Радиосхемы Схемы электрические принципиальные. Справочник датчики холла


ДАТЧИК ХОЛЛА

   Датчик Холла предназначен для измерения скорости перемещения с целью измерения и индикации параметров работы исполнительных механизмов приборами систем автоматического управления. Информация, поступающая от датчика необходима для формирования управляющих сигналов в системах регулирования и стабилизации параметров перемещения механических узлов автоматизированного объекта. Потребует применения такого датчика контроль оборотов выходных валов редукторов, контроль направления вращения двух и более синхронизируемых механизмов, учет расхода жидкости. Датчик предназначен для применения в системах автоматизации поточных линий, транспортных системах и в других системах автоматического управления. Условное графическое обозначение:

   Широкое применение датчик Холла имеет в транспортных системах. Также Датчик Холла применяется для контроля положения узлов различных механизмов: перемещение деталей механизмов до концевых положений, построение энкодеров. Используется для измерения больших токов. Проводятся эксперименты по использованию датчика Холла в качестве чувствительного элемента магнитного компаса. Основу датчика составляет элемент Холла, соединенный с электрической схемой. Современный датчик Холла представляет собой микросхему, к которой подводится питание, а на выходе микросхемы формируется информационный сигнал. Принцип работы датчика Холла состоит в фиксировании магнитного поля. Для измерения скорости перемещения датчика Холла закрепляется на неподвижном элементе конструкции, а в движущейся части устанавливаются магниты. Применяют и более простое решение, намагничивают подвижные элементы не внося изменений в конструкцию механизма. Для измерения скорости вращения применяется пара постоянный магнит и датчик Холла. Между ними свободно перемещается пластина, экранирующая магнитное поле. При каждом обороте с выхода датчика Холла поступает электрический импульс в схему электронного тахометра. Для увеличения точности измерения устанавливают две и более пар магнит + датчик Холла. 

   Принцип работы датчика Холла позволяет создать регистрирующее устройство не имеющее механического контакта с подвижной частью контролируемого механизма, что позволяет многократно увеличить ресурс работы по сравнению с герконами или механическими переключателями, кнопками. На рисунке показан узел из бесконтактной системы зажигания автомобильной схемы, с использование датчика Холла. 

 1 - аккумулятор;  2 - замок зажигания;  3 - свечи зажигания;  4 - двухвыводная катушка зажигания;  5 - вольтметр;  6 - коммутатор;  7 - датчик Холла.

   Проверить датчик Холла можно по такой технологии. С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю. На снятом с двигателя датчике-распределителе зажигания датчик можно проверить по схеме, приведенной на рисунке ниже, при напряжении питания 8-14 В. Медленно вращая валик датчика-распределителя зажигания, измерьте вольтметром напряжение на выходе датчика. Оно должно резко меняться от минимального (не более 0,4 В) до максимального (не более, чем на 3 В меньше напряжения питания).

   Использование совместно с датчиком Холла постоянного магнита повышает надежность по сравнению с оптопарами, требующими источника света. Постоянный магнит "не погаснет”, а источник света требует подключения к питанию, постоянно потребляет ток. Обрыв питания источника света приведет к ложному сигналу с выхода оптопары, что не может произойти с датчиком Холла. Автор статьи - Сергей Куприянов.

   Форум по радиодеталям

   Справочники радиодеталей

 

Снижение расхода топлива в авто

Ремонт зарядного 6-12 В

Солнечная министанция

Самодельный ламповый

Фонарики Police

Генератор ВЧ и НЧ

elwo.ru

Справочник

Файл Краткое описание Размер
Страницы >>> [2] [1]
fan7688ru.pdf Описание новой микросхемы контроллера мощного резонансного LLC преобразователя FAN7688, производства компании Fairchild. 1.84 Mb
FAN7621S_ru.pdf Описание микросхемы контроллера резонансного LLC преобразователя FAN7621S, производства компании Fairchild. 1.2 Mb
AN4151ru.pdf Аппнота AN-4151. Расчёт полумостового LLC резонансного преобразователя, использующего мощный ключь семейства FSFR производства компании Fairchild. 2.05 Mb
ucc28610ru.pdf Описание микросхемы энергосберегающего контроллера обратноходового преобразователя UCC28610, производства компании Texas Instruments. 1.66 Mb
slua074_ru.pdf Новое семейство управляющих микросхем для мощных резонансных преобразователей. Руководство по применению семейства микросхем ucX861-X868, производства компании Texas Instruments. 682 kb
slua560c_ru.pdf Фазосдвигающий мостовой преобразователь мощностью 600 Вт. Руководство по применению микросхемы UCC28950, производства компании Texas Instruments. 784 kb
ucc28950ru.pdf Описание фазосдвигающего контроллера полного моста с синхронным выпрямителем типа UCC28950 производства компании Texas Instruments. 365 kb
holl.rar Архив с документацией различных датчиков Холла, предназначенных для измерения тока. В архиве содержится информация на датчики CSLS Series компании Honeywell, каталог датчиков компании LEM, датчиков Sentron CSA-1V компании Melexis.Документацию прислал Ломакин. 1.95 Mb
MC_AT90PWM3.rar Практический пример использования и настройки модуля PWM контроллера AT90PWM2/3/2B/3B, производства фирмы ATMEL.Пример выложил на форуме MasterCat. 45.2 Кb
Spr_tribun.djvu Кодовые цветовые маркировки радиокомпонентов - конденсаторов, диодов, стабилитронов и транзисторов, взятые из книги А.И.Кизлюка Справочник по устройству и ремонту телефонных аппаратов зарубежного и отечественного производства.Отсканировал и прислал странички Трибун. 388 Кb
Страницы >>> [2] [1]

valvolodin.narod.ru

Датчик Холла | Практическая электроника

Датчик дождя, датчик уровня жидкости, датчик температуры — он же термометр. Вроде бы все ясно: датчик дождя показывает наличие дождя, датчик уровня жидкости — показывает, как ни странно, уровень жидкости; термометр — от греч. — тепло и измерять, показывает температуру.  Но  вот что за странное название: датчик Холла?

 

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил странную вещь… Он взял пластинку золота и стал пропускать через неё постоянный ток.  На рисунке эту пластинку я отметил с гранями ABCD.

Так вот, когда он пропускал постоянный ток через грани D и B, и поднес перпендикулярно пластинке постоянный магнит, знаете что он обнаружил?  Разность потенциалов на гранях А и C!  Или проще сказать, напряжение, измеряемое в Вольтах ;-). Этот эффект и назвали в честь этого ученого.

Как только чухнули эту фишку, стали делать радиоэлементы с этим эффектом. Чтобы не заморачиваться с названием, назвали в честь того, кто открыл этот эффект  —  в честь Холла. Поэтому радиоэлементы, основанные на эффекте Холла, называют датчиками Холла. 

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку. Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, например, токоизмерительные клещи, не касаясь самого провода, а также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики холла, используемые в этих приборах называют линейными, так как напряжение Холла прямо пропорционально измеряемым параметрам.

Разработчики на этом не остановились. Как только наступила  эра цифровой элек троники в один корпус вместе с датчиком холла стали помещать различные логические элементы. В результате промышленность стала выпускать датчики холла для цифровой электроники. В основном такие датчики делятся на три вида:

— Униполярные. Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. То есть подносим например южный полюс магнита, датчик сработал. На северный магнитный полюс ему наплевать.

— Биполярные. Здесь уже интереснее. Подносим магнит одним полюсом — датчик сработал и продолжает работать даже тогда, когда мы убираем магнит от датчика.  Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

— Омниполярные. Этим датчикам по барабану на какой полюс включаться и выключаться. Пусть будет хоть южный или северный.

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

А вот здесь можно скачать даташит на этот датчик: (нажмите сюда). Итак, на первую ножку подаем плюс, на вторую — минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

Для этого давайте соберем простейшую схемку: простой светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и, конечно же, сам датчик Холла.

Теперь цепляемся к нашей схеме от Блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс — на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил бумажным ценником один из полюсов магнита. Какой именно — я не знаю, так как не имею компаса, с помощью которого можно было бы узнать северный и южный полюс.

Как только я поднес магнитик «красным» полюсом к датчику холла, то у меня светодиодик сразу перестал гореть

Переворачиваю магнитик другим полюсом и вуаля!

Если магнитик не переворачивать, то есть не менять полюса, то у нас светодиод также останется потухшим, потому как датчик у нас биполярный.

А вот и видос:

Как вы видите на видео,  мы с помощью магнитика управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть — единичка, сигнала нет — ноль. То есть светодиод горит — единичка, светодиод потух — ноль. Поэтому датчики Холла с логическими элементами в одном корпусе очень полюбила цифровая электроника. Их можно подцепить к микроконтроллерам и другим логическим элементам.

В настоящее время они используются очень широко. Даже не надо далеко ходить. Стоит закрыть крышку своего ноутбука и  мы сразу увидим что экран ноута потух. Да да, во всем виноват датчик Холла! Стоит он на материнке, а на крышке ноута вмонтирован маленький магнитик. И как только мы закрываем крышку, магнитик со своим магнитным полем действует на датчик Холла, и экран тухнет ;-). То же самое касается и мобильных телефонов, типа раскладушка или слайдер. Также больше применение датчики Холла нашли в современных электродвигателях и в автомобилях, как датчики положения. 

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически  датчика хватит на бесконечное число включений-выключений. Там нету электромеханического контакта, который бы изнашивался, в отличие от геркона. Используйте на здоровье датчики Холла в своих электронных безделушках 😉

www.ruselectronic.com

Радиосхемы. - Датчик Холла SS526DT

материалы в категории

Датчик Холла SS526DT

Импульсный датчик скорости и направления вращения преобразует скорость и направление вращения деталей механизма в один электрический сигнал для последующего измерения и индикации параметров работы. Системы автоматического управления могут использовать датчик для включения в петлю обратной связи.

Информация, поступающая от датчика, необходима для формирования управляющих сигналов в системах регулирования и стабилизации параметров перемещения механических узлов автоматизированного объекта. Применения такого датчика требует контроль оборотов выходных валов редукторов, определение направления вращения двух и более синхронизируемых механизмов, учет расхода жидкости и многие другие приборы. Датчик использует всего три провода, с помощью которых подается питание и передается сигнал частоты и направления вращения в прибор системы автоматического управления. Датчик предназначен для применения в системах автоматизации поточных линий, транспортных системах и в других системах автоматического управления.

Технические характеристики микросхемы SS526DT

Измеряемая скорость вращения ….. 0,3…3000 об/минТемпература эксплуатации ………… –25…+60 °СНапряжение питания ……………….6,5…18 Вольт

Краткое описание работы датчика Холла

В основе работы датчика лежит преобразование перемещения в электрический сигнал которое выполняет компонент использующий эффект Холла – микросхема SS526DT производства компании Honeywell.

Микросхема содержит два полупроводниковых элемента, генерирующих разность потенциалов при воздействии магнитного поля. Она позволяет определить скорость и направление вращения. Информация об этих параметрах поступает от микросхемы SS526DT в схему датчика с двух соответствующих выходов в цифровом виде: скорости движения соответствует частота импульсов с выхода Speed (далее Скорость), направлению соответствует логический уровень на выходе Direction (далее Направление).

Конструкция датчика скорости и направления оборотов

Вращательное перемещение воспринимает вал датчика через закрепленную на нем шестерню. На валу расположен диск, в котором установлены постоянные магниты. Применение неодимовых магнитов (самых сильных постоянных магнитов) позволяет уместить на диске достаточное количество малогабаритных магнитов. Свойство неодимовых магнитов при малых габаритах создавать магнитное поле достаточной напряженности делает их оптимальными для применения в этой конструкции. Установлены магниты таким образом, что полюса магнитов чередуются, что необходимо для работы микросхемы SS526DT. Внутренняя схема SS526DT, имеющая в своем составе триггер, определяет направление движения благодаря смене полярности магнитного поля, которое создается постоянными магнитами. Чем больше магнитов установлено на диске, тем выше дискретность и, следовательно, увеличивается возможность регистрации медленных перемещений, т.е. чувствительность датчика становится выше. Микросхема SS526DT устанавливается на небольшой печатной плате, соединенной проводами с основной схемой датчика, элементы которой расположены на второй печатной плате большего размера. Перемещение полюсов магнитов происходит вдоль корпуса микросхемы SS526DT. Все элементы заключены в металлический защитный экранирующий кожух.

Схема электрическая принципиальная

С выхода датчика скорости и направления поступает сигнал, передающий информацию о скорости оборотов с помощью частоты импульсов, а информация о направлении вращения передается с помощью полярности импульсов.

Выходной сигнал:

Благодаря наличию в схеме датчика источника двуполярного напряжения питания выходной сигнал размахом 5 вольт может иметь отрицательную или положительную полярность.

Функциональная схема датчика скорости и направления оборотов:

Электрическая схема преобразует сигнал от датчика Холла в выходной сигнал датчика скорости и направления вращения, обеспечивая достаточную нагрузочную способность по току. Для минимизации помех, воздействующих на кабель импульсного датчика, сопротивление приёмника сигнала должно быть небольшим. Нужно, чтобы выходной ток датчика был достаточен для принимающего прибора в целях уменьшения влияния помех, искажающих передаваемую информацию. Питание датчика подается по двум проводам. Третий провод используется для передачи сигнала, полярность которого изменяется относительно общего провода питания. Датчик Холла формирует сигнал, несущий информацию о направлении вращения, который управляет переключателем К1. В зависимости от уровня сигнала переключатель К1 подает на переключатель К2 положительное или отрицательное напряжение. Сигнал скорости датчика Холла управляет переключателем К2. Частота сигнала Скорость, сформированного переключателем К2, соответствует половине количества магнитов, размещенных на диске датчика скорости и направления вращения.

Упрощенная схема включения датчика Холла

Логические элементы усиливают сигнал Направление, поступающий от датчика Холла. Логические элементы управляют светодиодами оптронов, один из которых работает на замыкание, а другой на размыкание. При низком логическом уровне сигнала Направление светодиоды оптронов не светятся. Также замкнуты контакты оптрона работающего на размыкание, на контакты оптрона сигнала Скорость подано напряжение + 5 вольт от встроенного двухполярного импульсного источника питания. При высоком логическом уровне сигнала Направление через светодиоды оптронов, управляющих полярностью выходного сигнала датчика скорости и направления вращения, проходит ток, положение контактов оптронов таково, что выходной оптрон подключается к напряжению минус 5 вольт. Сигнал Скорость через усиливающий логический элемент поступает на управление выходным оптроном. Под действием сигнала скорость с выхода датчика поступают импульсы, полярность которых задана сигналом Направление. Применение оптрона на выходе датчика позволяет увеличить нагрузочную способность, что дает возможность передавать сигнал увеличенным током для повышения помехоустойчивости.

На входе принимающего устройства сигнал дешифруется перед измерением частоты. С помощью сдвоенного оптрона в принимающем приборе сигнал, несущий информацию о скорости вращательного перемещения направляется на один из проводов, соответствующий направлению перемещения. Провода “Скорость вращения по часовой” и “Скорость вращения против часовой” подключаются к частотоизмерительным контурам схемы принимающего прибора. В зависимости от того, на каком проводе появляется сигнал, схема распознает направление перемещения. При включении светодиодов как указано на схеме работать будет только один оптрон в зависимости от полярности импульсов входящего сигнала Скорость/направление. Для увеличения помехозащищенности параллельно светодиодам можно подключить резисторы, увеличивающие ток, протекающий по проводу “Скорость/направление”.

Электрическая схема датчика скорости и направления оборотов

Рассмотренный порядок работы реализован в электрической схеме датчика скорости и направления вращения. Сигнал Направление поступает с выхода D микросхемы, использующей эффект Холла, DA2. Высокий логический уровень сигнала Направление преобразуется инвертором, входящим в состав микросхемы DD1, в низкий на выводе 12. Светодиод оптрона VK1.2 получает возможность работать при появлении высокого логического уровня на выводе 10 микросхемы DD1. Одновременно с этим запрещается работа светодиода оптрона VK1.1, так как на анод светодиода подано напряжение низкого логического уровня. Таким образом, благодаря соединению светодиодов оптронов с логическим элементом как изображено на схеме сигнал Направление устанавливает, через какой из оптронов будет проходить сигнал, поступающий с вывода 10 микросхемы DD1. Сигнал скорости оборотов поступает с выхода S микросхемы DA2 на вход инвертора микросхемы DD1. Высокий уровень импульсов, поступающих с вывода 10 микросхемы DD1, заставляет течь ток через резистор R4 и светодиод оптрона VK1.2. Функции оптронов разделяются следующим образом: оптрон VK1.1 формирует сигнал положительной полярности на контакте 3 клеммы XT1, оптрон VK1.2 – отрицательной. В схему датчика входит источник питания, преобразующий однополярное напряжение питания в двухполярное питание схемы. Конденсаторы, входящие в схему датчика, сглаживают помехи, уменьшая их влияние на формирование выходного сигнала. Резисторы R1, R2 задают выходной ток нашего импульсного датчика. Их номинал может быть переопределен в зависимости от входной цепи приёмника для их согласования. Схема использует один сдвоенный оптрон VK1, что позволяет сократить площадь печатной платы и сформировать сигналы Скорость и Направление вращения, используя один компонент.

Радиодетали в схеме

Параметры импульсного датчика во многом обуславливают примененные компоненты его электрической схемы. Диапазон изменения напряжения питания, при котором способен работать датчик скорости и направления вращения обуславливает преобразователь напряжения DA1. Верхний предел измерения скорости вращения зависит от быстродействия оптрона VK1. Применение конденсаторов с наименьшим тангенсом угла потерь сочетание конденсаторов с различными типами диэлектрика использование последних разработок в области конденсаторов позволяет добиться наиболее высоких результатов. При чрезмерном увеличении емкости существует опасность “перегрузить” преобразователь напряжения DA1, что приведет к срабатыванию защиты по току в момент подачи питания и схема “не будет подавать признаков жизни”. При выборе типа оптореле VK1 оценивается его быстродействие и частота импульсов, поступающих на вход оптореле. Правильный выбор VK1 позволит уменьшить стоимость датчика. Микросхема DD1 выполняет функцию простейшего усилителя по току и может быть заменена другой микросхемой. Клемма XT1 предназначенная для монтажа на печатную плату, может быть заменена на другой элемент разъемного соединения.

C1…C3 Конденсатор EMR 47 мкФ 50 В ф. Hitano

C4…C6 Конденсатор SMD 0805 2,2 мкФ 16 В

DA1 Преобразователь напряжения TMR 3-1221WI ф. Traco power

DA2 Микросхема SS526DT ф. Honeywell

DD1 Микросхема КР1533ЛН1

R1, R2 Резистор 300 Ом ±5%

R3, R4 Резистор 180 Ом ±5%

VK1 Оптореле 249КП10АР

ХТ1 Клемма LMI 107 203 51

Модифицирование импульсного датчика в зависимости от скорости вращения

Для различных применений требуется измерять различные диапазоны изменения скорости вращения, меняются требования к скорости определения смены направления вращения. Возможно применение датчика для скоростей 1 оборот в минуту и менее. При таких скоростях нужно увеличивать количество магнитов на диске, применять магниты с наименьшими габаритами и уменьшать зазор между микросхемой DA2 и плоскостью диска. Если скорости 5000 и более оборотов в минуту количество магнитов можно уменьшить. При этом наибольшая измеряемая скорость ограничена только конструктивными особенностями датчика. При уменьшении количества магнитов уменьшаются требования к наивысшей рабочей частоте компонентов схемы.

Источник: http://mikrocxema.ru/

radio-uchebnik.ru

Датчики холла. / Теория, измерения и расчеты / Сообщество EasyElectronics.ru

Зашел тут как то разговор про теорию различных ништяков, например датчиков холла, термопар и.т.д. Решено: быть серии статей по теории. Отмазки:Зачем: да, конечно можно использовать любое устройство по принципу черного ящика, знать когда применять, как подключить, как снять сигнал. Но профессионал тем и отличается от любителя, что досконально знает то, что использует. Это сильно помогает избежать кучи граблей и подобрать правильное техническое решение. Да и полезно для общего развития.Как: попробую дать краткую выкладку по каждой из выбранных тем в публицистическом стиле и немного расскажу о применении. Книга замечаний как всегда в комментариях.

Начнем: Первыми на очереди датчики холла.

Однажды (в 1879 г.) один умный дядька (Эдвин Холл) взял тонкую золотую пластинку (2), поместил ее между полюсов мощного магнита (3), пустил по ней ток (1) и померил напряжение между разными ее гранями (между верхней и нижней). Примерно так: И как многие уже заметили оно не оказалось равным нулю. Возникает вопрос: «Почему»? А причина тому — сила Лоренса. Заряженные частицы движутся горизонтально, перпендикулярно магнитному полю, следовательно на них действует сила Лоренса. Электроны под ее действием смещаются вверх -> возникает разность потенциалов и электрическое поле, которое воздействуя на электроны по закону Кулона, компенсирует силу Лоренса. Тем кто не любит формулы можно немного отдохнуть. Для того что бы описать уравнениями изобразим происходящее: У нас есть ток I, толщина пластины b, высота a, и виновник торжества: магнитное поле B. Сначала определим напряженность электрического поля [E] в проводнике. Как уже сказано она уравновешивает силу Лоренса, поэтом можем смело приравнивать силу Лоренса и Кулона. А зная напряженность поля и толщину пластины определим разность потенциалов (т.е. напряжение) и сразу подставим прошлое выражение: Только вот беда, надо еще определить скорость частиц, но это не сложно, заодно подставим полученное значение в предыдущие и сократим: 1/qn принимается постоянной холла (q — заряд электрона, n — объемная плотность носителей).Таким образом получили выражение Теперь зная например толщину пластинки, индукцию и постоянную Холла — можно определить ток, или наоборот индукцию через ток. А при необходимости можем узнать тип проводимости и концентрацию носителей заряда, но это уже для ученых.

Попробуем посчитать напряжение в числах. Возьмем вольфрам, при B=1 Тесла, I = 1 A, b = 0.01 мм получим U=11 мкВ. Однако маловато, разберемся почему. Постоянная Холла для металлов имеет порядок 10^-10, и виной тому очень высокая концентрация носителей заряда. Может подобрать другой материал? а почему бы и нет. Возьмем полупроводники, сегодня возможно получить полупроводники с заданной концентрацией носителей, так например для кремния возможна постоянная холла порядка 10^-3. А теперь сделаем пластинку потоньше и: B=1 Тесла, I = 1 A, b = 0.001 получается U=1 В, согласитесь неплохо? А еще поставим усилитель, причем чем ближе к датчику тем лучше, дабы не наловить помех и получим неплохую чувствительность. Выпускаются датчики холла в интегральном исполнении, как правило совмещен либо с усилителем либо с силовыми ключами. Преимущества: Нет подвижных частей, линейные характеристики, компактность, герметичность, надежность, в отличии от токовых трансформаторов измеряет индукцию поля а не ее изменение.

Теперь о применении. А применять этот эффект можно как угодно, насколько хватит фантазии. Чаще всего используют в датчиках положения (кулеры, электронное зажигание, счетчики оборотов, тахометры). Используется для измерения сильных постоянных токов Можно например сделать импульсный преобразователь напряжения, и определять оптимальный момент открытия — закрытия транзисторов поставив датчик холла на сердечник индуктивности.

Жду замечаний и оценки материала. Стоит ли выкладывать в коллективный блог? О чем стоит рассказать в следующей статье? В качестве возможных тем: работа полевого транзистора, элемент Пельтье, он же термопара, или трактат о вихревых расходомерах. Еще есть прекрасная возможность рассказать про некоторые ништяки из теории автоматического управления, например про методы настройки ПИД регулятора, ибо эта темя в интернете совершенно не освещена.

Замечания в первую очередь.

we.easyelectronics.ru

Датчики на эффекте Холла компании Honeywell

  

В зависимости от назначения, датчики различаются по конструктивным и электрическим характеристикам. Однако все они имеют один и тот же принцип работы, основанный на элементе Холла. Условно все датчики можно разделить на две группы: с линейным и логическим выходом.

Датчики с линейным выходом обычно применяются для определения небольших перемещений или построения более сложных датчиков, например в составе датчиков тока с гальванической развязкой. Они состоят из полупроводникового элемента Холла, стабилизатора питания, дифференциального усилителя и выходного каскада. В зависимости от модели, выходной каскад датчика может представлять собой усилитель на биполярном транзисторе, включенном по схеме с открытым коллектором (p-n-p) или по двухтактной схеме (p-n-p + n-p-n). Выходное напряжение этих датчиков находится в линейной зависимости от величины вектора магнитной индукции. За пределами рабочей области датчик входит в насыщение. При отсутствии внешнего магнитного поля напряжение на выходе равно половине напряжения питания. Размах выходного напряжения и чувствительность датчиков находятся также в линейной зависимости от напряжения источника питания (пропорциональный выход). Этот тип датчиков характеризуется высокой нагрузочной способностью, линейной характеристикой преобразования в рабочем диапазоне магнитных полей, широким диапазоном рабочих температур и питающих напряжений, долговременной стабильностью параметров и малым током потребления. В сводной таблице 1 приведены для сравнения различные типы линейных датчиков магнитного поля.

Таблица 1. Линейные датчики магнитного поля на эффекте Холла

Наимено-вание В, Гс Чувст.,мВ/Гс Uпит., В Iпит., мА Iвых.макс., мА Траб., °С   Внешний вид
SS49 ±400 0,6…1,25 4…10 4 20 -25…85  
SS495A ±670 6…14 4,5…10,5 8,7 1,5 -40…150
SS495A1 ±670 6…14 4,5…10,5 8,7 1,5 -40…150
SS495A2 ±670 6…14 4,5…10,5 8,7 1,5 -40…150
SS496A ±840 4,8…12 4,5…10,5 8,7 1,5 -40…150
SS496A1 ±840 4,8…12 4,5…10,5 8,7 1,5 -40…150
SS494B ±420 9,7…24 4,5…10,5 8,7 1,5 -40…150
SS94A1 ±500 5 6,6…12,6 13 1 -40…125  
SS94A1E ±500 5 6,6…12,6 13 1 -40…125
SS94A1F ±100 25 6,6…12,6 13 1 -40…125
SS94A2 ±500 5 6,6…12,6 13 1 -40…125
SS94A2D ±2500 1 6,6…12,6 13 1 -40…125
91SS12-2 ±400 7,5 8…16 19 10 -40…150  
91SS16-3 ±400 9 8…16 19 10 -40…150

Датчики же с логическим выходом обычно применяются для определения наличия какого-либо ферромагнитного объекта в поле «зрения» датчика. В отличие от линейных датчиков магнитного поля, выход этих приборов, в зависимости от величины приложенного магнитного поля, принимает всего два состояния: высокий или низкий уровень. Выходной сигнал конвертируется из линейного с помощью триггера Шмидта. Благодаря гистерезисной характеристике триггера, повышается помехоустойчивость датчика, устраняются ложные срабатывания. В характеристике датчика принципиально важны лишь две точки: точка включения (магнитная индукция, при которой выход переходит во включенное состояние) и точка выключения (наоборот). Для повышения нагрузочной способности по выходу в схему датчика добавляется каскад усиления на биполярном транзисторе (n-p-n), включенном по схеме с общим эмиттером. Большинство датчиков имеют встроенный стабилизатор питания элемента Холла и схемы нормализации сигнала, поэтому приборы не критичны к стабильности источника питания, уверенно работают в диапазоне питающих напряжений от 3,8 до 30 В. Универсальный выход с открытым коллектором обеспечивает датчику высокую гибкость на этапе согласования с нагрузкой. Нагрузкой датчиков могут являться входы логических ИМС и микроконтроллеров, а также различные драйверы силовых коммутационных приборов. В сводной таблице 2 приведены для сравнения различные типы логических датчиков магнитного поля.

Таблица 2. Логические датчики магнитного поля на эффекте Холла

Наиме-нование Bвкл.,Гс max Bвыкл., Гс min Iвых.макс., мА Uпит., В Iпит., мА Траб., °С Внешний вид
513SS16 340 30 20 6…16 10 -40…150  
517SS16 140 -140 20 6…16 10 -40…150
55SS16 400 57 10 4,5…9 4 -40…150
613SS2 495 50 20 6…16 10 -40…150  
65SS4 575 82 10 4,5…9 4 -40…100
SS41 40 -40 20 4,5…24 15  -55…150  
SS46 150 -150 10 4,5…24 8,7  -55…150
SS411A 20 -20 20 3,8…30 7,5 -40…150
SS413A 50 -50 20 3,8…30 7,5 -40…150
SS441A 85 55 20 3,8…30 7,5 -40…150
SS443A 145 115 20 3,8…30 7,5 -40…150
SS449A 350 275 20 3,8…30 7,5 -40…150
SS461A 50 -50 20 3,8…30 7,5 -40…150
SS466A 140 -140 20 3,8…30  7,5 -40…150
SS511AT 20 -20 20 3,8…30 7,5 -40…150  
SS513AT 50 -50 20 3,8…30 7,5 -40…150
SS51T 40 -40 20 4,5…24 7,5 -40…150
SS541AT 85 55 20 3,8…30 7,5 -40…150
SS543AT 145 115 20 3,8…30 7,5 -40…150
SS549AT 350 275 20 3,8…30 7,5 -40…150
SS561AT 50 -50 20 3,8…30 7,5 -40…150
SS566AT 140 -140 20 3,8…30 7,5 -40…150
SR13C-A1 180 75 20 3,8…30 13 -40…150  
SR13D-A1 115 20 20 3,8…30 13 -40…150
SR13F-A1 390 235 20 3,8…30 13 -40…150
SR13R-A1 85 -85 20 3,8…30 13 -40…150
SR15C-A3 180 75 20 3,8…30 13 -40…150
SR3B-A1 90 -90 10 4,5…24 15 -40…85  
SR3C-A1 150 100 10 4,5…24 19 -40…85
SR3F-A1 400 185 10 4,5…24 18 -40…85
SR3G-A1 350 280 10 4,5…24 22 -40…85
103SR11-A1 350 215 20 45…5.5 4 -40…100  
103SR12-A1 345 245 20 6…24 10 -40…100
103SR13-A1 400 250 20 4,5…24 10 -40…100
103SR14-A1 90 45 20 4,5…24 10 -40…100
103SR17-A1 50 -50 20 4,5…24 10 -40…100
103SR18-1 50 -50 20 4,5…24 10 -40…100

 

Получение технической информации, заказ образцов, поставка —e-mail: [email protected]

Новая серия миниатюрных концевых выключателей 

Новую серию 91MCE концевых выключателей компании Honeywell отличают миниатюрные размеры, невысокая цена и соответствие максимально высоким требованиям, предъявляемым в промышленности.

Сконструированные в компактном 20 мм. корпусе, выключатели 91MCE предназначены для OEM-приложений с ограниченным пространством монтажа. Серия предлагает различные варианты приводов головок и рычагов, соответствует стандартам: IP65, NEMA 1, 4, 12, 13. Срок службы выключателей — 5 млн. операций.

Выключатели Honeywell серии 91MCE предназначены для широкого круга промышленных применений: оборудование машин, оснащение лифтов, эскалаторов, дверей и другое.

 

Низковольтный датчик температуры/температурный ключ

Компания National Semiconductor выпустила LM26LV — низковольтный микропотребляющий датчик температуры и ключ с двумя выходами. Уровень температуры переключения может быть предварительно настроен на любую температуру от 0 до 150°С. Встроенный температурный гистерезис сохраняет устойчивость показаний в случае нестабильности температуры.

LM26LV генерирует сигнал в случае достижения подложкой компонента температуры Ttrip. Микросхема возвращается в исходное состояние в случае падения температуры ниже Ttrip-Thyst.

На аналоговом выходе Vtemp устанавливается напряжение, обратно пропорциональное измеренной температуре. При подаче на вход TRIP TEST положительного напряжения (логической единицы), на выходах устанавливаются следующие состояния:

1) цифровые выходы переходят в состяние для тестирования;

2) на выходе Vtemp устанавливается напряжение, соответствующее Vtrip.

Минимальное напряжение питания в 1,6 В позволяет применять микросхему для систем с низким уровнем напряжения питания.

Основные параметры

  • Низкое напряжение питания: 1,6 В
  • Низкий ток покоя
  • Выходы двухтактный (push-pull) и с открытым коллектором
  • Широкий диапазон установки точки перехода: 1…150°С
  • Линейный выход напряжения Vtemp
  • Защита от короткого замыкания по выходу Vtemp
  • Точность обеспечивается в диапазоне -50…150°С

Применение

  • Портативные приборы
  • Беспроводные трансиверы
  • Управление батареями
Наши информационные каналы

Рубрика: новинки элементной базы Метки: HONEY, Датчики, Датчики магнитного поля

О компании Honeywell

Honeywell International, Inc. — крупная американская корпорация, производящая электронные системы управления и автоматизации. Корпорация Honeywell International — мировой лидер в области технологий и промышленного производства, входящий в список 100 ведущих компаний, составляемый журналом Fortune. Она известна во всем мире своими разработками в области аэрокосмического оборудования, технологий для эксплуатации зданий и промышленных сооружений, автомобильного оборудования, турбокомпрессоров и ...читать далее

www.compel.ru

Датчики магнитного поля. Датчики Холла в схемах на МК

Сущность эффекта, открытого в 1879 г. американским физиком Э. Холлом, заключается в появлении разности потенциалов между гранями полупроводниковой пластины, через которую протекает ток и на которую воздействует перпендикулярное магнитное поле. Разность потенциалов прямо пропорциональна силе тока и квадрату магнитной индукции.

Эффект Холла широко применяется в бесконтактных датчиках тока. Другое направление — датчики перемещения, в которых элемент Холла крепится к неподвижному шасси, а собственно магнит находится на движущейся части исследуемого объекта. Поскольку выходной сигнал датчика Холла пропорционален индукции магнитного поля, а не скорости его изменения, это даёт серьёзное преимущество в точности по сравнению с аналогичными по назначению индуктивными датчиками.

Магниточувствительные элементы, использующие эффект Холла, обычно называют «датчиками Холла» (англ. «Hall Sensor»). Различают простые и интегральные датчики Холла. В последних кроме полупроводниковой пластины содержится встроенный усилитель-формирователь. Типовые параметры интегральных датчиков Холла: напряжение питания 2.5…5 В или 4.5… 18 В, ток потребления 8…20 мА, минимальная регистрируемая магнитная индукция 2… 10 мТл, выходной сигнал — аналоговый (модулированное по амплитуде напряжение) или цифровой (открытый коллектор, КМОП-элемент, импульсы ШИМ).

На Рис. 3.74 а…м показаны схемы подключения датчиков Холла к МК.

Рис. 3.74. Схемы подключения датчиков Холла к МК {начало):

а)        датчик Холла DAI имеет выход с открытым коллектором и встроенную схему защиты от замыкания на шину питания. Микросхема УР1101ХП29 реагирует на магнитное поле положительной полярности, УР1101ХП49 — на поле положительной и отрицательной полярности с триггерным эффектом запоминания;

б)       диод VD1 защищает вход МК от случайной подачи высокого положительного напряжения. Конденсатор С J снижает помехи, поступающие от датчика Холла по длинным проводам;

в)        включение/выключение датчика Холла DAI по сигналам с выхода МК. Датчик реагирует на магнитное поле как положительного, так и отрицательного направления. Замена микросхемы /)/!/- К1116КП2;

 

 

Рис. 3.74. Схемы подключения датчиков Холла к МК {продолжение):

г) датчик Холла ?14/ (фирма Ampson Technology) имеет два противофазных выхода. Прямой сигнал поступает на МК, а инверсный — на внешнее исполнительное устройство через выход с открытым коллектором;

д) для усиления сигнала с датчика Холла ?14/ (фирма Allegro MicroSystems) используется ОУ DA2. Резистором RI выставляется начальное напряжение на входе МК, близкое к половине питания. Резистором /?J регулируется усиление/чувствительность;

е) датчик оборотов двигателя бормашины, выполненный на специализированной бескорпусной микросборке DAI, содержащей на подложке датчик Холла. На ОУ DA2 собран двухка- скадный усилитель напряжения (регулируется резистором RW), Резистор /?/ балансирует мостовую схему, находящуюся внутри DAI, что необходимо для начальной калибровки показаний;

ж)  подключение датчика Холла DA / (фирма Allegro MicroSystems) к М К через малошумящий ОУ DA2,1 и двухзвенный ФНЧ {R5, С1, R6, С2). Резистором R4 выставляется усиление;

 

Рис. 3.74. Схемы подключения датчиков Холла к ЫК {окончание):

з) микросхема DA! (фирма Melexis) — это интеллектуальный датчик магнитного поля с внутренним DSP и со своей системой команд. По-другому микросхему DA! называют «цифровым датчиком Холла». Трёхпроводной интерфейс связи напоминает SPI, но вместо двух отдельных линий MISO и MOSI сделана одна совмещённая линия MISO-MOSI;

w) DA1 — это микросхема датчика Холла, щироко применявщаяся ранее в компьютерных клавиатурах;

к) аналоговый компаратор на микросхеме DA1 (фирма Maxim Integrated Products) обеспечивает крутые фронты сигнала на входе МК. Порог срабатывания определяется делителем /?/, R3\ л) DA! — это микросхема датчика Холла, «изъятая» из компьютерного вентилятора; м) экономичный ОУ на микросхеме Z)/42 (фирма Telefunken) усиливает сигнал сдатчика Холла DAL Транзистор VT1 служит ключом и формирует на выходе прямоугольные импульсы.

nauchebe.net


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.