26.06.2024

Типы усилителей: Типы Усилителей

Содержание

Типы Усилителей

В зависимости от используемых усилительных элементов, усилители мощности звуковой частоты подразделяются на:

  1. Ламповые.
  2. Транзисторные.
  3. Интегральные.
  4. Гибридные.
Ламповые.

На электронных, электровакуумных лампах. Составляли основу всего парка УНЧ до 70-х годов. В 60-х годах выпускались ламповые усилители очень большой мощности (до десятков киловатт). С конца XX века наблюдается повышение интереса к ламповой звукотехнике в среде аудиофилов, многие, из которых считают, что только ламповый усилитель способен передать максимально чистый и верный звук. В настоящее время ламповые УМЗЧ выпускаются за рубежом небольшими партиями для аудиофилов, стоить такой усилитель может крайне дорого. Ламповые УМЗЧ обладают значительными габаритами и весом, низким к.п.д. и высоким тепловыделением.

Транзисторные.

На биполярных или полевых транзисторах. Такая конструкция оконечного каскада усилителя является достаточно популярной, благодаря своей простоте и возможности достижения большой выходной мощности, хотя в последнее время активно вытесняется интегральными даже в мощных усилителях.

Интегральные.

На интегральных микросхемах (ИМС). Существуют микросхемы, содержащие на одном кристалле, как предварительные усилители, так и оконечные усилители мощности, построенные по различным схемам и работающие в различных классах. Из преимуществ — минимальное количество элементов и, соответственно, малые габариты.

Гибридные.

Часть каскадов собрана на полупроводниковых элементах, а часть на электронных лампах. Иногда гибридными также называют усилители, которые частично собраны на интегральных микросхемах, а частично на транзисторах или электронных лампах.

По количеству независимых каналов звукоусиления можно выделить:

  1. Моноусилители (одноканальные).
  2. Стереоусилители (двухканальные).
  3. Усилители систем объемного звука (многоканальные).

 

Подавляющее большинство усилителей имеют 2 канала, то есть, рассчитаны на применение в стерео-системах звуковоспроизведения. Однако многие из них имеют мостовой режим подключения к нагрузке и могут использоваться как одноканальные. Выходная мощность при этом увеличивается примерно в 2 раза.

Моноусилители используются в стереосистемах высокого класса или, например, в многоканальных системах для воспроизведения отдельных сигналов.

Многоканальная звуковая технология делает доступной реализацию собственного домашнего кинотеатра, даёт возможность построить по своему усмотрению систему объёмного высококачественного звука. Это позволяет ощутить тончайшие детали звуковой картины разных концертных залов при прослушивании аудиозаписей выполненных в многоканальном формате. Главной трудностью проектирования таких систем является сложность обеспечения одинаково точной локализации источников звука воспринимаемых слушателем во время воспроизведения по отношению к реальному расположению этих источников звука при записи. Данный эффект проявляется тем сильнее, чем дальше от центра зоны прослушивания удаляется слушатель.

Многоканальные системы используются не только для реализации звуковых эффектов и расширения стереобазы. Многие театры и концертные комплексы строились без учета современных требований к архитектурной акустике и имеют сложную многоярусную структуру, объемом более 10 куб.м на человека. Реализация стереосистемы в таких помещениях неизбежно приведет к тому, что отраженные от ярусных перекрытий, потолка и стен волны будут действовать локально, появятся участки с неравномерным распределением звукового поля. Дополнительная неприятность заключается в том, что на разных частотах эта неравномерность проявляется по-разному.

Решить подобную задачу способна только многоканальная система. Сигнал с помощью кроссоверов, входящих в состав оборудования профессиональной системы, разделяется на несколько частотных диапазонов, которые отдельно усиливаются и воспроизводятся. Добиться ровного звукового поля во всем диапазоне воспроизводимых частот удается только при использовании множества правильно подобранных и расположенных узкополосных акустических систем. Направленное действие акустических систем приводит к существенному уменьшению реверберации, увеличению звукового давления и минимизации фазовых искажений в озвучиваемом участке помещения. Следует отметить, что ошибка в 1 градус при ориентировании акустических систем линейного массива (вследствие низкого качества проекта и/или монтажа) может свести на нет все преимущества многоканальной системы. Как правило, каждый элемент устанавливаемых кластеров питается от собственного цифрового усилителя D или T класса, который настраивается для получения оптимальных характеристик звукового поля с учетом типа применяемых динамиков и твиттеров, объема и материала корпуса. Цифровой усилитель может содержать звуковой процессор, способный вносить в сигнал частотные и временные предыскажения.

Многоканальные системы также могут использоваться при необходимости разделить помещения на несколько независимых зон, в которых воспроизводятся различные музыкальные программы. Этот прием используется, например, в развлекательных комплексах, состоящих из множества залов. Достоинство такой системы заключается в возможности централизованного управления.

Усилитель | Описание, предназначение, виды усилителей.

Электронный усилитель – это усилитель, задача которого состоит в том, чтобы увеличить сигнал по мощности, при этом сохраняя форму усиливаемого сигнала. Более подробно это определение можно прочесть в Википедии. В этой статье мы поверхностно пробежимся по основам теории усилителей.

Что такое усилитель?

В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона

динамический микрофон

слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник

Усилитель

Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:

зенитный комплекс тор

Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.

Что такое черный ящик в электронике

В общем виде усилитель можно рассматривать как черный ящик. очень черный ящикЧто представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса,  можно предположить, что находится у него внутри.

То есть по сути черный ящик должен иметь какие-либо “сенсоры” для восприятия информации извне, некий “вход”, а также некий “выход” для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.

Усилитель

Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала – значит кошка. Если побежал – значит кот).

Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.

Что такое четырехполюсник

В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.

услитель четырехполюсник

Пассивный четырехполюсник

Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).

Усилитель

В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.

Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.

Активный четырехполюсник

А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал. усилитель на транзисторе

То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.

Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.

усилитель на транзисторе принцип работы

Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.

В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.

В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .

усилитель в роли черного ящика

Обобщенная схема усилителя

Она  выглядит примерно вот так:

обобщенная схема усилитель

Как мы можем видеть на схеме, ко входу усилительного каскада  через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала  с ЭДС  EИ   и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи  EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от  входного сопротивления усилительного каскада Rвх .

Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).

В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн  будет зависеть от сопротивления нагрузки Rн .

Типы усилителей

Усилители можно разделить на три группы:

Усилитель напряжения

Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:

усилитель напряжения коэффициент

где

KU – это коэффициент усиления по напряжению

Uвых – напряжение на выходе усилителя, В

Uвх – напряжение на входе усилителя, В

Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .

схема усилителя

В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е.  Rвх >>Rи  и Rн намного больше, чем Rвых    (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых.  Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.

Усилитель тока

Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:

Усилитель

где KI   – коэффициент усиления по току

Iвых  – сила тока в цепи нагрузки, А

Iвх  – сила тока во входной цепи Eи —>Rи —>Rвх , А

Смысл работы усилителя тока такой:  при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.

Если сила тока должна быть постоянной, а  значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.

Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх  пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим,  у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.

Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А  усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.

Но также не забываем еще об одном параметре, который у нас находится в выходной цепи усилителя тока. Это выходное сопротивление Rвых . Поэтому, нам необходимо, чтобы выполнялось условие: Rвх << Rи и Rн << Rвых  при которых обеспечивается заданный ток в нагрузке при малом значении напряжения.

Усилитель мощности

Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.

Чем же УМ отличается от УН и УТ?

Если в УТ  мы увеличивали только силу тока, в УН – напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.

Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:

Усилитель

где

P – мощность, Вт

I – сила тока, А

U – напряжение, В

Следовательно, коэффициент усиления по мощности запишется как:

Усилитель

где

KP – коэффициент усиления по мощности

Pвых  – мощность на выходе усилителя, Вт

Pвх  – мощность на входе усилителя, Вт

Для усилителя мощности условия согласования входной цепи с источником входного сигнала и выходной цепи с нагрузкой для передачи максимальной мощности имеют вид: Rвх ≈ Rи и Rн ≈ Rвых .

Усилитель

Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).

Выходная мощность усилителя

Выходная мощность усилителя, отдаваемая в активную нагрузку, будет выражаться формулой:

Усилитель

где

Pвых – выходная мощность усилителя, Вт

Iвых – сила тока в цепи нагрузки, А

UВых  – напряжение на нагрузке, В

Мощность на нагрузку с реактивной составляющей будет уже выражаться через формулу:

Усилитель

где

Pвых – выходная мощность усилителя, Вт

Iвых – сила тока в цепи нагрузки, А

Uвых  – напряжение на нагрузке, В

cosφ  – где φ – это разность фаз между осциллограммой тока и напряжения

Например, разность фаз между током и напряжением в активной нагрузке равна нулю, следовательно, cos0=1. Поэтому формула для активной нагрузки принимает вид

Усилитель

Более подробно про это можно прочитать в статье про активное и реактивное сопротивление.

Максимальная выходная мощность, при которой искажение сигнала на выходе не превышает качественных значений усилителя, называют номинальной мощностью усилителя.

Ну и обобщенное правило, для того, чтобы было проще запомнить все эти три вида усилителя:

В УН KU > 1, KI = 1;       в УТ KI > 1, KU = 1;          в УМ KU > 1 и KI > 1.

 

Виды усилителей по полосе пропускания

По ширине полосы пропускания усилители делятся на:

Усилители низкой частоты

Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц – это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.

Усилители высокой частоты

Они предназначены для усиления сигналов во всем диапазоне частот, используемых электроникой.

Широкополосные усилители

Они позволяют  усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.

Узкополосные усилители

Они усиливают узкую полосу частот. Это могут быть  резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.

Усилители постоянного тока

Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).

Если вы желаете больше знать об усилителях, то читайте статью основные параметры усилителя.

Классы усилителей. Устройство и принципы работы | Усилители для колонок | Блог

Усилители принято делить на классы в зависимости от режима работы активных элементов. будь то лампы или транзисторы. Считается, что от класса усилителя зависит качество звука, и в большинстве случаев покупатели ориентрируются больше на этот показатель чем на реальные технические характеристики. Эта заметка немного прольет света на значимость класса при выборе усилителя.

Усилители класса А

Считаются эталоном качества звука, из-за того, что режим работы выбирается на линейном участке, это позволяет достичь высокого качества звучания минимальным схемотехническим решением.

Первый каскад усилителей других классов обязательно работают именно в этом классе, так как искажения и шум первого каскада усиливаются последующими каскадами. Но именно этот режим работы выделяет на транзисторе максимальное количество тепла. Как следствие появляются громоздкие системы охлаждения и большие сложности в создании мощного усилителя, не считая того, что усилителю надо время на прогрев и большого потребления электроэнергии.

Усилители класса B

Рабочая точка последнего каскада выбирается в основании вольтамперной характеристики транзистора, что позволяет снизить нагрев устройства. Недостатком является ступенька, в области тихих сигналов, из-за чего применялся в низкокачественных портативных устройствах и был полностью вытеснен классом D. 

Усилители класса AB

Точка покоя выбирается чуть дальше от нуля, это позволяет достичь некоторого баланса между качеством звука и нагревом. Прочие классы (G или H) так или иначе развивают эту идею. Из-за относительно простой схемотехники, не особо требовательной к качеству компонентов, встречается повсеместно — от недорогих портативных устройств, до концертных усилителей и аудиофильских штучек.

Любимый трюк производителей — завысить точку смещения, чтобы для замера искажений на паспорт усилитель работал в режиме A, а замер мощности, произвести уже в режиме AB. Как результат — красивые цифры и плохой звук.

Усилители класса С, H, G

Рабочая точка в усилителях класса C, по сравнению с классом B, еще больше смещена относительно центра линейного участка ВАХ-транзистора. В звуковых устройствах из-за слишком больших искажений не используются.

В усилителях H-G классов, по сути, представляющих из себя класс AB, используется дополнительный источник напряжения, подключаемый прямо на лету к выходному каскаду. Это позволяет немного повысить КПД.

Усилители класса D

В отличии от других классов, транзистор работает в ключевом режиме — 2 устойчивых состояниях либо открыт, либо закрыт. Иногда применяют положительную обратную связь для ускорения смены состояний — немыслимый трюк для других классов, приводящий к самовозбуждению. 

Так как тепло в основном выделяется при переключении из одного состояния в другое, транзистор очень мало нагревается. Более высоким КПД обладают только режимы E и F, где переключение транзистора происходит в тот момент, когда через него не проходит ток (за счет работы в резонансе с нагрузкой). Но для звуковых усилителей такой режим не подходит из-за слишком больших искажений. Дурную славу эти усилители получили по самым первым дешевым представителям класса.

На самом деле качество усилителя класса D зависит от типа и частоты модуляции. А уже от этого зависит сложность схемотехники, необходимое качество компонентов и, соответственно, цена. Мощные транзисторы, способные работать на большой частоте в ключевом режиме, как и высококачественные аналогово-цифровые преобразователи (ADC) могут стоить весьма внушительно.

Простейшие представители класса D основаны на усилении широтно-импульсной модуляции с частотой ниже 50 кГц. По сути они являются аналоговыми устройствами. 

Такая схема достаточно проста, и делается из дешевых компонентов, но отсутствие обратной связи отрицательно сказывается на восприимчивость к помехам по питанию.

Именно такие усилители и стали причиной мифов о плохом качестве звука всего класса. Первые усилители класса А, работающие на лампах с плохим вакуумом и с железным трансформатором тоже не особо блистали характеристиками, но об этом предпочитают не вспоминать. 

Да, такой усилитель годится только для сабвуферов, но даже в этом применении его главным достоинством является низкий уровень нелинейных искажений.

В отличии от обычных усилителей класса AB, для которых высокий уровень нелинейных искажений уже на половине заявленной мощности и откровенный клипинг на максимальной — практически норма.

Для усилителей класса D низкий уровень искажений сохраняется практически во всем рабочем диапазоне громкости. Для сабвуфера эта разница не столько в качестве звука, сколько в меньшем нагреве катушки.

В моделях, произведенных с упором на качество, используется дельта-сигма-модуляция. Благодаря обратной связи схема делает поправки на ошибки квантования, что в сумме с  нойз-шейпингом или дитерингом выводит шумы в область ультразвука. Работу этих алгоритмов для звука можно наглядно продемонстрировать на изображении:

В области звуковых частот соотношение сигнал/шум после таких преобразований доходит до очень высоких значений, и они не уступают другим классам. Такой усилитель уже можно назвать цифровым (из-за цифровых алгоритмов обработки модулированного сигнала).

Маломощные усилители D-класса получили распространение в мобильной и портативной технике, Bluetooth-колонках. Зачастую представляют из себя одну микросхему, которой даже не требуются дополнительные фильтры на цепях питания — обратная связь компенсирует не только искажения в самой схеме, но и пульсации питания. А за счет с высокой частоты модуляции, индуктивности катушки динамика хватает для фильтрации паразитных высоких частот.

Даже мощным усилителям класса D не надо время на прогрев для достижения паспортных характеристик (для класса А может достигать получаса). Именно благодаря этому профессионалы так полюбили усилители класса D. Такая аппаратура не создает фонового шума, мало греется и готова работать сразу же.

Но и это не все. больше всего этот тип усилителей проявляет себя в работе с цифровым сигналом. Конверторы формата PCM в DSD, встроенные в усилитель, позволяют избегать лишних преобразований из аналога в цифру и обратно. Звук проходит через усилитель в цифровом виде до самого последнего транзистора, которые в Hi-end устройствах могут работать на частотах порядка десятков мегагерц.

Современные устройства пошли еще дальше. В цепь цифрового сигнала добавляют цифровой сигнальный процессор (DSP) для компенсации фазово-частотных искажений, вносимых как динамиком, так и помещением. Искажения замеряются микрофоном, а DSP искажения компенсирует. В итоге такая связка цифрового усилителя и цифровой обработки позволяет добиться максимального качества звука, на которое способен динамик. Именно это и делает усилители класса D любимчиками профессионалов, обращающих внимание в первую очередь на результат.

А для аудиофилов класс D производители тщательно маскируют под названиями других классов, например, Z. Или используют их в качестве источников напряжения для усилителей класса A, AB, хотя при взгляде под другим углом такая схема выглядит как активный фильтр искажений для класса D. А то и вовсе умалчивают о принципах работы усилителя. Как это делает Yamaha:

Но даже беглым взглядом можно сразу заметить характерный для класса D фильтр паразитных частот — катушки индуктивности возле мощных транзисторов редкий гость в усилителях других классов.

Заключение

Любой усилитель, независимо от класса, может быть плохим или хорошим. Конкретное схемотехническое решение влияет на звук больше, чем класс усиления.

Отличительная и неизменная черта классов усилителей — это КПД. И самый большой КПД, порядка 90%, в классе D.

Усилители. Классификация усилителей

Усилители в каталоге

 

Классификация усилителей

По способу работы с входным сигналом и принципу построения усилительных каскадов усилители мощности звуковой частоты разделяются на:

  1. Аналоговые, класс А
  2. Аналоговые, класс В
  3. Аналоговые, класс АВ
  4. Аналоговые, класс H
  5. Импульсные и цифровые, класс D

Необходимо отметить, что существует еще множество классов усилителей, таких как C, A+, SuperA, G, DLD и др. Некоторые из них, такие как C (угол отсечки менее 90 градусов) в УМЗЧ не применяются. Другие же оказались слишком сложными и дорогостоящими, поэтому «сошли со сцены» или были вытеснены более перспективными.

Аналоговые усилители, по сути, отличаются только углом отсечки входного сигнала, т.е. выбором так называемой «рабочей точки».

Класс А

Углы отсечки для усилительных каскадов классов А, В, АВ и С.

Усилители класса А работают без отсечки сигнала на наиболее линейном участке вольтамперной характеристики усилительных элементов. Это обеспечивает минимум нелинейных искажений (THD и IMD), причем как на номинальной мощности, так и на малых мощностях.

За этот минимум приходится расплачиваться внушительными потребляемой мощностью, размерами и массой. В среднем КПД усилителя класса А составляет 15-30%, а потребляемая мощность не зависит от величины выходной мощности. Мощность рассеяния максимальна при малых сигналах на выходе.

Интересными представителями усилителей класса А являются транзисторный Pass Labs XA 200.5 и ламповый Unison Research Sinfonia, сравнительные характеристики которых приведены в таблице:

ХарактеристикиPass Labs XA 200.5Unison Research Sinfonia
Номинальная мощность200 Вт25Вт
Коэффициент гармонических искажений1% (400Вт)не указывается
Диапазон воспроизводимых частот1.5 – 100000 Гц20 – 30000 Гц
Потребляемая мощность700 Вт500 Вт
Масса81 кг25 кг


Представитель усилителей класса А

Класс В

Принцип работы усилителей, классов А, В и С.

Усилительные элементы работают с отсечкой 90 градусов. Для обеспечения такого режима работы усилителя используется двухтактная схема, когда каждая часть схемы усиливает свою «половинку» сигнала. Основная проблема усилителей в классе В — это наличие искажений из-за ступенчатого перехода от одной полуволны к другой. Поэтому, при малых уровнях входного сигнала нелинейные искажения достигают своего максимума.

Искажения типа ступенька в усилителях класса В.

Достоинством усилителя класса В можно считать высокий КПД, который теоретически может достигнуть 78%. Потребляемая мощность усилителя пропорциональна выходной мощности, и при отсутствии сигнала на входе она вообще равна нулю. Несмотря на высокий КПД, обнаружить среди современных моделей усилители класса В вряд ли кому-то удастся.

Класс АВ

Как следует из названия усилители класса АВ – это попытка объединить достоинства усилителей А и В класса, т.е. добиться высокого КПД и приемлемого уровня нелинейных искажений. Для того чтобы избавиться от ступенчатого перехода при переключении усилительных элементов используется угол отсечки более 90 градусов, т.е. рабочая точка выбирается в начале линейного участка вольтамперной характеристики. За счет этого при отсутствии сигнала на входе усилительные элементы не запираются, и через них протекает некоторый ток покоя, иногда значительный. Из-за этого уменьшается коэффициент полезного действия и возникает незначительная проблема стабилизации тока покоя, но зато существенно уменьшаются нелинейные искажения.

Среди аналоговых усилителей данный режим работы встречается чаще всего.


Графики зависимости коэффициентов нелинейных искажений от выходной мощности усилителя для классов А, В и АВ.


Минимизация искажения типа «ступенька» в усилителях класса АВ.

 

Сравнительная таблица усилителей, работающих в режимах А, В, АВ:
ХарактеристикиABAB
Теоретический КПД50%78%Зависит от режима
Реальный КПД15-30%50-60%40-50%
Нелинейные искажениямалыеВысокиесредние)
Потребляемая мощностьпостояннаязависит от выходнойзависит от выходной
Термостабильностьнизкаявысокаясредняя


Представитель усилителей класса АВ

Класс H

Данный класс усилителей был разработан специально для автомобилей, в которых имеется ограничение напряжения, питающего выходные каскады. Стимулом к созданию усилителей класса Н послужило то, что реальный звуковой сигнал имеет импульсный характер и его средняя мощность намного ниже пиковой. В основе схемы лежит обычный усилитель класса AB, включенный по мостовой схеме. Изюминка — применение специальной схемы удвоения напряжения питания. Основной элемент схемы удвоения — накопительный конденсатор большой емкости, который постоянно подзаряжается от основного источника питания. На пиках мощности этот конденсатор подключается схемой управления последовательно с основным источником питания. Напряжение питания выходного каскада усилителя на доли секунды удваивается, позволяя ему справиться с передачей пиков сигнала. Однако накопительный конденсатор должен быть достаточной емкости, иначе заявленная выходная мощность будет обеспечиваться только на средних и высоких частотах.

Идея коммутирования напряжения питания нашла применение не только в автомобильных усилителях мощности. Усилитель с двух- трехуровневым питанием фактически представляет собой импульсный усилитель с последовательным аналоговым каналом, который лишнюю энергию импульсов переводит в тепло. Чем больше ступенек у напряжения питания, тем более приближенная к синусоиде получается лестница на выходе импульсной части усилителя и тем меньше выделяется тепла на аналоговом канале.

Усилители, построенные по подобной схемотехнике, сочетают в себе дискретные методы усиления с аналоговыми и, соответственно, занимают промежуточное положение между аналоговыми и импульсными усилителями по КПД и тепловыделению. В данном усилителе для повышения КПД, и соответственно, снижения тепловыделения применено дискретное приближение уровня напряжения питания аналогового канала к его выходному напряжению. Повышение КПД происходит за счет уменьшения падения напряжения на активном плече по сравнению с усилителями с одноуровневым питанием. Отличительная особенность подобных усилителей состоит в том, что коммутация ключевых элементов происходит с частотой сигнала. Фильтрация высших гармоник осуществляется аналоговой частью усилителя путем преобразования энергии гармоник в тепло в усилителями с высокой тактовой частотой, когда частота коммутации ключевых элементов многократно выше верхней граничной частоты сигнала, а фильтрация осуществляется LC фильтром. Тепловые потери аналоговой части усилителя получаются довольно низкими, но их в достаточной мере восполняют коммутационные потери и потери в фильтре при высокой тактовой частоте. Существует оптимальное количество ступенек напряжения питания, при котором усложнение схемы оправдывается повышением КПД и удешевлением мощных транзисторов аналоговой части усилителя. КПД усилителей класса H достигает 83% при коэффициенте гармонических искажений 0,1%.

Класс D

Строго говоря, класс D — это не только схема построения или режим работы выходного каскада — это отдельный класс усилителей. Более логично было бы назвать их импульсными, но историческое название «цифровой» за ними уже прочно закрепилось. Рассмотрим общую структурную схему усилителя.


Блок схема цифрового усилителя

Оцифрованный сигнал поступает на аудио процессор, который в свою очередь с помощью широтно-импульсной модуляции (PWM — Pulse Width Modulation) управляет силовыми полупроводниковыми ключами. Можно добавить, что ШИМ-сигнал можно получить и без аналого-цифрового преобразования с помощью компаратора и генератора, например, пилообразного сигнала. Такой метод в усилителях класса D также широко применяется, но благодаря развитию цифровой техники постепенно уходит в прошлое. Аналого-цифровое преобразование обеспечивает дополнительные возможности по обработке звука: от регулировки уровня громкости и тембра до реализации цифровых эффектов, таких как реверберация, шумоподавление, подавление акустической обратной связи и др.

В отличие от аналоговых усилителей, выходной сигнал усилителей класса D представляет собой импульсы прямоугольной формы. Их амплитуда постоянна, а длительность («ширина») изменяется в зависимости от амплитуды аналогового сигнала, поступающего на вход усилителя. Частота импульсов (частота дискретизации) постоянна и в зависимости от требований, предъявляемых к усилителю, составляет от нескольких десятков до сотен килогерц. После формирования импульсы усиливаются оконечными транзисторами, работающими в ключевом режиме. Преобразование импульсного сигнала в аналоговый происходит в фильтре низких частот на выходе усилителя или непосредственно в нагрузке.


График зависимости КПД аналоговых и цифровых усилителей от выходной мощности.

В целом, принцип работы усилителя класса D очень напоминает принцип работы импульсного блока питания, но в отличие от него, на выходе, за счет широтно-импульсной модуляции, формируется не постоянное напряжение, а переменное, по форме соответствующее входному сигналу.

Теоретически, КПД подобных усилителей должен достигать 100%, но, к сожалению, сопротивление канала транзистора хоть и маленькое, но все же ненулевое. Но, тем не менее, в зависимости от сопротивления нагрузки, КПД усилителей этого типа может достигать 90%-95%. Разумеется, при такой эффективности нагрев выходных транзисторов практически отсутствует, что позволяет создавать очень маленькие и экономичные усилители. Коэффициент гармонических искажений при грамотном построении выходного фильтра можно довести до 0,01%, что является прекрасным результатом. Искажения возрастают при увеличении частоты сигнала и снижении частоты дискретизации. Косвенным образом от частоты дискретизации зависит и выходная мощность — с ростом частоты уменьшаются индуктивность катушек и снижаются потери в выходном фильтре.

Подобно аналоговым усилителям, импульсные усилители разделяются на подклассы AD и BD, причем их достоинства и недостатки тоже подобны. В усилителях класса AD в отсутствие входного сигнала выходной каскад продолжает работу, выдавая в нагрузку разнополярные импульсы одинаковой длительности. Это позволяет улучшить качество передачи слабых сигналов, но значительно снижает экономичность и порождает ряд технических проблем. В частности, приходится бороться с так называемым сквозным током, который возникает при одновременном переключении выходных транзисторов. Для устранения сквозного тока в выходном каскаде вводится мертвое время между закрыванием одного транзистора и открыванием другого.

Практическое применение находят более простые по конструкции: усилители класса BD, выходной каскад которых в отсутствие сигнала генерирует импульсы очень малой длительности или находится в состоянии покоя. Однако в усилителях этого типа наиболее сильно проявляется основной недостаток — зависимость уровня нелинейных искажений от частоты дискретизации и частоты сигнала. Кроме того, искажения возрастают при малых входных сигналах. Чаще всего, усилители класса D, как и класса АВ, выпускаются в интегральном исполнении.

Такие усилители применяются в системах оповещения и трансляции, в которых, как известно, не уделяется большого внимания вопросам достижения особенного качества звучания. В профессиональных системах звуковоспроизведения в классе D реализуются в основном усилители для сабвуферов, так как на низких частотах ухо наименее чувствительно к нелинейным искажениям сигнала.

Если раньше от усилителя требовалась просто надежная работа и гарантированное качество звука, то современные модели дополняются рядом сервисных функций, таких как компьютерное управление усилителем, программирование встроенного лимитера, а также наличие цифрового входа. С удешевлением цифровых интерфейсов для передачи аудиосигналов можно ожидать рост рынка усилителей с дистанционно управляемыми параметрами и автоматической диагностикой, что, безусловно, расширит возможности в создании звукоусилительных комплексов. Учитывая стремительное развитие цифровой техники и элементной базы сложно даже предположить, к каким вершинам приведет нас дальнейшее совершенствование принципов построения усилителей мощности.


Представитель усилителей класса D

Классы усилителей звука: классификация — D, A, B, C, AB и другие. Ультралинейные и цифровые. Какой класс лучше?

Наверняка многие слышали о том, что современные усилители могут относиться к разным классам. Однако люди, далекие от акустических систем и технических особенностей звуковой аппаратуры, вряд ли представляют, что скрывается за буквенными обозначениями.

В нашем обзоре мы подробнее расскажем о том, что такое классы усилителей, какими они бывают, и как подобрать оптимальную модель.

Классификация

Класс усилителя — это величина выходящего сигнала, при которой он в функциональной схеме на протяжении одного рабочего цикла приводится в действие синусоидальным входящим сигналом и в результате этого воздействия изменяется. Классификация усилителей по классам зависит от параметров линейности режима, используемого для усиления поступающих сигналов от категорий с повышенной точностью при довольно сниженной эффективности до абсолютно нелинейных. В этом случае точность звуковоспроизведения сигнала не столь велика, зато КПД довольно высок. Все остальные классы усилителей являются некими промежуточными моделями между этими двумя группами.

Первая группа

Все классы усилителей условно можно разделить на две подгруппы. К первой относятся классические управляемые модели классов A, B, а также AB и C. Их категория обусловлена параметром их проводимости на определенном участке выходного сигнала. Таким образом, работа встроенного транзистора на выходе располагается посредине между «выкл» и «вкл».

Вторая группа

Ко второй категории устройств относят более современные модели, которые считаются так называемыми переключающимися классами — это модели D, E, F, а также G, S, H и T.

Эти усилители применяют в работе широтно-импульсную модуляцию, а также цифровые схемы для беспрерывного переведения сигнала между «полностью выкл» и «полностью вкл». Как следствие, происходит мощный выход в районе насыщения.

Описание популярных классов

О разных классах усилителей мы поговорим более подробно.

А

Модели класса А получили наибольшее распространение благодаря простоте их конструкции. Это объясняется несколькими параметрами искажения входящего сигнала и, соответственно, высоким качеством звучания в сравнении со всеми остальными категориями усилительных установок. Модели, относящиеся к этой категории, характеризуются высокой линейностью по сравнению с прочими.

Обычно усилители класса А в своей работе используют единый вариант транзисторов. Его подключают к базовой конфигурации эмиттера для двух половин сигнала так, что германиевый транзистор неизменно идет сквозь него даже в том случае, если фазовый сигнал отсутствует. Это значит, что на выходе каскад не станет в полной мере проходить в область отсечки сигнала и насыщения. Он имеет собственную точку смещения примерно в центральной части линии нагрузки. Такое строение приводит к тому, что транзистор попросту не активируется — именно это считается одним из его базовых недостатков.

Чтобы устройство можно было классифицировать, как относящееся к этому классу, нулевой ток на холостом ходу в выходном каскаде должен равняться предельному току нагрузки либо даже превышать его — это позволяет обеспечить максимальный выходящий сигнал.

Поскольку устройства класса А относятся к однотактным и функционируют в линейной зоне всех заданных кривых, одно выходное устройство проходит через полные 360 градусов, в этом случае устройство категории А в полной мере соответствует источнику тока.

Поскольку усилители этой категории работают, как мы уже говорили, в ультралинейной области, то смещение постоянного тока должно быть установлено корректно — это позволит обеспечивать исправную работу и дает звуковой поток мощностью 24 Вт. Однако в связи с тем, что выходное устройство все время находится в отключенном состоянии, оно беспрерывно проводит ток, и это создает условия для постоянной потери мощности во всей конструкции. Такая особенность приводит к выделению большого объема тепла, при этом их КПД довольно низок — не превышает 40%, что делает их непрактичными, если речь идёт о каких-то мощных акустических системах. Помимо того, из-за повышенного тока холостого хода установки, блок питания должен иметь соответствующие габариты и быть максимально отфильтрован, в противном случае не избежать звучания усилителя и стороннего гула. Именно эти недостатки привели к тому, что производители вынуждены были продолжить работу над созданием усилителей более эффективной категории.

В

Усилители класса B были созданы производителями для решения проблем, связанных с низким КПД и повышенным уровнем перегрева, которые свойственны установкам предыдущей категории. В своей работе модели категории В применяют пару дополнительных транзисторов, как правило, биполярных. Их отличие в том, что для обеих половин сигнала выходной фронт построен по двухтактной схемотехнике, таким образом каждое транзисторное устройство дает усиление лишь наполовину выходного сигнала.

Базовый ток смещения уровня постоянного тока в усилителях этого класса отсутствует, поскольку ток его покоя равняется нулю, поэтому мощностные параметры постоянного тока обычно малы. Соответственно, и КПД его гораздо выше, нежели у устройств А. При этом когда сигнал принимает положительное значение, транзистор с положительным смещением ведет его, а отрицательный остаётся в выключенном состоянии. Аналогично в момент, когда входящий сигнал принимает отрицательное значение, положительный отключается, а отрицательно смещённый транзистор, наоборот, активируется и обеспечивает проведение отрицательной половины сигнала. В результате транзистор во время своей работы проводит 1/2 цикла только в положительном либо в отрицательном полупериоде поступающего сигнала.

Соответственно, всякое транзисторное устройство этой категории может проходить только через часть выходного сигнала, при этом в четком чередовании.

Такая двухтактная конструкция примерно на 45-60% эффективнее, нежели усилители класса А. Тем не менее проблемы с моделями этого типа заключаются в том, что они дают существенные искажения в момент прохождения аудиосигнала из-за «мертвой зоны» транзисторов в коридоре входных напряжений со значениями от -0,7 В до +0,7 В.

Как все знают из курса физики, базовый эмиттер должен давать напряжение около 0,7 В для того, чтобы биполярный транзистор начал полноценную проводку. Пока это напряжение не превысит эту отметку, выходной транзистор не сместится до положения включения. Это значит, что половина сигнала, которая пойдёт в коридор 0,7 В, начнет воспроизводиться неточно. Соответственно, это делает устройства категории B практически непригодными для применения в прецизионных акустических установках.

Для того чтобы преодолеть эти искажения и были созданы так называемые компромиссные устройства класса AB.

АВ

Эта модель представляет собой некий тандем конструкции категории А и категории B. В наше время усилители типа AB считаются одними из самых распространенных вариантов конструкций. По принципу своей работы они немного напоминают изделия категории В, с тем только исключением, что оба транзисторных устройства могут в одно и то же время проводить сигнал возле точки пересечения осциллограмм. Это в полной мере устраняет все проблемы искажения сигнала предыдущего усилителя группы В. Разница состоит в том, что пара транзисторов имеет довольно малое напряжение смещения, как правило, оно составляет от 5 до 10% от параметров тока покоя. В этом случае проводящее устройство остаётся включённым дольше, чем время одного полупериода, но в то же время – это гораздо меньше, нежели полный цикл входного сигнала.

Можно с полной уверенностью сказать, что устройство типа AB считается отличным компромиссом между моделями класса А и моделями класса В с позиции КПД и линейности, в то время как эффективность трансформации звукового сигнала составляет приблизительно 50%.

С

Конструкция установок, относящихся к классу C, обладает максимальной эффективностью, но при этом довольно плохой линейностью в сравнении со всеми остальными категориями. Усилитель C-класса довольно заметно смещен, поэтому входной ток принимает нулевое значение и держится на этой отметке на протяжении более 1/2 цикла поступающего сигнала. В это время транзистор пребывает в режиме ожидания его выключения.

Подобная форма смещения транзистора обеспечивает наибольшую эффективность устройства, его КПД составляет порядка 80%, но при этом она вносит довольно значительные звуковые искажения в исходящий сигнал.

Такие конструкционные особенности делают невозможным применение усилителей в акустических системах. Как правило, эти модели нашли свою сферу использования в высокочастотных генераторах, а также отдельных вариантах радиочастотных усилителей, где импульсы тока, издаваемые на выходе, преобразуются в синусоидальные волны заданной частоты.

D

Усилитель категории D относится к двухканальным нелинейным импульсным моделям, их еще называют ШИМ-усилители.

В подавляющем большинстве аудиосистем выходные каскады функционируют в классах А либо АВ. В интегральных усилителях группы D мощность рассеивания линейных входов значительна даже в случае их максимально полной, практически идеальной реализации. Это дает моделям D-класса существенное преимущество в большинстве сфер применения вследствие минимального тепловыделения, снижения веса и габаритов устройства и, соответственно, пониженной стоимости изделий, притом что время автономной работы в таких моделях увеличено в сравнении с моделями других конструкций.

Как правило, это высоковольтные модели, они рассчитаны на плату в 10000 ватт.

Другие

Усилитель класса F. Эти модели обеспечивают повышенную эффективность, их КПД составляет порядка 90%.

Усилитель класса G. Этот усилитель, по сути, представляет собой усовершенствованную высоколинейную конструкцию базового устройства класса AB на ТДА. Модели, относящиеся к данной категории, могут выполнять автоматическое переключение между разными линиями питания в случае изменения параметров поступающего сигнала. Подобное переключение многократно уменьшает энергопотребление и, соответственно, уменьшает расход мощности, которые вызываются утратой тепла.

Усилитель класса I. Такие модели имеют пару комплектов дополнительных выходных приспособлений. Перед включением они располагаются в двухтактной конфигурации. Первое устройство выполняет переключение положительной части сигнала, а второе — отвечает за переключение отрицательной, подобно усилителям категории B. При отсутствии сигнала аудио на входе или в случае, если сигнал достигает нулевой точки пересечения, переключающий механизм включается и выключается в одно время с основным циклом.

Усилитель класса S. Данный класс усилителей относят к категории нелинейного механизма переключения. По механизму своей работы они в чем-то похожи на усилители категории D. Такой усилитель производит преобразование аналоговых входящих сигналов в цифровые, многократно усиливая их. Таким образом, чтобы повысить мощность на выходе, обычно цифровой сигнал переключающего устройства либо полностью включен, либо полностью выключен, поэтому КПД таких устройств может составлять 100%.

Усилитель класса T. Ещё один вариант цифрового усилителя. Сегодня такие модели набирают всё большую популярность из-за присутствия микросхем, позволяющих выполнять цифровую обработку поступающего сигнала, а также встроенных многоканальных усилителей 3D-звучания. Такой эффект обеспечивается конструкцией, позволяющей преобразовывать аналоговые сигналы в звуки повышенной ШИМ цифрового типа. Конструкция устройств класса C объединяет параметры сигнала с пониженной степенью искажений, подобного АВ категории, в то время как сохраняют КПД на уровне моделей класса D.

Как определить?

Для начала остановимся на том, как в принципе функционирует усилитель. Наверняка вы будете удивлены, но по факту заводской усилитель ничего не усиливает. По сути, механизм его работы напоминает работу самого простого крана: вы крутите ручку и вода из водопровода начинает литься, сильнее или слабее, а если ее закрутить — то поток будет перекрыт. В усилителях все процессы происходят таким же образом. От мощного модуля питания ток проходит сквозь подключенный к устройству динамик. В данном случае функцию крана берут на себя транзисторы — на выходе степенью их закрытия и открытия управляет сигнал, который проходит на усилитель. От того, как именно этот кран функционирует, то есть как действуют выходные транзисторы, и определяется класс усилителей.

Если мы говорим об устройствах АВ, то в них транзисторы могут иметь неприятное свойство открываться и закрываться непропорционально поступающим на них сигналам. Таким образом, их работа становится неизменной. Возвращаясь к аналогии с краном — вы можете поворачивать ручку краника, но вода сперва будет течь слабо, а затем вдруг поток внезапно усилится.

По этой причине транзисторы категории АВ приходится удерживать в приоткрытом состоянии даже в том случае, если сигнал отсутствует. Это необходимо для того, чтобы они начали работать сразу же, а не выжидали, пока сигнал дойдет до определённого уровня – только в этом случае усилитель сможет воспроизводить звук с минимальными искажениями. На практике это означает, что некоторая часть полезной энергии расходуется вхолостую. Только представьте, что вы откроете все водопроводные краны в квартире, и из них беспрерывно будет вытекать небольшая струйка воды. Как следствие, эффективность таких моделей не превышает 50-70%, именно низкий КПД и является главным минусом усилителей АВ класса.

Если говорить об устройствах D-класса, то принцип работы у них абсолютно такой же: они имеют свои выходные транзисторы, способные закрываться и открываться. Тем самым регулируется прохождение тока сквозь подведенные к ним динамики, вот только управляет их открытием уже сигнал, по своей конфигурации весьма далекий от входящего.

Именно так подается сигнал на выходные транзисторы устройств D-класса. В данном случае функционировать они станут совсем иначе: либо в полном объеме закрываться, либо открываться без каких-либо промежуточных значений. Это означает, что КПД таких моделей может быть приближен к 100%.

Конечно, передавать подобные сигналы на аудиосистемы рано, сперва ему следует вернуть стандартную конфигурацию. Это можно сделать посредством выходного дросселя, а также конденсатора — после их обработки на выходе формируется усиленный сигнал, который по своей форме полностью повторяет входящий. Именно он и передается на динамики.

Основное преимущество устройств D-класса – это повышенный КПД и, соответственно, более щадящее расходование энергии

Долгое время было принято считать, что для подключения качественных акустических установок оптимальным решением станут усилители АВ. Модели категории D давали преобразование поступающего сигнала в импульсный с пониженной частотой, в итоге он давал хорошее звучание только в сабвуферном режиме. В наши дни технологии сделали большой шаг вперед, и сегодня появились уже быстродействующие транзисторы, которые могут открываться, а также и закрываться почти моментально, в магазинах представлено довольно много широкополосных устройств D-класса.

Эти модели предназначены на применение не только с сабвуферами, но также и с современными акустическими системами любых типов. Для тех вариантов, когда высокой мощности не требуется, имеет смысл приобрести довольно компактный усилитель.

Таким образом, если для подключения АС у вас достаточно площади, то вы вполне можете подобрать модель АВ-класса. За несколько десятилетий существования схемотехника этих моделей хорошо отработана, они дают довольно хорошее качество звучания, а в случае их поломки вы можете без проблем отремонтировать их в ближайшем сервисном центре.

Если участок для звуковой инсталляции ограничен, то стоит присмотреться к широкополосным моделям группы D. При тех же мощностных параметрах, что и изделия АВ-класса, они гораздо меньше и легче, притом меньше греются, и некоторые модели позволяют даже устанавливать их скрытно с наименьшими вмешательствами.

Для подключения сабвуферов максимальное преимущество у установок D-класса, так как темброблок басов представляет собой наиболее энергозатратный частотный диапазон — в данном случае КПД изделия имеют принципиальное значение, а в этом конкурентов изделиям D класса попросту нет.

В данном видео вы сможете нагляднее ознакомиться с классами усилителей звука.

А, B, AB, D, G, H / Хабр

Здравствуй, Хабр!

В данной статье мы рассмотрим звуковые усилители классов: А, B, AB, D, G, H
Сначала рассмотрим классы по положению рабочей точки. Каждый транзистор имеет выходную характеристику, которую можно найти в DataSheet.

Пример характеристики на рисунке ниже.

Выходная характеристика транзистора.

Именно с помощью данной характеристики мы сможем выбрать класс усилителя по положению точки покоя.

Выходная характеристика показывает какой ток нам нужно задать базе транзистора, для того чтобы получить определённый класс усилителя, также мы узнаем Iк.

Класс А

Класс А — это такой режим работы усилительного элемента, при котором входные значения, проходя через усилительный элемент не прерывается. То есть точно повторяет входной сигнал.
Усилительный элемент приоткрыт всегда и точно повторяет отрицательную и положительную волну.

Класс B

Элемент, работающий в данном классе способен усиливать только одну полуволну, положительную либо отрицательную.
Такой класс используют в двухтактных усилителях, где положительную полуволну усиливает один транзистор, а отрицательную другой.
Двухтактный усилительный каскад класса В. Но на выходе усилителя работающего в данном классе мы имеем искажение. Данное искажение называется «Ступенькой».

Для устранения данного искажения нужно перейти к классу АВ. На рисунке ниже показаны два класса усилителя В и АВ и их выходные сигналы относительно входным.

Класс D

Принцип действия данного класа. В данном режиме работы, транзистор либо открыт либо полностью заперт. Это достигается с помошью модулятора ШИМ сигнала. Именно это дает такому каскаду кпд свыше 90% (практически на любых мощностях).
Минусом данного каскада являются искажения. Они вознакают из-за способа модуляции так-как существует «мертвый» период который необходим для предотвращения сквозных утечек.
Также сильными источниками искажений являются L и C элементы в фильтре (НЧ).

Усилители класса G и H

Сначала поговорим о питании усилителей. Для получения большой мощности, необходимо иметь большое напряжение питания.

Но сигнал входной и соответственно выходной не всегда обладают большой амплитудой и на маленькой мощности большое напряжение питания не является необходимым, более того КПД данного усилителя на маленькой мощности падает.

Отсюда и вытекают классы усилителей G и H.

Отличие данных усилителей заключается в питании, напряжение которого меняется при необходимости, а в зависимости какой класс G или H оно меняется либо ступенчато, либо плавно.

В усилителе класса H напряжение питания меняется плавно то есть транзисторы находятся в усилительном режиме, а в классе G оно меняется ступенчато, транзисторы в данном классе находятся в ключевом режиме (полностью открыты или полностью заперты).

Усилитель класса H
Усилитель класса G

Вывод: Усилители для комфортного прослушивания звукового тракта в домашних условиях должны работать в классе А, АB или D.

Спасибо за внимание.

Характеристики усилителей: классификация, формулы, схемы, параметры

рис. 2.1Усилитель — это электронное устройство, управляющее потоком энергии, идущей от источника питания к нагрузке. Причем мощность, требующаяся для управления, как правило, намного меньше мощности, отдаваемой в нагрузку, а формы входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают (рис. 2.1).

Классификация усилителей

Все усилители можно классифицировать по следующим признакам:

по частоте усиливаемого сигнала:

• усилители низкой частоты (УНЧ) для усиления сигналов от десятков герц до десятков или сотен килогерц;

• широкополосные усилители, усиливающие сигналы в единицы и десятки мегагерц;

• избирательные усилители, усиливающие сигналы узкой полосы частот;

по роду усиливаемого сигнала:

• усилители постоянного тока (УПТ), усиливающие электрические сигналы с частотой от нуля герц и выше;

• усилители переменного тока, усиливающие электрические сигналы с частотой, отличной от нуля;

по функциональному назначению:

• усилители напряжения, усилители тока и усилители мощности в зависимости от того, какой из параметров усилитель усиливает. Основным количественным параметром усилителя является коэффициент усиления.

В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению КU, току Кi или мощности КР

КU = Uвх / Uвых

КI= Iвх/ Iвых

КP= Pвх / Pвых

где Uвх, Iвх — амплитудные значения переменных составляющих соответственно напряжения и тока на входе;

Uвых , Iвых — амплитудные значения переменных составляющих соответственно напряжения и тока на выходе;

Рвх, Рвых— мощности сигналов соответственно на входе и выходе. Коэффициенты усиления часто выражают в логарифмических единицах — децибелах:

КU (дБ) = 20LgKu

КI(дБ) = 20LgKi

КР (дБ) = 10LgKp

Усилитель может состоять из одного или нескольких каскадов. Для многокаскадных усилителей его коэффициент усиления равен произведению коэффициентов усиления отдельных его каскадов: К = К1 · К2 · … · Кn

Если коэффициенты усиления каскадов выражены в децибелах, то общий коэффициент усиления равен сумме коэффициентов усиления отдельных каскадов:

К (дБ) = К1 (дБ) + К2 (дБ) +… + Кn(дБ).

Обычно в усилителе содержатся реактивные элементы, в том числе и «паразитные», а используемые усилительные элементы обладают инерционностью. В силу этого коэффициент усиления является комплексной величиной:

ЌU = КU · e

КU = Uвых / Uвх

где КU— модуль коэффициента усиления; φ — сдвиг фаз между входным и выходным напряжениями с амплитудами Uвх и Uвых.

Помимо коэффициента усиления важным количественным показателем является коэффициент полезного действия:

η = Pвых / Pист

где Рист — мощность, потребляемая усилителем от источника питания.

Роль этого показателя особенно возрастает для мощных, как правило, выходных каскадов усилителя.

К количественным показателям усилителя относятся также входное Rвх и выходное Rвых сопротивления усилителя:

Rвх = Uвх / Iвх

Rвых = |∆ Uвых | / |∆ Iвых |

где Uвх и Iвх — амплитудные значения напряжения и тока на входе усилителя;

∆Uвых и ∆Iвых — приращения аплитудных значений напряжения и тока на выходе усилителя, вызванные изменением сопротивления нагрузки. Рассмотрим теперь основные характеристики усилителей.

Интересное видео о параметрах усилителя смотрите ниже:

Амплитудная характеристика усилителя

Амплитудная характеристика — это зависимость амплитуды выходного напряжения (тока) от амплитуды входного напряжения (тока) (рис. 2.2).

рис. 2.2 Точка 1 соответствует напряжению шумов, измеряемому при Uвx = 0, точка 2 — минимальному входному напряжению, при котором на выходе усилителя можно различать сигнал на фоне шумов.

Участок 2 − 3 — это рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжениями усилителя.

После точки 3 наблюдаются нелинейные искажения входного сигнала. Степень нелинейных искажений оценивается коэффициентом нелинейных искажений (или коэффициентом гармоник):

КГ = √( U22m + U23m + … + U2nm) / Ulm

где Ulm, U2m, U3m, Unm — амплитуды 1-й (основной), 2, 3 и n-й гармоник выходного напряжения соответственно. Величина D = Uвх max / Uвх minхарактеризует динамический диапазон усилителя. Рассмотрим пример возникновения нелинейных искажений (рис. 2.3). рис. 2.3При подаче на базу транзистора относительно эмиттера напряжения синусоидальной формы uбэ в силу нелинейности входной характеристики транзистора iб = f(uбэ) входной ток транзистора iб (а следовательно, и выходной — ток коллектора) отличен от синусоиды, т. е. в нем появляется ряд высших гармоник.

Из приведенного примера видно, что нелинейные искажения зависят от амплитуды входного сигнала и положения рабочей точки транзистора и не связаны с частотой входного сигнала, т. е. для уменьшения искажения формы выходного сигнала входной должен быть низкоуровневым.

Поэтому в многокаскадных усилителях нелинейные искажения в основном появляются в оконечных каскадах, на вход которых поступают сигналы с большой амплитудой.

Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.

АЧХ — это зависимость модуля коэффициента усиления от частоты, а ФЧХ — это зависимость угла сдвига фаз между входным и выходным напряжениями от частоты. Типовая АЧХ приведена на рис. 2.4.

рис. 2.4 Частоты fн и fв называются нижней и верхней граничными частотами, а их разность (fн − fв) — полосой пропускания усилителя.

При усилении гармонического сигнала достаточно малой амплитуды искажения формы усиленного сигнала не возникает.

При усилении сложного входного сигнала, содержащего ряд гармоник, эти гармоники усиливаются усилителем неодинаково, так как реактивные сопротивления схемы по-разному зависят от частоты, и в результате это приводит к искажению формы усиленного сигнала.

Такие искажения называются частотными и характеризуются коэффициентом частотных искажений: М = K0 / Kf где Kf — модуль коэффициента усиления усилителя на заданной частоте.

Коэффициенты частотных искажений МН = K0 / KН и МВ = K0 / KВ называются соответственно коэффициентами искажений на нижней и верхней граничных частотах. АЧХ может быть построена и в логарифмическом масштабе. В этом случае она называется ЛАЧХ (рис. 2.5), коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот между 10f и f). рис. 2.5Обычно в качестве точек отсчета выбирают частоты, соответствующие f = 10n. Кривые ЛАЧХ имеют в каждой частотной области определенный наклон. Его измеряют в децибелах на декаду. Типовая ФЧХ приведена на рис. 2.6.рис. 2.6 Она также может быть построена в логарифмическом масштабе. В области средних частот дополнительные фазовые искажения минимальны.

ФЧХ позволяет оценить фазовые искажения, возникающие в усилителях по тем же причинам, что и частотные.

 Пример возникновения фазовых искажений приведен на рис. 2.7, где показано усиление входного сигнала, состоящего из двух гармоник (пунктир), которые при усилении претерпевают фазовые сдвиги.

рис. 2.7

Переходная характеристика усилителя

Переходная характеристика усилителя— это зависимость выходного сигнала (тока, напряжения) от времени при скачкообразном входном воздействии (рис. 2.8).

рис. 2.8

Частотная, фазовая и переходная характеристики усилителя однозначно связаны друг с другом. Области верхних частот соответствует переходная характеристика в области малых времен, области нижних частот — переходная характеристика в области больших времен.

Ещё одно интересное видео по теме смотрите ниже:

Усилители мощности классов

(пояснения к усилителям классов A, B, AB, C, D)

В электронике усилитель является наиболее часто используемым схемным устройством с огромными возможностями применения. В электронике, связанной с аудио, предварительный усилитель и усилители мощности — это два разных типа систем усилителей, которые используются для целей, связанных с усилением звука. Но, помимо этой цели, связанной с конкретным приложением, существуют огромные различия в разных типах усилителей, в основном в усилителях мощности. Итак, здесь мы рассмотрим различных классов усилителей , а также их преимущества и недостатки.

Классификация усилителей с использованием букв

Классы усилителей определяют рабочие характеристики и характеристики усилителя. Усилители мощности разных типов дают разные отклики при прохождении через них тока. В соответствии с их спецификациями усилителям присваиваются разные буквы или алфавиты, которые представляют их классы. Существуют разные классы усилителей, начиная с A, B, C, AB, D, E, F, T и т. Д. .Из этих классов наиболее часто используемые классы аудиоусилителей — это A, B, AB, C. Другие классы — это современные усилители, которые используют топологию переключения и метод ШИМ (широтно-импульсной модуляции) для управления выходной нагрузкой. Иногда улучшенной версии традиционных классов присваивается буква, чтобы отнести их к другому классу усилителя, например, усилитель класса G является модифицированным классом усилителя класса B или усилителем класса AB.

Классы усилителя представляют собой пропорцию входного цикла, когда через усилитель пропускается ток. Входной цикл — это угол проводимости, определяемый синусоидальной волновой проводимостью на входе усилителя. Этот угол проводимости сильно пропорционален усилителям по времени в течение полного цикла. Если усилитель всегда включен во время цикла, угол проводимости будет равен 360 градусам . Таким образом, если усилитель обеспечивает угол проводимости 360 градусов, тогда усилитель использовал полный входной сигнал, а активный элемент проводился в течение 100% периода времени полного синусоидального цикла.

Ниже мы продемонстрируем традиционных классов усилителей мощности, начиная с классов A, B, AB и C, , а также продемонстрируем усилитель класса D, который широко используется в схемах переключения. Эти классы используются не только в усилителе мощности, но также и в схемах аудиоусилителей.

Усилитель класса A

Усилитель

класса A — это усилитель с высоким коэффициентом усиления и высокой линейностью. В случае усилителя класса A угол проводимости составляет 360 градусов.Как мы указали выше, угол проводимости 360 градусов означает, что усилитель остается активным в течение всего времени и использует полный входной сигнал. На изображении ниже показан идеальный усилитель класса А.

CLASS A Amplifier

Как мы видим на изображении, здесь один активный элемент, транзистор. Смещение транзистора остается включенным все время. Благодаря этой функции постоянного отключения усилитель класса A обеспечивает лучшую стабильность на высоких частотах и ​​петле обратной связи .Помимо этих преимуществ, усилитель класса A легко собрать из одного компонента и минимального количества деталей.

Несмотря на достоинства и высокую линейность, безусловно, имеет множество ограничений. Усилитель класса A имеет высокие потери мощности из-за непрерывной проводимости. Также из-за высокой линейности усилитель класса A обеспечивает искажения и шумы. Блок питания и конструкция смещения требуют тщательного выбора компонентов, чтобы избежать нежелательного шума и минимизировать искажения.

Из-за высоких потерь мощности в усилителе класса A он выделяет тепло и требует большего радиатора. Усилители класса A имеют очень низкий КПД, теоретически КПД варьируется от 25 до 30% при использовании в обычной конфигурации. Эффективность можно повысить, используя конфигурацию с индуктивной связью, но эффективность в этом случае составляет не более 45-50%, поэтому подходит только для целей усиления с низким уровнем сигнала или мощности.

Усилитель класса B

Усилитель класса B немного отличается от усилителя класса A. Создается с использованием двух активных устройств, которые проводят половину фактического цикла , то есть 180 градусов цикла. Два устройства обеспечивают комбинированный токовый привод нагрузки.

CLASS B Amplifier

На изображении выше показана идеальная конфигурация усилителя класса B. Он состоит из двух активных устройств, которые смещаются одно за другим в течение положительного и отрицательного полупериода синусоидальной волны , и, таким образом, сигнал подталкивается или подтягивается к усиленному уровню как с положительной, так и с отрицательной стороны и объединяет результат, который мы получаем в течение полного цикла. выход.Каждое устройство включается или становится активным на половине цикла, и за счет этого эффективность повышается, по сравнению с КПД усилителя класса A 25-30%, теоретически он обеспечивает КПД более 60%. Мы можем увидеть график входного и выходного сигналов каждого устройства на изображении ниже. Для усилителя класса B КПД не более 78%. Тепловыделение в этом классе сведено к минимуму, что обеспечивает небольшой радиатор .

Но и у этого класса есть ограничение. Очень серьезным ограничением этого класса является искажение кроссовера . Поскольку два устройства обеспечивают каждую половину синусоидальных волн, которые объединяются и объединяются на выходе, возникает рассогласование (переход) в области, где объединяются две половины. Это связано с тем, что, когда одно устройство завершает полупериод, другое должно обеспечивать такую ​​же мощность почти в то же время, когда другое завершает работу. Эту ошибку сложно исправить в усилителе класса А, так как во время активного устройства другое устройство остается полностью неактивным.Ошибка приводит к искажению выходного сигнала. Из-за этого ограничения это серьезный недостаток для применения в точных усилителях звука.

Усилитель класса AB

Альтернативный подход к преодолению перекрестных искажений заключается в использовании усилителя AB . Усилитель класса AB использует промежуточный угол проводимости обоих классов A и B, поэтому мы можем видеть свойство усилителя как класса A, так и класса B в топологии усилителя этого класса AB.Как и класс B, он имеет ту же конфигурацию с двумя активными устройствами, которые работают в течение половины циклов индивидуально, но каждое устройство смещено по-разному, поэтому они не отключаются полностью в момент непригодности (момент перехода). Каждое устройство не покидает проводимость сразу после завершения половины синусоидальной формы волны, вместо этого они проводят небольшой ввод в течение другого полупериода. Используя этот метод смещения, рассогласование кроссовера во время мертвой зоны значительно уменьшается.

CLASS AB Amplifier

Но в этой конфигурации эффективность снижается из-за нарушения линейности устройств. Эффективность остается выше, чем у типичного усилителя класса A, но ниже, чем у системы усилителя класса B. Кроме того, необходимо тщательно выбирать диоды с точно таким же номиналом и размещать их как можно ближе к выходному устройству. В некоторых схемных конструкциях разработчики стремятся добавить резистор небольшого номинала, чтобы обеспечить стабильный ток покоя на устройстве, чтобы минимизировать искажения на выходе.

Усилитель класса C

Помимо усилителя классов A, B и AB, существует еще один усилитель класса C. Это традиционный усилитель, который работает иначе, чем усилители других классов. Усилитель класса C — это настроенный усилитель, который работает в двух разных рабочих режимах, настроенном или ненастроенном. Эффективность усилителя класса C намного выше, чем у усилителя A, B и AB. Максимальный КПД 80% может быть достигнут при работе с радиочастотами

CLASS C Amplifier

Усилитель

класса C использует угол проводимости менее 180 градусов. В ненастроенном режиме секция тюнера не включается в конфигурацию усилителя. В этом случае усилитель класса C также дает огромные искажения на выходе.

Когда на схему воздействует настроенная нагрузка, она ограничивает уровень выходного смещения со средним выходным напряжением, равным напряжению питания. Настроенная операция называется фиксатором . Во время этой операции сигнал приобретает правильную форму, а центральная частота становится менее искаженной.

При типичном использовании усилитель класса C дает КПД 60-70%.

Усилитель класса D

Усилитель

класса D — это коммутирующий усилитель, в котором используется широтно-импульсная модуляция или ШИМ. В этом случае угол проводимости не имеет значения, так как прямой входной сигнал изменяется с переменной шириной импульса.

В этой системе усилителей класса D линейное усиление не допускается, поскольку они работают так же, как обычный переключатель, который имеет только две операции: ВКЛ или ВЫКЛ.

CLASS D Amplifier

Перед обработкой входного сигнала аналоговый сигнал преобразуется в поток импульсов с помощью различных методов модуляции, а затем подается в систему усилителя. Поскольку длительность импульсов связана с аналоговым сигналом, он снова восстанавливается с использованием фильтра нижних частот на выходе.

Усилитель класса D — это усилитель класса с наивысшим КПД в сегментах A, B, AB, а также C и D. Он имеет меньшее тепловыделение, поэтому необходим небольшой радиатор.Схема требует различных переключающих компонентов, например, полевых МОП-транзисторов с низким сопротивлением.

Это широко используемая топология в цифровых аудиоплеерах или для управления двигателями. Но мы должны помнить, что это не цифровой преобразователь. Хотя для более высоких частот усилитель класса D не является идеальным выбором, поскольку в некоторых случаях он имеет ограничения полосы пропускания в зависимости от возможностей фильтра нижних частот и модуля преобразователя.

Усилители других классов

Помимо традиционных усилителей, есть еще несколько классов: класс E, класс F, класс G и H.

Усилитель класса E — это высокоэффективный усилитель мощности, использующий переключающую топологию и работающий в радиочастотах. Однополюсный переключающий элемент и настроенная реактивная сеть являются основными компонентами, используемыми с усилителем класса E.

Класс F — усилитель с высоким сопротивлением гармоник. Он может управляться прямоугольной или синусоидальной волной. Для входа синусоидальной волны этот усилитель может быть настроен с помощью катушки индуктивности и может использоваться для увеличения усиления.

Класс G использует переключение шин для снижения энергопотребления и повышения эффективности. А Class H — это дальнейшая улучшенная версия Class G.

Дополнительные классы — усилители специального назначения. В некоторых случаях буквы предоставляются производителем для обозначения их фирменного дизайна. Одним из лучших примеров является усилитель класса T, который является товарным знаком особого типа переключающего усилителя класса D, используемого в технологиях усилителей Tripath, который представляет собой запатентованную конструкцию.

.

Типы усилителей и их схемы с работой

Vacuum Tube Audio Amplifier Усилитель — одно из наиболее часто используемых электронных устройств в мире. Это основной строительный блок огромного количества цепей, и он бывает разных форм. Усилители можно определить просто как электронное устройство, увеличивающее мощность сигнала. Другими словами, он увеличивает амплитуду сигнала и делает его сильнее, чем данный вход.

Хотя в теории это звучит просто, в реальном мире усилители имеют множество параметров и условий.Усиление никогда не бывает идеально эффективным, всегда есть потери, искажения и шум.

Таким образом, создается целая масса усилителей, которые лучше всего работают в разных ситуациях. Не все усилители обеспечивают оптимальную мощность во всех ситуациях, и всегда необходимо учитывать факторы стоимости. Итак, вот все типы усилителей и все, что вам нужно о них знать!

Важные характеристики усилителя

Качество усилителя измеряется рядом спецификаций, называемых показателями качества.Они следующие:

    • Полоса пропускания: Диапазон частот, в котором может работать усилитель.
    • Шум: Количество нежелательной дополнительной информации, включенной в вывод.
    • Skew Rate: Максимальная скорость изменения вывода.
    • Усиление: Пожалуй, самое главное, соотношение между величинами входных и выходных сигналов.
  • Стабильность: Способность обеспечивать стабильную и надежную производительность.
  • Линейность : Степень пропорциональности между входными и выходными сигналами.
  • КПД: Еще одна очень важная характеристика — это соотношение выходной мощности и потребляемой мощности.
  • Выходной динамический диапазон: Соотношение между наибольшим и наименьшим полезными уровнями вывода.

Типы усилителей

Хотя усилители иногда классифицируют по входным и выходным параметрам (мы еще вернемся к этому), существует четыре основных типа, а именно:

  • Усилитель тока: Как следует из названия, усилитель, увеличивающий заданный входной ток.Он характеризуется низким входным сопротивлением и высоким выходным сопротивлением.
  • Усилитель напряжения: Усилитель, который усиливает заданное напряжение для увеличения выходного напряжения. Он характеризуется высоким входным сопротивлением и низким выходным сопротивлением.
  • Transconductance Amplifier: Усилитель, который изменяет выходной ток в соответствии с изменением входного напряжения.
  • Усилитель сопротивления: Усилитель, который изменяет выходное напряжение в соответствии с изменением входного тока.Он также известен как преобразователь тока в напряжение.

Помимо основных типов, существует несколько других типов усилителей, которые классифицируются по принципу действия, применению или характеристикам. Вот некоторые из них:

  • Усилители мощности: Хотя технически это не тип, усилитель мощности — это общий термин, который относится к величине мощности, обеспечиваемой цепью питания, или величине мощности, подаваемой на нагрузку. Обычно он используется в последних выходных каскадах схемы.Примеры включают: усилители мощности звука, контроллеры серводвигателей, двухтактные усилители и усилители мощности RF. Опять же, мы немного рассмотрим классификации усилителей мощности, поскольку они очень важны.
  • Операционные усилители (операционные усилители): Другой очень важный тип, операционный усилитель — это интегральная схема, которая действует как усилитель напряжения и имеет дифференциальный вход. У него есть положительный и отрицательный вход, но один выход с очень высоким усилением. Первоначально операционные усилители создавались с использованием ламп.
  • Клапанные (или) ламповые усилители: Усилитель, в котором используются вакуумные лампы для обеспечения повышенной мощности или выходного напряжения, известен как ламповый (или) ламповый усилитель. Как упоминалось выше, операционные усилители изначально были вентильного типа, но были заменены ИС, когда они стали дешевле, по крайней мере, в небольших приложениях. В приложениях с большой мощностью они все еще используются из-за их экономической эффективности и качества продукции. Они используются в радарах, военных, мощных радиоприемниках и передатчиках УВЧ.
  • Транзисторные усилители: Транзисторный усилитель — это хорошо известный тип усилителя, особенно для студентов-инженеров. Это многоконфигурационный усилитель с высоким выходом, в котором в качестве рабочей базы используются транзисторы. К ним относятся транзисторы с биполярным переходом (BJT) и металлооксидные полупроводниковые полевые транзисторы (MOSFET).
  • Klystron: Специальный тип вакуумной лампы с линейным лучом, используемый в качестве усилителя на высоких радиочастотах. Он очень точен и используется в крупномасштабных операциях, обычно в составе СВЧ-усилителей.
  • Инструментальные усилители: Специально разработанные усилители для усиления звука, голоса или музыки. Используется в основном в музыкальных инструментах.
  • Распределенные усилители: Усилители, которые используют линии передачи для временного разделения входного сигнала и усиления каждого сегмента по отдельности, называются распределенными усилителями. Их обычно можно найти в осциллографах.

В настоящее время используются лишь несколько типов усилителей, и совершенно очевидно, что каждый из них имеет более или менее область специализации.В мире существует огромное количество приложений, и почти для всех есть усилители.

Типы усилителей мощности

Сейчас самые известные типы усилителей — это не усилители, описанные выше, а типы усилителей мощности. Часто путают с единственной категорией усилителей, они на самом деле являются типами усилителей мощности и классифицируются на основе пропорции входного цикла, в течение которого усилитель выдает выходной сигнал. Пропорция активного входного цикла также известна как угол проводимости.Например, угол проводимости 360 градусов означает, что устройство всегда включено, угол проводимости 180 градусов означает, что устройство включено только половину каждого цикла. Ниже описаны различные типы усилителей мощности:

Усилитель мощности класса A

Class A Amplifier

Усилитель, который проводит полный цикл или имеет угол проводимости 360 градусов, известен как усилитель мощности класса А. Это самый простой и наиболее распространенный тип усилителя мощности из-за низкого уровня искажений сигнала.Однако он имеет немало недостатков и обычно не используется в приложениях с высокой мощностью. Некоторые из его характеристик:

  • Низкие уровни искажения сигнала
  • Простой дизайн
  • Устройство постоянно проводит из-за смещения усилительного элемента
  • Нет времени включения или проблем с хранением заряда
  • Довольно стабильно
  • Наивысшая линейность
  • Низкий КПД из-за постоянного включения около 25-50%
  • Высокая тепловая мощность во время работы

Усилитель мощности класса B

Class B Amplifier

Усилители мощности

класса B, в отличие от класса A, работают только половину каждого входного цикла, что означает, что они имеют угол проводимости 180 градусов.Проще говоря, эти усилители усиливают только половину входного цикла. На бумаге это, наверное, звучит бесполезно, но на самом деле все совсем иначе. Усилитель класса B состоит из положительного и отрицательного транзистора, которые работают поочередно, усиливая соответственно положительный и отрицательный цикл, которые в конце объединяются для формирования полного выходного цикла. Это более эффективный дизайн, и у него есть свои преимущества и недостатки по сравнению с усилителем мощности класса А. Его характеризует:

  • Использует 2 дополнительных транзистора, по одному для положительного и отрицательного цикла
  • Намного более высокий КПД, около 75-78.5%
  • Малая тепловая мощность
  • Стабильно и надежно
  • Требуется минимум 0,7 В для начала проведения, что означает, что все, что находится под ним, не регистрируется, поэтому не может использоваться для точных приложений
  • Объединяет 2 полупериода в один полный цикл

Усилитель мощности класса AB

Class AB Amplifier

Усилитель мощности класса AB, как следует из названия, представляет собой смесь усилителей мощности класса A и класса B. Как и в усилителе класса B, в нем также используются 2 проводящих элемента (транзистора), но они оба работают одновременно.Это устраняет «мертвую зону» от -0,7 В до + 0,7 В, наблюдаемую в усилителе мощности класса B. Но в этом случае, хотя каждый транзистор проводит больше половины цикла, они проводят меньше полного цикла полностью. Таким образом, угол проводимости составляет около 180 и 360 градусов, в некоторых случаях обычно обозначаемый как 270 градусов. Вот его характеристики:

  • Использует 2 транзистора, которые работают вместе
  • Каждый транзистор активен немного меньше полного цикла, но больше половины цикла
  • Сочетает в себе характеристики класса A и класса B
  • Без кроссоверных искажений
  • Достаточно эффективен, около 50-60%
  • Наиболее распространенная конструкция аудиоусилителей

Усилитель мощности класса C

Class C Amplifier

Усилитель мощности класса C выглядит странно по сравнению с тремя другими типами, перечисленными выше.Он наиболее эффективен, но имеет самый низкий рабочий цикл и линейность. Поскольку он сильно смещен, он остается включенным менее половины входного цикла и, таким образом, имеет угол проводимости где-то около 90 градусов. Это приводит к высокой эффективности, упомянутой выше, но также вызывает большие искажения в выходном сигнале, поэтому усилители класса C обычно не используются в качестве усилителей звука. Они используются в определенных радиочастотных приложениях, где эффективность является ключевым фактором. Его наиболее важные характеристики:

  • Наименее линейный среди усилителей мощности
  • Очень высокий КПД около 80-90%
  • Высокие выходные искажения
  • Два режима работы, настроенный и ненастроенный
  • Низкое рассеивание мощности

Усилитель мощности класса D

Class D Amplifier

И, наконец, у нас есть усилители мощности класса D, которые иногда не входят в число четырех упомянутых выше.Это нелинейный переключающий усилитель, в котором два транзистора работают как переключатели, а не как устройства с линейным усилением. Он преобразует аналоговый сигнал в цифровой с помощью широтно-импульсной модуляции, модуляции плотности импульса или чего-то подобного перед усилением. Конечным результатом является циклический выход с высокой эффективностью и усилением без излишних искажений. Хотя изначально они использовались для управления двигателями, теперь они также используются как усилители мощности звука. Вопреки распространенному мнению, буква «D» в названии не означает «цифровой», потому что преобразованный сигнал является аналоговым с широтно-импульсной модуляцией, а не цифровым с широтно-импульсной модуляцией.Его характеризует:

  • Высокая эффективность, теоретически может быть 100%
  • Низкое рассеивание мощности
  • Низкое энергопотребление
  • Более сложный, чем другие типы усилителей мощности
  • Точный и точный вывод

И все об усилителях! Мы надеемся, что типы усилителей, а также типы усилителей мощности теперь стали более ясными, и если у вас есть какие-либо вопросы по поводу информации, не стесняйтесь комментировать ниже!

Power Amplifiers Summary

Изображения предоставлены: Электронные учебные пособия.ws, Extron

.

Операционные усилители: основы, характеристики, типы и области применения

Что такое операционные усилители?

Операционные усилители являются основными строительными блоками аналоговых электронных схем. Это линейные устройства со всеми свойствами усилителя постоянного тока. Мы можем использовать внешние резисторы или конденсаторы к операционному усилителю множеством разных способов сделать их различными формами усилителей, такими как инвертирующий усилитель, неинвертирующий усилитель, повторитель напряжения, компаратор, дифференциальный усилитель, суммирующий усилитель, интегратор и т. Д.OPAMP могут быть одиночными, двойными, четырехъядерными и т. Д. OPAMP, такие как CA3130, CA3140, TL0 71, LM311 и т. Д., Имеют отличную производительность при очень низком входном токе и напряжении. Идеальный операционный усилитель имеет три важных терминала в дополнение к другим терминалам. Входные клеммы — это инвертирующий вход и неинвертирующий вход. Третий вывод — это выход, который может потреблять и передавать ток и напряжение. Выходной сигнал — это коэффициент усиления усилителя, умноженный на значение входного сигнала.

5 Идеальных символов операционного усилителя:

1.Коэффициент усиления разомкнутого контура

Коэффициент усиления разомкнутого контура — это усиление операционного усилителя без положительной или отрицательной обратной связи. Идеальный операционный усилитель должен иметь бесконечное усиление без обратной связи, но обычно оно находится в диапазоне от 20 000 до 2 00 000.

2. Входное сопротивление

Это отношение входного напряжения к входному току. Он должен быть бесконечным без утечки тока от источника питания на входы. Но в большинстве операционных усилителей будет несколько утечек тока пикоампера.

3.Выходное сопротивление

Идеальный операционный усилитель должен иметь нулевой выходной импеданс без какого-либо внутреннего сопротивления. Чтобы он мог подавать полный ток на нагрузку, подключенную к выходу.

4. Ширина полосы частот

Идеальный операционный усилитель должен иметь бесконечную частотную характеристику, чтобы он мог усиливать любую частоту от сигналов постоянного тока до самых высоких частот переменного тока. Но у большинства операционных усилителей пропускная способность ограничена.

5. Смещение

Выход операционного усилителя должен быть равен нулю, когда разность напряжений между входами равна нулю.Но в большинстве операционных усилителей выходной сигнал не будет нулевым в выключенном состоянии, а будет иметь минутное напряжение.

Конфигурация контактов OPAMP:

OP-AMP-PINS OP-AMP-PINS

В обычном операционном усилителе будет 8 контактов. Это

Pin1 — смещение нуля

Pin2 — инвертирующий вход INV

Pin3 — неинвертирующий вход Non-INV

Pin4 — земля — ​​отрицательное питание

Pin5 — смещение нуля

Pin6 — выход

Pin7 — положительное питание

Pin8 — Строб

4 типа усиления в OPAMP:

Усиление напряжения — Напряжение на входе и выходе

Коэффициент усиления по току — На входе и на выходе

Крутизна — Напряжение на входе и на выходе

Сопротивление трансмиссии — Ток на входе и выходе

Работа операционного усилителя:

Здесь мы использовали операционный усилитель LM358.Обычно неинвертирующий вход должен использоваться для смещения, а инвертирующий вход — это настоящий усилитель; подключил это к обратной связи резистора 60k от выхода к входу. И резистор 10 кОм соединен последовательно с конденсатором, и на схему подается синусоидальная волна 1 В, теперь мы увидим, как усиление будет регулироваться коэффициентом усиления R2 / R1 = 60 кОм / 10 кОм = 6, тогда на выходе будет 6 В. . Если мы изменим коэффициент усиления на 40, то на выходе будет синусоида 4 В.

Видео о работе операционного усилителя

Обычно это усилитель с двумя источниками питания, он легко настраивается на один источник питания с помощью сети резисторов.При этом резисторы R3 и R4 подают напряжение, равное половине напряжения питания, на неинвертирующий вход, что приводит к тому, что выходное напряжение также составляет половину напряжения питания, образуя своего рода резисторы напряжения смещения R3 и R4 могут иметь любое значение от От 1k до 100k, но во всех случаях они должны быть равны. К неинвертирующему входу добавлен дополнительный конденсатор емкостью 1 Ф для уменьшения шума, вызванного конфигурацией. Для этой конфигурации требуется использование разделительных конденсаторов на входе и выходе.

3 приложения OPAMP:

1. Усиление

Усиленный выходной сигнал операционного усилителя представляет собой разницу между двумя входными сигналами.

AMPLIFICATION AMPLIFICATION

На приведенной выше схеме показано простое подключение операционного усилителя. Если на оба входа подается одинаковое напряжение, операционный усилитель примет разницу между двумя напряжениями, и она будет равна 0. Операционный усилитель умножит это значение на свой коэффициент усиления 1 000 000, чтобы выходное напряжение было равно 0. Когда напряжение составляет 2 вольта. подается на один вход и 1 вольт на другой, тогда операционный усилитель принимает свою разницу и умножается на коэффициент усиления.Это 1 вольт x 1000000. Но это усиление очень велико, поэтому для уменьшения усиления обратная связь с выхода на вход обычно осуществляется через резистор.

Инвертирующий усилитель:

INVERTING-AMPLIFIER INVERTING-AMPLIFIER

Схема, показанная выше, представляет собой инвертирующий усилитель с неинвертирующим входом, подключенным к земле. Два резистора R1 и R2 включены в схему таким образом, что R1 подает входной сигнал, а R2 возвращает выходной сигнал на инвертирующий вход. Здесь, когда входной сигнал положительный, выходной будет отрицательным, и наоборот.Изменение напряжения на выходе относительно входа зависит от соотношения резисторов R1 и R2. R1 выбран как 1K, а R2 как 10K. Если на вход поступает 1 вольт, то через R1 будет ток 1 мА, а выход должен стать — 10 вольт, чтобы подавать ток 1 мА через R2 и поддерживать нулевое напряжение на инвертирующем входе. Следовательно, коэффициент усиления по напряжению равен R2 / R1. То есть 10K / 1K = 10

Неинвертирующий усилитель:

NON-INVERTING-AMPLIFIER NON-INVERTING-AMPLIFIER

Схема, показанная выше, представляет собой неинвертирующий усилитель.Здесь неинвертирующий вход получает сигнал, в то время как инвертирующий вход подключен между R2 и R1. Когда входной сигнал движется либо в положительную, либо в отрицательную сторону, выход будет синфазным, и напряжение на инвертирующем входе будет таким же, как и на неинвертирующем входе. Коэффициент усиления по напряжению в этом случае всегда будет больше единицы (1 + R2 / R1).

2. Повторитель напряжения

VOLTAGE-FOLLOWER VOLTAGE-FOLLOWER

Схема выше представляет собой повторитель напряжения. Здесь он обеспечивает высокий входной импеданс и низкий выходной импеданс.При изменении входного напряжения выход и инвертирующий вход изменяются одинаково.

3. Компаратор

Операционный усилитель сравнивает напряжение, приложенное на одном входе, с напряжением, приложенным на другом входе. Любая разница между напряжениями, даже если она небольшая, приводит к насыщению операционного усилителя. Когда напряжения, подаваемые на оба входа, имеют одинаковую величину и одинаковую полярность, тогда на выходе операционного усилителя будет 0 Вольт.

Компаратор вырабатывает ограниченное выходное напряжение, которое может легко взаимодействовать с цифровой логикой, даже если совместимость требует проверки.

Видео об операционном усилителе в качестве компаратора Принципиальная схема

Здесь у нас есть операционный усилитель, используемый в качестве компаратора с инвертирующими и неинвертирующими клеммами, и к ним подключены некоторый делитель напряжения и измеритель, а также вольтметр на выходе и Светодиод на выход. Основная формула для компаратора состоит в том, что когда ‘+’ больше, чем ‘–’, выход высокий (единица), в противном случае выход равен нулю. Когда напряжение на входе является отрицательным ниже опорного напряжения, выход высок, и, когда вход отрицательного поднимается выше напряжения на положительной, то выход переходит в низкий уровень.

3 Требования к OPAMP:

1. Обнуление смещения

Большая часть OPAMP имеет напряжение смещения на выходе, даже если входные напряжения одинаковы. Чтобы установить на выходе нулевое напряжение, используется метод обнуления смещения. В большинстве операционных усилителей есть небольшое смещение из-за присущих им свойств и возникает из-за несоответствия входного смещения. Таким образом, на выходе некоторых операционных усилителей доступно небольшое выходное напряжение, даже если входной сигнал равен нулю.Этот недостаток можно исправить, подав на входы небольшое напряжение смещения. Это известно как входное напряжение смещения. Для удаления или обнуления смещения у большинства операционных усилителей есть два контакта, позволяющих обнулить смещение. Для этого между контактами 1 и 5 должен быть подключен потенциометр или пресет с типичным значением 100 кОм, а его дворник должен быть заземлен. Регулируя предустановку, выход может быть установлен на нулевое напряжение.

OFFSET-NULLING OFFSET-NULLING 2. Стробирование или фазовая компенсация

Операционные усилители могут иногда становиться нестабильными, и чтобы сделать их стабильными для всех диапазонов частот, конденсатор обычно подключается между его выводом 8 строба и выводом 1.Обычно дисковый конденсатор 47 пФ добавляется для фазовой компенсации, чтобы операционный усилитель оставался стабильным. Это наиболее важно, если операционный усилитель используется в качестве чувствительного усилителя.

STROBBING STROBBING 3. Обратная связь

Как вы знаете, операционный усилитель имеет очень высокий уровень усиления, обычно около 1 000 000 раз. Предположим, что операционный усилитель имеет коэффициент усиления 10 000, тогда операционный усилитель будет усиливать разницу напряжений на своем неинвертирующем входе (V +) и инвертирующем входе (V-). Таким образом, выходное напряжение V out равно
10,000 x (V + — V-)

1 1

На схеме сигнал подается на неинвертирующий вход, а при инвертирующем входе подключается к выходу.Итак, V + = V in и V- = Vout. Следовательно, Vout = 10,000 x (Vin — Vout). Следовательно, выходное напряжение почти равно входному.

Теперь давайте посмотрим, как работает обратная связь. Простое добавление резистора между инвертирующим входом и выходом значительно снизит усиление. Подав часть выходного напряжения на инвертирующий вход, можно значительно снизить усиление.

2 2

Согласно предыдущему уравнению, V out = 10,000 x (V + — V-). Но здесь добавлен резистор обратной связи.Итак, здесь V + — это Vin, а V- — это R1.R1 + R2 x V out. Следовательно, V out равен 10 000 x (Vin — R1.R1 + R2xVout). Таким образом, V out = R1 + R2.R1x Vin

Отрицательная обратная связь:

Здесь выход операционного усилителя подключен к его инвертирующему (-) входу, таким образом, выход возвращается на вход, чтобы достичь равновесия. . Таким образом, входной сигнал на неинвертирующем (+) входе будет отражаться на выходе. Операционный усилитель с отрицательной обратной связью будет доводить свой выход до необходимого уровня, и, следовательно, разница напряжений между его инвертирующим и неинвертирующим входами будет почти равна нулю.

Положительная обратная связь:

Здесь выходное напряжение возвращается на неинвертирующий (+) вход. Входной сигнал поступает на инвертирующий вход. В конструкции с положительной обратной связью, если инвертирующий вход подключен к земле, выходное напряжение операционного усилителя будет зависеть от величины и полярности напряжения на неинвертирующем входе. Когда входное напряжение положительное, тогда выход операционного усилителя будет положительным, и это положительное напряжение будет подаваться на неинвертирующий вход, что приведет к полностью положительному выходу.Если входное напряжение отрицательное, условие будет обратным.

Применение операционных усилителей — предусилитель звука

Фильтры и предварительные усилители:

Усилители мощности появятся после предварительных усилителей и перед динамиками. Современные проигрыватели компакт-дисков и DVD не нуждаются в предварительных усилителях. Им нужен регулятор громкости и селектор источников. Используя элементы управления переключением и пассивную громкость, мы можем избежать предварительных усилителей.

Audio pre-amplifier circuit using op-amp Audio pre-amplifier circuit using op-amp

Позвольте нам кратко рассказать об усилителях мощности звука

Усилитель мощности — это компонент, который может управлять громкоговорителями, преобразовывая сигнал низкого уровня в сигнал большой мощности.Работа усилителей мощности заключается в производстве относительно высокого напряжения и большого тока. Обычно диапазон усиления по напряжению находится в пределах от 20 до 30. Усилители мощности имеют очень низкое выходное сопротивление.

Технические характеристики усилителя мощности звука

Выходное напряжение не зависит от нагрузки, как для малых, так и для больших сигналов. Данное напряжение, приложенное к нагрузке, вызывает удвоение тока. Следовательно, будет передано вдвое больше мощности. Номинальная мощность представляет собой непрерывную среднюю мощность синусоидальной волны, так что мощность может быть измерена с помощью синусоидальной волны, среднеквадратичное напряжение которой измеряется на долгосрочной основе.

Частотная характеристика должна расширять весь звуковой диапазон с 20 Гц до 20 кГц. Допуск по частотной характеристике составляет ± 3 дБ. Обычный способ задания полосы пропускания — это уменьшение усилителя на 3 дБ от номинального значения 0 дБ.

Усилители мощности должны производить низкий уровень шума, когда усилители мощности используют высокие частоты. Параметр шума может быть взвешенным или невзвешенным. Невзвешенный шум будет указан для полосы пропускания 20 кГц. Учитываются характеристики взвешенного шума, основанные на чувствительности уха.Измерение взвешенного шума имеет тенденцию ослаблять шум на более высоких частотах, поэтому взвешенное измерение шума намного лучше, чем измерение невзвешенного шума.

Общие гармонические искажения — это общие искажения, обычно указываемые для разных частот. Это будет определено на уровне мощности, который задается импедансом нагрузки усилителя мощности.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *