Синус, косинус и тангенс острого угла прямоугольного треугольника. Тангенс угла определение
Синус косинус и тангенс - материалы для подготовки к ЕГЭ по Математике
Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.
Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.
Острый угол — меньший 90 градусов.
Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин :-)
Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .
Угол обозначается соответствующей греческой буквой .
Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.
Катеты — стороны, лежащие напротив острых углов.
Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим.
Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:
Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:
Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:
Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:
Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):
Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.
Давайте докажем некоторые из них.
- Сумма углов любого треугольника равна . Значит, сумма двух острых углов прямоугольного треугольника равнa .
- С одной стороны, как отношение противолежащего катета к гипотенузе. С другой стороны, , поскольку для угла катет а будет прилежащим.Получаем, что . Иными словами, .
- Возьмем теорему Пифагора: .Поделим обе части на :Мы получили основное тригонометрическое тождество.
- Поделив обе части основного тригонометрического тождества на , получим:Это значит, что если нам дан тангенс острого угла , то мы сразу можем найти его косинус.Аналогично,
Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?
Мы знаем, что сумма углов любого треугольника равна .
Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .
Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?
С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.
Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.
Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .
Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.
Ты нашел то, что искал? Поделись с друзьями!
Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.
1. В треугольнике угол равен , . Найдите .
Задача решается за четыре секунды.
Поскольку , .
2. В треугольнике угол равен , , . Найдите .
Имеем:
Отсюда
Найдем по теореме Пифагора.
Задача решена.
Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!
Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы.
Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.
Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
ege-study.ru
Определение синуса, косинуса, тангенса и котангенса и примеры
Для начала рассмотрим круг с радиусом 1 и с центром в (0;0). Для любого αЄR можно провести радиус 0A так, что радианная мера угла между 0A и осью 0x равна α. Направление против часовой стрелки считается положительным. Пусть конец радиуса А имеет координаты (a,b).
Определение синуса
Определение: Число b, равное ординате единичного радиуса, построенного описанным способом, обозначается sinα и называется синусом угла α.
Пример: sin 3π cos3π/2 = 0 0 = 0
Определение косинуса
Определение: Число a, равное абсциссе конца единичного радиуса, построенного описанным способом, обозначается cosα и называется косинусом угла α.
Пример: cos0 cos3π + cos3,5π = 1 (-1) + 0 = 2
Эти примеры используют определение синуса и косинуса угла через координаты конца единичного радиуса и единичной окружности. Для более наглядного представления необходимо нарисовать единичную окружность и отложить на ней соответствующие точки, а затем посчитать их абсциссы для вычисления косинуса и ординаты для вычисления синуса.
Определение тангенса
Определение: Функция tgx=sinx/cosx при x≠π/2+πk, kЄZ, называется котангенсом угла x. Область определения функции tgx это все действительные числа, кроме x=π/2+πn, nЄZ.
Пример: tg0 tgπ = 0 0 = 0
Этот пример аналогичен предыдущему. Для вычисления тангенса угла нужно поделить ординату точки на её абсциссу.
Определение котангенса
Определение: Функция ctgx=cosx/sinx при x≠πk, kЄZ называется котангенсом угла x. Область определения функции ctgx = -все действительные числа кроме точек x=πk, kЄZ.
Рассмотрим пример на обычном прямоугольном треугольнике
Чтобы было понятнее, что же такое косинус, синус, тангенс и котангенс. Рассмотрим пример на обычном прямоугольном треугольнике с углом y и сторонами a,b,c . Гипотенуза с, катеты соответственно a и b. Угол между гипотенузой c и катетом b y.
Определение: Синус угла y - это отношение противолежащего катета к гипотенузе: siny = а/с
Определение: Косинус угла y это отношение прилежащего катета к гипотенузе: сosy= в/с
Определение: Тангенс угла у - это отношение противолежащего катета к прилежащему: tgy = а/в
Определение: Котангенс угла y -это отношение прилежащего катета к противолежащему: ctgy= в/а
Cинус, косинус, тангенс и котангенс называют ещё тригонометрическими функциями. У каждого угла есть свой синус и косинус. И практически у каждого есть свой тангенс и котангенс.
Считается, что если нам дан угол, то его синус, косинус, тангенс и котангенс нам известны! И наоборот. Дан синус, или любая другая тригонометрическая функция соответственно, мы знаем угол. Созданы даже специальные таблицы, где расписаны тригонометрические функции для каждого угла.
Нужна помощь в учебе?
Предыдущая тема: Преобразования выражений, содержащих степень с дробным показателем Следующая тема:   Свойства синуса, косинуса, тангенса и котангенсаВсе неприличные комментарии будут удаляться.
www.nado5.ru
Тангенс угла, теория и примеры
Определение и формула тангенса
ОПРЕДЕЛЕНИЕ Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего к этому углу катета к прилежащему катету. Тангенс угла обозначается .Рассмотрим прямоугольный треугольник (изображен на рисунке) с , гипотенузой и катетами и . Тогда
Рассмотрим тригонометрическую окружность радиуса 1 с центром в начале координат.
Выберем произвольный угол , которому на окружности соответствует точка . Опустим перпендикуляры на оси координат, тогда
т.е. тангенс угла это отношение ординаты точки А к абсциссе. Так как синус угла равен значению ординаты точки А, а косинус угла равен значению абсциссы, то
Функция периодическая с периодом , т.е.
Примеры решения задач
ПРИМЕР 1Задание | В прямоугольном треугольнике с катетами см и см найти тангенсы углов и . |
Решение | Так как тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему, то можем записать, что
|
Ответ |
Задание | Найти , если
|
Решение | Преобразуем заданное выражение следующим образом:
или
Так как , то получаем, что
|
Ответ |
Тангенс двойного угла
Тангенс половинного угла
График тангенса
Сумма тангенсов
Разность тангенсов
Тангенс суммы
Тангенс разности
Область определения тангенса
ru.solverbook.com
что такое? Как найти синус, косинус и тангенс?
Одним из разделов математики, с которыми школьники справляются с наибольшими трудностями, является тригонометрия. Неудивительно: для того чтобы свободно овладеть этой областью знаний, требуется наличие пространственного мышления, умение находить синусы, косинусы, тангенсы, котангенсы по формулам, упрощать выражения, уметь применять в вычислениях число пи. Помимо этого, нужно уметь применять тригонометрию при доказательстве теорем, а это требует либо развитой математической памяти, либо умения выводить непростые логические цепочки.
Истоки тригонометрии
Знакомство с данной наукой следует начать с определения синуса, косинуса и тангенса угла, однако прежде необходимо разобраться, чем вообще занимается тригонометрия.
Исторически главным объектом исследования данного раздела математической науки были прямоугольные треугольники. Наличие угла в 90 градусов дает возможность осуществлять различные операции, позволяющие по двум сторонам и одному углу либо по двум углам и одной стороне определять значения всех параметров рассматриваемой фигуры. В прошлом люди заметили эту закономерность и стали активно ею пользоваться при строительстве зданий, навигации, в астрономии и даже в искусстве.
Начальный этап
Первоначально люди рассуждали о взаимоотношении углов и сторон исключительно на примере прямоугольных треугольников. Затем были открыты особые формулы, позволившие расширить границы употребления в повседневной жизни данного раздела математики.
Изучение тригонометрии в школе сегодня начинается с прямоугольных треугольников, после чего полученные знания используются учениками в физике и решении абстрактных тригонометрических уравнений, работа с которыми начинается в старших классах.
Сферическая тригонометрия
Позже, когда наука вышла на следующий уровень развития, формулы с синусом, косинусом, тангенсом, котангенсом стали использоваться в сферической геометрии, где действуют иные правила, а сумма углов в треугольнике всегда больше 180 градусов. Данный раздел не изучается в школе, однако знать о его существовании необходимо как минимум потому, что земная поверхность, да и поверхность любой другой планеты, является выпуклой, а значит, любая разметка поверхности будет в трёхмерном пространстве «дугообразной».
Возьмите глобус и нитку. Приложите нитку к двум любым точкам на глобусе, чтобы она оказалась натянутой. Обратите внимание – она обрела форму дуги. С такими формами и имеет дело сферическая геометрия, применяющаяся в геодезии, астрономии и других теоретических и прикладных областях.
Прямоугольный треугольник
Немного узнав про способы применения тригонометрии, вернемся к базовой тригонометрии, чтобы в дальнейшем разобраться, что такое синус, косинус, тангенс, какие расчёты можно с их помощью выполнять и какие формулы при этом использовать.
Первым делом необходимо уяснить понятия, относящиеся к прямоугольному треугольнику. Во-первых, гипотенуза – это сторона, лежащая напротив угла в 90 градусов. Она является самой длинной. Мы помним, что по теореме Пифагора её численное значение равно корню из суммы квадратов двух других сторон.
Например, если две стороны равны 3 и 4 сантиметрам соответственно, длина гипотенузы составит 5 сантиметров. Кстати, об этом знали ещё древние египтяне около четырех с половиной тысяч лет назад.
Две оставшиеся стороны, которые образуют прямой угол, носят название катетов. Кроме того, надо помнить, что сумма углов в треугольнике в прямоугольной системе координат равняется 180 градусам.
Определение
Наконец, твердо понимая геометрическую базу, можно обратиться к определению синуса, косинуса и тангенса угла.
Синусом угла называется отношение противолежащего катета (т. е. стороны, располагающейся напротив нужного угла) к гипотенузе. Косинусом угла называется отношение прилежащего катета к гипотенузе.
Запомните, что ни синус, ни косинус не может быть больше единицы! Почему? Потому что гипотенуза – это по умолчанию самая длинная сторона прямоугольного треугольника. Каким бы длинным ни был катет, он будет короче гипотенузы, а значит, их отношение всегда будет меньше единицы. Таким образом, если у вас в ответе к задаче получился синус или косинус со значением, большим, чем 1, ищите ошибку в расчётах или рассуждениях. Этот ответ однозначно неверен.
Наконец, тангенсом угла называется отношение противолежащей стороны к прилежащей. Тот же самый результат даст деление синуса на косинус. Посмотрите: в соответствии с формулой мы делим длину стороны на гипотенузу, после чего делим на длину второй стороны и умножаем на гипотенузу. Таким образом, мы получаем то же самое соотношение, что и в определении тангенса.
Котангенс, соответственно, представляет собой отношение прилежащей к углу стороны к противолежащей. Тот же результат мы получим, разделив единицу на тангенс.
Итак, мы рассмотрели определения, что такое синус, косинус, тангенс и котангенс, и можем заняться формулами.
Простейшие формулы
В тригонометрии не обойтись без формул – как найти синус, косинус, тангенс, котангенс без них? А ведь именно это требуется при решении задач.
Первая формула, которую необходимо знать, начиная изучать тригонометрию, говорит о том, что сумма квадратов синуса и косинуса угла равна единице. Данная формула является прямым следствием теоремы Пифагора, однако позволяет сэкономить время, если требуется узнать величину угла, а не стороны.
Многие учащиеся не могут запомнить вторую формулу, также очень популярную при решении школьных задач: сумма единицы и квадрата тангенса угла равна единице, деленной на квадрат косинуса угла. Присмотритесь: ведь это то же самое утверждение, что и в первой формуле, только обе стороны тождества были поделены на квадрат косинуса. Выходит, простая математическая операция делает тригонометрическую формулу совершенно неузнаваемой. Помните: зная, что такое синус, косинус, тангенс и котангенс, правила преобразования и несколько базовых формул вы в любой момент сможете сами вывести требуемые более сложные формулы на листе бумаги.
Формулы двойного угла и сложения аргументов
Ещё две формулы, которые требуется выучить, связаны со значениями синуса и косинуса при сумме и разности углов. Они представлены на рисунке ниже. Обратите внимание, что в первом случае оба раза перемножается синус и косинус, а во втором складывается попарное произведение синуса и косинуса.
Также существуют формулы, связанные с аргументами в виде двойного угла. Они полностью выводятся из предыдущих – в качестве тренировки попробуйте получить их самостоятельно, приняв угол альфа равным углу бета.
Наконец, обратите внимание, что формулы двойного угла можно преобразовать так, чтобы понизить степень синуса, косинуса, тангенса альфа.
Теоремы
Двумя основными теоремами в базовой тригонометрии являются теорема синусов и теорема косинусов. С помощью этих теорем вы легко сможете понять, как найти синус, косинус и тангенс, а значит, и площадь фигуры, и величину каждой стороны и т. д.
Теорема синусов утверждает, что в результате деления длины каждой из сторон треугольника на величину противолежащего угла мы получим одинаковое число. Более того, это число будет равно двум радиусам описанной окружности, т. е. окружности, содержащей все точки данного треугольника.
Теорема косинусов обобщает теорему Пифагора, проецируя её на любые треугольники. Оказывается, из суммы квадратов двух сторон вычесть их произведение, умноженное на двойной косинус смежного им угла - полученное значение окажется равно квадрату третьей стороны. Таким образом, теорема Пифагора оказывается частным случаем теоремы косинусов.
Ошибки по невнимательности
Даже зная, что такое синус, косинус и тангенс, легко совершить ошибку из-за рассеянности внимания или ошибки в простейших расчётах. Чтобы избежать таких ошибок, ознакомимся с наиболее популярными из них.
Во-первых, не следует преобразовывать обыкновенные дроби в десятичные до получения окончательного результата – можно и ответ оставить в виде обыкновенной дроби, если в условии не оговорено обратное. Такое преобразование нельзя назвать ошибкой, однако следует помнить, что на каждом этапе задачи могут появиться новые корни, которые по задумке автора должны сократиться. В этом случае вы напрасно потратите время на излишние математические операции. Особенно это актуально для таких значений, как корень из трёх или из двух, ведь они встречаются в задачах на каждом шагу. То же касается округлений «некрасивых» чисел.
Далее, обратите внимание, что к любому треугольнику применима теорема косинусов, но не теорема Пифагора! Если вы по ошибке забудете вычесть удвоенное произведение сторон, умноженное на косинус угла между ними, вы не только получите совершенно неверный результат, но и продемонстрируете полное непонимание предмета. Это хуже, чем ошибка по невнимательности.
В-третьих, не путайте значения для углов в 30 и 60 градусов для синусов, косинусов, тангенсов, котангенсов. Запомните эти значения, ведь синус 30 градусов равен косинусу 60, и наоборот. Их легко перепутать, вследствие чего вы неизбежно получите ошибочный результат.
Применение
Многие ученики не спешат приступать к изучению тригонометрии, поскольку не понимают её прикладного смысла. Что такое синус, косинус, тангенс для инженера или астронома? Это понятия, благодаря которым можно вычислить расстояние до далёких звёзд, предсказать падение метеорита, отправить исследовательский зонд на другую планету. Без них нельзя построить здание, спроектировать автомобиль, рассчитать нагрузку на поверхность или траекторию движения предмета. И это только самые очевидные примеры! Ведь тригонометрия в том или ином виде используется повсюду, начиная от музыки и заканчивая медициной.
В заключение
Итак, вы знаете, что такое синус, косинус, тангенс. Вы можете использовать их в расчётах и успешно решать школьные задачи.
Вся суть тригонометрии сводится к тому, что по известным параметрам треугольника нужно вычислить неизвестные. Всего этих параметров шесть: длины трёх сторон и величины трёх углов. Всё различие в задачах заключается в том, что даются неодинаковые входные данные.
Как найти синус, косинус, тангенс исходя из известных длин катетов или гипотенузы, вы теперь знаете. Поскольку эти термины обозначают не что иное, как отношение, а отношение – это дробь, главной целью тригонометрической задачи становится нахождение корней обычного уравнения либо же системы уравнений. И здесь вам поможет обычная школьная математика.
fb.ru
(1) | Основное тригонометрическое тождество | sin2(α) + cos2(α) = 1 | ||
(2) | Основное тождество через тангенс и косинус | 1 + tg2(α) = 1/cos2(α) | ||
(3) | Основное тождество через котангенс и синус | 1 + ctg2(α) = 1/sin2(α) | ||
(4) | Соотношение между тангенсом и котангенсом | tg(α)ctg(α) = 1 | ||
(5) | Синус двойного угла | sin(2α) = 2sin(α)cos(α) | ||
(6) | Косинус двойного угла | cos(2α) = cos2(α) – sin2(α) = 2cos2(α) – 1 = 1 – 2sin2(α) | ||
(7) | Тангенс двойного угла |
| ||
(8) | Котангенс двойного угла |
| ||
(9) | Синус тройного угла | sin(3α) = 3sin(α)cos2(α) – sin3(α) | ||
(10) | Косинус тройного угла | cos(3α) = cos3(α) – 3cos(α)sin2(α) | ||
(11) | Косинус суммы/разности | cos(α±β) = cos(α)cos(β) ∓ sin(α)sin(β) | ||
(12) | Синус суммы/разности | sin(α±β) = sin(α)cos(β) ± cos(α)sin(β) | ||
(13) | Тангенс суммы/разности | tg(α±β) = (tg(α) ± tg(β))/(1 ∓ tg(α)tg(β)) | ||
(14) | Котангенс суммы/разности | ctg(α±β) = (-1 ± ctg(α)ctg(β))/(ctg(&alpha) ± ctg(β)) | ||
(15) | Произведение синусов | sin(α)sin(β) = ½(cos(α–β) – cos(α+β)) | ||
(16) | Произведение косинусов | cos(α)cos(β) = ½(cos(α+β) + cos(α–β)) | ||
(17) | Произведение синуса на косинус | sin(α)cos(β) = ½(sin(α+β) + sin(α–β)) | ||
(18) | Сумма/разность синусов | sin(α) ± sin(β) = 2sin(½(α±β))cos(½(α∓β)) | ||
(19) | Сумма косинусов | cos(α) + cos(β) = 2cos(½(α+β))cos(½(α–β)) | ||
(20) | Разность косинусов | cos(α) – cos(β) = –2sin(½(α+β))sin(½(α–β)) | ||
(21) | Сумма/разность тангенсов | tg(α) ± tg(β) = sin(α±β)/cos(α)cos(β) | ||
(22) | Формула понижения степени синуса | sin2(α) = ½(1 – cos(2α)) | ||
(23) | Формула понижения степени косинуса | cos2(α) = ½(1 + cos(2α)) | ||
(24) | Сумма/разность синуса и косинуса | sin(α) ± cos(α) = &sqrt;2sin(α±π/4) | ||
(25) | Сумма/разность синуса и косинуса с коэффициентами | Asin(α) ± Bcos(α) = Корень(A²+B²)(sin(α ± arccos(A/Корень(A²+B²))) | ||
(26) | Основное соотношение арксинуса и арккосинуса | arcsin(x) + arccos(x) = π/2 | ||
(27) | Основное соотношение арктангенса и арккотангенса | arctg(x) + arcctg(x) = π/2 |
scolaire.ru
Тангенс и котангенс. Формулы и определение
Помимо синуса и косинуса в тригонометрии имеется еще огромное количество функций, в частности, тангенс и котангенс, о котором мы поговорим на данном уроке.
Определение тангенса:
Тангенс tg(x) — это отношение синуса sin(x) к косинусу cos(x)
Формула тангенса:
\[ \LARGE tg\ x = \dfrac{\sin\ x}{\cos\ x} \]
Определение котангенса:
Котангенс ctg(x) — это отношение косинуса cos(x) к синусу sin(x).
Формула котангенса:
\[ \LARGE ctg\ x = \dfrac{\cos\ x}{\sin\ x} \]
Определения для прямоугольного треугольника:
Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.
Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.
Определения для числа:
Тангенсом числа t называют отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t, то есть, tg(t)=y/x.
Котангенсом числа t называют отношение абсциссы к ординате точки единичной окружности, соответствующей числу t, то есть, ctg(t)=x/y.
Так как делить на ноль нельзя, то значения в знаменателе не может быть равным нулю, т.е.
\( tg\ x = \dfrac{sin\ x}{cos\ x} \), где \( x \neq \dfrac{\pi}{2}+\pi k \)
\( ctg\ x = \dfrac{cos\ x}{sin\ x} \), где \( x \neq \pi k \)
Таблица знаков тангенса и котангенса по четвертям (составить ее можно, опираясь на таблицу синусов и косинусов, применяя правило деление чисел с отрицательными знаками):
I | II | III | IV | |
tg x | + | – | + | – |
ctg x | + | – | + | – |
Как видите, значения тангенса и котангенса очень просто найти, зная значения синуса и косинуса, тем не менее также существует таблица и для данных функций, которая существенно упрощает жизнь. Здесь я представлю самые распространенные значения. А для всех остальных значений существуют специальные таблицы Брадиса.
\( \frac{\pi}{6} \) | \( \frac{\pi}{4} \) | \( \frac{\pi}{3} \) | \( \frac{\pi}{2} \) | 0 | |
tg x | \( \frac{\sqrt{3}}{3} \) | 1 | \( \sqrt{3} \) | – | 0 |
ctg x | \( \sqrt{3} \) | 1 | \( \frac{\sqrt{3}}{3} \) | 0 | – |
Завершая разговор про данные тригонометрические функции нельзя не сказать про еще две важные формулы:
Для любого допустимого значения х справедливы равенства:
\[ tg\ (-x) = -tg\ x \]
\[ ctg\ (-x) = -ctg\ x \]
Для любого допустимого значения х также справедливы следующие равенства:
\[ tg\ (x+\pi)= tg\ \pi \]
\[ ctg\ (x+\pi)= ctg\ \pi \]
Ну вот теперь вроде все, более подробно и углубленно изучать мы будем все функции в процессе дальнейшего обучения.
В вашем браузере отключен Javascript. Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!Источник
Поделитесь с другими:
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
calcsbox.com
Синус, косинус, тангенс, котангенс угла
Рассмотрим прямоугольный треугольник ABC.
Синус острого угла прямоугольного треугольника
Отношение противолежащего катета к гипотенузе называют синусом острого угла прямоугольного треугольника.
\sin \alpha = \frac{a}{c}
Косинус острого угла прямоугольного треугольника
Отношение близлежащего катета к гипотенузе называют косинусом острого угла прямоугольного треугольника.
\cos \alpha = \frac{b}{c}
Тангенс острого угла прямоугольного треугольника
Отношение противолежащего катета к близлежащему катету называют тангенсом острого угла прямоугольного треугольника.
tg \alpha = \frac{a}{b}
Котангенс острого угла прямоугольного треугольника
Отношение близлежащего катета к противолежащему катету называют котангенсом острого угла прямоугольного треугольника.
ctg \alpha = \frac{b}{a}
Синус произвольного угла
Ордината точки на единичной окружности, которой соответствует угол \alpha называют синусом произвольного угла поворота \alpha.
\sin \alpha=y
Косинус произвольного угла
Абсцисса точки на единичной окружности, которой соответствует угол \alpha называют косинусом произвольного угла поворота \alpha.
\cos \alpha=x
Тангенс произвольного угла
Отношение синуса произвольного угла поворота \alpha к его косинусу называют тангенсом произвольного угла поворота \alpha.
tg \alpha = y_{A}
tg \alpha = \frac{\sin \alpha}{\cos \alpha}
Котангенс произвольного угла
Отношение косинуса произвольного угла поворота \alpha к его синусу называют котангенсом произвольного угла поворота \alpha.
ctg \alpha =x_{A}
ctg \alpha = \frac{\cos \alpha}{\sin \alpha}
Пример нахождения произвольного угла
Если \alpha — некоторый угол AOM, где M — точка единичной окружности, то
\sin \alpha=y_{M}, \cos \alpha=x_{M}, tg \alpha=\frac{y_{M}}{x_{M}}, ctg \alpha=\frac{x_{M}}{y_{M}}.
Например, если \angle AOM = -\frac{\pi}{4}, то: ордината точки M равна -\frac{\sqrt{2}}{2}, абсцисса равна \frac{\sqrt{2}}{2} и потому
\sin \left (-\frac{\pi}{4} \right )=-\frac{\sqrt{2}}{2};
\cos \left (\frac{\pi}{4} \right )=\frac{\sqrt{2}}{2};
tg \left (-\frac{\pi}{4} \right )=-1;
ctg \left (-\frac{\pi}{4} \right )=-1.
Таблица значений синусов косинусов тангенсов котангенсов
Значения основных часто встречающихся углов приведены в таблице:
0^{\circ} (0) | 30^{\circ}\left(\frac{\pi}{6}\right) | 45^{\circ}\left(\frac{\pi}{4}\right) | 60^{\circ}\left(\frac{\pi}{3}\right) | 90^{\circ}\left(\frac{\pi}{2}\right) | 180^{\circ}\left(\pi\right) | 270^{\circ}\left(\frac{3\pi}{2}\right) | 360^{\circ}\left(2\pi\right) | |
\sin\alpha | 0 | \frac12 | \frac{\sqrt 2}{2} | \frac{\sqrt 3}{2} | 1 | 0 | −1 | 0 |
\cos\alpha | 1 | \frac{\sqrt 3}{2} | \frac{\sqrt 2}{2} | \frac12 | 0 | −1 | 0 | 1 |
tg \alpha | 0 | \frac{\sqrt 3}{3} | 1 | \sqrt3 | — | 0 | — | 0 |
ctg \alpha | — | \sqrt3 | 1 | \frac{\sqrt 3}{3} | 0 | — | 0 | — |
academyege.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.