASB5 и кремния ».

Работая в лаборатории, ученым удалось получить верхний слой солнечного элемента, интегрированный на кремниевую подложку. С увеличением количества фотоактивных слоев эффективность солнечного элемента растет, так как каждый слой поглощает свою часть солнечного спектра.

На данный момент исследователи разработали первый небольшой прототип солнечного элемента на основе A3B5 на кремниевой подложке.Сейчас они работают над созданием солнечного элемента, который состоял бы из нескольких фотоактивных слоев. Такие солнечные элементы будут значительно эффективнее поглощать солнечный свет и вырабатывать электричество.

«Мы научились выращивать самый верхний слой. Эта система материалов потенциально может также использоваться для промежуточных слоев. Если вы добавите мышьяк, вы получите сплав четвертичного GaPNAs, и из него можно будет создать несколько переходов, работающих в разных частях солнечного спектра. выращены на кремниевой подложке.Как было показано в нашей предыдущей работе, потенциальная эффективность таких солнечных элементов может превышать 40% при концентрации света, что в 1,5 раза выше, чем у современных Si-технологий », — заключает Иван Мухин.

###

Артикул: Дворецкая Лилия Николаевна, Большаков Алексей Дмитриевич, Можаров Алексей Михайлович, Соболев Максим Сергеевич, Кириленко Демид Анатольевич, Баранов Артем Иванович, Михайловский Владимир Михайловский, Неплох Владимир Васильевич, Морозов Иван Алексеевич, Федоров Владимир Васильевич , Иван Сергеевич Мухин, «Фотоэлектрический прибор на основе GaNP, интегрированный на Si-подложку», Солнечные энергетические материалы и солнечные элементы , 2020

Университет ИТМО (г.Санкт-Петербург) — национальный исследовательский университет и высшее учебное заведение номер один в России в области информационных и фотонных технологий. Университет является лидером российской программы академического превосходства «Проект 5-100».

ИТМО — альма-матер победителей множества международных соревнований по программированию, таких как ICPC (команда ИТМО — единственный в мире семикратный чемпион ICPC), Google Code Jam, Facebook Hacker Cup, Yandex Algorithm, Russian Code Cup и Topcoder Open .Приоритетные области исследований университета включают информационные технологии, фотонику, робототехнику, квантовые коммуникации, химию растворов и современные материалы, трансляционную медицину, урбанистику, искусство и науку и научную коммуникацию.

В 2016 году Университет ИТМО получил медаль ЮНЕСКО «За развитие нанонаук и нанотехнологий» за уникальную среду, объединяющую науку, образование и инновации.

С 2016 года Университет ИТМО постоянно входит в 100 лучших университетов мира в области компьютерных наук согласно предметному рейтингу Times Higher Education (THE).В 2019 году университет дебютировал в 100 лучших университетов мира в области автоматизации и управления и укрепил свои позиции в области нанотехнологий (топ-300) и материаловедения (топ-400) в Глобальном рейтинге академических предметов (GRAS) Шанхайского рейтинга ( Академический рейтинг университетов мира, ARWU).

Согласно предметному рейтингу Quacquarelli Symonds (QS) за 2019 год, Университет ИТМО входит в число 300 лучших университетов мира в области инженерии и технологий, физики и астрономии; он также стал единственным российским университетом, вошедшим в предметную группу QS Art & Design (200 лучших университетов).

В 2019 году Университет ИТМО вошел в топ-500 высших учебных заведений мира по версии THE и QS World University Rankings, а также представлен в 13 предметных рейтингах, опубликованных ARWU, THE и QS.

ЭТО БОЛЬШЕ, чем УНИВЕРСИТЕТ!

Заявление об отказе от ответственности: AAAS и EurekAlert! не несут ответственности за точность выпусков новостей, размещенных на EurekAlert! участвующими учреждениями или для использования любой информации через систему EurekAlert.

российских ученых представили новый процесс производства солнечных элементов III-V — pv magazine International

Исследователи интегрировали полупроводники A3B5 на кремниевую подложку в прототип солнечного элемента и утверждают, что этот метод может позволить производить солнечные элементы III-V с эффективностью преобразования около 40%.

Эмилиано Беллини

Исследователи из Российского университета ИТМО в Санкт-Петербурге испытывают полупроводниковые соединения A3B5 при производстве многопереходных солнечных элементов III-V.

Материалы A3B5 представляют собой семейство полупроводников, включая арсенид галлия (GaAs), арсенид индия (InAs), фосфид галлия (GaP), фосфид индия (InP), антимонид галлия (GaSb) и антимонид индия (InSb), которые используются в качестве основных материалы для электронных и оптоэлектронных приложений.

Команда Университета ИТМО сообщает, что они впервые изготовили верхний слой небольшого лабораторного прототипа солнечного элемента, в котором материалы A3B5 интегрированы на кремниевую подложку.Они утверждают, что нововведение может привести к созданию высокоэффективных солнечных элементов при значительно более низких затратах, поскольку кремниевая подложка, используемая в их устройстве, была намного дешевле, чем материалы, используемые в солнечных элементах IIV-V, названных так в честь групп периодической таблицы, соответствующих элементам. занимать.

Идеальное соответствие

Исследователи заявили, что эпитаксиальный синтез на кремниевой подложке — сложный производственный процесс, поскольку осажденный полупроводник должен иметь тот же параметр кристаллической решетки, что и кремний.«Грубо говоря, атомы этого материала должны находиться на том же расстоянии друг от друга, что и атомы кремния», — сказали они.

GaP — полупроводник, отвечающий этим требованиям, но исследователи заявили, что его свойства по улавливанию света ограничены. Однако соединение фосфида галлия в сочетании с азотом проявляет свойство прямой полосы и сильные свойства улавливания света, а также подходит для интеграции на кремниевую подложку. «При этом кремний не просто служит строительным материалом для фотоэлектрических слоев — он сам может выступать в роли одного из фотоактивных слоев солнечного элемента, поглощая свет в инфракрасном диапазоне», — отмечает команда Университета ИТМО. сказал.

Добавление слоев

Ученые заявили, что эффективность их солнечных элементов повышается по мере добавления дополнительных фотоактивных слоев, и они утверждают, что полупроводник A3B5 также может использоваться для промежуточных слоев. Они считают, что потенциальная эффективность таких солнечных элементов может превысить 40%, если они будут использоваться с концентрирующей фотоэлектрической технологией.

Результаты были представлены в статье Фотоэлектрическое устройство на основе GaNP, интегрированное на подложку Si , опубликованном в Solar Energy Materials and Solar Cells , а также на веб-сайте ScienceDirect.

Арсенид галлия и другие материалы III-V являются одними из наиболее известных с точки зрения потенциала эффективности для солнечных элементов, но до сих пор стоимость ограничивала их нишевыми приложениями, такими как питание спутников и дронов.

Этот контент защищен авторским правом и не может быть использован повторно. Если вы хотите сотрудничать с нами и хотели бы повторно использовать часть нашего контента, свяжитесь с нами: [email protected].

Солнечные батареи достигают предела. Эти кристаллы могут это изменить.

Когда в конце марта администрация Байдена объявила об инициативе на 128 миллионов долларов по сокращению затрат на солнечную энергию, значительная часть этих денег пошла на исследования материалов, названных в честь малоизвестного русского геолога и дворянина XIX века: Льва Перовски.

Среди перечисленных проектов: 40 миллионов долларов на исследования и разработки так называемых перовскитных материалов, которые ученые используют, чтобы раздвинуть границы того, насколько эффективными и адаптируемыми могут быть солнечные элементы.

И хотя перовскиты не являются чем-то новым — они были впервые обнаружены на Урале в России в 1839 году, и они довольно распространены, — их недавнее применение в солнечной энергетике породило надежду на то, что люди будут использовать их для лучшего использования тысяч мегаватты энергии солнца, падающего на Землю каждый час.

«Перовскиты, я бы сказал, это одна из самых интересных возможностей для солнечных элементов в ближайшем будущем», — сказал Дэвид Митци, профессор машиностроения и материаловедения в Университете Дьюка, который изучал материалы с 1990-х годов.

Любая новая солнечная энергетическая технология должна конкурировать с кремниевыми солнечными элементами, которые используются уже более 50 лет, сказал Митци. Но перовскиты обладают потенциалом как для повышения эффективности кремниевых ячеек, так и, возможно, для прямой конкуренции с ними: «Я думаю, что определенно есть возможности.”

Эффективность — лишь одна из характеристик. Перовскитные элементы могут быть легко изготовлены из различных материалов, вырабатывающих электричество, и при гораздо более низких температурах — и, следовательно, потенциально более низких затратах — чем кремниевые элементы. Но прежде чем они смогут полностью заменить кремний, необходимо решить проблему стабильности и долговечности перовскитных ячеек.

Ученые открыли целый класс перовскитных материалов, которые имеют определенную структуру, включающую три различных химических вещества в кубической форме кристалла.Несколько лет назад они осознали, что некоторые перовскиты являются полупроводниками, например кремний, используемый в электронике. Но только в 2009 году исследователи обнаружили, что перовскиты также можно использовать для создания солнечных элементов, которые превращают солнечный свет в полезное электричество.

Первые перовскитные элементы имели очень низкий КПД, поэтому большая часть падающего на них солнечного света не использовалась. Но они быстро улучшились.

«Эффективность, с которой солнечные элементы, содержащие эти перовскитные материалы, преобразуют солнечный свет в электроны, выросла с невероятной скоростью, до такой степени, что теперь эффективность приближается к эффективности кремниевых солнечных элементов в лаборатории», — сказала Линн Лу. профессор химической инженерии в Принстонском университете и директор Центра Андлингера по энергии и окружающей среде.«Вот почему мы так рады этому классу материалов».

Перовскитные солнечные элементы также могут быть изготовлены относительно легко — в отличие от кремниевых элементов, которые необходимо очищать при очень высоких температурах и поэтому для их производства требуется много энергии. Перовскиты могут изготавливаться в виде тонких листов при низких температурах или в виде чернил, которые можно эффективно «печатать» на подложках из других материалов, таких как гибкие рулоны пластика.

Это может привести к их использованию на поверхностях, где кремниевые солнечные элементы не будут быть практичными, например, снаружи автомобилей или грузовиков; или они могут быть даже напечатаны на ткани для питания носимой электроники.Другой вариант — нанести тонкие пленки перовскита на оконные стекла, чтобы они пропускали большую часть света, а часть его использовали для выработки электроэнергии.

Но одно из наиболее многообещающих применений перовскитных ячеек — объединить их с кремниевыми элементами, чтобы они использовали больше солнечной энергии, чем только кремний. Лучшие кремниевые элементы приближаются к своей теоретической максимальной эффективности около 29 процентов. Но перовскитные элементы можно настроить для выработки электричества на длинах волн света, которые кремниевые элементы не используют, и поэтому покрытие кремниевых солнечных элементов полупрозрачными пленками перовскитных элементов может преодолеть этот фундаментальный предел.

Физик Генри Снайт из Оксфордского университета, ведущий исследователь перовскитных солнечных элементов, видит в этом способ объединить промышленное господство кремния с технологическими преимуществами перовскитов. Он считает, что «тандемные» кремниевые и перовскитные элементы с эффективностью выше 40 процентов могут получить широкое коммерческое распространение в течение 10 лет, и что вскоре за ними могут последовать многослойные элементы с эффективностью более 50 процентов.

Потенциал перовскитных солнечных панелей также привлек внимание правительства как здесь, так и за рубежом.Помимо создания новых коммерческих возможностей для американских компаний, перовскиты могут стать относительно недорогим способом для солнечной энергетики бросить вызов ископаемым видам топлива для производства электроэнергии. «Я думаю, что у многих из нас есть стремление к тому, чтобы технология действительно начала решать некоторые проблемы изменения климата, которые необходимо решить к 2050 году», — сказал физик Джо Берри, который возглавляет исследования солнечных перовскитов в Национальной лаборатории возобновляемой энергии в Голден, Колорадо.

Перовскитовые солнечные элементы по-прежнему сталкиваются с проблемами, и ключевой из них является проблема стабильности.Частично из-за того, что перовскитовые ячейки просты в изготовлении, они также быстро разрушаются от влажности и тепла. Некоторые экспериментальные перовскитные ячейки оставались стабильными в течение десятков тысяч часов, но им еще предстоит пройти долгий путь, чтобы соответствовать 25 или 30 годам использования кремниевых элементов, сказал Снайт.

Некоторые из наиболее многообещающих перовскитных материалов для солнечной энергетики также содержат свинец, который может выделяться в окружающую среду при разложении перовскитных элементов. Исследователи изучают альтернативы перовскитам на основе свинца, такие как перовскиты на основе олова, и аналогичные кристаллические структуры, содержащие другие, более безопасные вещества.

«Я думаю, что впереди нас ждут некоторые проблемы», — сказал Лу. «Будет ли [перовскиты] играть значительную роль, зависит от того, сможем ли мы преодолеть эти проблемы».

Том Меткалф

Том Меткалф пишет о науке и космосе для NBC News.

Новое поколение солнечных панелей создается в Россия

Кредит: CC0 Public Domain

Совместными усилиями российских ученых из Южно-Уральского государственного университета и Института органической химии им. Н.Д. Зелинского РАН разрабатываются материалы для солнечных батарей нового поколения на основе органических фотосенсибилизаторов.Будут получены более эффективные и простые в изготовлении экологически чистые устройства для производства энергии.

Постоянные потребности человечества в альтернативных и возобновляемых источниках энергии заставили ученых всего мира сегодня создавать эффективные преобразователи солнечного света в электричество. Особое внимание специалистов уделяется достижению этой цели с помощью фотоэлектрических устройств. Следовательно, экологически чистые фотоэлектрические устройства основаны на использовании органических молекул в качестве основных компонентов, и их преимуществами являются высокая эффективность, простота изготовления элементов и относительно низкая стоимость.Органические фотосенсибилизаторы играют в таких устройствах ключевую роль, определяющую их эффективность.

«Поиск новых эффективных органических сенсибилизаторов остается важной и современной задачей, ориентированной на решение проблемы перехода на экологически чистую и ресурсосберегающую энергию. Среди широкого разнообразия органических соединений, таких как красители, способные сенсибилизировать фотоэлектрические устройства, как полимерные соединения и небольшие отдельные молекулы интенсивно изучались.В настоящее время не существует строгой системы для прогнозирования эффективности фотоэлектрического устройства в зависимости от структуры красителя.На него влияет целый комплекс различных факторов. Разработка нового семейства эффективных фотосенсибилизаторов приведет к тому, что устройства на их основе будут иметь высокие значения эффективности преобразования света, что делает их перспективными для практического использования », — говорит доктор химических наук, профессор Олег Ракитин.

Солнечные элементы из монокристаллического и поликристаллического кремния первого поколения в настоящее время доминируют на рынке солнечных элементов, на долю которых в 2010 г. приходилось 89% доли рынка.Тем не менее кремниевые технологии имеют ряд существенных недостатков, препятствующих их широкому использованию. Кремний высокой чистоты стоит дорого, а кремниевые фотоэлементы должны иметь большую толщину из-за плохого поглощения света. Органические красители намного дешевле своих кремниевых аналогов. Их изготовление потенциально проще, а разнообразие конструкций практически не ограничено. Кроме того, сенсибилизированные органическими красителями солнечные элементы (SCNS) имеют высокие коэффициенты оптического поглощения и относительно необычайную фотоэлектрическую эффективность, что делает эту технологию наиболее перспективной.

Одним из ключевых направлений исследований в этой области является улучшение структуры сенсибилизатора, который сегодня разрабатывается в двух категориях: металлокомплексы полипиридина и неметаллические органические красители. Первая группа фокусируется на комплексах рутения, которые демонстрируют хорошую эффективность (более 10%), высокое значение тока и широкий диапазон длин волн поглощения фотонов, однако недостатки этих красителей заключаются в их чрезмерных и ограниченных ресурсах рутения. В связи с этим необходимы исследования в области более дешевых неметаллических органических красителей, чтобы превзойти по свойствам рутениевые сенсибилизаторы.

Таким образом, основная цель проекта — разработать стратегию синтеза органических сенсибилизаторов — важнейших компонентов эффективных фотоэлектрических устройств. Результаты исследования откроют для себя применение не только в создании солнечных панелей. В результате на основе новых красителей будут разработаны органические светодиоды со спектральными характеристиками свечи. Такие безобидные светодиоды имеют низкую цветовую температуру; они не представляют опасности возгорания или возгорания. Создание таких органических светодиодов превзойдет мировой уровень.

Предоставлено Южно-Уральским государственным университетом

Цитата :
В России создают солнечные панели нового поколения (14 октября 2019 г.)
получено 5 июня 2021 г.
из https://sciencex.com/wire-news/332489021/a-new-generation-of-solar-panels-is-created-in-russia.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие
часть может быть воспроизведена без письменного разрешения.Контент предоставляется только в информационных целях.

Строится первый в России завод по производству тонкопленочных солнечных элементов в Саранске — Пресс-центр

Россия сделала еще один шаг к тому, чтобы сделать альтернативные виды энергии доступными для обычных потребителей. Саранск, столица Мордовии, вскоре станет центром производства инновационных солнечных панелей, которые можно легко интегрировать в различные типы материалов, используемых для покрытия крыш и даже фасадов зданий.Из этих панелей можно сделать гибкую черепицу и мягкие кровельные материалы, такие как рубероид, а также облицовочную плитку, которая начнет вырабатывать электричество для владельцев здания, а не просто нагреваться на солнце. Группа РОСНАНО делает возможным преобразование любого здания в небольшую электростанцию ​​без необходимости установки тяжелых кремниевых батарей на крыше.

Республиканский Центр нанотехнологий и наноматериалов, входящий в инвестиционную сеть Группы РОСНАНО — Фонд инфраструктурных и образовательных программ, заключил договор со своим шведским партнером, компанией Midsummer, на поставку производственной линии для производства встроенная солнечная панель.Это первый заказ по соглашению о разработке гибких несиликоновых фотоэлектрических устройств в России и Евразийском экономическом союзе, подписанному между Группой РОСНАНО и Ивановым летом 2019 года. Стоимость оборудования будет в пределах стандартной номенклатура производственных линий этого типа — от 3,5 до 5 млн долл. США.

«Мы очень рады, что наконец-то стали частью российского рынка по производству интегрированных солнечных панелей. Мы с нетерпением ждем первых поставок панелей российского производства на европейский рынок, так как в Европе спрос превышает текущие производственные мощности Midsummer », — заявил Свен Линдстрём , генеральный директор шведской компании.

Оборудование производственной линии производится на фабрике Midsummer в Ярфалле, недалеко от Стокгольма, и будет доставлено на фабрику Stilsan в Саранске к концу 2020 года. Новое предприятие в настоящее время готовит производственные помещения — площадью почти 1000 кв. территория Технопарка Мордовия. С нуля монтируются все инженерные сети, обустраиваются чистые помещения. Управлять предприятием будут Центр нанотехнологий и наноматериалов Республики Мордовия и компания Solartek, входящая в группу ТехноСпарк, которая с 2015 года продвигает солнечные кровельные решения на основе тонкопленочных фотоэлектрических панелей.

Этот объект запускается для удовлетворения спроса на интегрированные солнечные крыши в коммерческом секторе. Мы предлагаем уникальные продукты — ряд различных кровельных материалов, содержащих встроенные солнечные элементы. Технология Midsummer идеально подходит для этой цели. Мы надеемся, что благодаря передаче технологий и локализации производства гибких солнечных элементов в Саранске мы сможем развивать бизнес по производству солнечных крыш в России и за рубежом », — сказал Дмитрий Крахин, , директор Solartek.И он считает возможным, что в будущем, когда в России полностью заработает система зеленых тарифов, спрос на солнечные крыши среди владельцев частных домов будет расти.

Завод «Стилсан» будет производить солнечные панели и модули по перспективной технологии тонкопленочного селенида меди, индия, галлия (CIGS). Средний КПД составляет 15%, но модули также смогут работать в условиях рассеянного солнечного света и в пасмурную погоду. Планируемая производственная мощность — 10 МВт в год.

Основным рынком сбыта планируемой продукции будут сегменты коммерческого строительства и ремонта в России и других странах Евразийского экономического союза (Армения, Беларусь, Казахстан и Кыргызстан). Но предприятия в других странах также проявляют интерес к продвижению солнечных элементов и модулей, которые будет производить Саранский завод. Интерес к гибким интегрированным модулям быстро растет в мировом секторе солнечной энергетики. Крупнейшие мировые производители строительных материалов (полимеров, стекла и стали) усиленно работают над разработкой решений, в которых используются интегрированные фотоэлектрические элементы.

Поставка оборудования позволит передать в Россию уникальную технологию — производство интегрированных несиликоновых фотоэлектрических элементов. В будущем Фонд инфраструктурных и образовательных программ может инвестировать в дальнейшее развитие отрасли и обновление приобретенных технологий с помощью новых российских инноваций в отрасли.

Российский рынок солнечной энергии

Российская Федерация планирует расширить и диверсифицировать использование возобновляемых источников энергии при производстве электроэнергии.В соответствии с текущими планами и политикой правительства к 2030 году на возобновляемые источники энергии будет приходиться почти 5% от общего потребления электроэнергии в стране. Более того, согласно оценкам Международного агентства по возобновляемым источникам энергии (IRENA), возобновляемые источники энергии могут составлять более 11% энергобаланса России. Чтобы использовать этот потенциал, необходимо к 2030 году инвестировать 300 млрд долларов в сектор возобновляемой энергетики.

Номер ссылки

Фонд инфраструктурных и образовательных программ создан в 2010 г.211-ФЗ «О реорганизации Российской корпорации нанотехнологий». Фонд нацелен на развитие инновационной инфраструктуры в сфере нанотехнологий и реализацию образовательных и инфраструктурных программ, уже начатых РОСНАНО.

Высшим коллегиальным органом управления Фондом является Наблюдательный совет. Согласно Уставу Фонда, в компетенцию Наблюдательного совета, в частности, входят вопросы определения приоритетных направлений деятельности Фонда, а также его стратегии и бюджета.Председателем Правления — коллегиального органа управления — является Председатель Правления ООО «УК« РОСНАНО » Куликов Сергей Владимирович .

* * *

Midsummer — ведущий разработчик и поставщик передовых решений в области солнечной энергии для производства и установки гибких тонкопленочных солнечных панелей. Компания производит оборудование для производства солнечных элементов, а также фотоэлектрические решения, интегрированные в здания (BIPV).

Запатентованная технология летнего солнцестояния основана на процессе быстрого производства гибких тонкопленочных солнечных элементов с использованием напыления слоев CIGS.

Акции компании (MIDS) торгуются на Nasdaq First North Stockholm.

Для получения дополнительной информации посетите midsummer.se

* * *

Центр нанотехнологий Республики Мордовия y и наноматериалов является членом инвестиционной сети, созданной Фондом инфраструктуры и образовательных программ, который является занимается созданием, а затем продажей новых производств в сырьевых отраслях. Сетевой подход к организации наноцентров позволяет сконцентрировать разработки и инфраструктуру в одном наиболее подходящем месте, чтобы получить доступ к нескольким экосистемам региона одновременно.Он специализируется в основном на таких областях, как силовая электроника, светотехника, приборостроение и нанотехнологии продукции для строительной отрасли.

Более подробную информацию о компании можно найти на сайте cnnrm.ru.

Старая скала может привести к солнечным элементам следующего поколения

После 170-летней задержки открытие странной металлической породы, обнаруженной на Урале в России в 1839 году, вызвало мировую гонку технологий за более дешевую, более эффективный солнечный элемент.Это может серьезно подорвать мировой рынок солнечной энергии, на котором в настоящее время доминирует Китай.

Особенности породы привели к пониманию того, что речь идет не о конкретном минерале, а о классе минералов, которые имеют общую кристаллическую структуру кубов и алмазоподобных форм. Структура была названа в честь Льва Перовского, российского специалиста по минералам, который первым ее изучил. Он умер в 1856 году. Позже исследователи обнаружили, что месторождения полезных ископаемых, содержащие структуры перовскита, были дешевыми и широко распространенными во всем мире.

Но ученые не знали, что с ними делать до 2009 года, когда японский исследователь обнаружил, что перовскит может поглощать солнечный свет и превращать его в электричество. Он был удивительно похож на готовые кремниевые элементы. Только перовскитные ячейки отбирали более сильные фотоны солнечного света и обещали быть намного дешевле в приготовлении, чем кремниевые ячейки, для производства которых требуется 14 этапов, включая приготовления, требующие использования высокой температуры, дорогостоящей автоматизации и чистых помещений.

Потенциально более дешевая стоимость материалов и производства привела к появлению первой волны коммерческих предприятий по производству перовскита, в том числе по крайней мере два, которые формируются в Соединенных Штатах.Они нацелены на продукты, которые могли бы бросить вызов доминированию Китая на мировом рынке солнечной энергии и помочь распространить производство по всему миру.

«Удивительно, как быстро это произошло», — сказал Мэтью Бирд, химик и старший научный сотрудник Национальной лаборатории возобновляемых источников энергии в Боулдере, штат Колорадо, одного из по меньшей мере 20 исследовательских центров и университетов по всему миру, которые работают с перовскитом. .

Он сказал, что, хотя экспериментаторы все еще борются с проблемой стабильности перовскитных солнечных элементов, которая до сих пор давала им более короткий срок службы, чем кремниевые солнечные элементы, есть способы решить эту проблему.Бирд и другие исследователи NREL считают, что новые кристаллические материалы могут стать основой для более конкурентоспособной промышленности США и связанных с ней рабочих мест.

По данным NREL, в настоящее время солнечная промышленность в США, которая изобрела фотоэлектрическую (PV) электроэнергию на солнечных батареях, создает в США 73000 рабочих мест, а количество сотрудников в ней растет в 17 раз быстрее, чем экономика США.

Но Китай, после шестилетнего финансового спринта по предоставлению щедрых государственных субсидий своему рынку солнечной энергии и своей промышленности, остается далеко впереди.Его солнечные продукты на основе кремния стали достаточно дешевыми и надежными, чтобы контролировать 70 процентов мировой торговли солнечными модулями. Между тем, согласно новому исследованию Стэнфордского университета ( Climatewire , 22 марта), Соединенные Штаты производят около 1 процента.

В исследовании также отмечалось, что перовскитовый солнечный элемент «вызвал огромный интерес среди исследователей солнечной энергии за последние четыре года» и что его эффективность в производстве электричества из энергии солнечного света — на основе лабораторных экспериментов — выросла с 15% до 22% всего за три года, достигнув уровня, конкурентоспособного с модулями, произведенными в Китае.

Kodak перепрофилирован

В интервью E&E News Борода из NREL сказал, что одним из «критических факторов» этой надвигающейся рыночной встряски «является возможность быть дешевле кремния». Другой, как он отметил, заключался в том, что химики, как и он сам, видят множество потенциальных способов настроить перовскитные клетки на более высокий уровень эффективности.

Третий новый фактор, разрабатываемый исследователями из Стэнфордского университета и других организаций, — это использование перовскитных ячеек для работы в «тандеме» с коммерческими кремниевыми ячейками, спаривая их вместе, чтобы быстро повысить их эффективность.

Возможно, самое амбициозное предприятие в США по производству перовскита выросло из оборудования, первоначально разработанного Eastman Kodak, — для нанесения на фотопленку тонких покрытий, которые образовывали мили целлулоидной пленки, чувствительной к свету. Технология высокоскоростной печати «с рулона на рулон», которую компания Kodak первой использовала для доминирования на мировом рынке фотопленок, используется компанией для покрытия пластиковых пленок тонким слоем материалов на основе перовскита.

Как только его компания в лабораторной лаборатории определила, что элементы на основе перовскита будут работать, Стефан ДеЛука, президент и генеральный директор Energy Materials Corp., расположенная в Рочестере, штат Нью-Йорк, в бизнес-парке Eastman, ранее бывшем Kodak Park, где начинающие компании используют бывшие производственные мощности и здания Kodak для разработки новых продуктов.

Когда-то в Kodak работало 15 000 человек. Компания ДеЛуки имеет доступ к своим машинам для разработки производственного процесса для изготовления наиболее распространенного солнечного продукта — квадратных солнечных модулей, которые устанавливаются на крышах домов, магазинов и промышленных крыш.

Как объяснил ДеЛука, оборудование ускорит процесс изготовления основного перовскитового материала для превращения солнечного света в электричество.Затем на него будет нанесено защитное покрытие из стекла и инкапсулировано для защиты от воды и других веществ.

«Я бы сказал, что если вы сделаете их правильно, они будут стабильными», — сказал он, отметив, что кремниевые солнечные модули также должны быть тщательно изготовлены и защищены. «Вы должны быть обеспокоены взаимодействием с другими материалами».

ДеЛука сказал, что, насколько ему известно, ни одна компания не начала коммерческий процесс использования перовскита для производства модулей в больших количествах.«Мы еще не достигли этого, но мы находимся в процессе расширения».

Но он полон надежд, потому что «оборудование, которое вам нужно, намного дешевле, чем то, что вам нужно для кремния. Это значительно снизит стоимость ватта ».

Компания ДеЛука разработала этот процесс совместно с Цзиньсонгом Хуангом, доцентом кафедры механики и обработки материалов в Университете Небраски. Хуанг возглавляет группу исследователей, которые разрабатывают недорогие технологии изготовления перовскитных модулей.

Хуанг, получивший гранты от Министерства энергетики и Национального научного фонда, объяснил, что его конечная цель — не конкурировать с кремниевыми модулями, а создать продукт, достаточно дешевый, чтобы конкурировать с ископаемыми видами топлива, такими как уголь и природный газ.

«Кремний слишком дорог, чтобы конкурировать с ископаемым топливом и углем», — сказал он недавно в интервью Nebraska Today , которое публикуется Университетом Небраски. «Прежде чем солнечные элементы получат широкое распространение, нам необходимо снизить стоимость вдвое, чтобы быть конкурентоспособными с другими источниками энергии.”

Хуанг, который переводит свои исследования в Университет Северной Каролины, подсчитал, что дальнейшие разработки могут поднять уровень эффективности пленок с перовскитным покрытием до 25 процентов «в течение трех-пяти лет».

Добавление перовскита в кремний

Прошлым летом на базе лабораторий Стэнфордского университета было создано второе коммерческое предприятие в США. Он называется Iris PV, и его управляющий директор Колин Бейли считает, что его компания может быстрее достичь более высокой солнечной эффективности, сочетая перовскитные солнечные элементы со стандартными кремниевыми элементами.Работая в тандеме, два устройства могут извлекать больше энергии из солнечного света. Одна австралийская лаборатория недавно объявила, что эффективность такого массива достигает 26,4%.

Прыгнув с 10 процентов до этого уровня эффективности за семь лет, по его словам, перовскит стал самой быстро совершенствующейся фотоэлектрической технологией в истории. «Это определенно очень близко к тому, на что способен лучший кремний», — сказал Бейли, который разрабатывает бизнес-модель, нацеленную на использование тандемных модулей в качестве пути к более дешевой солнечной энергии.

Изготавливая перовскитовые элементы в своей лаборатории, он надеется произвести линейку более мелких, нишевых продуктов, таких как тандемные солнечные элементы для питания спутников, и удовлетворить потребность военных США в более мелких и легких системах генерации энергии в полевых условиях.

Если это предприятие сработает, Iris PV стремится изменить индустрию солнечных модулей, покупая дешевые коммерческие кремниевые солнечные элементы, предназначенные для модулей, которые в настоящее время устанавливаются на крышах домов. Компания завершила бы модули, вставив второй слой перовскитного материала, тонкое покрытие, нанесенное на стеклянную панель, которое будет служить внешней капсулой для тандемного солнечного элемента.По мнению Бейли, два слоя, работающие вместе, будут конкурировать с наиболее эффективными кремниевыми элементами на коммерческом рынке за небольшую часть их стоимости.

Готовый продукт, упакованный вместе на небольшом, относительно простом модульном заводе, расположенном недалеко от места установки модулей, будет беспроигрышным предложением. Как объяснил Бейли, они помогут производителям солнечных модулей конкурировать с ископаемым топливом, предоставят установщикам панелей более дешевые продукты для продажи и помогут распространить растущую солнечную промышленность в США.С. и во всем мире.

«Это наше долгосрочное видение», — сказал Бейли.

Есть и другие игроки, которые разделяют схожие взгляды на глобальный бизнес по производству солнечной электроэнергии на основе перовскита. Одна из них — Oxford Photovoltaics Ltd., компания, возникшая из Оксфордского университета в Англии, которая недавно заключила соглашение с производителем солнечных панелей об открытии коммерческого предприятия по производству солнечных панелей на перовските в Германии.

Это предприятие получило финансовую поддержку от Statoil Energy Ventures, дочерней компании норвежской Statoil ASA, которая является одним из крупнейших производителей нефти и газа в мире.

Гарет Бернс, управляющий директор дочерней компании, сказал, что компания хочет дополнить свой нефтегазовый портфель «прибыльными возобновляемыми источниками энергии». В заявлении для прессы он описал это предприятие как «прекрасную возможность стать частью технологического развития, которое может повлиять на следующее поколение солнечных элементов».

Перепечатано с сайта Climatewire с разрешения E&E News. E&E ежедневно освещает важные новости энергетики и окружающей среды на сайте www.eenews.net.

Реальность, лежащая в основе следующего звездного материала солнечной энергии

Исследователь на экспериментальном заводе Oxford PV в Бранденбурге-на-Хафеле, Германия, испытывает солнечную батарею промышленного размера, изготовленную путем наслоения перовскита на кремний Фото: Oxford PV

Отель Henn na в Нагасаки, Япония, не стесняется опробовать футуристические технологии. В 2015 году он утверждал, что является первым в мире отелем, укомплектованным роботами, но сократил автоматизацию после того, как его роботы-консьержи разочаровали некоторых клиентов и не сократили расходы.Сейчас Henn na тестирует еще одну привлекательную новинку: с декабря ее вывеска питается от изогнутой стены из прототипов солнечных батарей, установленных на территории отеля. В элементах, созданных польской начинающей фирмой Saule Technologies, используются тонкие микрометровые пленки из материалов, называемых перовскитами, которые всего за десять лет превратились из лабораторного любопытства в новую яркую перспективу солнечной энергетики.

Япония — не единственное место, где за последние 18 месяцев солнечные элементы, содержащие перовскит, вышли за пределы лабораторий.Сауле повесила их высоко в офисном здании недалеко от своей штаб-квартиры в Варшаве; ведущая британская фирма в этом секторе Oxford PV испытывает их на экспериментальной производственной площадке в Бранденбурге-на-Гавеле, Германия; китайские фирмы Microquanta Semiconductor и WonderSolar проводят полевые испытания в городах Ханчжоу и Эчжоу. Более десятка компаний по всему миру (см. «Солнечные надежды»), представляющих собой смесь признанных гигантов электроники и стартапов, надеются вскоре продавать панели, сделанные из перовскитов.По словам Маргарет Гальярди, аналитика BCC Research в Веллесли, штат Массачусетс, в производстве материалов для продуктов задействованы еще десятки людей.

На протяжении десятилетий плиты кристаллического кремния преобладали в солнечной промышленности. Другие материалы, которые можно наслаивать в тонкие пленки, такие как селенид меди, индия, галлия (CIGS) и теллурид кадмия (CdTe), заняли менее 5% рынка, потому что их трудно сделать такими же эффективными или дешевыми, как обычные солнечные панели. . Другое дело — перовскиты.Их производство должно быть дешевле, и они должны казаться впечатляюще эффективными при преобразовании солнечного света в электричество — по крайней мере, в лабораторных условиях.

Однако даже самые ярые сторонники технологии не думают, что перовскитные элементы быстро вытеснят кремний. Вместо этого некоторые фирмы накладывают слои недорогих кристаллов перовскита поверх кремния, чтобы создать «тандемные» устройства, которые преобразуют больше солнечной энергии, чем любой другой материал в отдельности. Oxford PV, например, намеревается в этом году производить тандемы, которые, по его словам, будут на одну пятую эффективнее, чем коммерческие солнечные панели высшего класса.Если бы эта технология была распространена на всю отрасль, общая мощность солнечных панелей, производимых ежегодно, увеличилась бы на ту же пропорцию. По словам Криса Кейса, технического директора фирмы, за этим последуют дальнейшие улучшения. И это может помочь ускорить внедрение технологии, которая по-прежнему обеспечивает всего 2% мировой электроэнергии. «Миру нужно столько солнечной энергии, сколько мы можем получить», — говорит Кейс.

Saule и другие фирмы тем временем стремятся покрыть пластик перовскитными пленками для создания легких и гибких продуктов.Хотя эти устройства менее эффективны, их можно использовать там, где не могут быть тяжелые панели со стеклянной подложкой, например, на крышах автомобилей, лодок, самолетов, на слабых крышах, в съемных фотоэлектрических жалюзи или даже на парусах, которые служат солнечными батареями.

Но есть еще фундаментальные вопросы о новых материалах. Неясно, будут ли перовскиты достаточно прочными, чтобы выдерживать дождь, ветер, сильное солнце и отрицательные температуры в течение 25 лет, которые обещают силиконовые панели. Большинство перовскитных устройств содержат свинец, что вызывает опасения по поводу токсичности, и исследователи не уверены, что результаты лабораторных исследований пригодны для коммерческого использования.Между тем, обычные солнечные панели становятся все дешевле и эффективнее. Из-за этого новому материалу трудно превзойти их и ускорить борьбу с изменением климата. «Я не стала бы класть все яйца в эту корзину для решения мировых проблем, но я также не исключаю этого», — говорит Сара Курц, эксперт по фотоэлектрической энергии из Калифорнийского университета в Мерседе.

Рыбалка для эффективности

В исследовательской лаборатории Oxford PV, в 15 минутах езды к северу от Оксфордского университета, рабочие с белыми халатами и сеткой для волос проверяют блестящие черные клетки размером 1 квадратный сантиметр.Они изучают новые комбинации материалов, которые более эффективно преобразуют свет в электричество. Готовый продукт, к которому они стремятся, лежит рядом на скамейке: большой солнечный модуль, покрытый перовскитом, размером со стандартный кремниевый элемент, 243 см 2 , расположенный между двумя листами стекла. «Мы измерили сотни тысяч устройств, — говорит Кейс.

У исследователей есть много вариантов, потому что «перовскит» описывает большую вселенную кристаллических структур (см. «Перовскиты на Солнце»).Первоначально этот термин относился к минералу оксида титана кальция (CaTiO 3 ), который был обнаружен на Урале в России в 1839 году и назван в честь русского минералога Льва Перовского. Но перовскиты в солнечных элементах имеют мало общего с этим минералом, только их структура ABX 3 .

Предоставлено: структура перовскита адаптирована из C. Eames et al. Природа Коммуна . 6 , 7497 (2015)

С точки зрения солнечной энергии, важным качеством этих материалов является то, что падающий свет переводит их отрицательно заряженные электроны в более высокоэнергетические состояния, оставляя после себя вакансии или «дыры», которые действуют как положительно заряженные частицы.Если эти несущие заряд электроны и дырки могут избежать рекомбинации достаточно долго, чтобы достичь электродов выше и ниже перовскитной пленки, тогда может течь электрический ток.

Первые фотоэлектрические устройства на перовските, о которых было сообщено в 2009 году, преобразовали всего 3,8% энергии, содержащейся в солнечном свете, в электричество. Но поскольку кристаллы так легко изготовить в лаборатории — смешивая недорогие солевые растворы вместе, чтобы сформировать тонкую пленку, исследователям быстро удалось улучшить их характеристики. К 2018 году эффективность выросла до 24.2%, установленный исследователями из США и Южной Кореи, что близко к лабораторному показателю кремния в 26,7% 1 . Теоретический предел для обоих материалов составляет чуть менее 30%, но типичные коммерческие силиконовые панели колеблются на уровне 15–17%, а наилучший — около 22%. К сожалению, рекорды эффективности перовскита устанавливаются на крошечных образцах размером менее 1 см 2 , и производительность не увеличивается. Для сравнения: нынешний рекордный лабораторный кремниевый элемент имел размер 79 см 2 и все еще составлял 26.Эффективность 6% на расстоянии 180 см 2 (см. «Размер имеет значение»).

«Люди еще не продемонстрировали способность создавать высокоэффективные ячейки в формате большой площади», — говорит Курц. Одна из проблем заключается в том, что на больших площадях сложнее получить однородные покрытия. Другой заключается в том, что при работе с крошечными клетками в лаборатории ученые собирают электрический ток, используя прозрачные электродные пленки, которые пропускают много света, но также обладают небольшим сопротивлением, что означает, что они блокируют некоторый ток. В более крупных масштабах это удельное сопротивление становится более серьезной проблемой, поэтому в коммерческих элементах используются более непрозрачные электродные пленки, что снижает эффективность.Например, в международной электронной компании Panasonic исследователи сообщили о перовскитовой ячейке размером 6,25 см 2 с эффективностью 20,6% 2 . Но это упало до 12,6%, когда 35 ячеек были объединены в модуль 412 см 2 3 . Microquanta является сертифицированным мировым рекордсменом по производству перовскитных «мини-модулей» 1 с эффективностью 17,3%, состоящей из семи ячеек площадью около 17,3 см 2 .

Источник: исх. 1

Тем не менее, перовскитовые элементы проще и дешевле в изготовлении, чем кремниевые.Производство кремния начинается с нагрева песка до 1800 ° C. Изготовление плит высокой чистоты может включать растворение материала в соляной кислоте при 300 ° C. Для сравнения, Saule может просто создавать решения, используя струйный принтер для нанесения крошечных количеств материалов на пластиковые пленки. Компания заявляет, что таким образом изготавливала модули умеренно больших размеров (100 см 2 ) с КПД 10%. Некоторые фирмы используют узорчатые валики для нанесения перовскитных чернил. Swift Solar в Сан-Карлосе, Калифорния, пытается объединить два разных типа перовскитных ячеек вместе, чтобы создать легкий тандемный модуль.

Но самым быстрым путем к повышению эффективности могло бы стать добавление в кремний перовскита. В прошлом году Oxford PV сообщила о тандемном элементе размером 1 см 2 с эффективностью 28%, изготовленном путем нанесения слоя перовскита с эффективностью 17% поверх кремния. Перовскит может поглощать более коротковолновый сине-зеленый свет, позволяя кремнию поглощать более длинноволновый и более красный свет. К концу этого года компания нацелена на производство тандемных ячеек коммерческого размера с КПД 27%, превосходящих лучшие кремниевые панели, которые компании-партнеры (которые она не назовет называть) могли бы собирать в модули.По словам Кейса, эти модули станут общедоступными к концу 2020 года. Теоретический предел тандемов составляет 45%, а практическая цель — 35%, говорит Кейс, что будет вдвое ниже эффективности современных коммерческих кремниевых панелей с лучшими характеристиками.

Долго ли они?

Однако основная проблема перовскитов заключается в том, могут ли они прослужить столько же, сколько кремниевые панели, на которые обычно предоставляется 25-летняя гарантия. Стабильность перовскита «должна приближаться к нормам, установленным для кремния», и это «сейчас выглядит все более маловероятным», — говорит Мартин Грин, который исследует перовскиты и другие солнечные материалы в Университете Нового Южного Уэльса в Сиднее, Австралия.Его команда работает над материалами с двумя крупными китайскими производителями солнечных панелей, Trina Solar и Suntech.

Перовскиты чувствительны к воздуху и влаге, но это не должно быть серьезной проблемой. В коммерческих солнечных панелях для защиты фотоэлектрические материалы уже заключены в пластик и стекло. Вероятно, это сработает и для большинства перовскитов. Более глубокая проблема заключается в самих кристаллах. В некоторых случаях структуры смещаются при нагревании перовскитов; изменение обратимо, но влияет на производительность.

Исследователи много работали над решением этой проблемы: в Швейцарском федеральном технологическом институте в Лозанне (EPFL) группа под руководством Михаэля Гретцеля разработала структуры с тремя или четырьмя различными катионами «А» в структуре ABX 3 . Команда объединяет катионы метиламмония и формамидиния с небольшими количествами цезия и рубидия, например, 4 . Комбинация предотвращает структурные изменения, вызванные температурой и влажностью при использовании отдельных катионов.

Другая проблема заключается в том, что когда свет падает на кристаллы перовскита, маленькие анионы «X» могут начать перемещаться внутри структур. Это может произойти, если есть какие-либо зазоры там, где должны быть анионы, что запустит цепочку событий, которые могут изменить состав и эффективность кристалла или привести к отказу устройства. По словам Курца, у большинства солнечных технологий есть некоторые различия в эффективности. «У перовскитов это гораздо больше».

Польская фирма Saule Tech использует струйный принтер для изготовления гибких солнечных модулей на основе перовскита.Кредит: Марек Марзейко

Тем не менее, исследователи добиваются прогресса. «Дела улучшились», — говорит Гретцель. Например, в 2017 году его команда сообщила, что 5 0,16 см 2 перовскитных ячеек с эффективностью более 20% и которые сохранили 95% своей производительности при полном солнечном свете в течение 1000 часов или 41 дня. Он говорит, что его команда удвоила это время по неопубликованной работе.

Полевые испытания

Большинство фирм по производству перовскита не опубликовали свои результаты по стабильности.Но все они говорят, что следуют стандарту сертификации, установленному для кремниевых солнечных панелей, установленному Международной электротехнической комиссией (IEC) в Женеве, Швейцария. Этот стандарт, известный как IEC 61215, включает испытания в помещении, в которых модули нагреваются до 85 ° C в течение 1000 часов при относительной влажности 85%. Панели также подвергаются циклическому изменению температуры от -40 ° C до 90 ° C до 100 раз и даже подвергаются бомбардировке градом.

Если силиконовая панель по-прежнему работает после этих испытаний, предполагается, что она имеет хорошие шансы прослужить 25 лет при обычной погоде.Но поскольку перовскиты обладают нестабильностью, отличной от кремния, они могут пройти эти испытания и все равно потерпеть неудачу в реальном мире. Например, перовскитные модули Microquanta соответствуют стандарту IEC 61215, говорит Буй Ян, вице-президент компании. Тем не менее, полевые испытания в Ханчжоу показывают, что продукты в среднем ухудшаются до 80% от своих первоначальных характеристик в течение 1-2 лет. «По сравнению с сроком службы кремниевых панелей 25–30 лет, это серьезный недостаток», — говорит он. Его соучредитель, Цзичжун Яо, исполнительный директор фирмы, говорит, что новые модули деградируют медленнее, но что еще слишком рано делиться подробностями.

Тандемные модули Oxford PV также прошли испытания на уровне IEC 61215, говорит Кейс. «Значит ли это, что это продлится 25 лет?» — спрашивает он, указывая на ближайший модуль. «Не знаю. Все они являются показателем долговечности. Это хороший показатель, но в конечном итоге их недостаточно ».

Грин говорит, что он согласится с тем, что проблемы со стабильностью будут решены, если перовскитовый модуль появится в верхней половине отраслевого табло, выпущенного норвежской специализированной испытательной компанией DNV.Фирма получает несколько панелей от каждого производителя, проводит их собственные электрические, оптические и температурные тесты и сравнивает результаты. Тесты аналогичны IEC 61215, но предназначены для лучшего определения долговременного ухудшения характеристик. Перовскитовые компании пока не фигурируют в списках.

Свинцовая токсичность

Еще одним потенциальным камнем преткновения для перовскитных клеток является то, что лучшие из них содержат свинец, токсичный металл. Исследователи пробовали альтернативы, такие как олово, но производительность снижалась.Это не означает, что ячейки нельзя использовать. Анализ жизненного цикла тандемных ячеек Oxford PV показывает, что небольшое количество свинца, которое они содержат, не окажет большого влияния на токсичность для окружающей среды в случае его утечки. Анализ также утверждает, что кремниевые элементы в целом оказывают худшее воздействие на окружающую среду из-за ресурсов, используемых при их производстве.

Но некоторые исследователи говорят, что включение свинца исключает идею использования перовскитов в одноразовых изделиях. Гретцель считает, что они могут найти применение на больших солнечных фермах, куда люди редко бывают.«Если кто-то хочет продавать гибкие устройства, он ошибается», — говорит он. «Что произойдет, если ребенок проткнет пластиковую крышку? Нет никаких компромиссов в отношении токсичности свинца ».

Пресс-конференция, посвященная представлению перовскитных ячеек Saule в отеле Henn na в Нагасаки, Япония Фото: Saule Technologies

Сауле возражает против этой точки зрения. «Его легкие печатные модули содержат очень мало свинца», — говорит Конрад Войцеховски, главный научный сотрудник компании. По его словам, даже после того, как инкапсулированные модули оставались замачиваться в воде в течение года, уровень оставшегося свинца «все еще был ниже предельного уровня свинца для питьевой воды Всемирной организацией здравоохранения».А главный технический директор Сауле Ольга Малинкевич, основавшая фирму в 2014 году, когда она защитила докторскую диссертацию, подчеркивает, что продукты будут надежными. «Ребенок не сможет случайно разложить и расслоить перовскитную панель», — говорит она.

Солнечная энергия дешевле?

Для производителей перовскита, которые надеются, что их продукция снизит стоимость солнечной энергии, возникает еще одна проблема: кремниевые панели и так дешевы, и цена падает. «Хотя я считаю, что сектор солнечной энергетики более интересен, чем когда-либо, он не нуждается в техническом прорыве», — говорит Дженни Чейз, руководитель отдела солнечного анализа BloombergNEF в Цюрихе, Швейцария.«Это уже один из самых дешевых источников электроэнергии во многих странах. Технология кристаллического кремния достаточно хороша, и ее трудно превзойти. Перовскиты могут в конечном итоге снизить стоимость на несколько центов за ватт, но это не то, чего нам нужно ждать ».

Случай не согласен. Он утверждает, что тандемные модули его компании будут стоить дороже кремниевых, но более высокая эффективность снизит затраты на производство солнечной энергии на 17–23% через несколько лет. Эта перспектива вызвала интерес у некоторых крупных компаний.В марте Oxford PV получила 31 миллион фунтов стерлингов (39 миллионов долларов США) от фирм, включая китайский гигант по производству ветряных турбин Goldwind; Всего было собрано 76 миллионов фунтов стерлингов.

Хунвэй Хан из Wonder Solar (слева) и исследование EPFL Майкл Гретцель присутствуют на полевых испытаниях стеклянных перовскитных солнечных панелей в Эчжоу, Китай. Фото: Wonder Solar

Между тем, большинство фирм, производящих модули только из перовскита, заявляют, что не ожидают выхода на основной рынок солнечных панелей — по крайней мере, не сразу, — поэтому они сосредотачиваются на легких пленках.Сауле хочет продавать гибкие однослойные перовскитные солнечные пленки в 2021 году, а токийская компания Sekisui Chemical, второй по величине обладатель патентов на перовскит после Oxford PV, планирует продавать гибкие элементы в 2020 году. Она участвует в большом консорциуме с Panasonic и его коллегами. Японский гигант электроники Toshiba.

Некоторые компании уже покинули рынок перовскита. Многонациональная фотографическая фирма Fujifilm является третьим по величине держателем патентов на перовскит в области солнечной энергии. Но после фундаментальных исследований перовскитных солнечных элементов компания больше не занимается разработкой элементов или материалов, из которых они изготовлены, говорит представитель Шохеи Кавасаки.А австралийский разработчик перовскита GreatCell Solar перешел в администрацию в декабре; ему не удалось привлечь достаточно инвестиций для создания прототипа объекта, несмотря на то, что он начал партнерство с одним из крупнейших мировых производителей солнечных панелей, JinkoSolar в Шанхае, Китай.

Эти неудачи намекают на то, что преимущества перовскитов не так просты, как надеялись защитники. И они подчеркивают важность испытаний на открытом воздухе. Гретцель вспоминает, что прошлым летом он посетил испытательный полигон китайской фирмы WonderSolar в Эчжоу, что необходимо гораздо больше.«Наружная температура была 28 ° C, но панели были при 70 ° C. Я вспотел, и панели тоже », — говорит он. «Посмотрим, как они поживают».

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *