Классификация электродвигателей — Электрический двигатель
По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.
Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).
Двигатели постоянного тока
Двигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:
- коллекторные двигатели;
- бесколлекторные двигатели.
Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.
По типу возбуждения коллекторные двигатели можно разделить на:
- двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
- двигатели с самовозбуждением .
Двигатели с самовозбуждением делятся на:
- Двигатели с параллельным возбуждением;(обмотка якоря включается параллельно обмотке возбуждения)
- Двигатели последовательного возбуждения;(обмотка якоря включается последовательно обмотке возбуждения)
- Двигатели смешанного возбуждения.(обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря)
Бесколлекторные двигатели (вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы упра
Виды и типы электродвигателей / Статьи и обзоры / Элек.ру
Электрический двигатель
Электродвигатель представляет собой электрическую машину, которая преобразовывает электроэнергию в энергию вращения вала с незначительными тепловыми потерями. Главный принцип работы любого электродвигателя заключается в использовании электромагнитной индукции в качестве основной движущей силы. Для этого конструкция электродвигателя включает:
- Неподвижную часть (статор или индуктор).
- Подвижную часть (ротор или якорь).
В зависимости от предназначения, применяемого рода тока и конструктивных особенностей электрические двигатели имеют большое количество разновидностей.
Двигатели постоянного тока
Электродвигатели постоянного тока объединяют широкий ассортимент устройств, обеспечивающих высокий КПД при трансформации электрической энергии в механическую. Для надежного соединения электрической цепи подвижной и неподвижной части электропривода постоянного тока используют щеточно-коллекторный узел. В зависимости от конструктивных особенностей щеточно-коллекторного узла, все электрические машины постоянного тока подразделяют на следующие группы:
- Коллекторные.
- Бесколлекторные.
В свою очередь коллекторные электродвигатели условно разделяют на следующие виды:
- Самовозбуждающиеся.
- С возбуждением от электромагнитов постоянного действия.
Устройства с независимым возбуждением характеризуются низкой мощностью, поэтому данные электроприводы используют для не ответственных операций с низкой нагрузкой. Машины с самовозбуждением подразделяют на:
- Устройства с последовательным возбуждением, где якорь подключается последовательно обмотке возбуждения.
- Электродвигатели с параллельным возбуждением, где якорь включается параллельно обмотке возбуждения.
- Электропривод смешанного возбуждения, который характеризуется наличием параллельных и последовательных соединений.
Двигатели переменного тока
Электродвигатели переменного тока представлены широкой номенклатурой устройств, которые различают по многочисленным конструктивным и эксплуатационным характеристикам. В зависимости от скорости вращения ротора выделяют электрические машины синхронного и асинхронного типа.
Синхронные двигатели характеризуются одинаковой скоростью вращения ротора и магнитного поля питающего напряжения. Подобный тип электрических двигателей используют для изготовления устройств с высокой мощностью. Кроме этого существует еще одна разновидность синхронного привода — шаговые двигатели. Они имеют строго заданное в пространстве положение ротора, которое фиксируется подачей питания на обмотку статора. При этом переход из одного положения в другое осуществляется посредством подачи напряжения на требуемую обмотку.
Асинхронный электрический двигатель имеет частоту вращения ротора отличную от частоты вращения магнитного поля питающего напряжения. В настоящее время этот тип электродвигателей получил самое широкое распространение как на производстве, так и в быту.
В зависимости от количества фаз питающего напряжения электропривод принадлежит к одной из групп:
- 1-нофазные;
- 2-хфазные;
- 3-хфазные;
- многофазные.
Категория размещения и климатическое исполнение
Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:
- Для помещений с высоким уровнем влажности.
- Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
- В условиях открытого пространства.
- Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
- Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.
В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:
- Все возможные макроклиматические районы (В).
- Холодный (ХЛ).
- Все морские районы (ОМ).
- Сухой тропический (ТС).
- Общий (О).
- Умеренный (У).
- Умеренный морской (М).
- Влажный тропический (ТВ).
Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.
Степень защиты корпуса
Для условного обозначения степени защиты корпуса электрической машины от воздействия вредных факторов окружающей среды используют аббревиатуру IP. При этом на корпусе электропривода указывают следующую информацию:
- Высокий уровень защиты от пыли — IP65, IP66.
- Защищенные — не ниже IP21, IP22.
- С защитой от влаги — IP55, IP5.
- С защитой от брызг и капель — IP23, IP24.
- Закрытое исполнение — IP44 — IP54.
- Герметичные — IP67, IP68.
При подборе электрического двигателя для эксплуатации в условиях воздействия определенных вредных факторов, необходимо тщательно подходить к выбору степени защиты его корпуса.
Общие требования безопасности при монтаже и эксплуатации
При монтаже электрического двигателя необходимо придерживаться следующих требований:
- Перед подключением проверить соответствие частоты и напряжения питающей сети с информацией на паспорте электрического двигателя.
- Перед установкой электрической машины обязательно проводят измерение сопротивления электрической изоляции обмотки статора относительно корпуса. При неудовлетворительных значениях проводят просушивание изоляции до достижения требуемого значения.
- При сопряжении валов необходимо точно соблюдать соосность с допустимым отклонением не более 0,2 мм.
- Для заземления корпуса электродвигателя используют только специальные заземляющие устройства, предусмотренные инструкцией завода производителя.
- Строго запрещен монтаж электропривода под напряжением.
В процессе эксплуатации электрических машин следует придерживаться следующих основных правил:
- Регулярный осмотр состояния электродвигателя является залогом своевременного определения неисправностей.
- Регулярно на протяжении всего срока эксплуатации проводят проверку исправности токовой и тепловой защиты, чистку и смазку, проверку контактных соединений и надежности заземления.
- При наличии повышенного шума или стука, проводят вибродиагностику с целью определения состояния подшипников и других вращающихся деталей.
- Следует исключить длительную работу однофазного электродвигателя в режиме холостого хода, что негативно влияет на срок его службы.
- Запрещается эксплуатация электрического двигателя с неисправной защитой от перегрева, перегрузки или завышенным значением сопротивления контура заземления.
Крановые электродвигатели
Крановые электродвигатели представляют собой асинхронные устройства переменного тока или двигатели постоянного тока с параллельным или последовательным возбуждением.
В отличие от других категорий электродвигателей, крановые электроприводы имеют следующие особенности:
- Большинство крановых электрических двигателей имеет закрытое исполнение корпуса.
- Момент инерции на роторе составляет минимально возможное значение, что обеспечивает минимальные потери энергии во время переходных процессов.
- Кратковременная перегрузка по моменту для крановых двигателей постоянного тока составляет 2,0 — 5,0, а для электромоторов переменного тока 2,3 — 3,5.
- Класс нагревостойкости изоляционных материалов не менее F.
- У кранового электропривода переменного тока в номинальном режиме ПВ составляет не менее 80 минут.
- С целью получения большой перегрузочной способности по моменту добиваются высоких значений магнитного потока.
- Отношение максимально допустимой частоты вращения к номинальному значению для электродвигателей постоянного тока составляет 3,5 — 4,9, а для машин переменного тока 2,5.
Эксплуатация кранового привода характеризуется следующими условиями эксплуатации:
- Частые пуски, реверсы и торможения.
- Регулирование частоты вращения в широком диапазоне значений.
- Повышенная вибрация и тряски.
- Повторно-кратковременный режим работы.
- Воздействие высокой температуры, газа, пыли и пара.
- Значительная перегрузка во время работы.
Общепромышленные электрические двигатели
Электродвигатели общепромышленного исполнения применяют для привода механизмов, которые не предъявляют особых требований к показателям КПД, энергосбережения, скольжению и пусковым характеристикам. Они характеризуются повторно-кратковременным режимом работы и изоляцией с классом нагревостойкости класса F. Наиболее популярными в этой категории являются асинхронные электрические двигатели марки АИР с короткозамкнутым ротором. Благодаря многочисленным достоинствам, этот тип электропривода с успехом применяется на всех производственных предприятиях. От продукции других торговых марок его отличает:
- Простая конструкция с отсутствием подвижных контактов.
- Низкая стоимость в сравнении с электрическими машинами других типов.
- Высокая ремонтопригодность всех главных узлов и рабочих элементов.
- Использование напряжения сети 380 В без дополнительных регуляторов или фильтров.
- Монтаж двигателя осуществляется на лапах или фланцах, поэтому происходит в минимально короткий срок.
Электрические машины общепромышленного исполнения находят применение в сферах деятельности, где нет необходимости в высоких эксплуатационных параметрах: вентиляционные системы, насосные станции, станочное оборудование, компрессорные установки и др. Эксплуатация общепромышленных электродвигателей осуществляется в двух основных режимах: генераторный и двигательный. При этом в генераторном режиме электрические двигатели являются источником электроэнергии за счет преобразования механической энергии вращения вала. В двигательном режиме привод общепромышленного исполнения потребляет электроэнергию и превращает её в механическую энергию вращения вала.
Электрические двигатели с электромагнитным тормозом
Электрический привод с электромагнитным тормозом предназначен для эксплуатации в повторно-кратковременном или кратковременном режиме. Он разработан специально для механизмов, которые требуют форсированной остановки в строго регламентированное время. К таким механизмам относят: электрические тали, автоматизированные складские системы, обрабатывающие станки и др. Тормозной механизм, как правило, располагают со стороны противоположной валу двигателя. Он обеспечивает быстрое торможение электрического привода при отключении питания, а при повторной подаче напряжения растормаживает его.
Электрические машины со встроенным электромагнитным тормозом работают по следующему принципу:
- Электромагнитную катушку тормоза подключают последовательно к одной из фазных обмоток электродвигателя.
- Катушка получает постоянное напряжение посредством выпрямляющего устройства, которое располагают возле коробки с выводами или переменное напряжение непосредственно с обмотки электродвигателя.
- При отсутствии фазного напряжения катушка обесточивается, и якорь прочно зажимает блокировочный механизм.
- После восстановления электрического питания катушка подтягивает якорь, что позволяет валу двигателя свободно перемещаться.
В зависимости от способа монтажа электромоторы со встроенным электромагнитным тормозом изготавливают в следующих исполнениях:
- С горизонтальным валом.
- С вертикальным валом.
Благодаря своим преимуществам по времени остановки вала электродвигателя, этот тип электропривода обеспечивает надежную и безопасную эксплуатацию устройств с высокими требованиями к позиционированию или аварийной остановке.
Источник: Технический отдел ЗАО «КранЭлектроМаш»
Типы электродвигателей
Типы электродвигателей
Электрический двигатель – так называют электрическую машину (электромеханический преобразователь энергии), в которой энергия электричества преобразуется в механическую. При этом выделяется тепло.
Принцип действия
Рабочая схема электродвигателя очень проста. В основе функционирования электрической машины существует принцип электромагнитной индукции. Электрический механизм состоит из статора (неподвижного), который устанавливается в синхронных или асинхронных машинах переменного тока или индуктора (электродвигатели постоянного тока) и ротора (подвижной части, устанавливаемого в синхронных или асинхронных машинах переменного тока) или якоря (в машине тока постоянного). В качестве индуктора на маломощном двигателе постоянного тока используются магниты.
Роторы бывают:
— Короткозамкнутые
— Фазные (имеющие обмотку). Применяются в случае уменьшения пускового тока и для регуляции частоты вращения асинхронного электродвигателя.
В основном, представлены крановым электродвигателем серии МТКН (который по большей части применяется в крановых установках).
Якорем называют подвижную часть машины постоянного тока (генератора или двигателя) или же функционирующего по данному принципу универсального двигателя (который часто встречается в электрических инструментах). Универсальным двигателем называют ДПТ (двигатель постоянного тока), который имеет последовательное возбуждение (когда обмотки индуктора и якоря
включены последовательно). Различие только в расчете обмоток. На постоянном токе нет реактивного (емкостного или индуктивного) сопротивления. Именно поэтому любая болгарка, если вынуть электронный блок, будет в рабочем состоянии, особенно на постоянном токе и при меньшем сетевом напряжении.
Принцип функционирования асинхронного трехфазного электродвигателя
При включении питания в статоре возникает вращающееся круговое магнитное поле. Оно пронизывает короткозамкнутую обмотку ротора и появляется ток индукции. Согласно закону Ампера (на проводник, находящийся под током, помещенный при этом в магнитное поле, действует ЭДС сила), ротор начинает вращаться.
Частота его вращения зависит от частоты напряжения, а также от числа пар полюсов магнитов. Разность между частотой вращения ротора и частотой вращения поля магнитного статора характеризуется скольжением. Электродвигатель асинхронный называется асинхронным, потому что частота вращения поля магнитного статора не совпадает с частотой ротора.
Синхронный двигатель отличается от него конструкцией ротора. Ротор в подобном двигателе выполнен либо электромагнитом, либо постоянным магнитом. Также может иметь в себе частичку беличьей клетки (для запуска). В роторе непременно содержатся электромагниты или постоянные магниты. Частота вращения поля магнитного статора в синхронном двигателе совпадает с частотой ротора. Для запуска в данной конструкции применяют ротор с обмоткой короткозамкнутой или асинхронные вспомогательные электродвигатели.
Асинхронные двигатели широко применяются во многих отраслях техники. Это особенно характерно для обычных по конструкции и трехфазных прочных асинхронных двигателей, которые имеют коротко-замкнутые роторы. Такие двигатели дешевле и надежнее обычных электрических двигателей и не нуждаются в особом уходе. Название «асинхронный» указывает на то, что в подобном двигателе ротор вращается с вращающимся полем статора не синхронно. В отсутствие трехфазной сети асинхронный двигатель включают в сеть однофазного тока.
Устройство статора асинхронного электродвигателя очень простое. Он состоит из пакета лакированных листов стали электротехнической толщиной 0,5 мм. В пазах пакета, такого же, как в синхронной машине, уложена обмотка. Статор трехфазного асинхронного двигателя имеет три фазы обмотки. Обмотка смещена на 120°. Между собой фазы соединены треугольником или звездой.
Схема двухполюсной машины
Схема двухполюсной машины выглядит очень просто. В машине содержатся четыре паза из расчета на каждую фазу. При поступлении питания на обмотки статора от трехфазной сети получается особое вращающееся поле. Это получается потому, что токи в фазах обмотки смещены в пространстве на 120° относительно друг друга и сдвинуты по фазе на 120°. При синхронной частоте вращения nc поля электродвигателя с р парами полюсов верно при частоте токов в f: nc=f/p. Так, при частоте 50 Гц получается для р = 1, 2, 3 (двух-, четырех или шести машин полюсных) получаются синхронные частоты вращения в nc = 3000, 1500 и 1000 об/мин.
Ротор асинхронного электродвигателя состоит из листов электротехнической стали. Он может выполняться в виде ротора с контактными кольцами (фазный ротор) или короткозамкнутого ротора (с беличьей клеткой). В короткозамкнутом роторе обмотка выглядит в виде стержней из металла (бронзы, меди или алюминия). Стержни располагаются в пазах и соединяются между собой на концах особы
Электродвигатель: понятие, типы
Электродвигатель — это электрическая машина, в которой электрическая энергия преобразуется в механическую. Существует несколько типов электродвигателей: синхронные, асинхронные и двигатели постоянного тока.
Синхронные двигатели
Синхронные двигатели имеют большую мощность (50-100кВт и более), по сравнению с другими двигателями, применяются на металлургических заводах, в шахтах и других предприятиях, служат для приведения в движения насосов, компрессоров, вентиляторов, двигательно-генераторных установок и др.
Особенностью синхронных электродвигателей определяющей их функциональные возможности и области применения, является постоянство средней частоты вращения при неизменной частоте, амплитуде напряжения питания и колебания момента нагрузки. Следовательно, при снижении напряжения синхронный двигатель сохраняет большую перегрузочную способность, а возможность форсировки возбуждения увеличивает надежность работы при аварийных понижениях напряжения. Большой воздушный зазор и применение постоянных магнитов делает КПД синхронных двигателей выше.
Синхронный двигатель состоит из неподвижного статора и вращающегося ротора. В пазах статора размещена обмотка переменного тока, получающая питание от сети, а в роторе – обмотка постоянного тока. Электродвигатели вращают, ротор синхронно с магнитным полем питающего напряжения. Расположенная на роторе обмотка возбуждения получает питание от источника постоянного тока через контактные кольца. В основном применяются на приводах большой мощности. Мощность такого электродвигателя достигает несколько десятков мегаватт.
Имея столько достоинств, синхронные двигатели имеют ограничение в применении — сложностью конструкций, наличием возбудителя, высокой ценой и сложностью пуска.
Асинхронные двигатели
Асинхронные двигатели подразделяются на двигатели с короткозамкнутым и фазным ротором. Электродвигатели мощностью больше 0,5 кВт обычно выполняются трехфазными, а при меньшей мощности однофазными.
Асинхронные электродвигатели применяются в станкостроении, сельском хозяйстве, деревообрабатывающей и металлообрабатывающей промышленности, строительной технике и др. Такие электродвигатели давно известны отечественному рынку. Эти электродвигатели имеют не высокую стоимость, неприхотливы в обслуживании и просты в конструкции.
При выборе асинхронного электродвигателя необходимо учитывать два фактора: КПД преобразования энергии и тип исполнения агрегата. Существует множество аналогов электродвигателей марки АИР (АИР марка электродвигателей, которая не привязана к определенному заводу), например новые современные электродвигателе 5АИ. В работе этого оборудования используются менее шумные подшипники, повышенная степень защиты: исполнение IP55, резьбовое отверстие в торце вала и др.
Принцип действия двигателя основан на взаимодействии вращающегося магнитного поля, возникающего при прохождении трехфазного переменного тока по обмоткам статора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля, при условии, что частота вращения ротора меньше частоты вращения поля. Асинхронные электродвигатели потребляют реактивную мощность из сети. Предел применения асинхронных электродвигателей с короткозамкнутым ротором определяется мощностью системы электроснабжения конкретного предприятия, так как большие пусковые токи при малой мощности системы создают большие понижения напряжения.
Двигатели постоянного тока
Принцип работы основан на электромагнитном преобразовании энергии. Широко применяются в промышленности, транспортных и других установках, где требуется плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).
Различаются двигатели с параллельным, независимым, последовательным и смешанным возбуждением.
- Двигатели постоянного тока с независимым или параллельным возбуждением, подключенные к сети с постоянным напряжением, может работать как в генераторном, так и в двигательном режиме и переходить из одного режима работы в другой. Двигатели с параллельным возбуждением имеют параллельное подключение обмотки возбуждения с обмоткой якоря к сети. Если в двигателе обмотка якоря и обмотка возбуждения подключены к источникам питания с различными напряжениями, то его называют двигателем с независимым возбуждением. Такие двигатели применяют в электрических приводах, у которых питание обмотки якоря осуществляется от генератора или полупроводникового преобразователя.
- Двигатели с последовательным возбуждением широко применяются в различных электрических приводах, особенно там, где имеется изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.).
- Двигатель со смешанным возбуждением, благодаря магнитному потоку создает совместное действие двух обмоток возбуждения – параллельной и последовательной.
Типы электродвигателей и их применение — Статьи — Стройка.ру
СОДЕРЖАНИЕ:
Нельзя сказать, что вечный двигатель уже изобретен упорными Кулибиными, но вот варианты электрических двигателей существуют с момента открытия явления электромагнитной индукции Майклом Фарадеем. А случилось это в девятнадцатом веке. И вот с тех пор, невозможность существования без всякого рода машин – очевидна. Электрические двигатели в разных вариантах прочно вошли в нашу жизнь, быт и окружили нас комфортным существованием, а, порой, и становятся для нас ангелами-хранителями нашего здоровья и жизней.
Независимо от конструкции, алгоритм устройства электрических двигателей одинаков – цилиндрическая проточка вмещает в себя вращающийся ротор, который заключен неподвижную обмотку или, как еще называют специалисты, — статоре. При вращении, ротор создает магнитное поле, которое приводит к отталкивание разнополярных плюсов от статора.
Для того, чтобы отталкивание происходило постоянно, необходима периодичная перекоммутация ротора (по этому принципу работают коллекторные электродвигатели), либо следует создать условия для вращающегося магнитного поля в самом статоре (принцип асинхронного трехфазного двигателя).
Матрица работы электрических двигателей – напряжение, оно то и определяет конструкцию двигателя в зависимости от собственных свойств: переменное напряжение или постоянное напряжение. В зависимости от категории напряжения, разделяют основные виды электродвигателей. О них мы сейчас и поговорим.
Типы электродвигателей
Наиболее распространены в нашей жизни следующие типы электродвигателей:
- Электродвигатели постоянного тока, имеющие якорь на постоянных магнитах.
- Электродвигатели постоянного тока, но уже имеющие якорь с обмоткой возбуждения.
- Двигатели переменного тока синхронного типа.
- Асинхронные двигатели переменного тока.
- Линейные асинхронные двигатели.
- Серводвигатели.
- Ролики с внутренними электродвигателями, совмещенные с редукторами – мотор-ролики.
- Вентильные двигатели.
Виды электрических двигателей переменного тока – синхронные двигатели – имеют частоту вращения ротора идентичную частоте вращения магнитного поля в воздушной прослойке – зазоре. Такие типы электрических двигателей – это сердце вентиляторов, насосов, и других приборов, которые должны работать с постоянной скоростью и имеют мощность от сотен киловатт.
Еще один вид электрических двигателей переменного тока – асинхронные. Частота вращения ротера здесь противоположна частоте вращения магнитного поля, созданного обмоткой статора. Асинхронные двигатели, в свою очередь, делятся на двигатели с короткозамкнутым ротором и фазным ротором, а статор, имеющий одинаковую конструкцию в обоих вариантах, может иметь различия в обмотке.
Асинхронные двигатели переменного тока – основополагающие преобразователи электроэнергии в механическую. В свою очередь, асинхронные двигатели делятся на однофазные, двухфазные и трехфазные. Чаще всего – с короткозамкнутым ротером.
Однофазный асинхронный электродвигатель, как уже понятно из названия, имеет в наличии только одну фазу – обмотку. Недостаток этого двигателя – он не может запуститься в работу самостоятельно. Однофазным двигателям для начала процесса нужен стартовый толчок или включение дополнительной спусковой обмотки. Соответственно, что принцип двухфазных и трехфазных двигателей – это две-три обмотки – фазы на статоре.
Двухфазные электродвигатели самодостаточны при запуске начала работы, однако имеют проблемы с реверсом.
Трехфазный – практически самый совершенный двигатель на сегодняшний день.
Коллекторные двигатели переменного тока, мощностью от двух килоВатт, применяют как для переменного, так и для постоянного тока, что является неоспоримым преимуществом для электрического двигателя всех типов. Используют такие двигатели в тех случаях, когда требуется высокая частота вращения. Они заметно выйгрышны на фоне остальных электродвигателей при пусковом моменте, который, в этом случае, пропорционален току, а не оборотам, что позволяет уменьшить нагрузку на электросеть при запуске и контролировать обороты.
Высокая скорость ротора, скоростной реверс, возможности генератора и тяги дает расширяет возможности использования коллекторных двигателей. Мало того, — простота установки или возможность устранения поломки, при наличии чертежей, — неоспоримый плюс для бытового использования.
Но все, как и медали, имеет две стороны. Вторая сторона панегириков работы коллекторных двигателей – их дороговизна и повышенный шум при работах.
Ликбез электрических двигателей постоянного тока. Еще в недалеком прошлом, этот тип двигателей был фаворитом, однако время идет, а наука не стоит на месте. И на сегодняшний день, двигатели такого типа практически полностью вытеснены электродвигателями асинхронного типа.
Причины банально просты – экономические затраты применения нижеупомянутого типа двигателей значительно ниже, чем электродвигателей постоянного тока.
Типы электродвигателей с постоянным током работают по принципу постоянного переключения обмоток ротора коллектором. Каждая обмотка – своего рода рамка с током, вращающаяся в магнитном поле. В электродвигателе находится несколько таких рамок, к каждой из которых, прилагается пластина в коллекторе по нему же и передается ток.
Устройство такого типа электродвигателя дает возможность работать от постоянного либо переменного напряжения.
Сфера применения видов электрических двигателей постоянного тока достаточно широка – они регулируют электроприводы с высокими динамическими и эксплуатационными показателями, а именно: равномерность вращения и высокие перезагрузочные способности. Самый простой пример бытового использования таких электродвигателей – электротранспорт.
Про коллекторные двигатели мы писали выше, но еще раз повторим, что коллекторные двигатели можно использовать и при переменном токе и постоянном, что очень удобно и практично, но не всегда бюджетно.
Что касается униполярных и биполярных электродвигателей постоянного тока… Униполярный двигатель подарил миру Питер Барлоу в 1824 году. Нашим современникам он больше известен как «колесо Барлоу». Представляет собой такой двигатель два зубчатых колеса, расположенных на одной оси, которые вращаются благодаря взаимодействию тока с магнитным током постоянных магнитов. Направление вращения может изменяться при изменении контактов и расположения магнитных полюсов. Работает такой вид электродвигателя на преобразование электрических импульсов в механические, носящие дискретный характер.
С таким видом электрических двигателей мы чаще всего сталкиваемся в канцелярской и офисной технике. Мал да удал – именно так можно сказать об униполярных электрических двигателях. Они действительно не очень большого размера, но достаточно продуктивны.
По своему устройству, униполярный отделено напоминает однофазный двигатель – их связывает одиночная обмотка в каждой фазе, а различие – наличие отвода от середины отводки. Именно это и позволяет менять направления вращения. Конструкция униполярного электродвигателя постоянного тока работает без коллектора в своей конструкции.
Где необходимы более высокие, мощные и быстрые характеристики, используют серводвигатели. Они предназначены для широкого спектра скоростей, гарантируют плавность хода, минимальную вибрацию и децибелы шума. Управляются серводвигатели при помощи преобразователя частоты – инвертора.
Вид серводвигателей высокотехнологичен и работает по принципу обратной связи. Это мощный электродвигатель со способностью набора очень большой скорости вращения вала, которая регулируется при помощи ПО. Серводвигатели – идеальные рабочие лошадки в поточном промышленном оборудовании и станках.
Помимо вышеописанных видов электрических двигателей, существуют линейные электродвигатели, работающие по принципу прямолинейного движения ротора и статора относительно друг друга. Такой электродвигатель исключает механическую передачу.
Синхронные электродвигатели – частота вращения ротера идентична частоте вращения магнитного поля в воздушной дельте. Такие двигатели входят в комплектацию вентиляторов, насосов и генераторов. Работают синхронные двигатели с постоянной скоростью.
Асинхронные электродвигатели имеют различные частоты вращений ротера и магнитного тока, создаваемого обмоткой сатора. При одинаковой конструкции сатора, асинхронные двигатели разделяют на два вида – с короткозамкнутымротором и фазным ротором.
Алгоритм устройства любого электрического двигателя идентичен и он не зависит от конструкции и технических характеристик агрегата: сатор (неподвижная обмотка), вращающийся ротор, продуцирующий магнитное поле и отталкивающийся своими полюсами от статора.
Виды взрывозащищенных электродвигателей
Взрывозащищенные электродвигатели составляют комплектующую деталь оборудования, которое используют при работе во взрывоопасных и легковоспламеняющихся условиях. Как правило, это область нефтепереработки, газовая и химическая промышленность.
Производят такие двигатели из максимально прочных материалов и оснащают взрывонепроницаемой оболочкой, которая надежно защищает электрические двигатели от механических, термических и прочих повреждений. Ремонт электродвигателей должен производиться в надежных сервисных центрах.
Самыми безопасными из такой категории электродвигателей считаются двигатели серии ВА, имеющие маркировочный индекс 1 ExdIIBT4х по ГОСТР 51330.0.
Маркировка буквой «d», характеризуются взрывозащищенные двигатели, оснащенные взрывозащитной оболочкой.
Маркировка «х» означает необходимость дополнительных мер при монтаже электродвигателя, которые уберегут агрегат от растягивания, скручивания и выпадения кабелей и вводов.
Прочтений: 6272
Распечатать
Поделиться:
Мой мир
Вконтакте
Одноклассники
Двигатель постоянного тока: описание принципа работы, типы
В данной статье мы подробно рассмотрим двигатели постоянного тока. Детально разберем типы и принцип работы данных двигателей. Расскажем как происходит переключение и контролирование двигателя, контролирования скорости и регулировка скорости импульса, а так же опишем как изменить направление вращения двигателя постоянного тока разными методами.
Описание и принцип работы
Электрические двигатели постоянного тока — это непрерывные приводы, которые преобразуют электрическую энергию в механическую. Двигатель постоянного тока достигает этого, создавая непрерывное угловое вращение, которое можно использовать для вращения насосов, вентиляторов, компрессоров, колес и т.д. Купить двигатель постоянного тока вы можете на Алиэкспресс:
Наряду с обычными роторными двигателями постоянного тока имеются также линейные двигатели, способные производить непрерывное движение вкладыша. Существуют в основном три типа обычных электрических двигателей: двигатели переменного тока, двигатели постоянного тока и шаговые двигатели.
Двигатели переменного тока, как правило, используются в однофазных или многофазных промышленных мощных установках, в которых постоянный крутящий момент и скорость требуются для управления большими нагрузками, такими как вентиляторы или насосы.
В этом уроке по электродвигателям мы рассмотрим только простые двигатели постоянного тока и шаговые двигатели, которые используются во многих различных типах электронных схем, систем позиционного управления, микропроцессоров, PIC и роботизированных схем.
Типы двигателей постоянного тока
Двигатель постоянного тока, является наиболее часто используемым приводом для создания непрерывного движения, скорость вращения которого легко регулируется, что делает их идеальными для использования в устройствах, таких как регулирование скорости, управление сервоприводом и / или требуется позиционирование. Двигатель постоянного тока состоит из двух частей: «Статор», который является неподвижной частью, и «Ротор», который является вращающейся частью. В результате доступно три типа двигателей постоянного тока.
- Коллекторный двигатель — этот тип двигателя создает магнитное поле в намотанном роторе (вращающаяся деталь), пропуская электрический ток через узел коммутатора и угольной щетки, отсюда и термин «щеточный». Магнитное поле статоров (неподвижная часть) создается с помощью обмотки статора или постоянных магнитов. Обычно моторы с щеткой постоянного тока дешевые, маленькие и легко управляемые.
- Бесколлекторный двигатель — этот тип двигателя создает магнитное поле в роторе, используя постоянные магниты, прикрепленные к нему, и коммутация достигается с помощью электроники. Они, как правило, меньше, но дороже, чем обычные двигатели постоянного тока щеточного типа, потому что они используют переключатели «эффекта Холла» в статоре для получения требуемой последовательности вращения поля статора, но они имеют лучшие характеристики крутящего момента / скорости, более эффективны и имеют более длительный срок эксплуатации. чем эквивалентные коллекторные типы.
- Серводвигатель — этот тип двигателя в основном представляет собой коллекторный двигатель постоянного тока с некоторой формой управления позиционной обратной связью, подключенной к валу ротора. Они подключены к контроллеру типа ШИМ и управляются им, и в основном используются в системах позиционного управления и радиоуправляемых моделях.
Обычные двигатели постоянного тока имеют почти линейные характеристики, скорость вращения которых определяется приложенным напряжением постоянного тока, а их выходной крутящий момент определяется током, протекающим через обмотки двигателя. Скорость вращения любого двигателя постоянного тока может варьироваться от нескольких оборотов в минуту (об / мин) до многих тысяч оборотов в минуту, что делает их пригодными для применения в электронике, автомобилестроении или робототехнике. При подключении их к коробкам передач или зубчатым передачам их выходная скорость может быть уменьшена, в то же время увеличивая крутящий момент двигателя на высокой скорости.
Коллекторный двигатель постоянного тока
Стандартный коллекторный двигатель постоянного тока состоит в основном из двух частей: неподвижного корпуса двигателя, называемого статором, и внутренней части, которая вращается, создавая движение, называемое ротором или «арматурой» для машин постоянного тока.
Обмотка статора двигателя представляет собой электромагнитную цепь, которая состоит из электрических катушек, соединенных вместе в круговую конфигурацию для создания необходимого северного полюса, затем южного полюса, затем северного полюса и т.д., типа стационарной системы магнитного поля для вращения, в отличие от машин переменного тока, чье поле статора постоянно вращается с приложенной частотой. Ток, который течет в этих полевых катушках, известен как ток поля двигателя.
Эти электромагнитные катушки, которые формируют поле статора, могут быть электрически соединены последовательно, параллельно или вместе с ротором двигателя. Последовательно намотанный двигатель постоянного тока имеет обмотки статора, соединенные последовательно с ротором. Аналогично, двигатель постоянного тока с шунтирующим витком имеет свои обмотки возбуждения статора, соединенные параллельно с ротором, как показано ниже.
Ротор постоянного тока состоит из токонесущих проводников, соединенных вместе на одном конце с электрически изолированными медными сегментами, называемыми коммутатором. Коммутатор позволяет осуществлять электрическое подключение через угольные щетки (отсюда и название «щеточный» двигатель) к внешнему источнику питания при вращении ротора.
Установленное ротором магнитное поле пытается выровнять себя с полем статора, заставляя ротор вращаться вокруг своей оси, но не может выровняться из-за задержек коммутации. Скорость вращения двигателя зависит от силы магнитного поля роторов, и чем больше напряжение подается на двигатель, тем быстрее вращается ротор. Изменяя это приложенное постоянное напряжение, можно также изменять частоту вращения двигателя.
Двигатель постоянного тока с щеточным постоянным магнитом (PMDC), как правило, намного меньше и дешевле, чем его эквивалентные родственники двигателя постоянного тока с обмоткой статора, поскольку они не имеют обмотки возбуждения. В двигателях с постоянными магнитами постоянного тока (PMDC) эти полевые катушки заменяются сильными магнитами типа редкоземельных элементов (например, самарий-коболт или неодим-железо-бор), которые имеют очень сильные магнитные энергетические поля.
Использование постоянных магнитов дает двигателю постоянного тока намного лучшую линейную характеристику скорости / крутящего момента, чем эквивалентные намотанные двигатели из-за постоянного и иногда очень сильного магнитного поля, что делает их более подходящими для использования в моделях, робототехнике и сервоприводах.
Хотя щеточные электродвигатели постоянного тока очень эффективны и дешевы, проблемы, связанные с щеточным электродвигателем постоянного тока, заключаются в том, что искрение возникает в условиях большой нагрузки между двумя поверхностями коммутатора и угольных щеток, что приводит к самогенерированию тепла, короткому сроку службы и электрическому шуму из-за искрения, что может повредить любое полупроводниковое коммутационное устройство, такое как МОП-транзистор или транзистор. Чтобы преодолеть эти недостатки, были разработаны бесщеточные или бесколлекторные двигатели постоянного тока.
Бесколлекторный двигатель постоянного тока
Бесщеточный (бесколлекторный) двигатель постоянного тока (BDCM) очень похож на двигатель постоянного тока с постоянными магнитами, но не имеет щеток для замены или износа из-за искрения коммутатора. Поэтому в роторе выделяется мало тепла, что увеличивает срок службы двигателей. Конструкция бесщеточного двигателя устраняет необходимость в щетках благодаря более сложной схеме привода, в которой магнитное поле ротора является постоянным магнитом, который всегда синхронизирован с полем статора, что позволяет более точно контролировать скорость и крутящий момент.
Тогда конструкция бесщеточного двигателя постоянного тока очень похожа на двигатель переменного тока, что делает его истинным синхронным двигателем, но одним недостатком является то, что он дороже, чем аналогичная конструкция «щеточного» двигателя.
Управление бесщеточными двигателями постоянного тока очень отличается от обычного щеточного двигателя постоянного тока тем, что этот тип двигателя включает в себя некоторые средства для определения углового положения роторов (или магнитных полюсов), необходимые для получения сигналов обратной связи, необходимых для управления переключением полупроводников. Самым распространенным датчиком положения / полюса является «Датчик Холла», но некоторые двигатели также используют оптические датчики.
При использовании датчиков с эффектом Холла полярность электромагнитов переключается с помощью схемы управления двигателем. Тогда двигатель можно легко синхронизировать с цифровым тактовым сигналом, обеспечивая точное управление скоростью. Бесщеточные двигатели постоянного тока могут быть сконструированы так, чтобы иметь внешний ротор с постоянными магнитами и внутренний статор электромагнита или внутренний ротор с постоянными магнитами и внешний статор электромагнита.
Преимущества бесщеточного двигателя постоянного тока по сравнению с его «щеточным» кузеном заключаются в более высокой эффективности, высокой надежности, низком электрическом шуме, хорошем контроле скорости и, что более важно, отсутствии износа щеток или коммутатора, что обеспечивает значительно более высокую скорость. Однако их недостатком является то, что они более дороги и сложнее в управлении.
Серводвигатель постоянного тока
Серводвигатели постоянного тока используются в системах с замкнутым контуром, в которых положение выходного вала двигателя возвращается обратно в цепь управления двигателем. Типичные позиционные устройства «обратной связи» включают в себя резольверы, энкодеры и потенциометры, используемые в моделях радиоуправления, таких как самолеты, лодки и т.д.
Серводвигатель, как правило, включает в себя встроенную коробку передач для снижения скорости и способен напрямую выдавать высокие крутящие моменты. Выходной вал серводвигателя не вращается свободно, как валы двигателей постоянного тока из-за присоединения редуктора и устройств обратной связи.
Блок-схема серводвигателя постоянного тока
Серводвигатель состоит из двигателя постоянного тока, редуктора, устройства позиционной обратной связи и некоторой формы коррекции ошибок. Скорость или положение контролируется по отношению к позиционному сигналу входного сигнала или опорного приложенному к устройству.
Усилитель обнаружения ошибок просматривает этот входной сигнал и сравнивает его с сигналом обратной связи с выходного вала двигателя и определяет, находится ли выходной вал двигателя в состоянии ошибки, и, если это так, контроллер вносит соответствующие исправления, либо ускоряя двигатель, либо замедляя его вниз. Эта реакция на устройство позиционной обратной связи означает, что серводвигатель работает в «замкнутой системе».
Наряду с крупными промышленными применениями серводвигатели также используются в небольших моделях с дистанционным управлением и робототехнике, причем большинство серводвигателей способны вращаться примерно на 180 градусов в обоих направлениях, что делает их идеальными для точного углового позиционирования. Тем не менее, эти сервоприводы типа RC не могут непрерывно вращаться на высокой скорости, как обычные двигатели постоянного тока, если специально не модифицированы.
Серводвигатель состоит из нескольких устройств в одном корпусе, двигателя, коробки передач, устройства обратной связи и коррекции ошибок для контроля положения, направления или скорости. Они широко используются в робототехнике и небольших моделях, так как ими легко управлять, используя всего три провода: питание , заземление и управление сигналами.
Переключение и контроль двигателя постоянного тока
Небольшие двигатели постоянного тока могут быть включены «Вкл» или выключены «Выкл» с помощью переключателей, реле, транзисторов или МОП-транзисторов, причем простейшей формой управления двигателем является «линейное» управление. Схема этого типа использует биполярный транзистор в качестве переключателя (транзистор Дарлингтона также может использоваться, если требуется более высокий номинальный ток) для управления двигателем от одного источника питания.
Изменяя величину тока базы, протекающего в транзистор, можно управлять скоростью двигателя, например, если транзистор включен наполовину, тогда только половина напряжения питания поступает на двигатель. Если транзистор включен полностью (насыщен), то все напряжение питания поступает на двигатель и вращается быстрее. Затем для этого линейного типа управления мощность постоянно подается на двигатель, как показано ниже.
Контроль скорости двигателя
Простая схема переключения, приведенная выше, показывает схему для однонаправленной (только в одном направлении) цепи управления скоростью двигателя. Поскольку скорость вращения двигателя постоянного тока пропорциональна напряжению на его клеммах, мы можем регулировать это напряжение на клеммах с помощью транзистора.
Два транзистора соединены в виде пары Дарлингтона для управления током основного ротора двигателя. 5 кОм потенциометр используется для регулирования количества базового привода на первый пилот — транзистора TR 1 , который, в свою очередь, контролирует главный коммутационный транзистор TR 2 , позволяя изменять напряжение постоянного тока двигателя от нуля до Vcc, в этом примере от 9 до 12 вольт.
Опциональные диоды маховика подключены к переключающему транзистору TR 2 и клеммам двигателя для защиты от любой обратной ЭДС, создаваемой двигателем при его вращении. Регулируемый потенциометр может быть заменен непрерывным логическим «1» или логическим «0» сигналом, подаваемым непосредственно на вход цепи, чтобы переключить двигатель «полностью включено» (насыщение) или «полностью выключено» (отключение) соответственно из порта микроконтроллера или ПОС.
Наряду с этим базовым контролем скорости, та же схема также может использоваться для управления скоростью вращения двигателей. Путем многократного переключения тока двигателя «ВКЛ» и «ВЫКЛ» на достаточно высокой частоте, скорость двигателя можно варьировать от состояния покоя (0 об / мин) до полной скорости (100%), изменяя отношение бестокового пространства к его запасу. Это достигается путем изменения соотношения времени включения (t ON ) и времени выключения (t OFF ), и это может быть достигнуто с помощью процесса, известного как широтно-импульсная модуляция (ШИМ).
Регулировка скорости импульса
Ранее мы говорили, что скорость вращения двигателя постоянного тока прямо пропорциональна среднему значению напряжения на его клеммах, и чем выше это значение, вплоть до максимально допустимого напряжения двигателя, тем быстрее будет вращаться двигатель. Другими словами, больше напряжения, больше скорости. Изменяя соотношение между временем «ВКЛ» (t ВКЛ ) и временем «ВЫКЛ» (t ВЫКЛ ), которое называется «Коэффициент заполнения», или «Рабочий цикл», среднее значение напряжения двигателя и, следовательно, его скорость вращения может варьироваться. Для простых униполярных приводов коэффициент заполнения β задается как:
и среднее выходное напряжение постоянного тока, подаваемое на двигатель, определяется как: Vmean = β x Vsupply. Затем, изменяя ширину импульса а, можно управлять напряжением двигателя и, следовательно, мощностью, подаваемой на двигатель, и этот тип управления называется широтно-импульсной модуляцией или ШИМ.
Другим способом управления частотой вращения двигателя является изменение частоты (и, следовательно, периода времени управляющего напряжения), в то время как времена коэффициента включения «ВКЛ» и «ВЫКЛ» поддерживаются постоянными. Этот тип управления называется частотно-импульсной модуляцией или PFM .
При частотно-импульсной модуляции напряжение двигателя регулируется путем подачи импульсов переменной частоты, например, на низкой частоте или с очень небольшим количеством импульсов, среднее напряжение, подаваемое на двигатель, является низким, и, следовательно, скорость двигателя является низкой. При более высокой частоте или множестве импульсов среднее напряжение на клеммах двигателя увеличивается, и скорость двигателя также увеличивается.
Затем транзисторы можно использовать для управления количеством энергии, подаваемой на двигатель постоянного тока с режимом работы: «линейная» (изменение напряжения двигателя), «широтно-импульсная модуляция» (изменение ширины импульса) или «частотно — импульсная модуляция»(изменение частоты импульса).
Изменение направления движения двигателя постоянного тока
Хотя управление скоростью двигателя постоянного тока с помощью одного транзистора имеет много преимуществ, оно также имеет один главный недостаток: направление вращения всегда одинаковое, это «однонаправленная» схема. Во многих случаях нам необходимо управлять двигателем в обоих направлениях вперед и назад.
Для управления направлением двигателя постоянного тока необходимо поменять полярность питания постоянного тока, подаваемого на соединения двигателя, чтобы его вал вращался в противоположном направлении. Один очень простой и дешевый способ управления направлением вращения двигателя постоянного тока состоит в использовании различных переключателей, расположенных следующим образом:
В первом контуре используется одинарный двухполюсный, двухходовый переключатель (DPDT) для контроля полярности соединений двигателей. При переключении контактов подача на клеммы двигателя изменяется, и двигатель меняет направление. Второй контур немного сложнее и использует четыре однополюсных, одноходовых (SPST) переключателя, расположенных в «H» -конфигурации.
Механические переключатели расположены в виде пары переключений и должны работать в определенной комбинации для работы или остановки двигателя постоянного тока. Например, комбинация переключателей A + D управляет вращением вперед, в то время как переключатели B + C управляют вращением назад, как показано на рисунке. Комбинации переключателей A + B или C + D замыкают клеммы двигателя, вызывая его быстрое торможение. Тем не менее, использование переключателей таким образом имеет свои опасности, так как рабочие переключатели A + C или B + D вместе отключат источник питания.
В то время как две вышеупомянутые схемы будут очень хорошо работать для большинства небольших двигателей постоянного тока, мы действительно хотим использовать различные комбинации механических переключателей только для изменения направления вращения двигателя, НЕТ! Мы могли бы изменить ручные переключатели для набора электромеханических реле и иметь одну кнопку прямого или обратного хода или даже использовать твердотельный четырехпозиционный двусторонний переключатель CMOS 4066B.
Но еще один очень хороший способ достижения двунаправленного управления двигателем (а также его скоростью) состоит в том, чтобы подключить двигатель к схеме транзисторного типа H-моста, как показано ниже.
H-мостовая схема двигателя
Схема H-моста, приведенная выше, названа так потому, что базовая конфигурация четырех переключателей, либо электромеханических реле, либо транзисторов, напоминает букву «H» с двигателем, расположенным на центральной шине. Транзистор или МОП-транзистор является, вероятно, одним из наиболее часто используемых типов двунаправленных цепей управления двигателем постоянного тока. Он использует «комплементарные пары транзисторов» как NPN, так и PNP в каждой ветви, причем транзисторы попарно объединяются для управления двигателем.
Управляющий вход A управляет двигателем в одном направлении, т.е. вращением вперед, в то время как вход B управляет двигателем в другом направлении, т.е. обратным вращением. Затем переключение транзисторов «ВКЛ» или «ВЫКЛ» в их «диагональных парах» приводит к направленному управлению двигателем.
Например, когда транзистор TR1 включен, а транзистор TR2 выключен, точка A подключена к напряжению питания (+ Vcc), а если транзистор TR3 выключен, а транзистор TR4 включен, точка B подключена к 0 вольт (GND). Затем двигатель будет вращаться в одном направлении, соответствующем положению клеммы А двигателя и положительной клемме В двигателя.
Если состояния переключения меняются местами так, что TR1 — «ВЫКЛ», TR2 — «ВКЛ», TR3 — «ВКЛ» и TR4 — «ВЫКЛ», ток двигателя будет течь в противоположном направлении, вызывая вращение двигателя в противоположном направлении.
Затем, применяя противоположные логические уровни «1» или «0» к входам A и B, направление вращения двигателя можно регулировать следующим образом.
Таблица истинности H-моста
Вход А | Вход B | Функция двигателя |
TR1 и TR4 | TR2 и TR3 | |
0 | 0 | Двигатель остановлен (OFF) |
1 | 0 | Мотор вращается вперед |
0 | 1 | Мотор вращается задним ходом |
1 | 1 | НЕ ПОЛОЖЕНО |
Важно, чтобы никакая другая комбинация входов не допускалась, так как это может привести к короткому замыканию источника питания, то есть оба транзистора, TR1 и TR2, были включены в одно и то же время (предохранитель = взрыв!).
Как и в случае однонаправленного управления двигателем постоянного тока, как показано выше, скорость вращения двигателя также можно регулировать с помощью широтно-импульсной модуляции или ШИМ. Затем, комбинируя переключение Н-моста с ШИМ-управлением, можно точно контролировать направление и скорость двигателя.
Имеющиеся в продаже готовые ИС- декодеры, такие как четырехполупроводниковая ИС H-моста SN754410 или L298N с двумя H-мостами, доступны со всей необходимой встроенной логикой управления и безопасности, специально разработанные для двунаправленных цепей управления двигателем H-моста.
Виды электродвигателей и их особенности
Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.
Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.
Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.
При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.
Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.
Электродвигатели постоянного тока
Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.
Электродвигатели переменного тока
Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
Шаговые электродвигатели
Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
Серводвигатели
Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
Линейные электродвигатели
Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
Синхронные двигатели
Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
Асинхронные двигатели
Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.
Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.
Типы электродвигателей и их применение
Электродвигатель — это электромеханическое устройство, преобразующее электрическую энергию в механическую. По сути, существует три типа электродвигателей: электродвигатели переменного тока (синхронные и асинхронные электродвигатели), электродвигатели постоянного тока (щеточные и бесщеточные) и электродвигатели специального назначения.
Каков принцип работы электродвигателя?
- Когда проводник с током расположен во внешнем магнитном поле, перпендикулярном проводнику, на проводник действует сила, перпендикулярная ему самому и внешнему магнитному полю.
- Правило правой руки для силы, действующей на проводник, может использоваться для определения направления силы, действующей на проводник: если большой палец правой руки указывает в направлении тока в проводнике, а пальцы силы на проводнике кондуктор направлен наружу от ладони правой руки.
- Аналоговые электросчетчики (т. Е. Гальванометр, амперметр, вольтметр) работают по принципу двигателя. Электродвигатели — важное применение принципа двигателя.
Конструкция
Электродвигатель состоит из постоянного внешнего полевого магнита (статора) и витого проводящего амперметра (ротора), который может свободно вращаться внутри полевого магнита. Щетки и коммутатор (сконструированные по-разному, если на якорь подается переменный или постоянный ток) подключаются к якорю к внешнему источнику напряжения. Скорость вращения двигателя зависит от величины тока, протекающего через него, количества катушек на якоре, силы магнитного поля, проницаемости якоря и механической нагрузки, связанной с валом.
Типы двигателей
В целом электродвигатели подразделяются на два типа (двигатели переменного тока и двигатели постоянного тока).
Сейчас!
Узнаем подробно о подтипах двигателей переменного и постоянного тока.
Типы двигателей переменного тока
Синхронные двигатели
Есть два типа синхронных двигателей.
- Обычный
- Super
Асинхронные двигатели
Асинхронные двигатели
Коллекторные двигатели
- Серия
- Компенсированный
- Индукционный
- Отталкивание
- Отталкивание
- Отталкивание
Классификация по виду тока
Классификация по скорости работы
- Постоянная скорость.
- Переменная скорость.
- Регулируемая скорость.
Классификация на основе конструктивных особенностей
- Открытая
- Закрытая
- Полузакрытая
- Вентилируемая
- Трубная вентилируемая
- Заклепочная рама-проушина и т. Д.
Типы двигателей постоянного тока Типы:
- Двигатели с постоянным магнитом
- Щеточный двигатель постоянного тока
- Двигатель постоянного тока с параллельной обмоткой
- Двигатель постоянного тока с последовательной обмоткой
- Составной двигатель постоянного тока
- Совокупный составной
- Дифференциальный составной
- Двигатель постоянного тока
- с постоянным магнитом
С независимым возбуждением
- Бесщеточный двигатель постоянного тока
- Двигатели постоянного тока без сердечника или без сердечника
- Двигатели постоянного тока с печатным якорем или блинчиком
- Универсальные двигатели
Двигатель постоянного тока
В общем, двигатели постоянного тока наиболее желательны в двух ситуациях.Первый — это когда единственная доступная энергия — это постоянный ток, который встречается в автомобилях и небольших устройствах с батарейным питанием. Другой — когда кривую крутящего момента-скорости нужно тщательно подправить. По мере развития технологий и управления двигателями переменного тока этот аспект становится менее важным, но исторически двигатель постоянного тока легко настраивался, что делало его подходящим для сервоприводов и тяговых устройств. С относительной скоростью высокого тока и низкого напряжения. Разновидностями стандартного двигателя постоянного тока являются силовой и бесщеточный двигатель постоянного тока, который представляет собой очень сложное устройство по сравнению со стандартным двигателем.Двигатели постоянного тока используются в приложениях, требующих управления скоростью или положением, и когда необходим высокий пусковой момент, поскольку двигатели переменного тока испытывают трудности в этой области.
Смотрите также:
Двигатели с постоянным магнитом (PM)
- Двигатель с постоянным магнитом (PM) отличается от двигателя постоянного тока с полевой обмоткой в одном отношении: двигатель с постоянным магнитом получает свое поле от постоянного магнит, тогда как в двигателе постоянного тока с возбужденным полем поле создается, когда ток возбуждения протекает через катушки возбуждения.
- В двигателе с возбужденным полем магнитный поток остается постоянным только до тех пор, пока постоянным остается ток возбуждения. Но в отличие от этого в двигателе с постоянными магнитами поток всегда постоянный.
- Мощность, производимая любым двигателем, определяется по формуле:
Где P ° = выходная мощность (в л.с.)
T = крутящий момент (в фунтах — фут)
N rt = ротор скорость (в об / мин)
- Таким образом, выходная мощность пропорциональна произведению крутящего момента и скорости.
Двигатели с постоянными магнитами можно разделить на 3 типа:
- Обычный двигатель с постоянными магнитами
- Двигатель с подвижной катушкой
- Бесщеточный двигатель постоянного тока
Обычный двигатель с постоянными магнитами
Обычные электродвигатели с постоянными магнитами включают роторный узел с полюсными постоянными магнитами соединен со ступицей ротора и заключен в немагнитную металлическую втулку. Обычные узлы ротора включают немагнитный материал, такой как, например, пластик, между каждым из постоянных магнитов, чтобы поддерживать желаемую ориентацию постоянных магнитов на ступице ротора.Посадка с натягом между металлической втулкой и постоянными магнитами плотно прилегает к ротору.
Ротор с подвижной катушкой
Двигатель с подвижной катушкой (MCM), хотя и является двигателем с постоянными магнитами, отличается от обычного первичного двигателя с постоянными магнитами якорем. MCM является результатом инженерного требования, чтобы двигатели имели высокий крутящий момент, низкую инерцию ротора и низкую электрическую постоянную времени. Эти требования выполняются в MCM.
Моментный двигатель
Можно предположить, что все двигатели создают крутящий момент.Следовательно, все двигатели можно назвать моментными двигателями. Однако моментный двигатель отличается от других двигателей постоянного тока тем, что он должен работать в течение длительных периодов времени в условиях остановки или низкой скорости. Не все двигатели постоянного тока предназначены для этой операции. Низкое cemf означает, что будет протекать большой ток якоря. Большинство обычных двигателей постоянного тока не предназначены для рассеивания тепла, создаваемого этим большим током. Но моментные двигатели предназначены для работы на низкой скорости или в условиях остановки в течение длительных периодов времени и используются в таких приложениях, как намотка или ленточные накопители.В намоточных устройствах натяжение часто регулируется моментным двигателем.
Шаговый двигатель
- Шаговый двигатель — это действительно цифровой двигатель.
- После того, как ротор сделает шаг, он останавливается, пока не получит импульс.
- Шаговый двигатель — это электромеханическое устройство, преобразующее электрические импульсы в дискретные механические движения.
- Вал или шпиндель шагового двигателя вращается с дискретными шагами при подаче на него электрических командных импульсов в правильной последовательности.
- Вращение двигателя напрямую связано с этими приложенными входными импульсами.
- Последовательность подаваемых импульсов напрямую зависит от направления вращения валов двигателя. Скорость вращения валов двигателя зависит от частоты входных импульсов, а длина вращения напрямую связана с количеством подаваемых входных импульсов.
Связанные темы
.
Различные типы электродвигателей и их применение
Как мы знаем, электродвигатель играет жизненно важную роль во всех секторах промышленности, а также в широком спектре приложений. На рынке доступно множество типов электродвигателей. Выбор этих двигателей может быть сделан в зависимости от режима работы, напряжения и применения. Каждый двигатель состоит из двух основных частей: обмотки возбуждения и обмотки якоря. Основная функция обмотки возбуждения — создание фиксированного магнитного поля, в то время как обмотка якоря выглядит как проводник, расположенный внутри магнитного поля.Из-за магнитного поля обмотка якоря использует энергию для создания крутящего момента, необходимого для вращения вала двигателя. В настоящее время классификация двигателей постоянного тока может быть сделана на основе соединений обмоток, что означает, как две катушки в двигателе связаны друг с другом.
Типы электродвигателей
Типы электродвигателей доступны в трех основных сегментах, таких как электродвигатели переменного тока, электродвигатели постоянного тока и электродвигатели специального назначения.
типов двигателей
Двигатели постоянного тока
Типы двигателей постоянного тока в основном включают в себя серийные, параллельные и комбинированные двигатели и двигатели постоянного тока с постоянным током.
двигатель постоянного тока
1). Шунтирующий двигатель постоянного тока
Параллельный двигатель постоянного тока работает от постоянного тока, и обмотки этого электродвигателя, такие как обмотки якоря и обмотки возбуждения, соединены параллельно, что называется шунтом. Этот тип двигателя также называется двигателем постоянного тока с шунтирующей обмоткой, а тип обмотки известен как шунтирующая обмотка. Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о работе двигателя постоянного тока с шунтом и его применениях
2). Двигатель с раздельным возбуждением
В двигателе с раздельным возбуждением соединение статора и ротора может быть выполнено с использованием другого источника питания.Так что двигателем можно управлять с шунта, а обмотку якоря можно усилить для создания магнитного потока.
3). Двигатель постоянного тока
В двигателе постоянного тока обмотки ротора соединены последовательно. Принцип работы этого электродвигателя во многом зависит от простого электромагнитного закона. Этот закон гласит, что всякий раз, когда магнитное поле может быть сформировано вокруг проводника, оно взаимодействует с внешним полем, создавая вращательное движение. Эти двигатели в основном используются в стартерах, которые используются в лифтах и автомобилях.Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о работе двигателей постоянного тока и его применениях
Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о ДВИГАТЕЛЯХ постоянного тока — Основы, типы и применение
4). Двигатель PMDC
Термин PMDC означает «двигатель постоянного тока с постоянными магнитами». Это один из видов двигателей постоянного тока, в который может быть встроен постоянный магнит, чтобы создать магнитное поле, необходимое для работы электродвигателя. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о двигателе PMDC: конструкция, работа и применение
5).Составной двигатель постоянного тока
Обычно составной двигатель постоянного тока представляет собой гибридный компонент последовательного и параллельного двигателей постоянного тока. В этом типе двигателя присутствуют оба поля, такие как последовательный и шунтирующий. В этом типе электродвигателя статор и ротор могут быть соединены друг с другом через соединение последовательных и шунтирующих обмоток. Последовательная обмотка может быть спроектирована с несколькими витками широких медных проводов, что дает небольшой путь сопротивления. Шунтирующая обмотка может быть спроектирована с несколькими обмотками из медного провода для получения полного i / p напряжения.
Двигатели переменного тока
Двигатели переменного тока в основном включают синхронные, асинхронные и асинхронные двигатели.
двигатель переменного тока
1). Синхронный двигатель
Работа синхронного двигателя в основном зависит от трехфазного источника питания. Статор электродвигателя генерирует ток возбуждения, который вращается со стабильной скоростью в зависимости от частоты переменного тока. Так же как и ротор, от аналогичной скорости зависит ток статора. Между скоростью тока статора и ротора нет воздушного зазора.Когда уровень точности вращения высок, эти двигатели применимы в автоматизации, робототехнике и т. Д. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о типах синхронных двигателей и их применениях.
2). Асинхронный двигатель
Электродвигатель, работающий с асинхронной скоростью, известен как асинхронный двигатель, и альтернативное название этого двигателя — асинхронный двигатель. Асинхронный двигатель в основном использует электромагнитную индукцию для изменения энергии с электрической на механическую. В зависимости от конструкции ротора эти двигатели делятся на два типа: с короткозамкнутым ротором и с фазовой обмоткой.Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о типах и преимуществах асинхронных двигателей.
Двигатели специального назначения
Двигатели специального назначения в основном включают серводвигатель, шаговый двигатель, линейный асинхронный двигатель и т. Д.
Электродвигатель специального назначения
1). Шаговый двигатель
Шаговый двигатель может использоваться для обеспечения углового шага вращения в качестве альтернативы стабильному вращению. Мы знаем, что для любого ротора полный угол вращения составляет 180 градусов. Однако в шаговом двигателе полный угол вращения может быть разделен на множество шагов, например, 10 градусов X 18 шагов.Это означает, что за полный цикл оборота ротор совершит ступенчатое движение восемнадцать раз, каждый раз на 10 градусов. Шаговые двигатели применимы в плоттерах, производстве схем, инструментах управления технологическим процессом, генераторах обычного движения и т. Д. Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о типах шаговых двигателей и их применениях
2). Бесщеточные двигатели постоянного тока
Бесщеточные двигатели постоянного тока были впервые разработаны для достижения превосходных характеристик на меньшем пространстве, чем щеточные двигатели постоянного тока. Эти двигатели меньше по сравнению с моделями переменного тока.Контроллер встроен в электродвигатель, чтобы облегчить процесс за счет отсутствия коммутатора и контактного кольца. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о бесщеточном двигателе постоянного тока — преимущества, применение и управление
3). Гистерезисный двигатель
Гистерезисный двигатель работает исключительно уникально. Ротор этого двигателя может быть вызван гистерезисом и вихревым током для создания необходимой задачи. Работа двигателя может зависеть от конструкции, однофазное питание или трехфазное питание.Эти двигатели обеспечивают очень плавный процесс со стабильной скоростью, как и другие синхронные двигатели. Уровень шума этого двигателя довольно мал, по этой причине они применимы во многих сложных приложениях, где бы ни использовался звуконепроницаемый двигатель, например, в аудиоплеере, диктофоне и т. Д.
4). Реактивный двигатель
По сути, реактивный двигатель — это однофазный синхронный двигатель, и эта конструкция двигателя аналогична асинхронному двигателю, например, клеточного типа. Ротор в двигателе похож на короткозамкнутый ротор, а статор двигателя включает в себя наборы обмоток, такие как вспомогательная и основная обмотка.Вспомогательная обмотка очень полезна при запуске двигателя. Поскольку они предлагают ровную работу со стабильной скоростью. Эти двигатели обычно используются в приложениях синхронизации, которые включают генераторы сигналов, записывающие устройства и т. Д.
5). Универсальный двигатель
Это особый тип двигателя, который работает от одного источника переменного тока, иначе от источника постоянного тока. Универсальные двигатели имеют последовательную намотку, при этом обмотка возбуждения и обмотка якоря соединены последовательно, что обеспечивает высокий пусковой момент.Эти двигатели в основном предназначены для работы на высоких оборотах свыше 3500 об / мин. Они используют источник переменного тока на низкой скорости и источник постоянного тока аналогичного напряжения. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше об универсальном двигателе
Таким образом, речь идет о типах электродвигателей. В настоящее время существуют разные и гибкие. Мотор предназначен для управления движением, это лучший выбор. Двигатель должен поддерживать использование и общее функционирование системы. Вот вам вопрос, что такое моторы особого типа?
.
типов электродвигателей | Блог Motion Control
Электродвигатели теперь более разнообразны и адаптируемы, чем когда-либо прежде. При планировании системы управления движением чрезвычайно важен выбор двигателя. Двигатель должен соответствовать назначению и общим рабочим характеристикам системы. К счастью, существует конструкция двигателя, подходящая для любых мыслимых целей.
Некоторые из наиболее распространенных электродвигателей, используемых сегодня, включают:
Бесщеточные двигатели переменного тока
Бесщеточные двигатели переменного тока
являются одними из самых популярных в управлении движением.Они используют индукцию вращающегося магнитного поля, генерируемого в статоре, для вращения как статора, так и ротора с синхронной скоростью. Они полагаются на постоянные электромагниты для работы.
Щеточные двигатели постоянного тока
В щеточном двигателе постоянного тока ориентация щетки на статоре определяет ток. В некоторых моделях решающее значение имеет ориентация щетки относительно сегментов стержня ротора. Коммутатор особенно важен в любой конструкции щеточного двигателя постоянного тока.
Бесщеточные двигатели постоянного тока
Бесщеточные двигатели постоянного тока
были впервые разработаны для достижения более высоких характеристик в меньшем пространстве, чем щеточные двигатели постоянного тока, и они меньше, чем сопоставимые модели переменного тока.Встроенный контроллер используется для облегчения работы при отсутствии контактного кольца или коммутатора.
Прямой привод
Прямой привод — это высокоэффективная технология с низким уровнем износа, которая заменяет обычные серводвигатели и соответствующие трансмиссии. Эти двигатели не только намного легче обслуживать в течение длительного периода времени, но и ускоряются быстрее.
Линейные двигатели
Эти электродвигатели имеют развернутый статор и двигатель, создающий линейную силу по длине устройства.В отличие от цилиндрических моделей, они имеют плоскую активную секцию с двумя торцами. Как правило, они быстрее и точнее вращающихся двигателей.
Серводвигатели
Серводвигатель — это любой двигатель, соединенный с датчиком обратной связи для облегчения позиционирования; Таким образом, серводвигатели являются основой робототехники. Используются как поворотные, так и линейные приводы. Недорогие щеточные двигатели постоянного тока широко распространены, но их заменяют бесщеточные двигатели переменного тока для высокопроизводительных приложений.
Шаговые двигатели
В шаговых двигателях
используется внутренний ротор, управляемый электроникой с помощью внешних магнитов. Ротор может быть изготовлен на постоянных магнитах или из мягкого металла. Когда обмотки находятся под напряжением, зубья ротора выравниваются по магнитному полю. Это позволяет им перемещаться от точки к точке с фиксированным шагом.
Перед тем, как начать работу над какой-либо новой системой, тщательно подумайте о конкурирующих свойствах различных двигателей. Выбор правильного двигателя позволяет лучше начать любой проект.
Готовы узнать больше? Ознакомьтесь с курсом «Основы проектирования электродвигателей», предлагаемым Колледжем движения и моторизации MCMA.
Присоединяйтесь к нам 11-13 октября на TechCon в Новом Орлеане. Нажмите сюда, чтобы узнать больше!
.
различных типов двигателей, используемых в электромобилях
Электромобили не являются чем-то новым для этого мира, но с технологическим прогрессом и повышенным вниманием к контролю за загрязнением окружающей среды он стал залогом мобильности будущего. Основным элементом электромобиля, помимо аккумуляторов электромобиля, который заменяет двигатели внутреннего сгорания, является электродвигатель . Быстрое развитие в области силовой электроники и методов управления создало пространство для различных типов электродвигателей, которые будут использоваться в электромобилях.Электродвигатели, используемые в автомобилях, должны обладать такими характеристиками, как высокий пусковой момент, высокая удельная мощность, хороший КПД и т. Д.
Различные типы электродвигателей, используемых в электромобилях
- Двигатель серии постоянного тока
- Бесщеточный двигатель постоянного тока
- Синхронный двигатель с постоянными магнитами (PMSM)
- Трехфазные асинхронные двигатели переменного тока
- Электродвигатели с регулируемым сопротивлением (SRM)
1.Двигатель серии постоянного тока
Высокий пусковой момент двигателя серии постоянного тока делает его подходящим вариантом для тягового применения. Это был наиболее широко используемый двигатель для тяги в начале 1900-х годов. Преимущества этого двигателя — легкое регулирование скорости, а также способность выдерживать резкое увеличение нагрузки. Все эти характеристики делают его идеальным тяговым двигателем. Главный недостаток двигателей постоянного тока — это высокие эксплуатационные расходы из-за щеток и коммутаторов. Эти двигатели используются на индийских железных дорогах.Этот двигатель относится к категории щеточных двигателей постоянного тока.
2. Бесщеточные двигатели постоянного тока
Аналогичен двигателям постоянного тока с постоянными магнитами. Он называется бесщеточным, потому что в нем нет коммутатора и щеточного устройства. Коммутация в этом двигателе осуществляется электронным способом, поскольку двигатели BLDC не требуют обслуживания. Двигатели BLDC имеют тяговые характеристики, такие как высокий пусковой момент, высокий КПД около 95-98% и т. Д. Двигатели BLDC подходят для проектирования с высокой удельной мощностью.Двигатели BLDC являются наиболее предпочтительными двигателями для электромобилей из-за их тяговых характеристик.
Двигатели BLDC также имеют два типа:
и. Двигатель BLDC внешнего бегунка:
В этом типе ротор двигателя находится снаружи, а статор находится внутри. Его также называют как Hub motors , потому что колесо напрямую связано с внешним ротором. Для двигателей этого типа не требуется внешний редуктор.В некоторых случаях сам двигатель имеет встроенные планетарные передачи. Этот двигатель делает автомобиль менее громоздким, поскольку не требует какой-либо системы передач. Это также устраняет необходимость в пространстве для установки двигателя. Существует ограничение на размеры двигателя, которое ограничивает выходную мощность во встроенной конфигурации. Этот двигатель широко используется производителями электрических велосипедов, такими как Hullikal, Tronx, Spero, легкие велосипеды и т. Д. Он также используется производителями двухколесных транспортных средств, такими как 22 Motors, NDS Eco Motors и т. Д.
ii. Внутренний двигатель BLDC:
В этом типе ротор двигателя находится внутри, а статор — снаружи, как у обычных двигателей. Этим моторам требуется внешняя система трансмиссии для передачи мощности на колеса, из-за этого конфигурация внешнего колеса немного громоздка по сравнению с конфигурацией внутреннего колеса. Многие производители трехколесных транспортных средств, такие как Goenka Electric Motors, Speego Vehicles, Kinetic Green, Volta Automotive, используют двигатели BLDC.Производители скутеров с низкой и средней производительностью также используют двигатели BLDC для приведения в движение.
Именно по этим причинам он широко используется в электромобилях. Главный недостаток — высокая стоимость за счет постоянных магнитов. Перегрузка двигателя сверх определенного предела сокращает срок службы постоянных магнитов из-за тепловых условий.
3. Синхронный двигатель с постоянными магнитами (PMSM)
Этот двигатель также похож на двигатель BLDC, который имеет постоянные магниты на роторе .Подобно двигателям BLDC, эти двигатели также обладают такими тяговыми характеристиками, как высокая удельная мощность и высокий КПД. Разница в том, что PMSM имеет синусоидальную обратную ЭДС, тогда как BLDC имеет трапециевидную обратную ЭДС. Синхронные двигатели с постоянным магнитом доступны для более высоких мощностей. PMSM — лучший выбор для высокопроизводительных приложений, таких как автомобили, автобусы. Несмотря на высокую стоимость, PMSM составляет жесткую конкуренцию асинхронным двигателям из-за большей эффективности, чем у последних. PMSM также дороже, чем двигатели BLDC. Большинство производителей автомобилей используют двигатели PMSM для своих гибридных автомобилей и электромобилей . Например, Toyota Prius, Chevrolet Bolt EV, Ford Focus Electric, нулевые мотоциклы S / SR, Nissan Leaf, Hinda Accord, BMW i3 и т. Д. Используют двигатель PMSM для приведения в движение.
4. Трехфазные асинхронные двигатели переменного тока
Асинхронные двигатели не имеют высокого пускового момента, как двигатели серии постоянного тока при фиксированном напряжении и работе с фиксированной частотой.Но эту характеристику можно изменить, используя различные методы контроля, такие как методы FOC или v / f. При использовании этих методов управления максимальный крутящий момент достигается при запуске двигателя, что подходит для тягового приложения. Асинхронные двигатели с короткозамкнутым ротором имеют долгий срок службы из-за меньшего количества обслуживания. Асинхронные двигатели могут иметь КПД 92-95%. Недостатком асинхронного двигателя является то, что он требует сложной схемы инвертора и затрудняет управление двигателем .
В двигателях с постоянными магнитами магниты вносят вклад в плотность магнитного потока B. Следовательно, регулировать значение B в асинхронных двигателях проще по сравнению с двигателями с постоянными магнитами. Это связано с тем, что в асинхронных двигателях значение B можно регулировать путем изменения напряжения и частоты (V / f) в зависимости от требований крутящего момента. Это помогает снизить потери, что, в свою очередь, повышает эффективность.
Tesla Model S — лучший пример, подтверждающий высокую производительность асинхронных двигателей по сравнению с их аналогами. Выбирая асинхронные двигатели, Тесла, возможно, хотел устранить зависимость от постоянных магнитов. Даже Mahindra Reva e2o использует трехфазный асинхронный двигатель для движения. Крупные производители автомобилей, такие как TATA motors, планируют использовать асинхронные двигатели в своих автомобилях и автобусах. Производитель двухколесных мотоциклов TVS motors запустит в производство электрический скутер, в котором в качестве силовой установки используется индукционный двигатель.Асинхронные двигатели являются предпочтительным выбором для электромобилей, ориентированных на производительность, из-за их низкой стоимости. Другое преимущество состоит в том, что он может выдерживать суровые условия окружающей среды. Благодаря этим преимуществам индийские железные дороги начали заменять свои двигатели постоянного тока асинхронными двигателями переменного тока.
5. Электродвигатели с регулируемым сопротивлением (SRM)
Электродвигатели с регулируемым сопротивлением — это категория электродвигателей с переменным сопротивлением и двойным сопротивлением. Электродвигатели с РРМ просты по конструкции и надежны. Ротор SRM представляет собой кусок многослойной стали без обмоток или постоянных магнитов на нем . Это снижает инерцию ротора, что способствует большему ускорению. Прочная природа SRM делает его пригодным для высокоскоростных приложений. SRM также предлагает высокую удельную мощность, которая является некоторыми необходимыми характеристиками электромобилей. Поскольку выделяемое тепло в основном ограничивается статором, двигатель легче охладить. Самым большим недостатком SRM является сложность управления и увеличение схемы переключения .Он также имеет некоторые проблемы с шумом. Когда SRM выйдет на коммерческий рынок, он сможет заменить в будущем PMSM и асинхронные двигатели.
Рекомендации по выбору правильного двигателя для вашего электромобиля
Для выбора подходящих двигателей электромобилей необходимо сначала перечислить требования к характеристикам, которым должно соответствовать транспортное средство, условиям эксплуатации и связанным с ними затратам. Например, для картинга и двухколесных транспортных средств, требующих меньшей мощности (в основном менее 3 кВт) при невысокой стоимости, хорошо использовать моторы-концентраторы BLDC.Для трехколесных и двухколесных транспортных средств также хорошо выбрать двигатели BLDC с внешней зубчатой передачей или без нее. Для приложений с высокой мощностью, таких как высокопроизводительные двухколесные автомобили, автомобили, автобусы, грузовики, идеальным выбором двигателя были бы двигатели PMSM или индукционные. Как только синхронный реактивный двигатель и реактивный реактивный электродвигатель станут экономически эффективными как двигатели PMSM или асинхронные двигатели, можно будет иметь больше вариантов типов двигателей для применения в электромобилях.
.