профессионал — 353 301 00 13 01 1. Ртутные лампы, люминесцентные ртутьсодержащие трубки отработанные и брак.
Состав по 1-му источнику информации.
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло |
92
|
Металлы |
2
|
Ртуть |
0,02
|
Люминофор |
5,98
|
Источник информации: Методика расчета образования отходов. Отработанные ртутьсодержащие лампы. Санкт-Петербург, 1999 г.
ГОСТ 6825-91 Лампы люминесцентные трубчатые для общего освещения.
Скачать фрагмент документа бесплатно
Посмотреть расчет класса опасности этого состава отхода
Состав по 2-му источнику информации.
Состав отхода:
Наименование компонента
|
Содержание, %
|
Алюминий |
5
|
Люминофор |
3
|
Прочие |
2,3
|
Ртуть |
0,15
|
Свинец |
2,55
|
Стекло |
87
|
Источник информации: ГОСТ6825-74,
ГОСТ-1639-93
Состав по 3-му источнику информации.
Состав отхода:
Наименование компонента
|
Содержание, %
|
Ртуть |
0,02
|
Стекло |
94,42
|
Люминофор |
1,89
|
Сталь |
0,05
|
Медь |
0,16
|
Платинит |
0,06
|
Вольфрам |
0,15
|
Гетинакс |
0,42
|
Латунь |
0,35
|
Мастика |
1,18
|
Алюминий |
1,3
|
Источник информации: Данные завода-изготовителя
Состав по 4-му источнику информации.
Химический состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло |
92
|
Мастика У 9М |
1,3
|
Гетинакс |
0,3
|
Люминофор КТЦ-626-1 |
2,048
|
Алюминий |
1,69
|
Никель металлический |
0,07
|
Pt |
0,006
|
Сu |
0,174
|
Ртуть металлическая |
2,4
|
Вольфрам |
0,012
|
Источник информации: Приказ ГУПР и ООС МПР России по Ханты-Мансийскому автономному округу № 75-Э от 16 июня 2004 г. «Об утверждении примерного компонентного состава опасных отходов, присутствующих в ФККО, которые не нуждаются в подтверждении класса опасности для окружающей природной среды».
Посмотреть расчет класса опасности этого состава отхода
Состав по 5-му источнику информации.
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло |
92
|
Ножки |
4,1
|
Цоколевая мастика |
1,3
|
Гетинакс |
0,3
|
Люминофор |
0,3
|
Al |
1,692
|
Сu |
0,174
|
Ni |
0,068
|
Pt |
0,006
|
W |
0,012
|
Hg |
0,048
|
Источник информации: Методические рекомендации по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных. Санкт-Петербург 1998 г.
Состав по 6-му источнику информации.
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло С 90-1 |
92,3
|
Стекло С 93-1 (ножки) |
2,66
|
Алюминий (цоколь) |
1,19
|
Латунь (штырь) |
0,24
|
Никель (электроды) |
0,15
|
Вольфрам (спираль) |
0,03
|
Мастика |
1
|
Гетинакс |
0,23
|
Ртуть |
0,02
|
Люминофор |
2,18
|
Источник информации: Данные ООО НПК «Меркурий».
Состав по 7-му источнику информации.
Альтернативное название отхода: Отработаные лампы ЛБ 20-2, ЛД 20-2.
Состав отхода:
Наименование компонента
|
Содержание, %
|
Ртуть |
0,06
|
Латунь |
0,65
|
Вольфрам |
0,02
|
Сталь никелированная |
0,07
|
Медь |
0,30
|
Люминофор |
1,63
|
Стекло СЛ-11 |
90,84
|
Мастика |
2,98
|
Алюминий |
2,84
|
Припой оловянно-свинцовый |
0,29
|
Платинит |
0,01
|
Гетинакс |
0,31
|
Посмотреть расчет класса опасности этого состава отхода
Альтернативное название отхода: Отработаные лампы ЛБ 40, ЛД 40.
Состав отхода:
Наименование компонента
|
Содержание, %
|
Ртуть |
0,025
|
Латунь |
0,288
|
Вольфрам |
0,010
|
Сталь никелированная |
0,031
|
Медь |
0,132
|
Люминофор |
1,851
|
Стекло СЛ-11 |
94,113
|
Мастика |
1,720
|
Алюминий |
1,563
|
Припой оловянно-свинцовый |
0,128
|
Платинит |
0,004
|
Гетинакс |
0,135
|
Альтернативное название отхода: Отработаные лампы ЛБ 40-2, ЛД 40-2.
Состав отхода:
Наименование компонента
|
Содержание, %
|
Ртуть |
0,029
|
Латунь |
0,328
|
Вольфрам |
0,012
|
Сталь никелированная |
0,036
|
Медь |
0,151
|
Люминофор |
1,747
|
Стекло СЛ-11 |
94,47
|
Мастика |
1,497
|
Алюминий |
1,426
|
Припой оловянно-свинцовый |
0,146
|
Платинит |
0,004
|
Гетинакс |
0,154
|
Альтернативное название отхода: Отработаные лампы ЛБ 80-7, ЛД 80-7.
Состав отхода:
Наименование компонента
|
Содержание, %
|
Ртуть |
0,021
|
Латунь |
0,242
|
Вольфрам |
0,013
|
Сталь никелированная |
0,026
|
Медь |
0,111
|
Люминофор |
1,946
|
Стекло СЛ-11 |
94,655
|
Мастика |
1,446
|
Алюминий |
1,315
|
Припой оловянно-свинцовый |
0,108
|
Платинит |
0,003
|
Гетинакс |
0,114
|
Источник информации: Письмо ГУП РМ «ЛИСМА» № 602/24-210 от 9.10.2007 г. «О компонентном составе люминесцентных ламп».
Скачать документ бесплатно
Состав по 8-му источнику информации.
Альтернативное название отхода: Отработанные лампы для наружного освещения типа ДРЛ
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
72,56
|
Стекло горелки |
8,26
|
Фарфор |
0,45
|
Слюда |
0,77
|
Мастика |
1,82
|
Железо |
0,3
|
Никель |
4,14
|
Медь |
0,8
|
Латунь |
8,08
|
Свинец |
0,65
|
Ртуть |
0,01
|
Вольфрам |
2,16
|
Источник информации:
Кузьмин Р.С. Компонентный состав отходов. Часть 1: монография / Р.С. Кузьмин. — Казань.: Дом печати, 2007. — 156 с.
Сайт автора книги
Состав по 9-му источнику информации.
Альтернативное название отхода: Отработанные лампы ДРЛ 250 отечественного производства
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
63,6
|
Стекло горелки |
8,26
|
Фарфор |
0,45
|
Слюда |
0,77
|
Мастика |
1,82
|
Железо |
0,3
|
Никель |
4,14
|
Медь |
0,8
|
Латунь |
8,08
|
Свинец |
0,65
|
Ртуть |
0,01
|
Вольфрам |
2,16
|
Альтернативное название отхода: Отработанные лампы ДРЛ 700 отечественного производства
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
71,43
|
Стекло горелки |
12,66
|
Фарфор |
4,91
|
Слюда |
0,50
|
Мастика |
1,01
|
Железо |
0,25
|
Никель |
3,35
|
Медь |
0,41
|
Латунь |
4,58
|
Свинец |
0,25
|
Ртуть |
0,03
|
Вольфрам |
0,34
|
Альтернативное название отхода: Отработанные лампы ДРЛ 1000 отечественного производства
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
71,42
|
Стекло горелки |
14,08
|
Фарфор |
3,93
|
Слюда |
0,50
|
Мастика |
1,04
|
Железо |
0,19
|
Никель |
2,84
|
Медь |
0,19
|
Латунь |
3,95
|
Свинец |
0,22
|
Ртуть |
0,03
|
Вольфрам |
1,40
|
Альтернативное название отхода: Отработанные лампы ДРЛ 125 импортного производства
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
74,20
|
Стекло горелки |
6,54
|
Фарфор |
5,10
|
Мастика |
2,42
|
Железо |
0,24
|
Никель |
5,25
|
Медь |
0,17
|
Латунь |
4,12
|
Свинец |
0,94
|
Ртуть |
0,01
|
Вольфрам |
0,59
|
Альтернативное название отхода: Отработанные лампы ДРЛ 250 импортного производства
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
70,07
|
Стекло горелки |
7,18
|
Фарфор |
9,68
|
Слюда |
0,17
|
Мастика |
0,88
|
Железо |
0,27
|
Никель |
5,01
|
Медь |
0,21
|
Латунь |
5,5
|
Свинец |
0,25
|
Ртуть |
0,01
|
Вольфрам |
0,38
|
Альтернативное название отхода: Отработанные лампы ДРЛ 400 импортного производства
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
73,85
|
Стекло горелки |
8,74
|
Фарфор |
6,93
|
Железо |
0,29
|
Никель |
4,65
|
Медь |
0,24
|
Латунь |
4,17
|
Свинец |
0,16
|
Ртуть |
0,01
|
Вольфрам |
0,42
|
Молибден |
0,14
|
Альтернативное название отхода: Отработанные лампы ДРЛ 1000 импортного производства
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
68,6
|
Стекло горелки |
14,35
|
Фарфор |
3,13
|
Слюда |
0,08
|
Железо |
0,32
|
Никель |
8,4
|
Медь |
0,33
|
Латунь |
2,52
|
Свинец |
0,67
|
Ртуть |
0,01
|
Вольфрам |
1,12
|
Источник информации:
Отчет о научно-исследовательской работе по теме «Изучение номенклатуры ртутьсодержащих отходов в Российской Федерации с целью их паспортизации (поисковая)». НИЦПУРО. — 2000 г.
Скачать фрагмент документа бесплатно
Состав по 10-му источнику информации.
Альтернативное название отхода: Отработанные лампы ДРЛ 250
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
72,56
|
Стекло горелки |
8,26
|
Фарфор |
0,45
|
Слюда |
0,77
|
Мастика |
1,82
|
Железо |
0,3
|
Никель |
4,14
|
Медь |
0,8
|
Латунь |
8,08
|
Свинец |
0,65
|
Ртуть |
0,01
|
Вольфрам |
2,16
|
Источник информации:
ГОСТ 6825-91 (МЭК 81-84). Лампы люминесцентные трубчатые для общего освещения.
Скачать фрагмент документа бесплатно
Альтернативное название отхода: Отработанные лампы ДРЛ 700
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
71,43
|
Стекло горелки |
12,66
|
Фарфор |
4,91
|
Слюда |
0,50
|
Мастика |
1,01
|
Железо |
0,25
|
Никель |
3,35
|
Медь |
0,41
|
Латунь |
4,58
|
Свинец |
0,25
|
Ртуть |
0,03
|
Вольфрам |
0,34
|
Источник информации:
ГОСТ 6825-91 (МЭК 81-84). Лампы люминесцентные трубчатые для общего освещения.
Скачать фрагмент документа бесплатно
Альтернативное название отхода: Отработанные лампы ДРЛ 1000
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
71,42
|
Стекло горелки |
14,08
|
Фарфор |
3,93
|
Слюда |
0,50
|
Мастика |
1,04
|
Железо |
0,19
|
Никель |
2,84
|
Медь |
0,19
|
Латунь |
3,95
|
Свинец |
0,22
|
Ртуть |
0,03
|
Вольфрам |
1,40
|
Источник информации:
ГОСТ 6825-91 (МЭК 81-84). Лампы люминесцентные трубчатые для общего освещения.
Скачать фрагмент документа бесплатно
Альтернативное название отхода: Отработанные лампы ДРЛ 125
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
74,2
|
Стекло горелки |
6,54
|
Фарфор |
5,1
|
Мастика |
2,42
|
Железо |
0,24
|
Никель |
5,25
|
Медь |
0,17
|
Латунь |
4,12
|
Свинец |
0,94
|
Ртуть |
0,01
|
Вольфрам |
0,59
|
Источник информации:
ГОСТ 6825-91 (МЭК 81-84). Лампы люминесцентные трубчатые для общего освещения.
Скачать фрагмент документа бесплатно
Альтернативное название отхода: Отработанные лампы ДРЛ 250 (6)-4
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
70,07
|
Стекло горелки |
7,18
|
Фарфор |
9,68
|
Слюда |
0,17
|
Мастика |
0,88
|
Железо |
0,27
|
Никель |
5,01
|
Медь |
0,21
|
Латунь |
5,5
|
Свинец |
0,25
|
Ртуть |
0,01
|
Вольфрам |
0,38
|
Источник информации:
ГОСТ 6825-91 (МЭК 81-84). Лампы люминесцентные трубчатые для общего освещения.
Скачать фрагмент документа бесплатно
Альтернативное название отхода: Отработанные лампы ДРЛ 400-2
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
73,85
|
Стекло горелки |
8,74
|
Фарфор |
6,93
|
Железо |
0,29
|
Никель |
4,65
|
Медь |
0,24
|
Латунь |
4,17
|
Свинец |
0,16
|
Ртуть |
0,01
|
Вольфрам |
0,42
|
Молибден |
0,14
|
Источник информации:
ГОСТ 6825-91 (МЭК 81-84). Лампы люминесцентные трубчатые для общего освещения.
Скачать фрагмент документа бесплатно
Альтернативное название отхода: Отработанные лампы ДРЛ 1000(6)-3
Состав отхода:
Наименование компонента
|
Содержание, %
|
Стекло колбы |
68,6
|
Стекло горелки |
14,35
|
Фарфор |
3,13
|
Слюда |
0,08
|
Железо |
0,32
|
Никель |
8,4
|
Медь |
0,33
|
Латунь |
2,52
|
Свинец |
0,67
|
Ртуть |
0,01
|
Вольфрам |
1,12
|
Источник информации:
ГОСТ 6825-91 (МЭК 81-84). Лампы люминесцентные трубчатые для общего освещения.
Скачать фрагмент документа бесплатно
устройство, праметры, схема, плюсы и минусы
Современные люминесцентные лампы (ЛЛ) прекрасно справляются с освещением жилых, рабочих и технических помещений большой площади и позволяют снизить общее потребление электричества на 50-83%, уменьшив таким способом счета за коммунальные услуги.
В этой статье рассмотрим рабочие характеристики ЛЛ, их устройство, разберем основные преимущества и недостатки в сравнении с другими типами осветительных приборов. В дополнение приведем тематические фото и схемы, а также видеоролики о принципе работы лампочек люминесцентного типа и особенностях их применения.
Содержание статьи:
Принцип работы и устройство ЛЛ
Люминесцентный прибор представляет собой газозарядный источник света, где в ртутных парах электрический разряд создает интенсивное ультрафиолетовое излучение.
Компактные модули люминесцентного типа имеют стандартный цоколь, благодаря которому становятся удобной заменой ярких, но более энергозатратных ламп накаливания.
Как работает люминесцентная лампочка?
В видимый человеческому глазу свет его преображает специальный состав под названием люминофор, состоящий из галофосфата кальция, смешанного с дополнительными элементами.
После подключения к центральной электросети люминесцентной лампы, внутри стеклянной колбы требуется поддерживать так называемый тлеющий разряд.
Он дает возможность обеспечить свечение люминофорного слоя в постоянном режиме и даже в период кратковременного отключения центрального электропитания.
Раньше классическая лампа люминесцентного типа имела вид запаянной с двух сторон трубки, внутри которой находятся пары ртути. Сейчас приборы выпускаются в более разнообразных формах и конфигурациях
Конструкционные особенности прибора
Традиционная лампа люминесцентного типа — это стеклянный цилиндр с внешним диаметром 12, 16, 26 и 38 мм, обычно представленный как:
- прямая удлиненная трубка;
- изогнутый U-образный модуль;
- кольцо;
- сложная фигура.
В торцевые края герметично впаяны ножки. На их внутренней стороне размещены вольфрамовые электроды, конструктивно напоминающие биспиральные тела накала, встроенные в лампочки «Ильича».
В отдельных типах люминесцентных ламп используются более прогрессивные триспирали, представляющие собой закрученную биспираль. Оснащенные ими приборы имеют повышенный уровень КПД и более низкий порог теплопотери, существенно поднимающие общую эффективность светопотока
С наружной части электродные элементы подпаяны к металлическим штырькам металлического , на которые подается рабочее напряжение.
U-подобные и прямые приборы обычно оснащены цоколями G5 и G13, где буквенная кодировка означает штырьковый тип цокольного элемента, а цифровая показывает, на каком расстоянии друг от друга располагаются рабочие элементы.
Электропроводная среда, располагающаяся внутри стеклянной колбы, обладает отрицательным сопротивлением. Когда между двумя противоположными электродами возникает рост тока, требующий ограничения, оно проявляется и снижает рабочее напряжение.
В схему цепи включения обычной люминесцентной лампочки входит или балластник. Он отвечает за создание высокоуровневого импульсного напряжения, необходимого для корректной активации лампы.
Рисунок показывает внутреннее обустройство лампы люминесцентного типа и наглядно объясняет базовый принцип работы ее основных составных элементов
Помимо этой детали, ЭмПРА комплектуется . Он представляет собой элемент тлеющего разряда, внутри которого располагаются два электрода, окруженные средой инертного газа.
Один из них состоит из биметаллической пластины. В спящем режиме оба электрода находятся в разомкнутом состоянии.
Распространенные виды таких лампочек
Первичная классификация изделий на люминесцентной основе производится по уровню базового давления. Приборы высокого давления используются для осветительных установок большой мощности и наружного уличного освещения.
Лампы низкого давления применяются в быту для подачи света в производственные, технические и жилые помещения различного назначения.
Вид #1 — модули высокого давления
Устройства высокого давления вырабатывают насыщенный светопоток хорошей плотности. Внутренняя поверхность колбового элемента имеет специальное люминофорное покрытие из фторогерманата или арсената магния.
Рабочая мощность таких люминесцентных ламп колеблется в диапазоне 50-2000 Вт.
Ртутные модули высокого давления для корректной работы нуждаются в 220 ваттном номинальном сетевом напряжении. Коэффициент их пульсации обычно составляет от 61 до 74%
Полный розжиг осветительного модуля происходит в течение 3 секунд. Срок службы 80-125-ваттных изделий составляет около 6 000 ч, а лампы от 400 Вт и более могут проработать до 15 000 ч при беспрекословном соблюдении правил эксплуатации, установленных изготовителем.
Вид #2 — изделия низкого давления
ЛЛ низкого давления применяется для обеспечения светопотоком жилых, технических и производственных помещений.
Конструкционно прибор является трубкой из прочного стекла, содержащей внутри аргон под давлением 400 Па и в небольшом количестве ртуть либо амальгаму. На рынке предлагается в самых разнообразных модификациях и оснащается двумя электродными элементами.
Самая низкая температура, которую могут переносить ЛЛ низкого давления, составляет -15 °C. Поэтому для использования на открытых площадках эти источники света считаются неактуальными
Стеклянная колба может иметь самый разный диаметр. Уровень светоотдачи варьируется в зависимости от мощности самого устройства. Для его корректной работы требуется стартер дроссельного типа. Средний срок службы составляет 10 000 часов.
Особенности компактных ЛЛ
ЛЛ компактного типа – это изделия-гибриды, соединяющие в себе некоторые специфические отличительные черты ламп накаливания и характеристики люминесцентов.
Благодаря прогрессивным технологиям и расширившимся инновационным возможностям, имеют небольшой диаметр и некрупные габариты, свойственные лампочкам «Ильича», а также высокий уровень энергоэффективности, характерный для линейки приборов ЛЛ.
ЛЛ компактного типа выпускаются под традиционные цоколи E27, E14, E40 и очень активно вытесняют с рынка классические лампы накаливания за счет обеспечения качественного света при существенно меньшем потреблении электроэнергии
КЛЛ в большинстве случаев оснащаются электронным дросселем и могут использоваться в осветительных приборах специфического типа. Также применяются для замены в новых и раритетных светильниках простых и привычных ламп накаливания.
При всех достоинствах у компактных модулей есть такие специфические недостатки, как:
- стробоскопический эффект или мерцание – основные противопоказания здесь касаются эпилептиков и людей с различными заболеваниями глаз;
- выраженный шумовой эффект – в процессе пролонгированного применения появляется акустический фон, способный вызвать определенный дискомфорт у человека, находящегося в помещении;
- запах – в некоторых случаях изделия издают едкие, неприятные ароматы, раздражающие обоняние.
Последняя позиция чаще наблюдается у безымянных поделок китайского происхождения, а первыми двумя часто страдают даже брендовые приборы, изготовленные согласно всем правилам и современным требованиям. Рейтинг лучших производителей КЛЛ мы привели .
Базовый спектр цветовых температур
Цвет свечения – один из самых важных параметров, напрямую зависящий от состава люминофора, преображающего ультрафиолетовое излучение в свет.
Сегодня к наиболее распространенным относятся 7 определений оттенков потока, вырабатываемого люминесцентными лампами:
- ЛЕБ – естественный белый с заметным холодным оттенком;
- ЛДЦ – натуральный дневной с улучшенным качеством цветопередачи;
- ЛТБ – теплый белый;
- ЛД – традиционный дневной белый;
- ЛБ – классический белый;
- ЛЕЦ – естественный с максимально качественной передачей оттенков;
- ЛХБ – простой холодный белый.
Для жилых помещений, где человек проводит много времени, подходят оттенки теплой гаммы или натуральные дневные лампы с повышенным уровнем цветопередачи.
Белые и дневные тона, как правило, присутствуют в офисных, рабочих, промышленных помещениях, кабинетах и аудиториях. Они способствуют концентрации внимания, повышают мозговую активность и улучшают общую обучаемость и производительность труда.
Самые холодные оттенки применяются в медицинских учреждениях, лабораториях, больницах и технических помещениях. Они придают предметам дополнительную четкость и усиливают остроту зрения.
Люминесценты для мясных витрин продовольственных магазинов отличаются специально подобранным спектром излучения розового цвета. Он подчеркивает естественные оттенки продукции, делая ее более привлекательной в глазах покупателей
Цветовые компоненты, добавленные в люминофор, позволяют получать розовый, голубой, зеленый и другие необычные ламповые оттенки.
Такие приборы используются в дизайнерских, рекламных и коммерческих целях. С их помощью создают оригинальное свечение, необходимое в конкретном отдельно взятом случае.
Больше информации о цветовой температуре света, особенностях восприятия цвета человеком и нюансах выбора мы писали .
Сильные и слабые стороны устройств
Как у любых технических приспособлений, предназначенных для освещения бытовых и рабочих помещений, у люминесцентных ламп имеются свои слабые и сильные стороны.
На основании этой информации можно определить, где разумнее их использовать, а в каких случаях стоит отдать предпочтение источникам света иного плана.
Положительные стороны ламп
Основным преимуществом люминесцентных изделий считается повышенная светоотдача и хороший уровень КПД. Они обеспечивают помещение освещением, не раздражающим глаз, и демонстрируют нормальную выносливость даже в условиях интенсивной эксплуатации.
Модуль примерно в 5 раз превышает базовую мощность обычной лампочки «Ильича». А 20-ваттный люминесцент дает световой поток, равный тому, что обеспечивает лампа накаливания в 100 Ватт
Разнообразные температуры световых оттенков, приближенные по гамме к естественному солнечному свету, позволяют подобрать подходящий осветительный прибор под различные цели и для помещений любого назначения.
Поток света, выдаваемый модулем, получается не направленным, а рассеянным. Спокойное, приятное глазу сияние исходит не только от вольфрамовой нити, располагающейся внутри, но и от всей наружной поверхности колбы.
Это позволяет использовать люминесцентные источники как для создания общего фонового освещения, так и для организации зонального света.
Для применения в местах, где освещение включается автоматически, согласно сигналам датчиков движения, люминесценты не подходят. Они ограничены по допустимому количеству включений за определенный временной период и при слишком частой активации могут выйти из строя
Продолжительность службы люминесцентных изделий варьируется в зависимости от модели и доходит до 20 000 часов или до 5 лет.
Однако, покупателю следует знать, что этот ресурс лампа вырабатывает только при соблюдении таких условий, как:
- наличие достаточного объема качественного электропитания без скачков и перепадов;
- качественный ;
- определенное количество активаций, обычно, не более 2000 за первые 2 года использования, что составляет всего 5 включений в день.
Нарушение этих базовых условий существенно ухудшит эффективность осветительного прибора, и значительно укоротит срок его жизни.
Модули можно использовать для освещения теплиц. Они обеспечивают естественный свет, максимально приближенный к солнечному, не потребляют много электропитания и проявляют хорошую стойкость к перепадам напряжения, характерным для загородных энергоподающих сетей
Уровень энергопотребления у люминесцентов почти в 5 раз ниже, чем у традиционных изделий, поэтому их можно отнести к источникам света.
С их помощью удастся эффективно осветить большое помещение, не расходуя при этом больших денег на коммунальные платежи.
Рабочая температура на поверхности колбы не превышает 50 градусов. Это дает возможность эксплуатировать лампу в помещениях, где к пожарной безопасности предъявляются повышенные требования.
Основные недостатки модулей
Первым большим минусом изделий является излишняя чувствительность к температурным перепадам. Они сильно реагируют на движение ртутного столбика и могут перестать работать при похолодании ниже -20 °C.
Жара, превышающая +50 °C, далеко не лучшим образом сказывается на функционировании и серьезно ограничивает спектр использования этих источников света.
Влаговоспримчивость тоже не относится к плюсам и не позволяет широко применять изделия в ванных комнатах и санитарных помещениях.
Со временем люминофор в ламповых колбах деградирует и спектр излучения изменяется. Параллельно падает уровень светоотдачи прибора и заметно снижается КПД
Иногда к недостаткам причисляется и сам светопоток, имеющий линейчатый, неравномерный спектр, искажающий естественные оттенки находящихся в комнате предметов.
Не все ощущают это визуально, но для тех, кто улавливает этот минус слишком явственно, продаются лампы с люминофором, приближенным к сплошному, более натуральному спектральному цвету. Правда, их светоотдача существенно меньше.
Случаются ситуации, когда люминесценты мерцают с удвоенной частотой питающей сети. Проблема эта решаема некоторым усовершенствованием прибора, в частности, применением с подходящим уровнем емкости сглаживающего конденсатора выпрямленного тока на входе инвертора.
Но то, что производители пытаются сэкономить и не комплектуют приборы конденсаторами необходимой емкости, несколько огорчает.
Бытовые ЛЛ модули лучше всего себя чувствуют, когда температура окружающего воздуха держится в диапазоне от +5 до +35 ˚С. Когда градусник демонстрирует меньшие показатели, пуск устройства существенно затрудняется, а время эксплуатации заметно сокращается
Потребность в дополнительном пусковом устройстве тоже немного снижает популярность ламп. Им обязательно требуется либо чрезмерно шумный и довольно громоздкий дроссель со стартером низкой надежности или более прогрессивный ЭПРА, имеющий функцию корректировки мощности, но при этом стоящий солидных денег.
Еще одно уязвимое место люминесцентов – высокая чувствительность к включению. Во время непосредственной активации лампы на электродах выгорает и осыпается особый состав, который обеспечивает стабильность разряда и защищает внутреннюю вольфрамовую нить от перегрева.
Постоянное включение существенно снижает срок службы прибора. Кроме того, появляется заметное глазу, раздражающее мерцание, а края ламповой колбы темнеют и теряют эстетичность.
Химическая угроза здоровью
Одним из основных недостатков люминесцентных источников света является химическая опасность. В ламповой колбе содержится высокотоксичная ртуть, причем ее количество колеблется от 1 до 70 мг.
Пары этого вещества могут нанести вред здоровью людей, постоянно находящихся в помещениях, освещаемых приборами ЛЛ типа.
Целостность отработавшей лампы нельзя нарушать, иначе токсичная ртуть попадет во внешнюю среду. За несанкционированную утилизацию предусмотрен штраф, поэтому лучше передать изделие в центр, занимающийся переработкой элементов, опасных для природы и человека
Когда модуль выходит из строя, его ни в коем случае нельзя разбивать или отправлять в обыкновенную урну. Его необходимо и правилам, четко описанным в действующем законодательстве.
Например, отвозить на полигоны, где от населения принимают токсичные материалы для их корректного уничтожения или переработки.
Сравнение с другими источниками света
Изделия ЛЛ-типа существенно отличаются как от устаревающих ламп накаливания, так и от прогрессивных светодиодных.
По сравнению с первыми они потребляют в 5 раз меньше электроэнергии, обеспечивая при этом такой же уровень насыщенности светопотока. Зато LED-приборам они несколько уступают по мощности в сочетании с энергопотреблением.
Таблица наглядно в цифрах показывает, насколько выгоднее использовать вместо традиционных лампочек Эдисона более современные источники качественного освещения
Правда, лампа накаливания весь период работы горит с одинаковой интенсивностью, тогда как люминесценты теряют часть насыщенности из-за выгорания внутреннего слоя, отражающего ультрафиолет.
LED-изделия в процессе эксплуатации приобретают некоторую тусклость благодаря деградации рабочих диодов. А в отдельных моделях есть возможность регулировки яркости освещения при помощи диммера.
В лампах накаливания или люминесцентах такая функция не предусмотрена. Но этот удобный режим в LED-приборах не бесплатен и за него придется отдать дополнительную сумму.
По уровню конструкционной хрупкости лампы накаливания и люминесценты схожи, так как имеют стеклянную колбу. Лед-модули в этом плане более устойчивы к ударам и механическим повреждениям. Да и отсутствие внутри каких-либо вредных и токсичных элементов делает их значительно привлекательнее для эксплуатации в домашних условиях.
Самые высокие расходы за весь эксплуатационный период влечет за собой использование ламп накаливания. Люминесценты расходуют энергию в разумных пределах, а светодиоды дают возможность снизить затраты до самых минимальных показателей
Что касается финансовой стороны, то изначально меньше других стоит лампочка накаливания. Однако, учитывая ее рабочий ресурс всего в 1 000 часов, это вряд ли можно считать ярко выраженным достоинством.
Базовая цена люминесцентов выше, однако, и служат они значительно дольше. Как говорят солидные производители, их хватает на 10 000-15 000 часов в том случае, если количество ежедневных активаций не превышает 5-6 раз.
Светодиодные модули могут похвастаться еще лучшими показателями, но и заплатить за это удовольствие придется намного больше, а это не во всех случаях целесообразно. Хотя тенденция замены одних источников света другими, прослеживается повсеместно. О необходимости замены люминесцентных лампочек светодиодными и порядке выполнения этой работы .
Выводы и полезное видео по теме
По какому принципу работают люминесценты. Подробное объяснение всех нюансов функционирования экономичных и энергоэффективных приборов для освещения:
В чем заключаются основные отличия люминесцентных элементов от простых и традиционных ламп накаливания. Сравнение мощности, светопотока и энергопотребления двух современных осветительных изделий:
Что собой представляют компактные энергосберегающие лампочки люминесцентного типа. Как они работают, сколько ватт потребляют и для каких целей используются:
Прибор люминесцентного типа – это практичный аналог классической лампы накаливания. С его помощью можно обеспечить качественным светопотоком помещение любых габаритов, снизив при этом энергопотребление. Прослужит он долго и не доставит владельцам никаких существенных хлопот.
Потом, когда лампы отработают свой срок, их понадобится утилизировать, а взамен купить новые, более прогрессивные модули.
А какой тип лампочек предпочитаете вы и что думаете о лампочках-люминесцентах? Поделитесь с другими пользователями своим мнением, расскажите, в чем вы видите основные плюсы ЛЛ, а что, лично для вас, является существенным недостатком этих приборов.
Если вы владеете хорошими теоретическими знаниями по теме вышеизложенной статьи и хотите дополнить наш материал полезными нюансами, пишите, пожалуйста, свои комментарии в блоке ниже.
Как устроены и действуют люминесцентные лампы?
В сравнении с лампами накаливания люминесцентные экономят расходы на электроэнергию до 80% и служат в 13 раз дольше. Благодаря чему это происходит? Мы расскажем об устройстве и принципе работы ламп дневного света, которые обладают такими привлекательными для потребителей свойствами.
Содержание:
- 1. Люминесцентный свет: используем в офисе, дома и на улице
- 2. Что представляют собой люминесцентные лампы?
- 3. Разновидности моделей
- 4. От чего зависит свет люминесцентных ламп?
Доказано, что вид источника света влияет на работоспособность и эмоциональное состояние человека. Поэтому во всех общественных местах (офисах, разного рода учреждениях, на производстве) необходимо создавать комфортный свет, который не раздражает, не вызывает утомления и в целом сохраняет хорошее самочувствие человека. Требования к рабочему освещению в организациях прописаны в нормативных документах. Если не соблюдать их, возникает риск ухудшения здоровья сотрудников.
Люминесцентный свет: используем в офисе, дома и на улице
Каким же должно быть рабочее освещение, чтобы человек чувствовал себя комфортно? Санитарные правила и нормы рекомендуют люминесцентные лампы. Эти современные источники света мгновенно включаются, не мерцают, не гудят, излучают ровный, мягкий для глаз свет. Их используют даже в учреждениях с высокими требованиями к освещению: школах, детсадах, больницах, администрациях. Сегодня лампы дневного света активно применяют и в жилых домах – для создания как общего освещения, так и акцентной подсветки. Их устанавливают на потолках, а также в настольных лампах и других светильниках. Кроме того, люминесцентные лампы актуальны и на улице – в подсветке витрин и фасадов зданий, в рекламных вывесках. Они используются в специальных целях, например, при исследованиях в ультрафиолетовом свете различных веществ и в целях дезинфекции медицинских кабинетов.
Популярность этих ламп объясняется, в том числе, экономичностью и долговечностью. Все это обусловлено их устройством и принципом действия. Об этом, а также о видах изделий поговорим сейчас.
Что представляют собой люминесцентные лампы?
Колба изделий содержит пары ртути или амальгаму – соединения ртути с другими металлами. В ней же находятся инертные газы, в состав которых могут входить гелий, неон, аргон, криптон, ксенон. Изнутри на сосуд нанесено специальное напыление из кристаллического порошка – смеси галофосфатов кальция с ортофосфатами цинка-кальция. Это вещество получило название люминофор. При подаче электричества в лампе формируется дуговой разряд, и химические элементы начинают взаимодействовать. Создается УФ-излучение, которое не воспринимается глазом человека. Люминофор в зависимости от своего состава превращает его в световой поток определенного оттенка. Таким образом, вы можете выбрать комфортный для глаз свет: холодный белый, теплый белый или нейтральный.
Лампы подключаются к электрической сети с помощью дополнительных приспособлений, которые могут быть встроены в цоколь или приобретаются отдельно. Дело в том, что для их зажигания нужен большой электрический импульс, но сопротивление ламп отрицательное: при включении в сеть ток стремительно возрастает, и напряжение надо ограничить. Для разрешения данного противоречия используются, например, дроссели и электронные балласты. С этой современной пускорегулирующей аппаратурой работа лампы протекает стабильно, увеличивается ее световой поток, не возникает неприятного мерцания и шума.
Разновидности моделей
Колба обычно изготавливается из прозрачного или матового, а также цветного стекла. Лампы могут иметь разные формы и типы цоколей. Предлагаем классификации видов изделий и их сферу применения.
По форме колбы и типу цоколя
Линейные лампы имеют форму прямой трубки, поэтому их еще называют трубчатыми (такое обозначение принято и в ГОСТ). Колбы выпускаются строго заданного диаметра. Каждый вариант имеет свою маркировку в виде буквы Т с цифрой, обозначающей размер трубки в дюймах по международному стандарту мер длины. В России принято определять диаметр трубок люминесцентных ламп в миллиметрах. Эта величина показывает, к светильникам какого размера подойдет та или иная модель. Для того, чтобы вы могли разобраться в маркировке изделий, приводим ниже таблицу.
Маркировка колбы | T4 | T5 | T8 | T10 | T12 |
Диаметр трубки, дюйм/мм | 4/12,8 | 5/16 | 8/25 | 10/32 | 12/38 |
Линейные модели имеют штырьковые цоколи G13 с расстоянием между контактами 13 мм.
Компактные лампы выглядят как изогнутая в виде буквы U трубка или несколько соединенных вместе трубок. Лампа имеет небольшие размеры, поэтому ее называют компактной, и она подходит к настольным лампам и бра. Модели могут иметь штырьковые цоколи и тогда маркируются буквой G и цифрой, которая обозначает расстояние между контактами: G23, G27, G24. Лампы с ними применяются в специальных светильниках. Цоколь 2D имеет прямоугольную форму с размерами сторон 36х60 мм, а колба-трубка изогнута по форме плоского квадрата. А вот лампа с цоколем G53 имеет форму круга диаметром 73 мм; колба заключена в круглый диск, который выполняет функцию отражателя и рассеивателя, благодаря чему получается ровный, рассеянный свет.
Модели могут выпускаться с резьбовыми цоколями: Е14, Е27, Е40. Цифры после буквы обозначают диаметр резьбы в миллиметрах. Изделия применяются в любых светильниках, созданных под классические лампы накаливания с патронами соответствующего диаметра.
По назначению
Для общего освещения. Колба изготавливается из прозрачного или матового стекла. В последнем случае уменьшается образование бликов и теней. Изделия заменяют дневной свет. Применяются повсеместно.
Для специального освещения. Выпускаются для особых целей с колбами из цветного стекла (красного, синего, черного и др.). Применяются для дизайнерской подсветки элементов мебели, витрин, создания световых эффектов в ночных клубах, барах. Изделия из прозрачного увиолевого (кварцевого) стекла находят применение для дезинфекции помещений, воды в аквариумах, а также в исследованиях веществ и материалов в УФ-спектре, например: обнаружение трещин в металле, брака на ткани, фальшивых купюр. Кстати, кварцевое стекло изготовлено из чистого оксида кремния путем плавления с горным хрусталем, поэтому имеет особые свойства – пропускает УФ-лучи, в отличие от обычного стекла, которое их задерживает.
От чего зависит свет люминесцентных ламп?
Чем больше размеры лампы, тем выше ее мощность и насыщенность светового потока и, соответственно, тем интенсивнее излучаемый свет. Линейные лампы светят тем ярче, чем длиннее трубка их колбы. А компактные – чем больше изогнутых трубок соединены вместе в одном цоколе. Рассмотрим это подробнее.
Мощность влияет на яркость лампы. Приведем таблицу соответствия длины колбы и мощности линейных ламп.
Длина колбы, мм | 450 | 600 | 900 | 1200 | 1200 | 1500 | 1500 |
Мощность, Вт | 15 | 18 | 30 | 36 | 40 | 58 | 80 |
Например, модель на 15 Вт может применяться в настольной лампе, 30 Вт – для освещения рабочего кабинета, 58 Вт – на производственных площадях. Чем меньше размер колбы, тем меньше лампа потребляет электроэнергии, тем она экономичнее для потребителя.
Мощность компактных люминесцентных ламп связана с типом цоколя:
2D – обычно выпускаются на 16, 28, 36 Вт. Применяются, в основном, для декоративной подсветки или общего освещения небольших по площади комнат, например, их вставляют в светильники для ванной;
G23 и G27 – как правило, имеют мощность от 5 до 14 Вт, широко распространены в настольных лампах и настенных светильниках;
G24 – производятся с характеристиками от 10 до 36 Вт и используются в настольных и настенных светильниках;
G53 – имеют мощность от 6 до 11 Вт, их применяют для подсветки во встроенных нишах, гипсокартонных конструкциях интерьера, натяжных потолках.
Компактные люминесцентные лампы – наиболее экономичный вариант: они потребляют впятеро меньше энергии, чем обычные лампы накаливания, и даже вдвое меньше, чем галогенные, также широко применяемые для точечной подсветки.
Световой поток определяет количество света: чем выше значение, тем ярче светит лампа. Этот параметр напрямую связан и с мощностью: чем она выше, тем насыщеннее будет свет. Для примера приведем таблицу соответствия некоторых значений мощности и интенсивности света люминесцентных ламп.
Мощность лампы, Вт | 5 | 8 | 12 | 15 | 20 | 24 | 30 |
Количество света, лм | 250 | 400 | 630 | 900 | 1200 | 1500 | 1900 |
К примеру, лампы на 250 – 400 лм популярны в акцентной подсветке и настольных лампах, на 1200 – 1900 лм – используются в общем освещении квартир и офисов.
Свет лампы зависит и от давления газов в колбе. Различают лампы низкого и высокого давления. В первых химическая реакция протекает медленно, поэтому источники излучают равномерный, мягкий свет и применяются в жилых, административных помещениях, так как создают комфортное, оптимальное для глаз человека освещение. В лампах высокого давления взаимодействие веществ протекает интенсивно, поэтому изделия дают яркий, насыщенный свет и используются для освещения заводских цехов и улиц.
Цветовая температура показывает оттенок света, который зависит от состава люминофора. Выбирайте модель люминесцентной лампы с комфортным для глаз светом в зависимости от того, где планируете ее применять: от 2700 до 3500 К – теплый свет с желтым оттенком; применяется в жилых помещениях; от 4000 до 4200 К – нейтральный, естественный, подходит для любого освещения; от 4500 до 6500 К – холодный, с голубоватым или белым оттенком, используется в учреждениях, на производствах, для наружного освещения.
Люминесцентные лампы помогут вам создать качественное освещение и сэкономить расходы! Заказывайте их в нашем интернет-магазине по доступной цене. Для этого перейдите в раздел «Купить в один клик» и оформите покупку.
Люминесцентные лампы
Люминесцентными называют лампы, в которых световой поток создается за счет свечения специальных веществ (люминофоров), возбуждаемых ультрафиолетовым излучением, возникающим вследствие электрического разряда в аргоне и парах ртути.
При электрическом разряде в парах ртути и аргоне около 2% потребляемой мощности приходится на видимые излучения сине-зеленого цвета, 70-80% — на ультрафиолетовые излучения, а остальные (18—28%) — на тепловые. Под действием ультрафиолетовых излучений начинает светиться люминофор. Таким образом, люминесцентные лампы (ЛЛ) состоят как бы из двух частей: источник ультрафиолетовых излучений и люминофора, трансформирующего ультрафиолетовые излучения в видимый свет. Световой поток создается за счет свечения люминофоров. Ультрафиолетовые лучи не выходят за пределы лампы, так как они поглощаются люминофором и стеклом трубки.
По форме колбы ЛЛ делят на прямые цилиндрические (наиболее распространенные лампы, секционно-кольцевые, кольцевые и U-образные.
У прямых цилиндрических ламп колба представляет собой трубку диаметром 27 или 40 мм и длиной от 437 до 1500 мм. Чем мощнее лампа, тем больше длина трубки. На внутренние стенки труби наносят тонкий слой люминофоров (галофосфат, хлорфторапатит кальция и др.), активированных марганцем и сурьмой. Состав люминофоров, в том числе концентрация активаторов, обусловливает спектральный состав излучения ЛЛ. В оба конца трубки впаяны стеклянные ножки с электродами, к которым приварены вольфрамовые биспирали, покрытые оксидами бария, стронция и калия.
Лампы снабжают двухштырьковыми (2Ш) цоколями (Ц) с рас стоянием между штырьками 12,7 мм. Внутренний диаметр цоколе равен 23,5 или 34,5 мм.
В зависимости от спектрального состава излучаемого света ЛЛ делят на пять типов.
Лампы дневного света (ЛД) имеют световой поток, который характеризуется цветовой температурой Тц, равной 6500 К, и близок по спектру к свету полуденного солнца. Если при освещении предъявляются повышенные требования к цветопередаче, то применяют лампы с улучшенным спектральным излучением (ЛДЦ).
Лампы белого света (ЛБ) имеют Тц 3500 К, излучают свет, близкий по спектру к свету ламп накаливания. Из всех люминесцентных ламп они имеют самую высокую световую отдачу, их применяют там, где требуется большая освещенность (конструкторские бюро, кабинеты врачей и т. п.).
Лампы теплового белого света (ЛТБ) с Тц 2700 К излучают свет с розоватым оттенком, который хорошо передает черты человеческих лиц. Эти лампы наиболее подходят для освещения жилых помещений.
Лампы холодного белого света (ЛХБ) с Тц 4850 К занимают промежуточное положение между лампами ЛД и ЛБ.
Осветительные лампы каждого типа выпускают мощностью 10; 15; 18; 20; 30; 36; 40; 65 и 80 Вт.
Основными преимуществами ЛЛ по сравнению с лампами накаливания являются более высокие световая отдача и срок службы. Световая отдача ЛЛ составляет 30—62 лм/Вт, что в 4—5 раз больше световой отдачи осветительных ламп накаливания, рассчитываемых на одно напряжение. Средний срок службы ЛЛ по стандарту не менее 10000 ч при продолжительности горения каждой лампы не менее 4000 ч, т. е. в 10 раз больше среднего срока службы ламп накаливания, рассчитываемых на одно напряжение.
Срок службы ЛЛ зависит от схемы включения в сеть, окружающих условий и особенно от частоты зажиганий. При непрерывном горении, температуре окружающего воздуха 20-25° С продолжительность горения ЛЛ значительно превышает 10000 ч. К преимуществам ЛЛ следует также отнести возможность получения света необходимого спектрального состава и меньшую зависимость светотехнических показателей от напряжения сети.
Требования к качеству электрических ламп. По своим электрическим, светотехническим параметрам и сроку службы электрические лампы должны соответствовать требованиям стандартов. Необходимо, чтобы стекло баллонов ламп не имело таких дефектов, как свиль, пузыри, камни; крепление цоколей к колбе было теплостойким и прочным, обеспечивало вворачивание и выворачивание лампы из патрона; стальные цоколи были покрыты противокоррозионным слоем, не имели на корпусе трещин, складок, препятствующих креплению ламп в патронах, контактные штырьки были параллельны друг другу и располагались в одной плоскости.
Важно, чтобы электроды ламп были прочно припаяны или приварены к контактам цоколя, места сварки или пайки не мешали вворачиванию лампы в патроны. Сварка или пайка не должна нарушать надежность противокоррозионного покрытия цоколя.
ЛЛ должны зажигаться при номинальном напряжении сети в течение не более 10 с, а при снижении напряжения на 10% — в течение не более 1 мин. Миниатюрные лампы не должны перегорать при кратковременном (не более 1 мин) включении их на напряжение, превышающее номинальное на 10%.
устройство, принцип работы, виды, маркировка
Среди огромного разнообразия устройств искусственного освещения достаточно весомую нишу занимают люминесцентные лампы. Этот вид световых приборов был впервые представлен еще в 1938 году, бросив вызов единственным монополистам того времени, лампочкам накаливания. С того времени их конструктивные особенности претерпели значительные изменения и доработки за счет чего люминесцентные лампы перешли в разряд энергосберегающих. Но, чтобы разобраться во всех за и против, детально ознакомиться с особенностями их эксплуатации в быту и промышленности, мы детально изучим этот вид осветительных приборов.
Устройство и принцип работы
Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.
Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.
Рис. 1. Устройство и принцип действия люминесцентной лампы
Принцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:
- На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
- При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
- Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит активация и последующей свечение люминофора.
Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.
Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.
Разновидности
Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.
По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:
- Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
- Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.
По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.
Рис. 2. Разновидности колбы
По конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с цоколем типа W и F, но они используются довольно редко.
Рис. 3. Разновидности цоколей
По цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.
Рис. 4. Цветовая температура
Маркировка
Система обозначения люминесцентных лампочек определяет их основные параметры Однако, в зависимости от страны производителя будут отличаться и стандарты в обозначении. Для сравнения рассмотрим оба варианта маркировки на примере отечественных и зарубежных производителей.
Отечественная
Отечественная маркировка включает в себя буквенно-цифровое обозначение, которое включает в себя четыре позиции для букв и одну для чисел. К примеру: ЛБЦК-60.
Первая буква в маркировке Л означает лампа. Вторая позиция более сложная, она может выражаться как одной, так и парой буквосочетаний, обозначает индексы цветопередачи, в ней возможны такие варианты:
- Д – дневного спектра;
- ХБ – холодное белое свечение;
- Б – белого цвета;
- ТБ – белый теплых оттенков;
- ЕБ – белый естественного спектра;
- УФ – ультрафиолетового спектра;
- Г – голубого цвета;
- С – синего оттенка;
- К – красный спектр излучения;
- Ж – желтого оттенка
- З – зеленого цвета.
Третья позиция определяет качество цветопередачи, но в наличии есть только два варианта Ц – улучшенного качества или ЦЦ – особенно повышенного, которое часто применяется в декоративном освещении.
В четвертой позиции указывается конструкция светильника. Имеются пять основных позиций:
- А – амальгамного типа;
- Б – с быстрым пуском;
- К – кольцевого вида;
- Р – рефлекторные лампы
- У – U образные.
Зарубежная
Люминесцентные лампы зарубежного образца имеют идентичный принцип маркировки. В начале указывается мощность изделия в ваттах, ее легко узнать по латинской букве W.
Тип свечения определяется цифровым кодом с буквенным пояснением на английском:
- 530 – это теплый тон люминесцентных ламп, но относительно плохой цветопередачи;
- 640/740 – не совсем холодный, но близкий к нему с посредственным уровнем цветопередачи;
- 765 – голубого оттенка с посредственным уровнем передачи цветов;
- 827 – близкий к лампе накаливания, но с хорошей передачей цветов;
- 830 – близкий к галогенной лампочке, с хорошим уровнем передачи цвета;
- 840 – белого оттенка с хорошим уровнем передачи цветов;
- 865 – дневного спектра с хорошей цветопередачей;
- 880 – дневной спектр с отличной степенью передачи света;
- 930 – теплый тон с отличными параметрами цвета и низким уровнем светоотдачи;
- 940 – холодный тон с отличной передачей цвета и средним уровнем светоотдачи.
- 954/965 – люминесцентные устройства с непрерывным спектром.
Технические характеристики
Важными техническими характеристиками для люминесцентных ламп являются:
- Мощность лампы – может варьироваться в пределах от 10 до 80 Вт для классических бытовых нужд, промышленные модели могут достигать 2000 Вт;
- Номинальное напряжение – в большинстве случаев применяется напряжение 220В;
- Температура цветового свечения – варьируется в пределах от 2700 до 6500°К;
- Светоотдача – количество выделяемого светового потока в перерасчете на 1Вт потребленной электроэнергии для люминесцентных устройств составляет от 40 до 60Лм/Вт, но существуют и более эффективные модели;
- Габаритные параметры – зависят от конкретной модели люминесцентной лампы;
- Тип цоколя – E14 (миньон), E27 (стандартный типоразмер), G10 и G13 штырькового образца и другие.
Особенности подключения к сети
В виду сложностей, связанных с ионизацией газового промежутка, в люминесцентных лампах может использоваться несколько вариантов схемы включения, упрощающих зажигание разряда. Наиболее популярными являются электрические схемы электромагнитного и электронного балласта, которые мы и рассмотрим далее.
Электромагнитный балласт
Является наиболее старым вариантом, применяемым в пуске люминесцентных ламп с холодными катодами.
Рис. 5. Схема подключения с электромагнитным балластом
Как видите, в этой схема лампа подключается через электромагнитный дроссель и стартер. В момент подачи напряжения стартер, состоящий из биметаллической пластины, представляет собой цепь с очень низким сопротивлением, поэтому ток в нем нарастает в значительной степени, но не доходит до величины КЗ благодаря дросселю. Этот процесс запускает электрический разряд в люминесцентной лампе, а при нагревании электроды стартера разомкнуться.
Электронный балласт
Такой способ подключения предусматривает использование специального автогенератора, собранного на трансформаторе и транзисторном блоке, способном выдавать напряжение повышенной частоты, что позволяет получить световой поток без мерцаний.
Рис. 6. Использование электронного балласта
Как видите, готовый блок электронного балласта для питания люминесцентных ламп, применяется в соответствии со схемой подключения, которая указывается прямо на корпусе изделия.
Причины выхода из строя
Достаточно часто потребители, столкнувшиеся с проблемой прекращения работы или ухудшением параметров свечения люминесцентных ламп, задаются вопросом поиска причин неисправности.
Наиболее частыми причинами выхода люминесцентных ламп со строя являются:
- перегорание нити накала – характеризуется полным отсутствием свечения;
- нарушение целостности контактов – также не дает лампе загореться;
- разгерметизация колбы с последующим выходом инертного газа – характеризуется вспышками оранжевого цвета;
- перегорание стартера, пробой его конденсатора – мерцание, неспособность долго запуститься, черное пятно возле контактов;
- обрыв обмотки дросселя или пробой на корпус – не включается или дает попеременное включение/выключение в процессе работы люминесцентной лампы;
- замыкание в патроне люминесцентной лампы или его контактах – характеризуется миганием, но без последующего пуска.
Плюсы и минусы
В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.
К преимуществам люминесцентных устройств следует отнести:
- Достаточно высокая эффективность, в сравнении с теми же лампами накаливания
выдают на порядок больший световой поток на каждый ватт потребленной
электроэнергии; - Имеет несколько вариантов цветового спектра, что делает обоснованным их
применение для различных целей; - Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот же
показатель у ламп накаливания и галогенок; - Достаточно большое разнообразие
конструкций – компактные, большие, удлиненные и т.д.
Однако и недостатков у люминесцентных ламп существует немало:
- Гораздо более высокая стоимость;
- Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
- Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
- Стабильность работы во многом зависит от температуры и влажности окружающей среды;
- Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
- В сравнении со светодиодными светильниками, бояться механических повреждений;
- Не поддаются классическим методам управления яркостью.
Область применения
Перечень сфер, в которых могут устанавливаться люминесцентные лампы, достаточно большой. Наиболее часто вы можете встретить их в бытовых помещениях или офисах как основное освещение. В магазинах или торговых центрах устанавливаются в качестве приборов подсветки витрин, стен и других элементов интерьера и могут легко заменить неоновую лампочку. Часто их можно встретить в подсветке коридоров и помещений большой площади удлиненными трубчатыми люминесцентными светильниками.
В промышленной сфере часто применяются как лампы для работы прожекторного освещения, которое охватывает большую площадь. Прожекторные люминесцентные приборы имеют отличную светопередачу, несмотря на удаленность по высоте от освещаемой поверхности.
Применение люминесцентных ламп
Для освещения жилых домов, учебных, общественных и медицинских учреждений, торговых и спортивных комплексов широко используют люминесцентные лампы. Они прочно вошли в нашу жизнь, быстрыми темпами вытеснив традиционные лампы накаливания.
Чаша весов: преимущества, недостатки
Люминесцентные лампы по технико-экономическим характеристикам во много раз эффективнее лам накаливания.
Традиционная лампочка накаливания расходует лишь 6-8% — на освещения, а остальная потребляемая энергия трансформируется в нагрев. При этом у люминесцентных источников света этот показатель на 80% больше.
Исходя из своих конструктивных особенностей, люминесцентные лампы способны создавать свечение различного спектра: теплого, холодного, естественного, дневного и пр., что дает возможность разнообразить и украсить палитру интерьера.
Кроме того, они являются источником контролируемого ультрафиолетового излучения, который оказывается весьма полезным для жителей крупных мегаполисов, проводящий большую часть времени в условиях закрытых помещениях.
Они характеризуется довольно продолжительным сроком эксплуатации (до 20 000 ч.), к тому же их можно устанавливать взамен ламп накаливания, без необходимости замены светильника.
К числу отрицательных качеств этих ламп, относят повышенную химическую опасность. В своем составе они имеют капли ртути, которая является небезопасной для здоровья человека. Также эффект мерцания, которые формируют такие источники света может вызывать повышенную утомляемость, общее снижение работоспособности при повышенной зрительной активности (работе с бумагами, за компьютером).
Рекомендации по применению
Поэтому рекомендуется линейные лампы использовать исключительно для освещения нерабочих зон жилых домов – прихожих, подсобных помещений, организации подсветки полок и пр. А для обычного общего освещения светильниками, люстрами, применять компактные лампы. Такие устройства оснащены электронными пускорегулирующими устройствами, снижающими эффект пульсаций в 10-100 раз.
Люминесцентные лампы создают прекрасную освещенность в доме, таким образом, сохраняя зрение, поднимают работоспособность, повышают настроение. Помимо этого спектральный состав их свечения обеспечивает обширные возможности для изменения цвета свечения. Все это делает их исключительно полезными, привлекательными для потребителей.
Люминофор для люминесцентных ламп белого света
Люминофор марки ЛГ-1-1 предназначен для использования в люминесцентных лампах белого света (цветовая температура 3500 К). [c.67]
Люминесцентная лампа (рпс. XII.2,а) представляет собой стеклянную трубку 3, наполняемую различными инертными газами и дозированным количеством рту ти. Внутренняя поверхность стеклянной трубки покрыта слоем люминофора. По обеим концам трубки впаяны ножки с электродами 2 из биспираль-ной вольфрамовой проволоки. Для крепления в токоподводящнх патронах по обоим сторонам трубки предусмотрены штырьковые цоколи 1. При прохождении электрического тока инертный газ и пары ртути начинают светиться (люминесци-ровать), при этом цвет свечения зависит от инертного газа и отличается от естественного. Нанесенный на внутреннюю стенку трубки люминофор исправляет цветопередачу в лЛюминесцентные лампы изготовляют с различными цветовыми оттенками ЛБ — белого, ЛТБ — тепло-белого, ЛД — дневного света, ЛДЦ — дневного света правильной цветопередачи. [c.306]
С лампами накаливания трудно достигнуть существенного повышения экономичности и естественны были поиски источников света, основанных на иных принципах излучения. Эти поиски привели к созданию газоразрядных источников света с использованием излучения электричесг ого разряда в газах или парах металлов [65]. Газовый разряд может обладать более высоким энергетическим к. п. д., чем тепловые излучатели, и сочетание газового разряда с люминофорами позволило создать высокоэкономичные источники евета — люминесцентные лампы с непрерывным спектром излучения любой цветности и большим сроком службы. Широкое распространение получили ртутные люминесцентные лампы низкого давления, дающие свет, близкий к белому или дневному. Области применения газоразрядных ламп многообразны и определяются спектральным составом их излучения. Так, красный цвет неоновых ламп прпл1еняется для сигнального освещения, ультрафиолетовое излучение ртутно-квар-цевых ламп — в медицине и. других областях науки и техники. Газоразрядные источники света высокого и сверхвысокого давления обладают яркостями, достигающими 100 кеб, а для различных специальных целей все шире применяются импульсные источники света, дающие кратковременные вспышки света необычайно высоких яркостей. [c.28]
Наиболее ответственной частью люминесцентной лампы является слой люминофора. Коэффициент полезного действия люминофоров или квантовая отдача—отношение числа излучаемых квантов к числу поглощённых—в очень значительной степени зависит от чистоты материалов, употребляемых при изготовлении люминофора. Степень чистоты чистый для люминесценции является более высокой, чем степень чистый для анализа или химически чистый . Каждый люминофор имеет под действием радиации данного состава свой характерный спектр излучения. Путём смешения различных люминофоров и применения соответствующих активаторов возможно изготовление люминесцентных ламп всевозможных цветов. Для общего освещения изготовляются белые лампы различных оттенков лампы белого света, лампы мягкого белого света с приятным розоватым оттенком и, наконец, лампы дневного света, имитирующие рассеянный дневной свет. Последние обладают наиболее правильной цветопередачей. [c.447]
Люминесцентные лампы служат лучения эритемной для преобразования резонансного излучения увиолевой лампы [3]. с помощью люминофора, нанесенного на внутреннюю поверхность трубки, в более длинноволновое. В соответствии со спектральной характеристикой свечения они делятся на лампы холодного белого света (ХБС), теплого белого света (ТБС), д и е в н о г о света (ДС), белого света (БС). [c.157]
Меняя состав люминофора, можно изменять цветность излучения. Име ются лампы дневного света (ЛД) с голубоватым цветом свечения, дневного света с улучшенной цветопередачей. (ЛДЦ), желтоватым оттенком свечения (ЛБ), холодного белого цвета (ЛХБ), теплого белого цвета (ЛТБ) со своеобразным розовато-белова-тым оттенком. Мощность- этих люминесцентных ламп от 8 до 120 Вт, мощность светоотдачи 50—80 лм/Вт, срок службы 5000 ч. Для освещения высоких (более 6 м) производственных помещений и территории предприятий получили распространение дуговые люминесцентные ртут-, ные лампы высокого давления (ДРЛ), которые напоми- нают лампу накаливания в молочном баллоне. Цвет суммарного излучения ртутного разряда (синеватый) и люминофора близок к белому. Лампы ДРЛ имеют мощность от 60 до 1000 Вт. [c.47]
3. Как работают люминесцентные лампы?
3.4. Физические характеристики ламп
Принципы работы
Люминесцентная лампа генерирует свет от столкновений в горячей
газ («плазма») свободного ускоренного
электроны с атомами–
обычно ртуть — в
какие электроны поднимаются на более высокие уровни энергии, а затем
отступать при излучении на двух линиях УФ-излучения (254
нм и 185 нм).Таким образом
созданное УФ-излучение затем преобразуется в
видимый свет УФ
возбуждение флуоресцентного покрытия на стеклянной оболочке
напольная лампа. Химический состав этого покрытия подобран таким образом, чтобы
излучать в желаемом спектре.
Строительство
Трубка люминесцентной лампы заполнена газом с низким содержанием
пар ртути под давлением и
благородные газы в целом
давление около 0.3% от
атмосферное давление. В
самая обычная конструкция, пара эмиттеров накала, один
на каждом конце трубки, нагревается током и используется для
испускать электроны, которые
возбуждают благородные газы и газообразную ртуть путем ударной ионизации.
Ионизация может происходить только в исправных лампах.Следовательно, вредное воздействие на здоровье от этого процесса ионизации
невозможно. Кроме того, лампы часто оснащаются двумя
конверты, что значительно снижает количество УФ-излучения
испускается.
Электрические аспекты эксплуатации
Для запуска лампы и
поддерживать ток на достаточном уровне для постоянного света
эмиссия.В частности, схема подает высокое напряжение на
запускают лампу и регулируют ток через трубку.
Возможны различные конструкции. в
в простейшем случае используется только резистор, что относительно
энергоэффективность. Для работы от
переменный ток (AC)
напряжения сети, использование индуктивного балласта является обычным явлением и было
известен отказ до окончания срока службы лампы, вызывающий
мерцание лампы.Различные схемы, разработанные для
начать и запустить
люминесцентные лампы выставляют
различные свойства, т.е.излучение акустического шума (гула),
срок службы (лампы и балласта), энергоэффективность и
мерцание интенсивности света. Сегодня в основном улучшенная схемотехника
используется, особенно с компактными люминесцентными лампами, где
схемотехника не подлежит замене перед люминесцентными лампами.Это снизило количество технических сбоев, вызывающих
эффекты, как перечисленные выше.
EMF
Часть
электромагнитный спектр
который включает статические поля, а поля до 300 ГГц — вот что
здесь упоминается как
электромагнитные поля
(ЭДС).Литература о том, какие виды и какие сильные стороны ЭМП
которые излучаются из КЛЛ
редко. Однако есть несколько видов ЭДС, обнаруженных в
близость этих ламп. Как и другие устройства, которые зависят
на электричество для выполнения своих функций они излучают
электрические и
магнитные поля в
низкочастотный диапазон (
частота распространения 50 Гц и, возможно, также гармоники
из них, e.г. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ,
в отличие от
лампы накаливания,
также излучают в высокочастотном диапазоне ЭДС (30-60 кГц).
Эти частоты различаются
между разными типами ламп.
Мерцание
Все лампы будут различать интенсивность света при удвоении мощности от сети.
(линейная) частота, так как
мощность, подаваемая на лампу, достигает пика дважды за цикл при 100
Гц или 120 Гц.Для
лампы накаливания это
мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла
емкость нити. Если модуляция света
интенсивности достаточно для восприятия человеческим глазом, тогда
это определяется как мерцание. Модуляции на частоте 120 Гц не видно,
в большинстве случаев даже не при 50 Гц (Seitz et al.2006 г.).
Флюоресцентные лампы
включая КЛЛ, которые используют
поэтому высокочастотные (кГц) электронные балласты называются
«без мерцания».
Однако как лампы накаливания (Чау-Шинг и Девани, 2004), так и
«немерцающие» люминесцентные источники света (Хазова и О’Хаган
2008) производят еле заметное остаточное мерцание.Дефектный
лампы или схемы могут в некоторых случаях привести к мерцанию при более низкой
частот, либо только в
часть лампы или во время цикла запуска в несколько минут.
Световое излучение, УФ-излучение и синий свет
Имеются характерные различия между излучаемыми спектрами.
люминесцентными лампами и
лампы накаливания, потому что
различных принципов работы.Лампы накаливания
настраиваются по своей цветовой температуре за счет специальных покрытий из
стекло и часто продаются с атрибутом «теплый» или
«Холодный» или, более конкретно, по их цветовой температуре для
профессиональные светотехнические приложения (фотостудии,
магазины одежды и т. д.). В случае люминесцентных ламп
спектральное излучение зависит от покрытия люминофора. Таким образом,
люминесцентные лампы могут быть обогащены синим светом (длины волн
400-500 нм), чтобы
лучше имитируют дневной свет по сравнению с лампами накаливания.
Как и люминесцентные лампы, КЛЛ излучают больше синего цвета.
свет, чем лампы накаливания.Есть на международном уровне
признанные пределы воздействия излучения (200-3000 нм)
испускается лампами и осветительными приборами, защищенными от
фотобиологические опасности (Международная электротехническая
Комиссия 2006 г.). Эти ограничения также включают излучение от
КЛЛ.
УФ-содержание излучаемого спектра зависит как от
люминофор и стеклянная колба люминесцентной лампы.УФ
выброс
лампы накаливания есть
ограничивается температурой нити накала и
поглощение стекла. Некоторые
КЛЛ с одной оболочкой излучают
УФ-В и следы УФ-С излучения на длине волны 254
нм, что не так
для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный
данные показывают, что КЛЛ производят больше
УФ-излучение, чем
вольфрамовая лампа. Кроме того, количество
УФ-В излучение производится из
КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно
в десять раз выше, чем облучается вольфрамовой лампой
(Мозли и Фергюсон, 2008 г.).
3. Как работают люминесцентные лампы?
3.4. Физические характеристики ламп
Принципы работы
Люминесцентная лампа генерирует свет от столкновений в горячей
газ («плазма») свободного ускоренного
электроны с атомами–
обычно ртуть — в
какие электроны поднимаются на более высокие уровни энергии, а затем
отступать при излучении на двух линиях УФ-излучения (254
нм и 185 нм).Таким образом
созданное УФ-излучение затем преобразуется в
видимый свет УФ
возбуждение флуоресцентного покрытия на стеклянной оболочке
напольная лампа. Химический состав этого покрытия подобран таким образом, чтобы
излучать в желаемом спектре.
Строительство
Трубка люминесцентной лампы заполнена газом с низким содержанием
пар ртути под давлением и
благородные газы в целом
давление около 0.3% от
атмосферное давление. В
самая обычная конструкция, пара эмиттеров накала, один
на каждом конце трубки, нагревается током и используется для
испускать электроны, которые
возбуждают благородные газы и газообразную ртуть путем ударной ионизации.
Ионизация может происходить только в исправных лампах.Следовательно, вредное воздействие на здоровье от этого процесса ионизации
невозможно. Кроме того, лампы часто оснащаются двумя
конверты, что значительно снижает количество УФ-излучения
испускается.
Электрические аспекты эксплуатации
Для запуска лампы и
поддерживать ток на достаточном уровне для постоянного света
эмиссия.В частности, схема подает высокое напряжение на
запускают лампу и регулируют ток через трубку.
Возможны различные конструкции. в
в простейшем случае используется только резистор, что относительно
энергоэффективность. Для работы от
переменный ток (AC)
напряжения сети, использование индуктивного балласта является обычным явлением и было
известен отказ до окончания срока службы лампы, вызывающий
мерцание лампы.Различные схемы, разработанные для
начать и запустить
люминесцентные лампы выставляют
различные свойства, т.е.излучение акустического шума (гула),
срок службы (лампы и балласта), энергоэффективность и
мерцание интенсивности света. Сегодня в основном улучшенная схемотехника
используется, особенно с компактными люминесцентными лампами, где
схемотехника не подлежит замене перед люминесцентными лампами.Это снизило количество технических сбоев, вызывающих
эффекты, как перечисленные выше.
EMF
Часть
электромагнитный спектр
который включает статические поля, а поля до 300 ГГц — вот что
здесь упоминается как
электромагнитные поля
(ЭДС).Литература о том, какие виды и какие сильные стороны ЭМП
которые излучаются из КЛЛ
редко. Однако есть несколько видов ЭДС, обнаруженных в
близость этих ламп. Как и другие устройства, которые зависят
на электричество для выполнения своих функций они излучают
электрические и
магнитные поля в
низкочастотный диапазон (
частота распространения 50 Гц и, возможно, также гармоники
из них, e.г. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ,
в отличие от
лампы накаливания,
также излучают в высокочастотном диапазоне ЭДС (30-60 кГц).
Эти частоты различаются
между разными типами ламп.
Мерцание
Все лампы будут различать интенсивность света при удвоении мощности от сети.
(линейная) частота, так как
мощность, подаваемая на лампу, достигает пика дважды за цикл при 100
Гц или 120 Гц.Для
лампы накаливания это
мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла
емкость нити. Если модуляция света
интенсивности достаточно для восприятия человеческим глазом, тогда
это определяется как мерцание. Модуляции на частоте 120 Гц не видно,
в большинстве случаев даже не при 50 Гц (Seitz et al.2006 г.).
Флюоресцентные лампы
включая КЛЛ, которые используют
поэтому высокочастотные (кГц) электронные балласты называются
«без мерцания».
Однако как лампы накаливания (Чау-Шинг и Девани, 2004), так и
«немерцающие» люминесцентные источники света (Хазова и О’Хаган
2008) производят еле заметное остаточное мерцание.Дефектный
лампы или схемы могут в некоторых случаях привести к мерцанию при более низкой
частот, либо только в
часть лампы или во время цикла запуска в несколько минут.
Световое излучение, УФ-излучение и синий свет
Имеются характерные различия между излучаемыми спектрами.
люминесцентными лампами и
лампы накаливания, потому что
различных принципов работы.Лампы накаливания
настраиваются по своей цветовой температуре за счет специальных покрытий из
стекло и часто продаются с атрибутом «теплый» или
«Холодный» или, более конкретно, по их цветовой температуре для
профессиональные светотехнические приложения (фотостудии,
магазины одежды и т. д.). В случае люминесцентных ламп
спектральное излучение зависит от покрытия люминофора. Таким образом,
люминесцентные лампы могут быть обогащены синим светом (длины волн
400-500 нм), чтобы
лучше имитируют дневной свет по сравнению с лампами накаливания.
Как и люминесцентные лампы, КЛЛ излучают больше синего цвета.
свет, чем лампы накаливания.Есть на международном уровне
признанные пределы воздействия излучения (200-3000 нм)
испускается лампами и осветительными приборами, защищенными от
фотобиологические опасности (Международная электротехническая
Комиссия 2006 г.). Эти ограничения также включают излучение от
КЛЛ.
УФ-содержание излучаемого спектра зависит как от
люминофор и стеклянная колба люминесцентной лампы.УФ
выброс
лампы накаливания есть
ограничивается температурой нити накала и
поглощение стекла. Некоторые
КЛЛ с одной оболочкой излучают
УФ-В и следы УФ-С излучения на длине волны 254
нм, что не так
для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный
данные показывают, что КЛЛ производят больше
УФ-излучение, чем
вольфрамовая лампа. Кроме того, количество
УФ-В излучение производится из
КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно
в десять раз выше, чем облучается вольфрамовой лампой
(Мозли и Фергюсон, 2008 г.).
% PDF-1.5
%
34 0 объект
>
эндобдж
xref
34 82
0000000015 00000 н.
0000001985 00000 н.
0000002384 00000 н.
0000003288 00000 н.
0000003445 00000 н.
0000004837 00000 н.
0000006369 00000 н.
0000007826 00000 н.
0000011633 00000 п.
0000013105 00000 п.
0000013849 00000 п.
0000013895 00000 п.
0000014005 00000 п.
0000014283 00000 п.
0000015646 00000 п.
0000016712 00000 п.
0000016758 00000 п.
0000016858 00000 п.
0000017134 00000 п.
0000018607 00000 п.
0000020155 00000 п.
0000021556 00000 п.
0000029465 00000 п.
0000030925 00000 п.
0000032584 00000 п.
0000033105 00000 п.
0000033151 00000 п.
0000033245 00000 п.
0000033547 00000 п.
0000035042 00000 п.
0000036706 00000 п.
0000038139 00000 п.
0000038393 00000 п.
0000038439 00000 п.
0000038524 00000 п.
0000041606 00000 п.
0000043157 00000 п.
0000044669 00000 п.
0000045227 00000 п.
0000045275 00000 п.
0000045745 00000 п.
0000046689 00000 п.
0000046737 00000 п.
0000047191 00000 п.
0000048778 00000 п.
0000049488 00000 н.
0000049747 00000 п.
0000051234 00000 п.
0000052583 00000 п.
0000053995 00000 п.
0000055382 00000 п.
0000056165 00000 п. $ США (-O
P | Yg (> CqԒ} jvdӽ? Ǣ ~ ‘R =
конечный поток
эндобдж
36 0 объект
>
/ ColorSpace>
/ ProcSet [/ PDF / Text / ImageB / ImageC] / Font >>>
/ TrimBox [0 0 612 792]
/ Содержание 114 0 руб.
/ MediaBox [0 0 612 792]
>>
эндобдж
37 0 объект
>
ручей
конечный поток
эндобдж
38 0 объект
>
ручей
Компактные люминесцентные лампы — Chemistry LibreTexts
- Последнее обновление
- Сохранить как PDF
- Авторы и авторство
Компактные люминесцентные лампы или КЛЛ — обманчиво простые устройства.По сравнению с принципами работы лампы накаливания, понимание того, как КЛЛ излучает свет, требует знания электронной структуры атомов, участвующих в испускании света. Работа с КЛЛ упрощена: как только электрический ток начинает течь через КЛЛ, внутренняя часть лампы начинает светиться и излучать видимый свет. Углубляясь глубже, КЛЛ содержит несколько ключевых компонентов, участвующих в этом излучении видимого света, включая присутствие паров элементарной ртути, благородного газа (аргона, ксенона, неона или криптона) и внутреннего покрытия, называемого люминофором, которое является фактически ответственным веществом. для получения видимого света из КЛЛ.
Вспоминая электронную конфигурацию атома и его орбитальные подоболочки, каждый атом содержит некоторое различное количество орбитальных подоболочек, которые, соответственно, заполняются возрастающей энергией, начиная с орбитальной подоболочки с наименьшей энергией. Например, гелий содержит два электрона, оба расположены на орбитали 1s2, что делает эту орбиталь заполненной. Для сравнения, атом водорода содержит только один электрон на орбитали 1s 2 , что делает эту орбиталь частично заполненной.Этот принцип полностью или частично заполненных орбиталей жизненно важен для понимания работы КЛЛ.
Газы, которые населяют полую внутреннюю часть КЛЛ, содержат полностью заполненные орбитальные подоболочки. Поскольку электронные конфигурации ртути и благородных газов находятся на самом низком уровне энергии, называемом основным состоянием, эти типы атомов сильно сопротивляются отказу от каких-либо электронов из-за стабильности, которую они уже достигли благодаря заполненным орбитальным подоболочкам. Однако, когда энергия, передаваемая через электрический ток, проходит через CFL, избыточный поток электронов воздействует на атомы ртути и благородных газов.Это столкновение, называемое неупругим рассеянием между электроном и атомом, заставляет электрон из самой внешней подоболочки затронутого атома временно «прыгать» или переходить на следующий самый высокий энергетический уровень. Этот электрон сейчас находится в «возбужденном» состоянии, но желает вернуться в свое прежнее стабильное состояние, поэтому будет излучать фотон энергии, когда возбужденный электрон переходит обратно на более низкий энергетический уровень, высвобождая избыточную энергию в виде этого протона.
Эти фотоны, испускаемые атомами газа, однако, имеют длины волн в ультрафиолетовом спектре и должны быть сначала преобразованы в видимый свет для любого полезного использования.Здесь внутреннее покрытие CFL, называемое люминофором, работает по тому же механизму, что и ранее описанное возбуждение, и переходит из состояний с более высокой энергией в состояние с более низкой энергией. Люминофор будет поглощать ультрафиолетовые фотоны, вызывая временное возбуждение на следующий более высокий энергетический уровень с последующим излучением фотона более низкой энергии из-за свойств материала люминофора, состоящего из смеси металлических металлов, например: меди, цинка, сульфиды, оксиды, нитриды, алюминий, селениды, кремний или редкоземельные металлы.В зависимости от этого состава видимый свет, излучаемый КЛЛ, может различаться по длине волны и соответствующему видимому цвету.
Из ChemPRIME: 5.15: Электронные конфигурации
Авторы и авторство
Ртутные и компактные люминесцентные лампы
Компактные люминесцентные лампы (также известные как КЛЛ или энергосберегающие световые шары) являются обычным выбором для освещения в Австралии с тех пор, как правительство Австралии начало поэтапно отказываться от использования ламп накаливания в 2008 году.
Как работают компактные люминесцентные лампы
Белое порошковое покрытие внутри стеклянной трубки КЛЛ содержит флуоресцентное покрытие. Когда электричество попадает в КЛЛ, пары ртути и аргона внутри колбы производят невидимый ультрафиолетовый (УФ) свет. Этот ультрафиолетовый свет реагирует с флуоресцентным покрытием, создавая белый видимый свет, который вы видите, когда включаете КЛЛ. Поскольку в передаче УФ-энергии происходит небольшая задержка, свет, производимый КЛЛ, начинает тускнеть и со временем становится ярче.
Компактные люминесцентные лампы содержат небольшое количество ртути. При использовании КЛЛ до 60% ртути внутри колбы может быть связано с флуоресцентным покрытием на стекле.
Существует ли опасность для здоровья при использовании компактных люминесцентных ламп?
В целом риски для здоровья очень низкие из-за присутствия небольшого количества ртути. Большинство ХЛ содержат менее 5 мг ртути. Для сравнения, это количество примерно равно количеству чернил на кончике шариковой ручки.
Лишь очень небольшое количество ртути содержится в виде паров в КЛЛ, и риск для здоровых людей любого возраста очень невелик.
При поломке компактной люминесцентной лампы
При разрыве КЛЛ пары ртути выделяются и быстро рассеиваются. Это дополнительно снижает вероятность любого значительного воздействия ртути.
Исследования показали, что при выходе из строя КЛЛ уровни ртути быстро рассеиваются при вентиляции помещения. К тому времени, как комната будет очищена и будут собраны материалы для очистки, небольшое количество ртути в дымах будет достаточно разбавлено, чтобы больше не представлять опасности для здоровья.
Рекомендации по очистке от сломанных компактных люминесцентных ламп
Убедитесь, что маленькие дети быстро и безопасно покинули непосредственную зону сломанной КЛЛ.
Не делать:
- очищайте разбитое стекло голыми руками — используйте одноразовые пластиковые перчатки, чтобы избежать прямого контакта с порошковым покрытием на осколках стекла
- используйте пылесос, который может улавливать и распространять ртуть.
Do:
- Зачерпните обломки (используя плотную бумагу или картон) или используйте одноразовую щетку, чтобы аккуратно подметать куски.
- Осторожно поместите кусочки стекла в контейнер, который можно закрыть или обернуть бумагой, чтобы защитить кого-либо от возможных порезов битым стеклом.
- Используйте липкую ленту и / или влажную ткань, чтобы стереть оставшиеся осколки стекла и / или порошки. Для ковров или тканей аккуратно удалите как можно больше стекла и / или порошкового материала, используя совок и липкую ленту. Если требуется очистить поверхность пылесосом для удаления отходов, убедитесь, что вакуумный мешок выброшен или канистру тщательно вытерли.
- Утилизируйте оборудование для очистки (например, перчатки, кисть или бумагу) в запечатанных контейнерах. Всегда кладите сломанные КЛЛ в обычную мусорную корзину с зеленым верхом, а не в мусорную корзину.
Порядок сбора опасных грузов местным советом или графством
В отдельных столичных предприятиях и местных советах есть пункты приема вторичной переработки опасных грузов (внешние объекты).
Некоторые советы местного самоуправления создали специальные центры сбора для утилизации КЛЛ.Эти специализированные станции сбора позволяют легко утилизировать:
- старые мобильные телефоны
- Лампы и лампы компактных люминесцентных ламп
- картриджи для принтеров
- бытовые сухие аккумуляторные батареи.
Свяжитесь с местным органом власти (внешний сайт), чтобы узнать, действует ли программа в вашем районе.
Когда специализированная коллекция недоступна
Большинство городских мусорных баков теперь отправляют предметы в зеленых контейнерах на свалку, а в мусорных баках с желтым верхом — в центры переработки.
Не помещайте КЛЛ в мусорное ведро домашнего хозяйства для сбора (обычно это контейнеры с желтым верхом). Поскольку КЛЛ могут сломаться во время транспортировки и загрязнить другие предметы, подлежащие вторичной переработке, они не считаются подходящими для мусорных баков, которые поставляются для отдельных домашних хозяйств.
Поместите сломанных КЛЛ в обычные домашние урны (обычно с зелеными крышками). Оберните использованные КЛЛ во избежание поломки и поместите их в обычную корзину для бытового мусора, когда специализированная станция сбора недоступна.
Дополнительная информация
Напишите по электронной почте в Управление гигиены окружающей среды или позвоните по телефону 9222 2000.
Помните
- Компактные люминесцентные лампы содержат лишь небольшое количество ртути.
- При очистке сломанной КЛЛ по-прежнему рекомендуется следовать инструкциям по безопасной очистке.
Благодарности
Общественное здравоохранение
Эта публикация предназначена только для образовательных и информационных целей.Это не замена профессиональной медицинской помощи. Информация о терапии, услуге, продукте или лечении не подразумевает одобрения и не предназначена для замены рекомендаций вашего лечащего врача. Читатели должны иметь в виду, что со временем актуальность и полнота информации могут измениться. Все пользователи должны проконсультироваться с квалифицированным медицинским работником для постановки диагноза и ответов на свои медицинские вопросы.
NEWMOA — Использование ртути в освещении
«Использование ртути в освещении» обобщает использование ртути в осветительных приборах, таких как люминесцентные лампы, автомобильные фары и неоновые вывески.Этот информационный бюллетень охватывает все типы ламп, которые содержат ртуть в отдельных устройствах; общее количество ртути во всех устройствах, которые были проданы в США как новые в 2001 и 2004 годах; переработка / утилизация ртутных ламп; и безртутные альтернативы.
Информация в этом информационном бюллетене основана на данных, представленных государственным членам Межгосударственного информационного центра по вопросам образования и сокращения выбросов ртути (IMERC) 1 , включая Коннектикут, Луизиану, Мэн, Массачусетс, Нью-Гэмпшир, Нью-Йорк, Род-Айленд и Вермонт. .Эти данные доступны в Интернете через базу данных IMERC Mercury-Added Products. 2
При рассмотрении данных, обобщенных в этом информационном бюллетене, необходимо учитывать ряд важных предостережений:
- Информация может не отражать всю совокупность ртутьсодержащих ламп, продаваемых в США Страны-члены IMERC постоянно получают новую информацию от производителей продуктов с добавлением ртути, и данные, представленные в этом Информационном бюллетене, могут занижать общее количество ртуть продается в этой товарной категории.
- Информация об использовании ртути в осветительных приборах, продаваемых по всей стране с 2001 г., не включает лампы с добавлением ртути, проданные до 1 января 2001 г. или экспортированные за пределы США.
- Представленные данные включают только ртуть, которая используется в продукте, и не включают ртуть, выделяемую во время добычи, производства или других этапов жизненного цикла продуктов.
Типы ртутных ламп
Ртуть используется в различных лампах накаливания.Ртуть полезна в освещении, потому что она способствует эффективной работе лампочек и увеличению срока их службы. Флуоресцентные и другие лампы с добавлением ртути обычно более энергоэффективны и служат дольше, чем лампы накаливания и другие эквивалентные формы освещения. Пока лампы используются, ртуть в них не представляет опасности для здоровья.
Люминесцентные лампы 3 работают при очень низком давлении газа. Они излучают свет, когда электрический ток проходит между двумя электродами (также называемыми катодами) в трубке, заполненной парами ртути низкого давления и инертными газами, такими как аргон и криптон.Электрический ток возбуждает пары ртути в трубке, генерируя лучистую энергию, в основном в ультрафиолетовом (УФ) диапазоне. Энергия заставляет люминофорное покрытие на внутренней стороне трубки «флуоресцировать», преобразовывая ультрафиолетовый свет в видимый свет. Изменение состава порошка люминофора внутри люминесцентных ламп изменяет спектр излучаемого света. Ртуть присутствует в лампе как в порошке люминофора, так и в парах.
Рисунок 1: Иллюстрация компонентов люминесцентной лампы и их работы Источник фото: Northeast Lamp Recycling, Inc. |
Для люминесцентных ламп требуется балласт, который представляет собой устройство, используемое для обеспечения и регулирования напряжения в лампе, а также стабилизации тока в цепи. Люминесцентные лампы более энергоэффективны, чем лампы накаливания эквивалентной яркости, потому что большая часть потребляемой энергии преобразуется в полезный свет, а меньшая — в тепло. У них также более длительный срок службы лампы.
В зависимости от типа люминесцентной лампы они могут содержать ртуть в широком диапазоне от более 0 до 100 миллиграммов (мг).По данным Национальной ассоциации производителей электрооборудования (NEMA), около половины люминесцентных ламп, производимых их членами и продаваемых в США, содержат от 5 до 10 мг ртути; в то время как четверть содержат от 10 до 50 мг.
Типичные типы люминесцентных ламп включают: линейные (прямые), U-образные (изогнутые) и круглые (круглые) люминесцентные лампы / лампы; устранение ошибок; лампы для загара; черные огни; бактерицидные лампы; лампы повышенной мощности; люминесцентные лампы с холодным катодом; и компактные люминесцентные лампы, как описано ниже:
Линейные люминесцентные, U-образные лампы и лампы Circline используются для общего освещения.Они широко используются в коммерческих зданиях, школах, промышленных предприятиях и больницах. Bug zappers содержат люминесцентную лампу, которая излучает ультрафиолетовый свет, привлекая нежелательных насекомых. | |
U-образные и круглые лампы Источник фото: Northeast Lamp Recycling, Inc | |
В лампах для загара используется люминофорная композиция, излучающая в основном ультрафиолетовый свет, тип A (невидимый свет, который может вызвать повреждение кожи), с небольшим количеством ультрафиолетового света, тип B. Черный свет состоит из люминофора, который преобразует коротковолновое УФ-излучение внутри трубки в длинноволновое УФ-излучение, а не в видимый свет. Их часто используют в судебно-медицинских расследованиях. | |
Лампы для загара Источник фото: Northeast Lamp Recycling, Inc., | |
Бактерицидные лампы не используют люминофорный порошок, а их трубки изготовлены из плавленого кварца, прозрачного для коротковолнового УФ-света.Излучаемый ультрафиолетовый свет убивает микробы и ионизирует кислород до озона. Эти лампы часто используются для стерилизации воздуха или воды. | |
Бактерицидная лампа Источник фото: Northeast Lamp Recycling, Inc., |
Люминесцентные лампы высокой мощности (HO) используются на складах, промышленных объектах и складских помещениях, где необходимо яркое освещение. Лампы с высокой выходной мощностью также используются для наружного освещения из-за их более низкой начальной температуры и в качестве ламп для выращивания растений.Они работают так же, как люминесцентные лампы, но рассчитаны на дуги с гораздо большим током. Излучаемый свет намного ярче, чем у традиционных люминесцентных ламп. Однако они менее энергоэффективны, поскольку требуют более высокого электрического тока.
Лампы с холодным катодом — это люминесцентные лампы небольшого диаметра, которые используются для подсветки жидкокристаллических дисплеев (ЖКД) на широком спектре электронного оборудования, включая компьютеры, телевизоры с плоским экраном, фотоаппараты, видеокамеры, кассовые аппараты, цифровые проекторы, копировальные аппараты и факсы.Они также используются для подсветки приборных панелей и развлекательных систем в автомобилях. Люминесцентные лампы с холодным катодом работают при гораздо более высоком напряжении, чем обычные люминесцентные лампы, что устраняет необходимость нагрева электродов и увеличивает эффективность лампы на 10–30 процентов. Они могут быть разных цветов, иметь высокую яркость и долговечность.
Компактные люминесцентные лампы (CFL) используют ту же базовую технологию, что и линейные люминесцентные лампы, но складываются или скручиваются, чтобы приблизиться к физическому объему лампы накаливания.В КЛЛ с винтовым креплением обычно используются люминофоры «премиум» для получения хорошего цвета, они поставляются со встроенным балластом и могут быть установлены практически в любую настольную лампу или осветительную арматуру, в которую может устанавливаться лампа накаливания. КЛЛ на штифтовой основе не используют интегральные балласты и предназначены для использования в светильниках с отдельным балластом. Как винтовые, так и штифтовые КЛЛ используются в коммерческих зданиях. Использование этих типов ламп в жилых помещениях растет из-за их энергоэффективности и длительного срока службы.
Индивидуальные КЛЛ обычно содержат менее 10 мг ртути, при этом значительная часть (две трети) содержит менее 5 мг.Небольшой процент КЛЛ содержит от 10 до 50 мг ртути.
Примеры ламп компактных люминесцентных ламп Источники фото: Osram Sylvania и GE Lighting |
Разряд высокой интенсивности (HID) 4 — термин, обычно используемый для нескольких типов ламп, включая металлогалогенные, натриевые лампы высокого давления и лампы на парах ртути.Лампы HID работают аналогично люминесцентным лампам. Между двумя электродами в газонаполненной трубке возникает дуга, в результате чего металлический пар производит лучистую энергию. Однако для HID-ламп не требуется люминофорный порошок, поскольку комбинация факторов смещает большую часть производимой энергии в видимый диапазон. Кроме того, электроды расположены гораздо ближе друг к другу, чем в большинстве люминесцентных ламп; а в рабочих условиях общее давление газа в лампе относительно высокое. Это вызывает чрезвычайно высокие температуры в трубке, в результате чего металлические элементы и другие химические вещества в лампе испаряются и генерируют видимую лучистую энергию.
Лампы
HID имеют очень долгий срок службы. Некоторые из них излучают намного больше люменов на прибор, чем обычные люминесцентные лампы. Как и люминесцентные лампы, источники HID работают от балластов, специально разработанных для используемых ламп и мощности. Кроме того, HID-лампам требуется период прогрева для достижения полной светоотдачи. Даже кратковременное отключение питания может привести к повторному срабатыванию системы и ее повторному прогреву — процесс, который может занять несколько минут.
Названия ламп HID (т.(например, галогенид металла, натрий высокого давления и пары ртути) относятся к элементам, которые добавляются к газам, которые обычно представляют собой ксенон или аргон и ртуть в потоке дуги. Каждый тип элемента приводит к тому, что лампа имеет несколько разные цветовые характеристики и общую эффективность лампы, как описано ниже:
Металлогалогенные лампы (MH) используют галогениды металлов, такие как йодид натрия, в дуговых трубках, которые излучают свет в большинстве областей спектра. Они обеспечивают высокую эффективность, отличную цветопередачу, длительный срок службы и хороший световой поток, и обычно используются на стадионах, складах и в любых промышленных условиях, где важно различать цвета.Они также используются для ярких голубых автомобильных фар и для освещения аквариумов. Доступны маломощные лампы MH, которые стали популярными в универмагах, продуктовых магазинах и во многих других сферах, где важно качество света. Из всех ртутных ламп лампы MH следует рассматривать как полную систему, состоящую из лампы, балласта, воспламенителя, приспособления и органов управления. | |
Металлогалогенная лампа Источник фото: Northeast Lamp Recycling, Inc. | |
Количество ртути, используемой в отдельных лампах MH, колеблется от более 10 мг до 1000 мг, в зависимости от уровня мощности. По данным NEMA, около одной трети этих ламп, продаваемых в США, содержат от 100 до 1000 мг ртути. |
Металлогалогенные керамические лампы (CMH) были недавно представлены, чтобы обеспечить высококачественную, энергоэффективную альтернативу лампам накаливания и галогенным источникам света. Многие из них оптически эквивалентны источникам галогенов, для замены которых они были разработаны.Они используются для акцентного освещения, освещения магазинов и полезны в помещениях с большим объемом, с высотой потолка 14-30 футов. Дуговая трубка изготовлена из керамики. Лампы CMH обеспечивают лучшее качество света, лучшее сохранение светового потока и лучшую однородность цвета, чем лампы MH, при более низкой стоимости.
Лампы
CMH содержат меньше ртути, чем лампы MH. Большинство из них содержат от более 5 до 50 мг ртути.
Натриевые лампы высокого давления (HPS) являются высокоэффективным источником света, но имеют тенденцию выглядеть желтым и плохо передают цвет.Лампы HPS были разработаны в 1968 году как энергоэффективные источники для наружного, охранного и промышленного освещения и особенно широко используются в уличном освещении. Стандартные лампы HPS при достижении полной яркости излучают золотой (желтый / оранжевый) белый свет. Из-за плохой цветопередачи их использование ограничено наружными и промышленными применениями, где приоритетом являются высокая эффективность и долгий срок службы. Лампы HPS обычно содержат от 10 до 50 мг ртути. Небольшой процент содержит более 50 мг ртути. | |
Натриевые лампы высокого давления Источник фото: Osram Sylvania |
Освещение на ртутных парах — самая старая технология HID. Ртутная дуга дает голубоватый свет, который плохо передает цвета. Поэтому большинство ламп на парах ртути имеют люминофорное покрытие, которое изменяет цвет и в некоторой степени улучшает цветопередачу.Лампы на парах ртути имеют меньшую светоотдачу и являются наименее эффективными членами семейства HID. Они были разработаны для решения проблем с люминесцентными лампами для наружного использования, но менее энергоэффективны, чем люминесцентные. Лампы на ртутных парах в основном используются в промышленности и наружном освещении (например, в оборудовании для обеспечения безопасности, на дорогах и на спортивных аренах) из-за их низкой стоимости и длительного срока службы (от 16 000 до 24 000 часов). | |
Лампы на ртутных парах Источник фото: Osram Sylvania | |
NEMA отмечает, что рынок этих ламп сокращается, и их использование будет продолжать сокращаться, поскольку их балласты запрещены в соответствии с Законом об энергетической политике 2005 г. (EPACT). Согласно NEMA, ртутные лампы обычно содержат от 10 до 100 мг ртути. Небольшая часть содержит более 100 мг ртути. |
Ртутные лампы с короткой дугой представляют собой кварцевые лампы сферической или слегка продолговатой формы с двумя электродами, глубоко проникающими в колбу, так что они находятся на расстоянии всего нескольких миллиметров друг от друга. Колба заполнена парами аргона и ртути при низком давлении. Мощность может варьироваться от сотни до нескольких киловатт.Благодаря небольшому размеру дуги и высокой мощности дуга получается чрезвычайно интенсивной. Ртутные лампы с короткой дугой используются для специальных применений, таких как прожекторы, специализированное медицинское оборудование, фотохимия, УФ-отверждение и спектроскопия.
Ртутные лампы с короткой дугой содержат относительно большее количество ртути, обычно от 100 до 1000 мг. Почти четверть этих ламп содержит более 1000 мг ртути.
Металлогалогенная лампа с короткой дугой ртутная Источник фото: Northeast Lamp Recycling, Inc. |
Ксеноновые ртутные лампы с короткой дугой работают аналогично ртутным лампам с короткой дугой, за исключением того, что они содержат смесь ксенона и паров ртути. Однако они не требуют такого длительного периода прогрева, как обычные ртутные лампы с короткой дугой, и имеют лучшую цветопередачу. Они используются в основном в промышленных приложениях. | |
Ртутные ксеноновые лампы с короткой дугой Источник фото: Northeast Lamp Recycling, Inc. |
Ртутные ксеноновые лампы с короткой дугой могут содержать от 50 до 1000 мг ртути. Небольшой процент этих ламп содержит более 1000 мг ртути.
Ртутные капиллярные лампы обеспечивают интенсивный источник лучистой энергии от ультрафиолета до ближнего инфракрасного диапазона. Эти лампы не требуют периода прогрева для запуска или повторного запуска и достигают почти полной яркости в течение нескольких секунд.Они бывают различной длины дуги, мощности излучения и способов монтажа и используются в промышленных условиях (например, для печатных плат), для УФ-отверждения и в полиграфии. УФ-отверждение широко используется в шелкографии, печати и тиражировании CD / DVD, производстве медицинских изделий, декорировании бутылок / чашек и обработке / нанесении покрытий. Эти специальные лампы содержат от 100 до 1000 мг ртути. | |
Капиллярные лампы ртутные Источник фото: Northeast Lamp Recycling, Inc. |
Неоновые лампы — это газоразрядные лампы, которые обычно содержат газы неон, криптон и аргон (также называемые благородными газами) при низком давлении. Подобно люминесцентным лампам, каждый конец неонового света содержит металлические электроды. Электрический ток, проходящий через электроды, ионизирует неон и другие газы, заставляя их излучать видимый свет. Неон излучает красный свет; другие газы излучают другие цвета. Например, аргон излучает сиреневый цвет, а гелий — оранжево-белый цвет.Цвет «неонового света» зависит от смеси газов, цвета стекла и других характеристик лампочек.
Хотя термин «неоновый свет» относится ко всем газоразрядным лампам, использующим благородные газы, независимо от цвета лампы, только красные лампы являются настоящими неоновыми огнями (т.е. используют неон). Красные неоновые лампы не содержат ртути. Почти в каждом другом цвете «неонового света» помимо других благородных газов используются аргон, ртуть и люминофор.
Неоновая легкая промышленность — это надомная промышленность. Каждую лампу мастера изготавливают индивидуально в небольших мастерских. Огромное количество производителей неонового света затрудняет их идентификацию IMERC. В результате страны-участницы IMERC до сих пор не получали Уведомлений от большинства производителей неонового света.
Неоновые лампы содержат от 250 до 600 мг ртути на лампу, в зависимости от предпочтений производителя.
Количество ртути в отдельных лампах
Таблица 1 суммирует диапазон количества ртути в ртутных лампах каждого типа, которые производятся и продаются как новые в США.S. Производители, импортеры и дистрибьюторы продуктов с добавлением ртути указывают количество использованной ртути в виде точного числа или диапазона. Эти данные были переданы странам-членам IMERC компаниями-членами Национальной ассоциации производителей электрооборудования (NEMA) за 2004 календарный год.
Таблица 1: Использование ртути в лампах, проданных компаниями NEMA в 2004 г. | ||
Тип лампы | Количество ртути в лампе (мг) | Процент ламп с указанным количеством ртути |
Флуоресцентный | 0–5 > 5–10 > 10–50 > 50–100 | 12 48.5 27 12,5 |
CFL | 0–5 > 5–10 > 10–50 | 66 30 4 |
галогенид металла (MH) | > 10–50 > 50–100 > 100–1000 | 24 40 35 |
Керамический галогенид металла | 0–5 > 5–10 > 10–50 | 17.6 46,8 35,6 |
Натрий высокого давления | > 10–50 | 97 |
Пар ртути | > 10–50 > 50–100 > 100–1000 | 58 29 12 |
Ртуть с короткой дугой | > 100–1000 > 1 000 | 65 23 |
Ртутный капилляр | > 100–1000 | 100 |
По данным производителей ламп, примерно 60 процентов всех типов люминесцентных ламп, продаваемых в США.С. в 2004 г. содержал 10 мг ртути и менее. Остальные 40 процентов содержали более 10 мг и до 100 мг ртути. Лампы, используемые в оборудовании для загара, содержат в среднем 17 мг ртути на лампу, при этом максимальное значение составляет 20 мг, а минимальное — 5,5 мг. Сообщалось, что бактерицидные лампы содержат в среднем 7,6 мг ртути на лампу, при этом максимальное значение составляет 70 мг, а минимальное — 5,5 мг. По сообщениям, все четырехфутовые линейные люминесцентные лампы содержали в среднем 13,3 мг, максимальное — 70 мг, минимальное — 2.5 мг. Четырехфутовые люминесцентные лампы, прошедшие испытание на определение характеристики токсичности выщелачивания (TCLP) 5 , содержали в среднем 5,3 мг ртути, максимальное значение — 20 мг, минимальное — 1,4 мг.
Компактные люминесцентные лампы содержали наименьшее количество ртути на лампу в 2004 году. Две трети этих ламп содержали 5 мг или меньше ртути, а 96 процентов содержали 10 мг или меньше.
Лампы
HID как класс содержали относительно большее количество ртути в отдельных лампах, проданных в 2004 году.Из всех ламп HID лампы MH содержат наибольшее количество ртути. Почти три четверти ламп MH, проданных в 2004 году компаниями-членами NEMA, содержали от более 50 до 1000 мг ртути.
Ртутные короткодуговые и ртутные капиллярные лампы содержат относительно большое количество ртути. Две трети ртутных ламп с короткой дугой содержат от 100 до 1000 мг ртути, а еще 23 процента содержат более 1000 мг ртути. Все ртутные капиллярные лампы содержали от более 100 до 1000 мг ртути.
Общее использование ртути в лампах
В таблице 2 представлено общее количество ртути в лампах, проданных в США в 2001 и 2004 календарных годах для всех производителей ламп, подотчетных IMERC, и только для компаний, представленных NEMA.
Производители ламп, входящие в NEMA, включают General Electric, Osram Sylvania, Philips, Eye Lighting, Halco, Light Sources, Panasonic, Ruud Lighting, SLI, Ushio, Venture Lighting и Westinghouse. Полный список всех производителей ламп, отчитывающихся перед государствами-членами IMERC, доступен в отчете Тенденции использования ртути в продуктах: сводка базы данных IMERC по продуктам с добавлением ртути , июнь 2008 г. 6
Таблица 2: Общее количество ртути в лампах, продаваемых в США (фунты) | ||||
Тип лампы | 2001 Total Mercury (все компании) | 2001 Всего ртути (NEMA) | 2004 Всего ртути (все компании) | 2004 Всего ртути (NEMA) |
Флуоресцентный | 16,657 | 12 207 | 14 372 | 12 207 |
КЛЛ | 877 | 600 | 1,479 | 651 |
Скрытый * — галогенид металла — Керамический галогенид металла — Натрий высокого давления — Пар ртути Всего скрытых ламп | — 2145 — Н / Д — 401 — 203 2,749 | 2,139 N / A 399 188 2 727 | 2,426 31 453 213 3 156 | 2,420 31 452 213 3 085 |
Меркурий с короткой дугой | 10 | НЕТ | 17 | 13 |
Неон | 1,103 | НЕТ | 1070 | НЕТ |
Разное ** | 42 | НЕТ | 24 | НЕТ |
ИТОГО | 21 438 | 15,534 | 20,118 | 15 956 |
* Данные за 2001 год не разбивают лампы HID по конкретным типам; несколько производителей предоставили эту информацию.
** В эту категорию входят некоторые лампы HID. Невозможно было отделить их от других ламп в категории.
N / A = не применимо
В 2001 году все производители ламп, подотчетные государствам-членам IMERC, продали около 21 438 фунтов или около 10,7 тонны ртути в ртутных лампах. В 2004 году этот показатель снизился на 0,6 тонны, или на 6 процентов. Использование ртути в люминесцентных лампах снизилось на 14 процентов, тогда как использование ртути в лампах HID увеличилось примерно на 15 процентов.Уменьшение общего содержания ртути в люминесцентных лампах, вероятно, связано с усилиями производителей по сокращению дозировки ртути на лампу, в то время как более высокие продажи, вероятно, объясняют увеличение общего содержания ртути в лампах HID.
Наибольшее изменение между двумя отчетными годами произошло в общем объеме ртути, используемой в компактных люминесцентных лампах, увеличившись почти на 70 процентов, что связано с увеличением продаж. Хотя ртутные лампы с короткой дугой содержат больше ртути в каждом блоке, чем люминесцентные лампы, общее количество для всех блоков было низким, поскольку в США было продано лишь несколько штук.С.
Из общего количества ртути в 2001 году, показанного в таблице 2, 72 процента было продано в лампах, произведенных компаниями-членами NEMA. Ртуть в лампах, продаваемых членами NEMA, немного увеличилась в 2004 году до 79 процентов от общего объема ртути, проданной в лампах.
С 2004 года значительно увеличилось количество электроники, в которой используются люминесцентные лампы с холодным катодом, часто в серии, используемой для освещения дисплеев. Автономные ЖК-мониторы теперь входят в стандартную комплектацию многих новых компьютеров, а в большом разнообразии домашнего и офисного оборудования теперь используются ЖК-экраны, включая телевизоры, устройства глобальной системы позиционирования (GPS), портативные системы связи и развлечения, а также цифровые камеры.Использование ламп с добавлением ртути в автомобилях и транспортных средствах для отдыха также значительно увеличилось за последние несколько лет. В дополнение к HID-фарам многие автомобили теперь поставляются с развлекательными системами, навигационными системами и приборными панелями, в которых используются ЖК-экраны или подсветка с ртутными лампами. Многие автомобили для отдыха также предлагают пакеты опций, которые включают плоские телевизоры с люминесцентными лампами и линейные люминесцентные лампы.
В последние годы государственные учреждения, компании и экологические организации активно продвигали использование энергоэффективных лайнеров и компактных люминесцентных ламп.Стоимость КЛЛ резко снизилась, поэтому они стали более доступными для потребителей. Эти усилия и рост продаж продукции с ЖК-экранами, вероятно, увеличат общее использование ртути в лампах в трехлетнем отчетном 2007 году.
Утилизация и утилизация ртутных ламп
Согласно EPA, люминесцентные и другие ртутные лампы должны обрабатываться как опасные отходы в соответствии с Правилом об универсальных отходах 7 , если только лампа не соответствует требованиям TCLP. Все государства-члены IMERC, Калифорния, Коннектикут, Иллинойс, Луизиана, Мэн, Массачусетс, Миннесота, Нью-Гэмпшир, Нью-Джерси, Нью-Йорк, Северная Каролина, Род-Айленд, Вермонт и Вашингтон приняли Правило универсальных отходов.Эти государства требуют, чтобы предприятия и другие нежилые организации перерабатывали ртутьсодержащие лампы или утилизировали их как универсальные или опасные отходы. В большинстве случаев эти правила не распространяются на жилые домохозяйства. Однако в некоторых штатах, включая Мэн, Массачусетс, Миннесоту и Вермонт, домашние хозяйства должны надлежащим образом утилизировать или утилизировать все ртутьсодержащие лампы, включая КЛЛ.
Есть значительное количество компаний, государственных программ и неправительственных организаций, занимающихся сбором и переработкой отработанных ламп с добавлением ртути. 8 Штаты Нью-Гэмпшир и Вермонт успешно работают с местными хозяйственными магазинами по сбору и переработке отработанных люминесцентных ламп. Недавно Home Depot запустила национальную кампанию по сбору и переработке КЛЛ у потребителей. 9 Бесплатная программа позволяет потребителям сдавать отработанные люминесцентные лампы на переработку почти в 2 000 магазинов. Другие независимые хозяйственные магазины и сети хозяйственных магазинов, включая Ace и TrueValue, могут принимать КЛЛ и / или другие люминесцентные лампы для сбора и переработки в некоторых магазинах.Программы по обращению с опасными бытовыми отходами (HHW) также будут принимать и перерабатывать КЛЛ и другие люминесцентные лампы во многих населенных пунктах.
Sylvania предлагает потребителям удобную программу возврата использованных КЛЛ на переработку. 10 Потребители могут заказать «Mini RecyclePak» за 15 долларов США через Интернет. Комплект предварительно промаркирован и поставляется со всеми необходимыми упаковочными материалами, поэтому потребители просто возвращают комплект с использованными лампочками в любое почтовое отделение США или центр сбора почты.Компания Sylvania также предлагает комплекты для переработки для предприятий и дистрибьюторов, которые подходят для люминесцентных ламп других размеров.
Для получения дополнительной информации о государственных требованиях к переработке и утилизации ламп посетите следующие веб-сайты: http://www.newmoa.org/prevention/mercury/lamprecycle/requirements.cfm и / или http://www.almr.org/ . Домовладельцы и предприятия могут также позвонить в бюро по обращению с опасными отходами своих государственных природоохранных органов для получения дополнительной информации.
Департамент охраны окружающей среды штата Мэн (Maine DEP) недавно завершил исследование выбросов ртути при разрыве КЛЛ. 11 Исследование показало, что концентрация ртути в сломанной лампе может быть выше безопасного уровня в воздухе помещения. В результате Департамент окружающей среды штата Мэн пересмотрел свои рекомендации по очистке неисправных КЛЛ. Агентство по охране окружающей среды США (EPA) и многие государственные природоохранные агентства рассмотрели отчет штата Мэн и обновили свои рекомендации по очистке сломанных КЛЛ. EPA постоянно обновляет это руководство для потребителей и планирует провести дополнительные исследования по надлежащей очистке сломанных КЛЛ.
Для получения дополнительной информации об очистке от пролитой ртути флуоресцентной лампы посетите: http://www.epa.gov/mercury/spills/index.htm#fluorescent
Перечислены дополнительные ссылки на руководство по очистке CFL стран-членов IMERC:
Как указано выше, ртуть содержится в порошковой форме и в виде пара в люминесцентных лампах, и со временем она прилипает к стеклянным стенкам ламп. Для получения дополнительной информации о возможных выбросах ртути из ламп в окружающую среду посетите: http: // www.newmoa.org/prevention/mercury/landfillfactsheet.cfm.
Альтернативы без ртути
В настоящее время недоступна технология для производства энергосберегающих ламп общего назначения без содержания ртути, хотя лампы без содержания ртути были недавно разработаны для конкретных целей, таких как автомобильные фары или освещение витрин. Поэтому лампы с добавлением ртути будут по-прежнему использоваться, но с ними следует обращаться как с опасными отходами и утилизировать по окончании срока их полезного использования.Как указано выше, в каждом штате есть особые правила для предприятий и домовладельцев в отношении переработки или утилизации ламп с добавлением ртути.
Технология светоизлучающих диодов (LED) — это один из вариантов, который, как ожидается, при расширении исследований и разработок станет жизнеспособной альтернативой ртутьсодержащим лампам в будущем. 12 Светодиод — это полупроводниковый диод, который излучает свет, когда электрический ток проходит в прямом направлении устройства через цепь светодиода. Свет, излучаемый светодиодными лампами, зависит от используемого полупроводникового материала и может иметь синий (более холодный) или белый (теплый) цвет.
Светодиоды
используются в коммерческих целях с 1960-х годов и предлагают энергоэффективность, экономию на обслуживании, ударопрочность, долговечность и другие преимущества. Они значительно более энергоэффективны, чем лампы накаливания и люминесцентные лампы. Сегодняшние светодиоды обычно используются в коммерческих осветительных приборах, таких как дисплеи стадионов, рекламные щиты, светофоры, уличные фонари и, в последнее время, в качестве световых индикаторов в автомобилях и авианосцах. Однако для большинства целей общего освещения светодиоды еще не могут конкурировать с люминесцентными лампами из-за их стоимости — особенно по сравнению с КЛЛ, присутствующими сегодня на рынке.Необходимы дополнительные исследования для повышения энергоэффективности и снижения стоимости светодиодных технологий.
1 IMERC: http://www.newmoa.org/prevention/mercury/imerc/about.cfm
2 База данных продуктов с добавлением ртути: http://www.newmoa.org/prevention/mercury/imerc/ notification / index.cfm
3 Fluorescent Technology, Osram Sylvania: http://www.sylvania.com/LearnLighting/LightAndColor/FluorescentTechnology
4 HID Technology, Osram Sylvania: http: // www.sylvania.com/LearnLighting/LightAndColor/HIDTechnology/
5 Характеристика токсичности выщелачивания (TCLP) — это метод испытаний Федерального агентства по охране окружающей среды, который используется для определения опасных или неопасных отходов с целью обращения с ними и их утилизации. Тест TCLP измеряет вероятность просачивания или «выщелачивания» ртути в грунтовые воды из отходов, которые могут быть захоронены на свалке. В тесте TCLP лампы измельчаются на мелкие кусочки и смешиваются с кислотным раствором. Затем кислотный раствор фильтруют от ламп.Если на литр кислотного контрольного раствора обнаруживается менее 0,2 мг ртути, в соответствии с федеральным законом отходы считаются неопасными. Для получения дополнительной информации: http://www.epa.gov/SW-846/faqs_tclp.htm
6 Тенденции использования ртути в продуктах: сводка базы данных IMERC по продуктам с добавлением ртути: http: //www.newmoa. org /vention / mercury / imerc / pubs / reports.cfm
7 Правило универсальных отходов (UWR) — это постановление Агентства по охране окружающей среды, направленное на оптимизацию требований по сбору некоторых опасных отходов следующих категорий: батареи, пестициды, ртутьсодержащее оборудование (е.ж., термостаты) и лампы (например, люминесцентные лампы). Правило разработано для сокращения количества опасных отходов в потоке твердых бытовых отходов (ТБО) за счет упрощения сборщиками универсальных отходов их сбора и отправки на переработку или надлежащую утилизацию. Для получения дополнительной информации: http://www.epa.gov/epawaste/hazard/wastetypes/universal/
8 New Hampshire Lamp Recycling Project: http://des.nh.gov/organization/commissioner/p2au/pps/ мс / mrpptp / lamp.htm
Проект по переработке ламп в Вермонте: http: // www.mercvt.org/dispose/lamprecycleproject.htm
9 Национальная кампания CFL Home Depot: http://www6.homedepot.com/ecooptions/stage/pdf/cfl_recycle.pdf [PDF]
10 Программа утилизации ламп Sylvania: http://www.sylvania.com/Recycle/CFLandHouseholdlightBulbrecycling/
11 Отчет об исследовании поломки компактных люминесцентных ламп DEP в штате Мэн, февраль 2008 г .: http://maine.gov/dep/rwm/homeowner/cflreport.htm
12 Полупроводниковое освещение: часто задаваемые вопросы по светодиодной технологии, U.С., Министерство энергетики: http://www.netl.doe.gov/ssl/faqs.htm
Очерк о компактной люминесцентной лампе (КЛЛ): 6 лучших статей
Вот эссе на тему «Компактная люминесцентная лампа (КЛЛ)» для классов 7, 8, 9, 10, 11 и 12. Найдите абзацы, длинные и короткие сочинения на тему «Компактные флуоресцентные лампы (КЛЛ)», специально написанные для школьников и студентов .
Очерк компактной люминесцентной лампы
Содержание эссе:
- Очерк знакомства с компактной люминесцентной лампой
- Очерк истории компактных люминесцентных ламп
- Очерк типов компактных люминесцентных ламп
- Очерк компонентов компактной люминесцентной лампы
- Очерк преимуществ компактной люминесцентной лампы
- Очерк недостатков компактной люминесцентной лампы
Очерк 1.Введение в компактную люминесцентную лампу :
Компактная люминесцентная лампа (КЛЛ), также известная как компактная люминесцентная лампа или энергосберегающая лампа, представляет собой тип люминесцентной лампы. Многие КЛЛ предназначены для замены лампы накаливания и подходят для большинства существующих осветительных приборов, ранее использовавшихся для ламп накаливания.
По сравнению с лампами накаливания общего назначения, излучающими такое же количество видимого света, КЛЛ потребляют меньше энергии и имеют более длительный срок службы. Как и все люминесцентные лампы, КЛЛ содержат ртуть, что затрудняет их утилизацию.
КЛЛ
излучают световой спектр, отличный от спектра ламп накаливания. Улучшенные составы люминофора улучшили субъективный цвет света, излучаемого КЛЛ, так что некоторые источники оценивают лучшие «мягкие белые» КЛЛ как субъективно похожие по цвету на стандартные лампы накаливания.
Очерк № 2. История компактных люминесцентных ламп:
Родитель современной люминесцентной лампы был изобретен в конце 1890-х годов Питером Купером Хьюиттом.Лампы Cooper Hewitt использовались для фотостудий и промышленности.
Эдмунд Гермер, Фридрих Мейер и Ханс Шпаннер затем запатентовали паровую лампу высокого давления в 1927 году. Позже Джордж Инман вместе с General Electric создал практичную люминесцентную лампу, проданную в 1938 году и запатентованную в 1941 году. Были разработаны лампы круглой и U-образной формы. уменьшить длину люминесцентных светильников. Первая люминесцентная лампа и светильник были представлены широкой публике на Всемирной выставке в Нью-Йорке в 1939 году.
КЛЛ со спиральной трубкой был изобретен в 1976 году Эдвардом Э. Хаммером, инженером General Electric, в ответ на нефтяной кризис 1973 года. Дизайн соответствовал поставленным целям.
В 1980 году Philips представила свою модель SL, которая представляла собой ввинчиваемую лампу со встроенным балластом. В лампе использовалась сложенная трубка Т4, стабильный трехцветный люминофор и ртутная амальгама. Это была первая удачная ввинчивающаяся замена лампы накаливания. В 1985 году Osram начала продавать свою модель лампы EL, которая была первой КЛЛ с электронным балластом.
Эллис Ян, китайский иммигрант в США, который управляет осветительным бизнесом в Китае, решил улучшить дизайн КЛЛ в 1990-х годах. Китайские рабочие гнули стекло вручную, но результат оказался «дорогим, неуклюжим и мерцающим при включении». Ян продолжил свои усилия, и бизнес стал успешным; к 2010 году четверть всех проданных в Соединенных Штатах ламп составляли КЛЛ, причем Ян утверждал, что он сделал более половины из них.
Эссе № 3.Типы компактных люминесцентных ламп:
Самым важным техническим достижением стала замена электромагнитных балластов на электронные балласты; это устранило большую часть мерцания и медленного запуска, традиционно связанных с люминесцентным освещением.
Есть два типа компактных люминесцентных ламп:
и. Интегрированный, и
ii. Неинтегрированные лампы.
Интегрированные лампы объединяют лампу, электронный балласт и винт Эдисона или байонетный фитинг в одном устройстве.Эти лампы позволяют потребителям легко заменять лампы накаливания на КЛЛ. Интегрированные КЛЛ хорошо работают со многими стандартными лампами накаливания, снижая стоимость преобразования в люминесцентные.
Неинтегрированные КЛЛ имеют балласт, постоянно установленный в светильниках, и обычно заменяют только колбу лампы по истечении срока ее службы. Поскольку балласты помещаются в осветительную арматуру, они больше и служат дольше по сравнению со встроенными балластами, и их не нужно заменять, когда срок службы лампы заканчивается.
Неинтегрированные корпуса КЛЛ могут быть как более дорогими, так и сложными. У них есть два типа трубок — двухштырьковая трубка, предназначенная для обычного балласта, и четырехконтактная трубка, предназначенная для электронного балласта или обычного балласта с внешним пускателем. Двухштырьковая трубка содержит встроенный стартер, который устраняет необходимость во внешних нагревательных штырях, но вызывает несовместимость с электронными балластами.
Эссе № 4. Компоненты компактной люминесцентной лампы:
КЛЛ
состоят из двух основных компонентов — газонаполненной трубки (также называемой колбой или горелкой) и магнитного или электронного балласта.
Стандартные формы трубок CFL: однооборотные, двухспиральные, двухвитковые, трехвитковые, четырехвитковые, круглые и «бабочка».
Электронные балласты содержат небольшую печатную плату с выпрямителями, конденсатор фильтра и обычно два переключающих транзистора, соединенных последовательно высокочастотным резонансным инвертором постоянного и переменного тока. Результирующая высокая частота около 40 кГц или выше подается на ламповую трубку.
Поскольку резонансный преобразователь имеет тенденцию стабилизировать ток лампы (и производимый свет) в диапазоне входных напряжений, стандартные КЛЛ плохо реагируют на диммирование, и для диммирования требуются специальные лампы.КЛЛ, которые мерцают при запуске, имеют магнитные балласты; КЛЛ с электронными балластами сейчас гораздо более распространены.
КЛЛ
выпускаются как для переменного (AC), так и для постоянного (DC) тока. КЛЛ постоянного тока популярны для использования в транспортных средствах для отдыха и в домах, не подключенных к электросети. КЛЛ также могут работать с уличными фонарями, работающими на солнечной энергии, с использованием солнечных панелей, расположенных на вершине или по бокам столба, и осветительных приборов, специально подключенных для использования ламп.
Эссе № 5.Преимущества компактной люминесцентной лампы :
Следующие пункты определяют разницу между КЛЛ и лампами накаливания и имеют преимущества КЛЛ перед лампами накаливания:
(i) Срок службы :
Средний номинальный срок службы КЛЛ в 8–15 раз больше срока службы лампы накаливания. КЛЛ обычно имеют номинальный срок службы от 6000 до 15000 часов, тогда как лампы накаливания обычно производятся с расчетным сроком службы 750 или 1000 часов.
Срок службы любой лампы зависит от многих факторов, включая рабочее напряжение, производственные дефекты, воздействие скачков напряжения, механические удары, частоту включения и выключения, ориентацию лампы и рабочую температуру окружающей среды, а также другие факторы.
Срок службы КЛЛ значительно короче, если его часто включают и выключают. В случае 5-минутного цикла включения / выключения срок службы КЛЛ может быть сокращен до «близко к сроку службы ламп накаливания». Программа US Energy Star рекомендует оставлять люминесцентные лампы включенными при выходе из комнаты менее чем на 15 минут, чтобы решить эту проблему.
КЛЛ
в более позднем возрасте излучают меньше света, чем новые. Спад светового потока экспоненциальный, причем самые быстрые потери происходят вскоре после первого использования лампы. Ожидается, что к концу своего срока службы КЛЛ будут производить 70-80% своей исходной светоотдачи. Реакция человеческого глаза на свет логарифмическая (фотографическое уменьшение «f-ступени» представляет собой уменьшение вдвое реального света, но субъективно это довольно небольшое изменение).
Снижение на 20–30% за многие тысячи часов представляет собой изменение примерно на половину диафрагмы.Таким образом, если предположить, что освещение, обеспечиваемое лампой, было достаточным в начале ее срока службы, такая разница будет компенсироваться глазами для большинства целей.
Энергоэффективность КЛЛ:
Для заданного светового потока КЛЛ используют от 20 до 33 процентов мощности эквивалентных ламп накаливания. Поскольку в 2001 году на освещение приходилось примерно 9% потребления электроэнергии домохозяйствами в США, широкое использование компактных люминесцентных ламп могло бы сэкономить до 7% от общего объема потребления электроэнергии в домах США.
Эквиваленты электрической мощности для разных ламп:
(ii) Нагрев и охлаждение :
Если внутренние лампы накаливания в здании заменить на КЛЛ, тепло, выделяемое из-за освещения, будет уменьшено. Иногда, когда зданию требуется как отопление, так и освещение, система отопления будет вырабатывать тепло, которое, в зависимости от системы отопления здания, может фактически увеличить общие выбросы парниковых газов.
По оценкам властей провинции Британская Колумбия, Канада, выбросы парниковых газов увеличатся на 45 000 тонн в год в результате внедрения освещения CFL. В более холодном климате эта потеря тепла может фактически привести к увеличению общих затрат на электроэнергию.
В более теплом климате, где здание требует как освещения, так и охлаждения, наблюдается противоположный эффект, поскольку КЛЛ снижают нагрузку на систему охлаждения по сравнению с лампами накаливания, что приводит к экономии электроэнергии.Общая экономия энергии зависит от климата; увеличение потребности в тепловой энергии компенсирует часть сэкономленной энергии на освещение.
Эффективность и эффективность:
Поскольку чувствительность глаза изменяется в зависимости от длины волны, мощность ламп обычно измеряется в люменах, что является мерой мощности света, воспринимаемого человеческим глазом. Световая отдача ламп определяется количеством люменов на каждый ватт используемой электроэнергии. Теоретически 100% эффективный источник электрического света, излучающий свет только на длине волны, к которой человеческий глаз наиболее чувствителен, будет производить 680 люмен на ватт.
Типичная световая отдача ламп CFL составляет от 60 до 72 люмен на ватт, а у обычных домашних ламп накаливания — от 13 до 18 лм / Вт. По сравнению с теоретической лампой с КПД 100% эти цифры эквивалентны диапазонам эффективности освещения от 9 до 11% для КЛЛ (60/680 и 72/680) и от 1,9 до 2,6% для ламп накаливания (13/680 и 18/680).
(iii) Стоимость :
Хотя закупочная цена интегрированной КЛЛ обычно в 3–10 раз выше, чем цена эквивалентной лампы накаливания, увеличенный срок службы и меньшее потребление энергии с лихвой компенсируют более высокую начальную стоимость.В американской статье говорится: «Семья, вложившая 90 долларов в замену 30 светильников на КЛЛ, сэкономит от 440 до 1500 долларов за пятилетний срок службы ламп, в зависимости от ваших затрат на электроэнергию. Посмотрите на свой счет за коммунальные услуги и представьте себе 12% скидку, чтобы оценить экономию ».
КЛЛ
чрезвычайно рентабельны в коммерческих зданиях, когда используются для замены ламп накаливания. Используя средние коммерческие тарифы на электроэнергию и газ в США за 2006 г., было обнаружено, что замена каждой лампы накаливания мощностью 75 Вт на КЛЛ привела к ежегодной экономии на энергопотреблении в размере 22 долларов США, снижению затрат на ОВК и сокращению трудозатрат на замену ламп.
Дополнительные капитальные вложения в размере 2 долларов на приспособление обычно окупаются примерно в течение одного месяца. Экономия больше, а сроки окупаемости короче в регионах с более высокими тарифами на электроэнергию и, в меньшей степени, также в регионах с более высокими, чем в среднем в США, требованиями к охлаждению.
General Electric рассматривала возможность замены одного из своих ламповых заводов на производство КЛЛ, но даже после инвестиций в размере 40 миллионов долларов разница в заработной плате будет означать, что лампы будут стоить в полтора раза дороже, чем произведенные в Китае.
(iv) Время начала:
Лампа накаливания достигает полной яркости через доли секунды после включения. По состоянию на [обновление] 2009 года, КЛЛ включаются в течение секунды, но многим еще требуется время, чтобы прогреться до полной яркости. Цвет света может немного отличаться сразу после включения.
Некоторые КЛЛ продаются как «мгновенно включаемые» и не имеют заметного периода прогрева, но другим может потребоваться до минуты для достижения полной яркости или дольше при очень низких температурах.Некоторым из них, использующим ртутную амальгаму, может потребоваться до трех минут для достижения полного выхода. Это, а также более короткий срок службы КЛЛ при включении и выключении на короткие периоды могут сделать КЛЛ менее подходящими для таких приложений, как освещение, активируемое движением.
Гибридный CFL:
В ноябре 2010 года компания заявила, что представила на рынке гибридную лампу CFL с галогеном внутри в качестве решения для мгновенного нагрева и яркости. Когда вы щелкаете выключателем, галогенная лампа включается мгновенно, а затем через минуту КЛЛ полностью загорается, поэтому галогенная лампа гаснет.
Сравнение с альтернативными технологиями:
Полупроводниковое освещение уже заняло несколько специализированных ниш, таких как светофоры, и может конкурировать с КЛЛ и в домашнем освещении. Светодиоды с яркостью более 200 лм / Вт были продемонстрированы в лабораторных испытаниях, и ожидаемый срок службы составляет около 50 000 часов.
Световая отдача имеющихся светодиодных ламп обычно не превышает люминесцентных люминесцентных ламп. Испытания Министерством энергетики США коммерческих светодиодных ламп, предназначенных для замены ламп накаливания или CFL, показали, что в 2008 году средняя эффективность все еще составляла около 31 лм / Вт (протестированные характеристики варьировались от 4 лм / Вт до 62 лм / Вт).
General Electric прекратила разработку в 2007 году проекта по разработке высокоэффективной лампы накаливания с такой же яркостью люмен на ватт, что и люминесцентные лампы. Тем временем другие компании разработали и продают галогенные лампы накаливания, которые используют 70% энергии стандартной лампы накаливания.
Другие технологии CFL:
Другой тип люминесцентной лампы — это безэлектродная лампа, известная как магнитная индукционная лампа, радиолюминесцентная лампа или флуоресцентная индукционная лампа.В этих лампах нет проводов, проходящих через их оболочки, и вместо этого они возбуждают пары ртути с помощью радиочастотного генератора.
В настоящее время этот тип источника света борется с высокой стоимостью производства, стабильностью продукции, производимой отечественными производителями в Китае, установлением международно признанного стандарта и проблемами с электромагнитной совместимостью и радиопомехами. Кроме того, EPA исключило индукционное освещение из стандарта Energy Star на 2007 год.
Люминесцентная лампа с холодным катодом (CCFL) — одна из новейших форм CFL.В CCFL используются электроды без нити накала. Напряжение CCFL примерно в 5 раз выше, чем у CFL, а ток примерно в 10 раз ниже. CCFL имеют диаметр около 3 миллиметров. Первоначально CCFL использовались для сканеров документов, а также для подсветки ЖК-дисплеев, но теперь они также производятся для использования в качестве ламп.
Эффективность (люмен на ватт) примерно вдвое меньше, чем у КЛЛ. Их преимущества в том, что они мгновенно включаются, как лампы накаливания, они совместимы с таймерами, фотоэлементами и диммерами и имеют длительный срок службы около 50 000 часов.
CCFL — удобная технология перехода для тех, кому не нравится короткое время задержки, связанное с начальным освещением CFL. Они также являются эффективной заменой освещения, которое часто включается и выключается при небольшом продолжительном использовании (например, в ванной или туалете).
Некоторые производители выпускают лампы типа КЛЛ с винтовыми цоколями Эдисона, предназначенные для замены металлогалогенных ламп мощностью 250 и 400 Вт, требуя сокращения энергии на 50%; однако эти лампы требуют небольшого изменения проводки светильников для обхода балласта лампы.
Очерк № 6. Недостатки компактной люминесцентной лампы :
(i) H Проблемы здравоохранения :
Экономическая эффективность КЛЛ с батарейным питанием позволяет агентствам по оказанию помощи поддерживать инициативы по замене керосиновых ламп, испарения которых вызывают хронические заболевания легких в типичных домах и на рабочих местах в странах третьего мира.
По данным Научного комитета Европейской комиссии по возникающим и недавно выявленным рискам для здоровья (SCENIHR) в 2008 году, единственным свойством компактных люминесцентных ламп, которое может представлять дополнительный риск для здоровья, является ультрафиолетовый и синий свет, излучаемый такими устройствами.
Худшее, что может случиться, это то, что это излучение может усугубить симптомы у людей, которые уже страдают редкими кожными заболеваниями, которые делают их исключительно чувствительными к свету. Они также заявили, что необходимы дополнительные исследования, чтобы установить, представляют ли компактные люминесцентные лампы более высокий риск, чем лампы накаливания.
Если люди подвергаются воздействию света, излучаемого некоторыми компактными люминесцентными лампами с одной оболочкой, в течение длительных периодов времени на расстоянии менее 20 см, это может привести к ультрафиолетовому облучению, приближающемуся к текущему пределу рабочего места, установленному для защиты рабочих от повреждения кожи и сетчатки. .Ультрафиолетовое излучение, получаемое от КЛЛ, слишком мало, чтобы способствовать развитию рака кожи, а использование КЛЛ-ламп с двойной оболочкой «в значительной степени или полностью» снижает любые другие риски.
(ii) Проблемы окружающей среды :
Выбросы ртути:
КЛЛ
, как и все люминесцентные лампы, содержат небольшое количество ртути в виде пара внутри стеклянной трубки. Большинство КЛЛ содержат 3-5 мг на лампочку, а экологически чистые — всего 1 мг.Поскольку ртуть ядовита, даже эти небольшие количества представляют собой проблему для свалок и мусоросжигательных заводов, где ртуть из ламп может выделяться и вносить свой вклад в загрязнение воздуха и воды.
Проблемы здоровья и окружающей среды, связанные с ртутью, побудили многие юрисдикции потребовать, чтобы отработанные лампы утилизировались надлежащим образом или перерабатывались, а не включались в общий поток отходов, отправляемых на свалки. Поэтому при утилизации поврежденных КЛЛ требуется надлежащий уход.
Усилия по поощрению усыновления:
Из-за возможности снизить потребление электроэнергии и загрязнение окружающей среды, различные организации поощряют внедрение КЛЛ и другого эффективного освещения.Усилия варьируются от рекламы для повышения осведомленности до прямой раздачи КЛЛ общественности. Некоторые электроэнергетические компании и местные органы власти субсидировали КЛЛ или бесплатно предоставляли их клиентам в качестве средства снижения спроса на электроэнергию (и, таким образом, отсрочки дополнительных инвестиций в генерацию).
Еще более спорно то, что некоторые правительства рассматривают более строгие меры для полного вытеснения ламп накаливания. Эти меры включают налогообложение или запрет на производство ламп накаливания, не отвечающих требованиям энергоэффективности.
В 2008 году Европейский Союз утвердил правила постепенного отказа от ламп накаливания, начиная с 2009 года и заканчивая в конце 2012 года. Перейдя на энергосберегающие лампы, граждане ЕС сэкономят почти 40 ТВт.ч (почти потребление электроэнергии в 11 миллионов европейских стран). домашних хозяйств), что приведет к сокращению примерно на 15 миллионов метрических тонн выбросов CO 2 в год.
Австралия, Канада и США также объявили о планах установления общенациональных стандартов эффективности, которые будут представлять собой эффективный запрет на большинство современных ламп накаливания.
Министерство энергетики США сообщает, что в период с 2007 по 2008 год продажи КЛЛ упали, и, по оценкам, только 11% подходящих домашних розеток используют КЛЛ.
В США была создана субъективная программа под названием «Программа оценки и анализа жилого освещения» (PEARL) в качестве контрольной программы. PEARL провела оценку эффективности и соответствия стандарту ENERGY STAR более чем 150 моделям ламп CFL.
В Индии также почти все штаты поощряют внедрение КЛЛ вместо ламп накаливания и предоставляют стимулы или даже раздают КЛЛ людям, которые могут бесплатно экономить электроэнергию.