Тиристоры, Симисторы. Тиристор симистор отличия
54. Тиристоры (динисторы, тринисторы, симисторы) (устройство, параметры, обозначение, конструкции, применения).
Тиристор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.
Тиристор можно рассматривать как электронный выключатель (ключ).
У всех тиристоров на вольтамперной характеристике присутствует участок отрицательного дифференциального сопротивления. Тиристоры в основном производят по технологии диффузии.
Основные параметры тиристоров:
Амплитуда повторяющегося импульсного напряжения, которое прикладывают к закрытому тиристору, B.
Длительность включения, т.е. такой отрезок времени, за который тиристор переходит в открытое состояние под действием импульса тока, протекающего по управляющему электроду, мс.
Критическая скорость нарастания напряжения на закрытом тиристоре, т.е. значение такой максимальной скорости нарастания напряжения, которое не приведёт к отпиранию тиристора, dU / dt.
Напряжение включения, т.е. такое напряжение, приложенное к динистору, при котором он переходит в открытое состояние, В.
Напряжение переключения, т.е. приложенное к тиристору напряжение во время переключения, В.
Неповторяющийся ударный ток тиристора в открытом состоянии, т.е. предельно допустимый ток через открытый тиристор, который не вызовет выход компонента из строя при кратковременном воздействии, по завершении которого сила тока станет много меньше, А.
Постоянный обратный ток, протекающий по выводам анод-катод тиристора в закрытом состоянии, мА.Предельно допустимая амплитуда импульсов тока, протекающего через выводы анод-катод открытого тиристора, А.
Предельно допустимый постоянный ток через выводы анод-катод открытого тиристора, А.
Ток запирания, т.е. такой ток, протекающий по управляющему электроду, который инициирует переход тиристора из открытого состояния в закрытое состояние, А.
Ток удержания, т.е. минимальный ток такой силы, под действием которого тиристор не переходит в закрытое состояние, А.
Динистор
Динистором, или, по-другому, диодным тиристором, называют переключательный компонент с двумя выводами, который переходит в открытое состояние при превышении определённого напряжения, которое прикладывают между его выводами. Динисторы содержат три электронно-дырочных перехода. Схематичное изображение структуры динистора дано на рисунке.
Вывод от внешней зоны n2 называют катодом, а от зоны p1 – анодом. Зоны n1 и p2 носят название баз динистора. Переход между зонами p1, n1 и p2, n2 именуют эмиттерным, а между зонами n1 и p2 – коллекторным переходом.
Динисторы применяют в регуляторах и переключателях, чувствительных к изменениям напряжений.
обозначение на схемах симмитричный динистор
Тринистор
Тринистором, или, иначе, триодным тиристором, называют переключательный компонент с тремя электронно-дырочными переходами, и тремя выводами – анодом, катодом и управляющим электродом. Тринисторы обладают аналогичной динисторам структурой, а отличие состоит в наличии управляющего электрода – дополнительного вывода, подключённого к одной из баз. Если через управляющий электрод тринистора пропустить отпирающий ток, то тринистор перейдёт в открытое состояние. В зависимости от того, к какой именно из баз будет подсоединён управляющий электрод, можно организовать включение тринистора при приложении отпирающего напряжения между управляющим электродом и либо анодом, либо катодом.
Вольтамперная характеристика тринистора похожа на вольтамперную характеристику динистора. Однако отпирание тринистора обычно происходит при существенно более низком прямом напряжении, чем необходимо динистору, и к открыванию тринисторной структуры приводит протекание тока через управляющий электрод. Чем больше ток управляющего электрода, тем при более низком прямом напряжении тринистор перейдёт в открытое состояние, что отражено на вольтамперной характеристике тринистора, изображённой на рисунке.
Катодный управляющий элемент, анодный. Симмитричный тринистор.
Тринисторы широко применяют в регуляторах мощности, контакторах, ключевых преобразователях и инверторах и пр. Некоторое ограничение на внедрение тринисторов накладывает их частичная управляемость.
Симистор
Симисторы, в отличие от обычных тиристоров, проводят ток анод-катод при протекании тока по управляющему электроду, как в прямом направлении, так и в обратном. В результате этого их вольтамперная характеристика симметрична, что отражено на рисунке.
обозначение на схемах
Таким образом, на вольтамперной характеристике каждого симистора присутствуют два участка отрицательного дифференциального сопротивления.
Структура симистора содержит пять слоёв, что отражено на рисунке
Симисторы нашли широкое применение в устройствах регулирования скорости вращения электродвигателей, в системах освещения, в электронагревателях, в преобразовательных установках.
БИЛЕТ 15.
studfiles.net
Симистор — Википедия
Материал из Википедии — свободной энциклопедии
Обозначение на схемах Вольт-амперная характеристика (ВАХ) симистора. Фото современных симисторовСимистор (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тиристора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.
Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзистора). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки в цепи переменного тока происходит вблизи моментов времени, когда ток через основные электроды симистора меняет направление (обычно это совпадает по времени со сменой полярности напряжения в сети).
Структура
Симистор имеет пятислоевую структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.
Видео по теме
Управление
Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).
Ограничения
При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.
Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.
Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.
Устойчивость симистора к разрушению при превышении допустимой скорости нарастания тока (dI/dt) зависит от внутреннего сопротивления и индуктивности источника питания и нагрузки[1]. При работе на емкостную нагрузку необходимо внести в цепь соответствующую индуктивность.
История
К 1963 году уже были известны конструкции симисторов[2]. Мордовский научно-исследовательский электротехнический институт[3] заполнил патент на симметричный тиристор 22 июня 1963 года[4][2], то есть раньше[4], чем патент от американской корпорации «Дженерал электрик»[5][6].
Примечания
Ссылки
Литература
- 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
- 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).
wikipedia.green
Тиристоры, Симисторы » Портал инженера
Введение
Тиристоры и симисторы - это ключевые полупроводниковые элементы, которые могут находиться в одном из двух устойчивых состояний - проводящем (открытом) и непроводящем (закрытом). Перевод из непроводящего в проводящее состояние осуществляется относительно слабым постоянным или импульсным сигналом.
Эти свойства обуславливают основное предназначение тиристоров и симисторов как ключевых элементов для коммутации токов в нагрузке. В отличие от контактных коммутаторов - электромеханических реле, пускателей и контакторов - тиристоры и симисторы осуществляют бесконтактную коммутацию тока в нагрузке со всеми вытекающими из этого положительными последствиями.
Тиристоры в открытом состоянии проводят ток только в одном направлении, симисторы - в двух. Таким образом, один симистор может заменить два встречно-параллельно включенных тиристора. Поэтому решения на симисторах представляются более экономичными.
Контактная и бесконтактная коммутация тока
Прежде чем переходить к рассмотрению принципов работы тиристоров и симисторов и их основных характеристик, сравним контактные (электромеханические реле, пускатели, контакторы) и бесконтактные (тиристоры и симисторы) способы коммутации тока, преимущества и недостатки каждого из них.
Ресурс, количество переключений
Количество переключений полупроводниковых коммутаторов практически неограниченно. Долговечность полупроводников определяется перепадами рабочих температур: количеством циклов и их амплитудой.
Реле, а тем более электромагнитные пускатели, имеют ограниченный ресурс переключений. Различают механический ресурс (механическую износостойкость в отсутствие тока через контакты), который у современных реле составляет 1-2 миллиона переключений, и коммутационную износостойкость при максимальной нагрузке, которая в 10-100 раз ниже. Для оценки укажем, что при непрерывной работе и периоде переключений 10 с, ресурс вырабатывается через 2 недели, при периоде переключений 5 мин - через 1 год. Отсюда сразу следует, что применение контактных коммутаторов оправдано только при редких коммутациях нагрузки (с периодов больше 10 мин).
Частота коммутации
Полупроводниковые коммутаторы допускают коммутацию нагрузки на каждом полупериоде сетевого напряжения.
Примечание: В специальных схемотехнических решениях, в которых применяется принудительное закрытие элементов, частота коммутации может быть еще выше.
У электромеханических устройств, помимо количества циклов переключений, есть и еще одно важное негативное свойство - низкая частота коммутаций цепи нагрузки. Она определяется и механическими свойствами реле и тем, что при возрастании частоты коммутаций реле начинает перегреваться. Выше отмечалось, что при необходимости осуществлять коммутацию электромеханическими устройствами с малыми периодами, срок службы этих устройств будет невелик.
Кроме того, механика - это движущиеся части. А движущиеся части всегда являются источником повышенного риска: истирание осей, увеличение люфта, общее расшатывание механизма вплоть до потери функциональности и т. д.
Искрообразование
Бесконтактные коммутаторы по определению не искрят.
Коммутация при помощи электромеханических устройств неизбежно сопровождается искрообразованием, которое, с одной стороны, приводит к обгоранию контактов и снижению ресурса, а с другой, вызывает сильные высокочастотные электромагнитные помехи, которые могут приводить к сбоям в работе измерительных и микропроцессорных приборов.
Электромагнитные помехи
Для того, чтобы не создавать электромагнитные помехи, возникающие при коммутации сильных токов (проводники с быстро меняющимся током работают как обычные антенны), желательно коммутацию производить в моменты времени, когда эти токи минимальны (в идеале равны нулю). Полупроводниковые коммутаторы, благодаря возможности управления моментом переключения, позволяют применять решения, в которых коммутация производится в моменты нулевого тока в сети.
Контактная коммутация, как правило, осуществляется в произвольные моменты времени, а значит, и в моменты максимальных значений токов. Соответственно, контактная коммутация сопровождается сильными электромагнитными помехами. В результате устойчивость работы контрольно-измерительных систем снижается.
Потери на коммутирующем элементе
Падение напряжения на открытом симисторе составляет 1-2 В и мало зависит от протекающего тока. Как следствие, на открытом симисторе выделяется относительно большая мощность. Например, при токе 40 А на симисторе выделяется 40-80 Вт тепла, которые необходимо отвести. Для этого применяются радиаторы. Это обстоятельство является самым серьёзным недостатком бесконтактных коммутаторов, так как требует дополнительное место для радиатора и удорожает решение.
На контактах реле и пускателей также выделяется определенная мощность, но она меньше, чем у симисторов. Однако, следует иметь в виду, что по мере обгорания контактов выделяемое тепло возрастает. Для борьбы с этим явлением требуется регулярная зачистка контактов или замена всего устройства. Всё это приводит к росту эксплуатационных расходов. Кроме того, необходимо учитывать выделение тепла за счёт прохождения тока через обмотку во включенном состоянии коммутатора.
Экономические соображения
Рассматривая целесообразность применения контактного или бесконтактного способа коммутации, необходимо, помимо сугубо технических преимуществ того или иного способа, учесть следующие экономические соображения.
С одной стороны, контактные коммутаторы, как правило, значительно дешевле бесконтактных устройств, особенно в совокупности с радиаторами.
С другой стороны, ресурс бесконтактных коммутаторов практически неограничен, обслуживание устройств не требуется. Контактные коммутаторы имеют ограниченный ресурс, требуют проведения регламентных работ и регулярной замены в течение срока службы. Как следствие, эксплуатационные расходы растут, а надёжность систем, в которых применяются контактные коммутаторы с малыми периодами переключения, снижается.
Принцип работы
Тиристоры и симисторы относятся к семейству полупроводниковых приборов, свойства которых определяются наличием в полупроводниковой пластине смежных слоёв с разными типами проводимости.
Как отмечалось выше, упрощенно симистор представляет собой два тиристора, подключенных параллельно навстречу друг другу. Поэтому для простоты принцип действия поясним на примере тиристора. Каждый тиристор ? это прибор с четырёхслойной структурой p-n-p-n. Схематически тиристор обозначен на рис. 1.
Рис. 1
Крайняя область p-структуры, к которой подключается положительный полюс источника напряжения, называется анодом (А), крайняя область n-типа, к которой подключается отрицательный полюс источника - катодом (К). Вывод от внутренней области - p-управляющим электродом.
На рис. 2 изображена модель тиристора в виде схемы с двумя транзисторами с различными типами проводимости. База и коллектор транзистора VT1 соединяются соответственно с коллектором и базой транзистора VT2. В результате, база каждого транзистора питается коллекторным током другого транзистора. В схеме образуется цепь положительной обратной связи.
Рис. 2
Если ток Iу через управляющий электрод отсутствует, то оба транзистора закрыты и ток через нагрузку не течёт - тиристор закрыт. Если подать ток Iу больше определенного уровня, то в схеме за счёт положительной обратной связи начинается лавинообразный процесс и оба транзистора открываются - тиристор открывается и остаётся в этом стабильном состоянии, даже если ток Iу больше не подавать.
Таким образом, тиристором можно управлять как постоянным током, так и импульсным. Для того, чтобы тиристор перевести в непроводящее состояние, необходимо снизить ток через него до такого уровня, при котором обратная связь не может больше удерживать схему в стабильном открытом состоянии. Это так называемый ток удержания.
Вольт-амперные характеристики тиристора и симистора
Сначала рассмотрим типовую вольт-амперную характеристику (ВАХ) тиристора, изображенную на рис. 3.
Рис. 3
По горизонтальной оси отложено напряжение между анодом и катодом, а по вертикальной ? протекающий через прибор ток.
Изменяемым параметром семейства характеристик является значение тока Iу в цепи управляющего электрода.
На ВАХ тиристора можно выделить четыре характерных участка, отмеченных на рис. 3 латинскими буквами ABCDE. Дополнительно на рис. 3 показаны нагрузочные прямые I, II, III для различных напряжений сети.
Участок AB соответствует обратной характеристике, когда к аноду тиристора приложено отрицательное напряжение относительно катода. При разомкнутой цепи управления или отсутствии в ней тока (Iу=0) обратная характеристика тиристора аналогична обратной ВАХ полупроводникового диода. В рабочем диапазоне напряжений UЗС от 0 до максимального рабочего, называемого обратным повторяющимся напряжением Uповт, обр max, через прибор протекает очень малый, порядка долей миллиампера, ток (рабочая точка 1).
Прямая ветвь тиристора изображена в первом квадранте системы координат. Она соответствует такой полярности напряжения, когда к аноду приложено положительное относительно катода напряжение.
На отрезке BC вплоть до напряжения переключения Uповт, Пр max тиристор с нулевым управляющим током закрыт и ток через него не превышает 5-15 мА (рабочая точка 2). Переход в открытое состояние (в рабочую точку 3 на участке DE) возможен двумя способами. Первый способ - повышение напряжения на тиристоре, так что рабочая точка доходит до точки С. В этом случае рабочая точка скачкообразно переходит на участок DE. Такой режим включения тиристора применяется редко. Традиционным способом открытия тиристора является подача управляющего тока. В результате кривая BCD на ВАХ спрямляется и рабочая точка также попадает на участок DE, соответствующий открытому состоянию тиристора.
Семейство вольт-амперных характеристик при разных управляющих токах показывает, что при различных напряжениях на тиристоре требуется подача различных токов управления для включения тиристора: малые управляющие токи при больших напряжениях и большие токи при малых напряжениях. При управляющем токе, равном IУЗ, прямая ветвь ВАХ тиристора также совпадает с ВАХ полупроводникового диода.
Отметим, что участок DC характеризует неустойчивое состояние тиристора. Эта область носит название участка с отрицательным электрическим сопротивлением. Из него тиристор всегда переходит в открытое состояние с низким электрическим сопротивлением (на участок DE).
Рабочий участок DE соответствует открытому состоянию симистора и характеризуется малым падением напряжения на приборе Uос при большом токе Ioс.
Эта область характеристики аналогична прямой ветви характеристики полупроводникового диода. Напряжение Uос в зависимости от свойств полупроводниковой структуры равно 1-2 В и слабо зависит от величины протекающего тока Ioс. На переходе тиристора выделяется мощность, которую можно оценить величиной (1...2) Ioс. После падения тока, проходящего через тиристор, ниже значения тока удержания Iуд, тиристор закрывается.
Собственно, в этом и заключается самое полезное свойство тиристора, симистора и других приборов с отрицательным обратным сопротивлением: переключенные в состояние с малым сопротивлением, они остаются в этом состоянии сколь угодно долго, даже после снятия управляющего сигнала, вплоть до падения тока нагрузки ниже тока удержания. Это позволяет управлять симисторами и тиристорами короткими импульсами управляющего напряжения.
Вольт-амперная характеристика симистора очень похожа на ВАХ тиристора, но, поскольку для симистора не существует прямого и обратного направления включения, то кривая симметрична относительно центра координат. Каждая из половин этой кривой напоминает кривую включения тиристора в прямом направлении.
Одним из факторов, делающих симистор более удачным устройством для коммутации переменного тока, чем тиристор, является то, что прибор имеет одинаковые свойства при протекании по нему тока в любом из направлений. Как и тиристор, симистор выключается при токе через него, стремящемся к 0. Это снижает индукционные и другие наведённые токи и помехи в сети, вызываемые отключением питания при высоком напряжении.
Сигналы управления
Несмотря на то, что на тиристорах и симисторах могут присутствовать напряжения различной полярности, для этих полупроводниковых приборов предпочтительным является такая полярность управляющего напряжения, которая совпадает с полярностью напряжения на аноде.
Таким образом, для обеспечения гарантированной работоспособности и наибольшей эффективности, управляющий сигнал должен менять свою полярность на каждой полуволне переменного тока нагрузки. Соответственно, система управления симистором должна "уметь" менять полярность управляющего сигнала в зависимости от направления движения коммутируемого тока.
При формировании сигнала управления надо иметь виду, что он должен иметь некоторую конечную длительность, большую, чем tимп. мин.. Если сигнал управления короче, чем tимп. мин., то симистор может не успеть перейти в стабильное открытое состояние и вернуться в исходное закрытое состояние. Обычно tимп. принимают равным 50 мкс. Этого достаточно для включения большинства симисторов.
Основные параметры симисторов
Сразу заметим, что все характеристики симисторов сильно зависят от рабочей температуры p-n-p-n-структуры. Как правило, указываются два значения - при температуре 25-30 °С и на верхнем пределе рабочего диапазона. Значения параметров в промежуточных точках вычисляют по линейному закону. Для симисторных блоков производства КонтрАвт указываются значения параметров для 30 °С и 50 °С.
Сильное тепловыделение вызвано тем, что на полностью открытом симисторе в рабочем диапазоне всегда сохраняется падение напряжения около 1-2 В, независимо от тока нагрузки. На рис. 3 оно соответствует величине Uос. Таким образом, симистор всегда должен рассеивать мощность в окружающую среду. Как уже отмечалось, при токе нагрузки 40 А симистор должен рассеивать порядка 60-80 Вт, оставаясь при этом в рабочем диапазоне температур. Поэтому симистор, в отличие от реле и других электромеханических коммутационных устройств, немыслим без радиатора, тем большего, чем большую мощность он коммутирует.
Параметры открытого состояния
Тиристоры и симисторы в открытом состоянии характеризуются напряжением Uос, равным 1-2 В и практически независящим от тока открытого состояния.
Максимально допустимый действующий ток Iос, д характеризует коммутационную способность полупроводникового элемента. Максимально допустимый действующий ток Iос, д и ударный ток Iос, уд (короткодействующий импульс большой силы тока, действующий не более 20-50 мс) также зависят от температуры корпуса симистора. Следует отметить, что ударный ток Iос, уд может превышать максимально допустимый действующий ток Iос, д в несколько раз. Это обстоятельство следует учитывать при расчете различных схем защиты полупроводниковых устройств от короткого замыкания.
Еще один важный параметр - ток удержания Iуд - минимальный ток нагрузки, до которого симистор сохраняет своё открытое состояние. После падения тока нагрузки ниже этого значения симистор закроется.
Параметры закрытого состояния
В закрытом состоянии симистор не коммутирует нагрузку, пока напряжение на силовых электродах не превысит Uповт, пр. max (рис. 3). После превышения этого напряжения симистор переключается в открытое состояние. Этот параметр чрезвычайно важен при коммутации цепей с высокими помехами или индуктивными нагрузками. Например, при выключении симистором питания индуктивной нагрузки большой мощности в ней возникает ЭДС самоиндукции с высоким напряжением. Если это напряжение превысит Uповт, пр. max, то возможно неуправляемое открытие симистора. Поэтому такие цепи обычно шунтируют RC-цепочками, фильтрующими соответствующие выбросы.
Также важен параметр UЗС - синусоидальное "безопасное" напряжение, при котором самопроизвольное (Iу=0) включение невозможно.
Существует еще один случай самопроизвольного включения симистора в закрытом состоянии. Это может произойти, когда скорость возрастания коммутационного напряжения превысит некую критическую величину (dU/dt)ком. Этот нежелательный эффект обусловлен емкостным током в центральном переходе p-n-p-n структуры. При высоких скоростях нарастания тока на паразитной ёмкости p-n-перехода управляющего электрода успевает скапливаться заряд, достаточный для включения симистора.
Это явление следует учитывать при каскадном включении нескольких симисторов, используемом для повышения нагрузочной способности схемы. Если основной коммутирующий элемент является очень быстродействующим, то его выключение в цепях с индуктивностью может вызвать настолько быстрые изменения напряжения, которые в свою очередь вызывают ложные срабатывания маломощных управляющих симисторов. В результате схема "не может" выключиться даже при отсутствии сигнала управления.
Параметры управления
Отпирающий постоянный ток управления Iу, отп (на рис. 3 обозначен как I3) характеризует минимальное значение управляющего тока, при котором симистор полностью открывается.
Отпирающее постоянное напряжение управления Uу, от ? напряжение, формирующее Iу, отп, т. е. напряжение управления, при котором симистор гарантированно переходит в открытое состояние.
Неотпирающее постоянное напряжение управления Uу, Нот - напряжение, до которого симистор гарантированно находится в закрытом состоянии. Этот параметр чрезвычайно важен при использовании симистора в цепях с высоким уровнем помех. Если помеха превысит данный параметр, то симистор может открыться. Один из вариантов таких помех обсуждался выше - индуктивность в цепи.
Один из важнейших параметров - время включения (tвкл) - определяет интервал времени, в течение которого симистор переключается из закрытого состояния в полностью открытое при наличии отпирающего импульса управления (≥Uу, отп). Фактически он определяет минимальную длительность сигнала управления, необходимую для гарантированного включения.
(dIос/dt)кр - критическая скорость нарастания тока в момент открытия симистора. Если в цепи скорость нарастания тока превышает максимально допустимую, то происходит эффект разрушения структуры. Он обусловлен тем, что физически управляющий электрод занимает значительно меньшую площадь на кристалле. При включении ток управления распределяется по кристаллу неравномерно и обеспечивает открытие не всей площади p-n-переходов под силовыми электродами. На низких скоростях возрастания тока p-n-переход успевает полностью открыться, а на высоких - сказывается собственное объёмное сопротивление и емкость p-n-переходов.
Тепловые параметры
TП(МАХ) и TП(МIN) - максимальная и минимальная температура перехода особенных пояснений не требуют. У современных приборов температура перехода может достигать 125 °С. Однако при работе на переходе выделяется большое количество тепла, которое необходимо отводить. Способность приборов отводить тепло характеризуется такими параметрами как тепловое сопротивление. Различают тепловое сопротивление контакта переход-корпус и тепловое сопротивление контакта корпус-охладитель.
RТ(П-К) - тепловое сопротивление контакта переход-корпус определяет способность симистора передавать тепло от полупроводника на свой корпус. Параметр RТ(П-К) - тепловое сопротивление контакта корпус-охладитель - определяет размеры и характеристики радиатора, требуемого на отвод тепла, выделяемого при коммутации заданной мощности.
В результате прибор, установленный на радиатор, допускает нормальную эксплуатацию при температурах значительно ниже, чем допустимая температура перехода. В частности, рабочая температура симисторных блоков производства КонтрАвт ограничена 50 °С.
В заключение приведем сравнительную таблицу с указанием основных характеристик, о которых шла речь в данной статье. Данные приведены для трёх широко применяемых симисторов, которые различаются допустимыми токами коммутации. Представленные сведения позволяют получить представления о характерных значениях параметров симисторов.
О схемотехнике и наиболее рапространённых вариантах использования симисторов мы расскажем в следующем номере.
Технические характеристики
Табл. 1.
TC112-10 | TC132-40 | TC152-160 | ||
I ос. д. (действующее значение тока в открытом состоянии, ток синусоидальный, температура корпуса 85 °С), А | 10 | 40 | 160 | |
Uзс (постоянное напряжение в закрытом состоянии, во всём допустимом диапазоне температур, синусоидальное напряжение), В, для классов приборов: | ||||
2 | 200 | 200 | 200 | |
6 | 600 | 600 | 600 | |
12 | 1200 | 1200 | 1200 | |
Iос, уд. (ударный ток в открытом состоянии, ток синусоидальный, одиночный импульс t=20 мс, температура перехода максимально допустимая), А | 70 | 250 | 1200 | |
(dIос/dt)кр (критическая скорость нарастания тока в открытом состоянии, одиночный импульс t=20 мс, температура перехода максимально допустимая), А/мкс | 20 | 63 | 63 | |
Tп(max) (температура перехода максимально допустимая), °С | +110 | +125 | +125 | |
Tп(min) (температура перехода минимально допустимая), °С | -60 | -60 | -40 | |
Uос, и (импульсное напряжение в открытом состоянии, ток синусоидальный, одиночный импульс t=20 мс, температура перехода 25 °С), В, не более | 1,65 | 1,85 | 1,65 | |
Uос, и (пороговое напряжение в открытом состоянии, температура перехода максимальная), В, не более | 1 | 1 | 1 | |
Uу, от (отпирающее постоянное напряжение управления, ток управления постоянный, Uзс=12 В), В, не более: | ||||
Tп=25 °С | 3,5 | 4,0 | 3,0 | |
Tп=Tп(min) | 6,0 | 7,8 | 6,0 | |
Uу, нот (неотпирающее постоянное напряжение управления, ток управления постоянный, Uзс=0,67 Uзс, п), В, не менее | 0,2 | 0,25 | 0,25 | |
Iу, отп (отпирающий постоянный ток управления, Uзс=12 В), мА, не более: | ||||
Tп=25 °С | 75 | 200 | 150 | |
Tп=Tп(min) | 230 | 550 | 400 | |
Iзс, п (повторяющийся импульсный ток в закрытом состоянии, температура перехода максимально допустимая), мА, не более | 1,5 | 5,0 | 15,0 | |
Iуд (ток удержания, цепь управления разомкнута, Tп=25 °С, Uзс=12В), мА, не более | 45 | 60 | 60 | |
tвкл (время включения, Tп=25 °С, Uзс=100 В, Iос=Iос, д , форма импульса управления прямоугольная, длительность импульса 50 мкс), мкс, не более | 9,0 | 12 | 12 | |
tзд (время задержки, условия те же, что и для tвкл), мкс, не более | 3,0 | 4,0 | 4,0 | |
(dUзс/dt)ком (критическая скорость нарастания коммутационного напряжения в закрытом состоянии, ток синусоидальный, t=10 мс, Tп=Tп(max), Uзс=0,67 Uзс, п), В/мкс, для классов: | ||||
2 | 4,0 | 4,0 | 4,0 | |
6 | - | 25,0 | 25,0 | |
8 | - | - | 100 | |
RT(п-к) (тепловое сопротивление переход-корпус), °С/Вт, не более | 1,55 | 0,52 | 0,2 |
Литература.
- Зи С. "Физика полупроводниковых приборов". - М.: Мир, 1984.
- Ю. А. Евсеев, С. С. Крылов. "Симисторы и их применение в бытовой электроаппаратуре", 1990.
- Замятин В. "Тиристоры. В помощь радиолюбителю: сборник." Вып. 110.
- "Компоненты и технологии", 3 2004.
Источник:SciTecLibrary.ru 27 мая 2008
Автор:Алексей Костерин, к.т.н., директор ООО НПФ "КонтрАвт"Алексей Дементьев, начальник сектора рекламы
Контакт с автором: [email protected]
Обсудить на форумеingeneryi.info
Симистор Википедия
Обозначение на схемах Вольт-амперная характеристика (ВАХ) симистора. Фото современных симисторовСимистор (симметричный триодный тиристор) или триак (от англ.
TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тиристора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзистора). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки в цепи переменного тока происходит вблизи моментов времени, когда ток через основные электроды симистора меняет направление (обычно это совпадает по времени со сменой полярности напряжения в сети).
Структура
Симистор имеет пятислоевую структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.
Управление
Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).
Ограничения
При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.
Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.
Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.
Устойчивость симистора к разрушению при превышении допустимой скорости нарастания тока (dI/dt) зависит от внутреннего сопротивления и индуктивности источника питания и нагрузки[1]. При работе на емкостную нагрузку необходимо внести в цепь соответствующую индуктивность.
История
К 1963 году уже были известны конструкции симисторов[2]. Мордовский научно-исследовательский электротехнический институт[3] подал заявку на авторское свидетельство на симметричный тиристор 22 июня 1963 года[4][2], то есть раньше[4], чем подана заявка на патент от американской корпорации «Дженерал электрик»[5][6].
Примечания
Ссылки
Литература
- 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
- 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).
wikiredia.ru
Симистор - это... Что такое Симистор?
Обозначение на схемах Эквивалентная схема симистора Фото современных симисторовСимиcтop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тринистора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.
Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзисторa). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки происходит вблизи моментов времени, когда напряжение на основных электродах симистора меняет полярность (обычно это совпадает по времени со сменой полярности напряжения в сети).
Симистор был изобретен в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. начальником конструкторского бюро Василенко Валентиной Стефановной. Запатентован в СССР с приоритетом от 22 июня 1963 года, на полгода ранее, чем в США[1].
Структура
Симистор имеет пятислойную структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.
Управление
Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.
Ограничения
При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.
Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.
Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.
Примечания
Ссылки
Литература
- 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
- 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).
dik.academic.ru
Симистор Википедия
Обозначение на схемах Вольт-амперная характеристика (ВАХ) симистора. Фото современных симисторовСимистор (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тиристора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.
Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзистора). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки в цепи переменного тока происходит вблизи моментов времени, когда ток через основные электроды симистора меняет направление (обычно это совпадает по времени со сменой полярности напряжения в сети).
Структура
Симистор имеет пятислоевую структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.
Управление
Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).
Ограничения
При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.
Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.
Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.
Устойчивость симистора к разрушению п
ruwikiorg.ru
Симистор — Википедия
Обозначение на схемах Вольт–амперная характеристика (ВАХ) симистора. Фото современных симисторовСимистop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тиристора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.
Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзисторa). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки в цепи переменного тока происходит вблизи моментов времени, когда ток через основные электроды симистора меняет направление (обычно это совпадает по времени со сменой полярности напряжения в сети).
Симистор был изобретен в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. начальником конструкторского бюро Василенко Валентиной Стефановной. Запатентован[прояснить] в СССР с приоритетом от 22 июня 1963 года, на полгода ранее, чем в США[1].
Симистор имеет пятислоевую структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.
Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, т. е. когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).
При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.
Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.
Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.
Устойчивость симистора к разрушению при превышении допустимой скорости нарастания тока (dI/dt) зависит от внутреннего сопротивления и индуктивности источника питания и нагрузки[2]. При работе на емкостную нагрузку необходимо внести в цепь соответствующую индуктивность.
- 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
- 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).
www.wikiznanie.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.