Соединение звездой и треугольником генераторных обмоток. Звезда треугольник трансформатор. Трансформатор треугольник звезда


Схемы соединения обмоток трансформатора Звезда Треугольник Зигзаг. Что это такое.

Соединение обмоток электродвигателя играет важнейшую роль в его правильном функционировании. Подключая **Силовой трансформатор** к системе его запуска, необходимо, в первую очередь, уметь правильно соединить все его обмотки. Дело в следующем: каждый асинхронный двигатель имеет своё индивидуальное номинальное напряжение питания. Исходя из этого выбирается и соответствующая обмотка, которая является индивидуальной к каждому двигателю. 

Основные виды обмоток

Существует довольно большое количество видов обмоток. **Схема соединений распределительного трансформатора** однофазного вида предполагает применение таких видов: 

1) треугольник (Δ-соединение) - три фазные обмотки соединяются последовательно в кольцо или треугольник;

2) звезда (Y-соединение) - это соединение в виде звезды, которая соединяет все три обмотки их концами с одной стороны в одной нейтральной точке, называемой звездой;

3) зигзаг - (Z-соединение) - это соединение зигзагом.

Среди многих других факторов, на выбор соединений влияет мощность, которой обладает **Распределительный трансформатор**. Например, для наиболее высоких напряжений часто выбирается Y-соединение. Он лучше всего защищает прибор от перенапряжения, а также напрямую заземляет его. При соединении треугольником и звездой чаще всего комбинируют оба соединения, каждое из которых присутствует на трансформаторе по его разным сторонам. 

Особенно это актуально в случаях, когда одну сторону планируют для зарядки. Обычно эту сторону и обматывают звездой. А треугольник в таких случаях даёт баланс между ампером и витком для оптимального уровня полного сопротивления нулевой последовательности. Обмотка треугольником не пропускает ток в сердечник.

Выбор обмоток с учётом напряжения оборудования

Все асинхронные электродвигатели обладают своим номинальным напряжением питания. Поэтому соединения **Звезда**, **Треугольник**, или же их комбинации **Звезда - Звезда**, **Звезда - Треугольник** - выполняют не только соединительную функцию, но определяют напряжение питания. 

Известно, что напряжение обмоток, которые соединяются в звезду, в три раза больше, чем напряжение обмоток, которые соединяют в треугольник. Следовательно, применять каждый вид нужно только там, где это оптимально. Тогда правильные соединения обмоток смогут гарантировать правильную работу двигателя в течение многих лет, препятствовать его перегреву, изнашиванию.

Например, если электродвигатель нужно подключить в сеть с напряжением 380 В, с его номиналомUном = 220/380 В все обмотки соединяются в звезду. Если номинал двигателя Uном равняется 380/660 В, то обмотки заключаются в треугольник.

Выведение обмоток и их маркировка

Надо отметить, что **Группа соединений силового трансформатора** типов Δ и Y - это важнейшая составляющая не только работы всего двигателя. Важнейшую роль здесь играет и обеспечение оптимального взаимодействия трансформатора с другим оборудованием. Правильное выведение свободных обмоток - залог такого успешного "сотрудничества". Выводы обмоток выводятся на клеммник в таком виде, чтобы соединение схемы было предельно простым. Соединение концов в звезду, предполагает, что при этом перемычки устанавливаются по горизонтали в один ряд, их соединяют три клеммы. Соединяя обмотки в треугольник, следует перемычки устанавливать вертикально, соединяя три пары контактов.

Неопытные мастера могут столкнуться с проблемой маркировки обмоток. Она обязательна, так как при выводе концы могут перепутаться. Особенно это актуально при схемах **Звезда** и **Треугольник**. Например, при обмотке стартора делается 3 обмотки, каждая имеет 2 вывода, всего 6.

Сначала нужно определить при помощи омметра выводы для каждой катушки. Ставим обозначения: для первой катушки это С1-С4, для второй С2-С5, для третьей С3-С6. Так, С1, С2, С3 - это начала катушек, всё остальное - концы. Далее соединяем концы второй и третьей катушек с их началами, подводим переменный ток 220 В. 

Измеряем наличие напряжения в 3-й катушке. Если его нет, катушки соединены встречно, а значит, С1-С4, С2-С5 подписаны верно. Если напряжение обнаружено, меняем маркировку 1-й или 2-й катушки. Проверяем, если третья обмотка обесточена, 1 и 2 являются правильными. Маркировка 3 катушки определяется так: конец С6 соединяем с любым другим - С4, С5. Если на не подключенной обмотке есть напряжение, меняем надпись на 3-й обмотке. Если напряжения нет, то всё правильно.

Для того, чтобы правильно сделать соединение обмоток, необходимо как можно тщательнее изучить все нюансы по данной тематике. На самом деле, в этом нет ничего сложного. Если же вы испытываете трудности в том, чтобы со всем этим самостоятельно разобраться, лучше доверить такую работу опытным специалистам, ведь с электричеством не шутят.

www.forwardenergo.ru

В каких трансформаторах применяется соединение обмоток зигзаг. Какие бывают схемы соединения обмоток трансформатора

Содержание:

Электрическая энергия в промышленных масштабах не может передаваться в виде однофазного переменного тока. С этой целью успешно применяется , а для его передачи используются трехфазные трансформаторы. Одним из способов трансформации трехфазного тока служит применение трех однофазных трансформаторов.

Соединение первичных и вторичных обмоток в этих устройствах осуществляется в одну из трехфазных систем - звезду или треугольник. Именно по этому принципу происходит работа мощных однофазных трансформаторов, которыми оборудуются крупные электростанции. Их первичные обмотки соединяются с соответствующими фазами генераторов, а вторичные обмотки, соединенные звездой, подключаются к соответствующим фазам линий электропередачи.

Принцип действия трехфазного трансформатора

Как видно из приведенной схемы, вместо трех однофазных устройств может быть использован один трехфазный трансформатор. В состав его магнитопровода входят три стержня, которые замыкаются ярмами сверху и снизу. На каждый стержень наматывается первичная и вторичная обмотка, соединяемые затем звездой или треугольником. Каждый стержень с обмотками по своей сути является однофазным трансформатором. Одновременно, он выполняет функцию отдельной фазы трехфазного трансформатора.

Под действием тока первичной обмотки во всех стержнях происходит появление магнитного потока. Следует учитывать принадлежность каждой такой обмотки к одной из фаз, входящих в . Поэтому токи, протекающие по этим обмоткам, а также приложенные напряжения, относятся к трехфазным. Поэтому сформированные магнитные потоки тоже являются трехфазными.

Ранее считалось, что движение магнитного потока осуществляется по замкнутой траектории, то есть, проходя по стержню, он возвращается к его началу. В трехфазных трансформаторах такой обратный путь отсутствует, в нем просто нет необходимости, при условии одинаковой нагрузки фаз. Кроме того, отсутствует и необходимость нейтрального соединения в звезду.

Циркуляция каждого потока происходит лишь по собственному стержню. В конечном итоге все потоки сходятся в центральных частях верхнего и нижнего ярма. В этих точках получается геометрическое сложение этих потоков, сдвинутых между собой на величину угла 120 градусов. В результате, геометрическая сумма сложенных величин, окажется равной нулю. Следовательно, каждый магнитный поток проходит лишь по собственному стержню, обратного пути не имеет, а все три потока в сумме дают нулевое значение.

Движение потоков крайних фаз происходит не только по стержню. Оно захватывает половину каждого ярма. Поток в средней фазе будет проходить только по своему стержню. Поэтому значение токов холостого хода в фазах, расположенных по краям, всегда превышает аналогичное значение в средней фазе.

Как передается трехфазный ток

Первичным источником питания в большинстве случаев является электрическая сеть. Ее напряжение представлено в виде синусоиды с частотой 50 Гц. Однако в тех случаях, когда линии электропередачи обладают большой протяженностью, происходит излучение передаваемой энергии в окружающее пространство, что приводит к дополнительным . Поэтому в цепях электропитания высокой мощности применяется трехфазное напряжение.

Для того чтобы уменьшить излучение, сумма напряжений на всех трех фазах в любое время должна быть равна нулю. С этой целью производится сдвиг синусоидального напряжения по фазе в каждом проводе относительно друг друга на 120 градусов. В таком состоянии передача электроэнергии может осуществляться в двух вариантах: с помощью четырех или трех проводов линии передачи. Условные схемы каждого варианта отображены на рисунке.

Четырехпроводная линия позволяет выдавать потребителю два вида напряжения: фазное (220 В) и линейное (380 В). Трехпроводная схема позволяет выдавать лишь линейные напряжения. Формирование линейного напряжения описывается с помощью векторной диаграммы напряжений фаз. При положительном чередовании фаз, они условно увеличиваются по часовой стрелке. Для соединения обмоток трехфазных трансформаторов используются два основных способа - звезда и треугольник.

Соединение звездой

На рисунке обозначение фазных напряжений, вырабатываемых вторичными обмотками трансформатора, выполнено символами U A , U B , и U C . От фазных обмоток до нагрузки идут проводники, выполняющие функцию линейных проводов. Следует учитывать наличие напряжения не только между нулевым и линейным проводами, но и между двумя линейными проводниками. Такое напряжение называется линейным и обозначается U AC или U CA .

Значение линейного напряжения всегда превышает фазное. Разница между ними составляет √3 раза, поскольку представляет собой векторную разность фазных напряжений. Таким образом, трехфазная линия электропередачи позволяет п

levevg.ru

Схемы трехфазных трансформаторов | e-help.com.ua

Схемы трехфазных трансформаторов. По своей сути трехфазный трансформатор – это собранные на общем сердечнике три однофазных трансформатора.

Трансформатор — «трехфазник» имеет три обмотки низкого и три обмотки высокого напряжения; итого – шесть независимых фазных обмоток. Двенадцать соответствующих выводов маркируются следующим образом: начала фазных обмоток высокого напряжения обозначаются заглавными буквами A, B, C; концы этих обмоток – X, Y, Z. Аналогичные выводы низковольтных обмоток маркируются строчными буквами – a, b, c и x, y, z.

Схемы трехфазных трансформаторов:

Способы соединения обмоток трехфазных трансформаторов приведены на рис. 1. Их два – звездой (обозначается Y) и треугольником (∆).

Рис. 1

Подходящая схема соединения определяется условиями работы трансформатора. К примеру, при использовании в сетях с величиной напряжения более 35 кВ оптимальным является соединение обмоток «звездой» и заземление нулевой точки. При этом величина напряжения в линии электропередачи будет иметь величину, в √3 раз меньшую величины линейного напряжения, что позволяет снизить стоимость изоляции.

На высокое напряжение удобно строить осветительные сети. Но рассчитанные на большое напряжение лампы накаливания обладают пониженной световой отдачей, и приходится использовать пониженное напряжение. И в этом случае также оптимальным является соединение обмоток «звездой» и подключение ламп к фазному напряжению.

Однако для работы самого трехфазного трансформатора целесообразнее все же включать обмотки «треугольником».

Одними из основных характеристик трехфазного трансформатора являются фазный и линейный коэффициенты трансформации. Первый из них, фазный, равен отношению высокого и низкого напряжений холостого хода:

nф = Uфвнх / Uфннх,

а второй, линейный, зависит от фазного коэффициента и способа соединения «высокой» и «низкой» обмоток трансфороматора:

nл = Uлвнх / Uлннх.

При соединении фазных обмоток однотипными способами, — ∆/∆ (треугольник-треугольник) или Y/Y (звезда-звезда) — оба коэффициента равны. Если же обмотки соединены по разным схемам (∆/Y или Y/∆),

nл = nф /√3.

 

 

Группы соединений обмоток трансформатора

Группа соединений трансформаторных обмоток определяет взаимное ориентирование напряжений высоко- и низковольтных обмоток. Смена взаимной ориентации напряжений достигается соответствующей перекоммутацией концов и начал обмоток.

Рассмотрим на примере однофазного трансформатора, как влияет маркировка на фазу вторичного напряжения относительно первичного (рис. 2а).

Рис. 2

Обе обмотки, намотанные в одном направлении, располагаются на одном стержне-сердечнике. Допустим, что начала обмоток на верхних клеммах, а концы – на нижних. В этом случае совпадут по фазе ЭДС E1 и E2; следовательно, совпадут и фазы напряжений сети U1 и нагрузки U2 (рис. 2б). если же изменить подключение вторичной обмотки на обратное, ЭДС нагрузки E2 изменит свою фазу на 180о. Соответственно, на 180о изменится и фаза напряжения U2.

Иными словами, в однофазном трансформаторе возможны соответствующие углам сдвига 0о и 180о группы соединений.

Для удобства группы обозначают, используя изображение циферблата часов. Постоянно установленная на двенадцати часах минутная стрелка символизирует напряжение на первичной обмотке; часовая стрелка может занимать различные, зависящие от угла сдвига фаз между первичным  и вторичным напряжениями, положения. Сдвиг в 0о соответствует «двенадцати», сдвиг в 180о – «шести» (рис. 3).

Рис. 3

Несложно подсчитать, что шесть обмоток трехфазного трансформатора позволяют получить двенадцать групп соединений. Проиллюстрируем это некоторыми примерами. Пусть, например, трансформаторные обмотки, располагающиеся на одном стержне одна под другой, соединяются по схеме Y/Y, как на рис. 4.

 

Рис. 4

Чтобы совместить потенциальные диаграммы, соединим контакты A и a. Треугольником ABC задается положение векторов напряжений первичной трансформаторной обмотки. Направление векторов, соответствующих напряжениям вторичной обмотки, будет зависеть от подключения зажимов. Для приведенной на рис. 4а маркировки фазность ЭДС первичной и вторичной трансформаторных обмоток совпадают. Соответственно, совпадут фазные и линейные напряжения на первичной и вторичной обмотках (рис. 4б). Такая схема имеет группу подключения Y/Y-0.

Если теперь изменить подключение вторичной обмотки на противоположное (рис. 5а), ЭДС изменится на 180о. Номер группы при этом станет 6, а схема называется Y/Y-6.

Рис. 5

Если сделать круговую, по сравнению с рис. 4, перемаркировку зажимов (а→b , b→c, с→a), то фазы ЭДС вторичных обмоток сдвинутся на 120о, и номер группы станет 4.

Рис. 6                                                                                                                       рис. 7

При соединении обмоток по схеме «звезда-звезда» получаются четные номера групп, если обмотки соединяются по схеме «звезда-треугольник» — нечетные. Иллюстрирует это схема на рис. 7. На ней фазная ЭДС вторичной обмотки совпадает с линейной ЭДС, и треугольник abc повернут на 30о относительно треугольника ABC. Данная группа имеет номер 11.

Групп соединений обмоток может быть двенадцать. Но на практике наиболее часто применяются всего две из них – Y/∆-11 и Y/Y-0.

www.e-help.com.ua

Соединение звездой и треугольником генераторных обмоток. Звезда треугольник трансформатор

Соединение обмоток трансформатора в треугольник, звезду и зигзаг

Перед рассмотрением вопросов о группах соединений трансформаторов рассмотрим основные виды соединения обмоток силовых трансформаторов.

Соединение обмоток трансформатора в звезду

При соединении в звезду действуют следующие соотношения –

  • линейные токи равны фазным,
  • линейные напряжения больше фазных в √3 раз

Возможно множество вариантов соединения обмоток трансформатора в звезду, некоторые из них приведены на рисунке ниже. И, как говорится, не все из них одинаково полезны, а точнее, для разных случаев необходима разная схема соединений.

Следует отметить, что в звезду можно соединить как один трехфазный трансформатор, так и три однофазных. На рисунке обозначаются:

  • А, В, С – начала обмоток высшего напряжения
  • Х, Y, Z – окончания обмоток высшего напряжения
  • a, b, c – начала обмоток низкого напряжения
  • x, y, z – окончания обмоток низкого напряжения

Соединение обмоток трансформатора в треугольник

Соединение в треугольник так называется из-за внешнего сходства с треугольником (видно на рисунке).

При соединении в треугольник действуют следующие соотношения –

  • линейные токи больше фазных в √3 раз
  • линейные напряжения равны фазным

Три вторичные обмотки, при соединении в треугольник соединены последовательно, образуя тем самым замкнутую цепь. В этой цепи отсутствует ток, так-как ЭДС фаз сдвинуты на 120 градусов и их сумма в каждый момент времени равна нулю. Так же ток равен нулю при соблюдении тотчасно следующих условий – ЭДС имеют синусоидальную форму, обмотки имеют одинаковые числа витков.

Звезда и треугольник в вопросе о третьих гармониках трансформаторов

В трансформаторах схему треугольник используют кроме прочего для получения токов третьих гармоник, которые необходимы для создания синусоидальной ЭДС вторичных обмоток. Другими словами, для исключения третьей гармонической составляющей в магнитном потоке.

Чтобы ввести третьи гармоники при соединении в звезду - соединяют нейтраль звезды с нейтралью генератора, по этому пути и начинают пробегать третьи гармоники.

Соединение обмоток трансформатора в зигзаг

Соединение в зигзаг используется в случае, если на вторичных нагрузках неравномерная нагрузка. После соединения в зигзаг нагрузка распределяется более равномерно по фазам и магнитный поток трансформатора сохраняет равновесие, несмотря на неравномерную нагрузку.

Рассмотрим соединение в зигзаг-звезду трехфазного силового трансформатора. Схематично изображение приведено на рисунке.

Первичные обмотки соединяются в звезду. Далее разделяем каждую вторичную обмотку напополам. И далее соединяем, как показано на рисунке.

При соединении в зигзаг-звезду потребуется большее число витков, чем при простой звезде. Также при таком соединении возможно получение трех классов напряжения, например 380-220-127В.

pomegerim.ru

Звезда и треугольник принцип подключения. Особенности и работа

Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей.

Схемы

Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току.  Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах.

Схема звезды

Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.

Схема треугольника

При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.

В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.

Фазные и линейные величины

В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.

При применении схемы звезды фазными напряжениями являются Ua, Ub, Uc, а фазными токами являются I a, I b, I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — Uaв, Ubс, Ucа, фазные токи – I ac, I bс, I cа.

Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.

В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab, Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a, I b, I c.

Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.

Особенности схем

Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.

Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.

Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.

Для этого можно применить некоторые методы:
  • Подключить на запуск электродвигателя реостат, дрос

szemp.ru

Чем отличается звезда от треугольника. Трансформатор звезда треугольник

Соединение звездой и треугольником - схема и разница трехфазного соеднинения

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения «треугольника» и метод «звезды». При соединении концов применяют специально предназначенные для этого перемычки.

Различия между «звездой» и «треугольником»

Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.

Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.

Соединение «звездой» и его преимущества

Реверсивная схема двигателя 380 на 220 Вольт

Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.

При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.

Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.

Основные преимущества применения схемы «звезда»:

  • Устойчивый и длительный режим безостановочной работы двигателя;
  • Повышенная надежность и долговечность, за счет снижения мощности оборудования;
  • Максимальная плавность пуска электрического привода;
  • Возможность воздействия кратковременной перегрузки;
  • В процессе эксплуатации корпус оборудования не перегревается.

Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Соединение «треугольником» и его преимущества

Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии — конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.

При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.

Основные преимущества применения схемы «треугольник»:

  • Увеличение до максимального значения мощности электрооборудования;
  • Использование пускового реостата;
  • Повышенный вращающийся момент;
  • Большие тяговые усилия.

Недостатки:

  • Повышенный ток пуска;
  • При длительной работе двигатель сильно греется.

Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.

Подключение трехфазного двигателя к однофазной сети по схеме треугольник

Тип соединения «звезда-треугольник»

В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.

Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».

Схемы подключения звездой и треугольником

В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».

В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.

Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.

Основные преимущества комбинации:

  • Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
  • Возможность создания двух уровней мощности.

Блиц-советы

  1. В момент пуска электродвигателя, его ток пуска в 7 раз больше рабочего тока.
  2. Мощность в 1,5 раза больше при соединении обмоток методом «треугольника».
  3. Для создания плавного пуска и защиты от перегрузок двигателя, часто используются частотные провода.
  4. При использовании метода соединения

szemp.ru

Разомкнутый треугольник. Открытый треугольник

Следует отличать соединение в разомкнутый треугольник (рисунок 1, а) от соединения в открытый треугольник (рисунок 1, б), называемого иногда V-образным. Рассмотрим на нескольких типичных примерах области их применения.

Рисунок 1. Различие между соединениями в разомкнутый (а) и открытый (б) треугольники. Примеры применения соединений в разомкнутый треугольник: утроитель частоты (в) и фильтр напряжения нулевой последовательности (г).

Разомкнутый треугольник

Разомкнутый треугольник используется, например, в выпрямительных установках для получения тока тройной частоты, подмагничивающего уравнительный реактор (смотрите статью "Шестифазная звезда и двойной зигзаг", рисунок 3, а) С этой целью применяют утроитель частоты, который состоит из трех однофазных трансформаторов с сильно насыщенными магнитопроводами. Первичные обмотки утроителя частоты соединены в звезду с изолированной нейтралью, вторичные – в разомкнутый треугольник (рисунок 1, в). Сильное насыщение магнитопроводов, их малое магнитное сопротивление, непроходимость нейтрали первичной обмотки для токов третьей гармоники – все это обеспечивает возникновение во вторичных обмотках электродвижущей силы (э. д. с.) тройной частоты, совпадающих во времени у всех фаз (смотрите статью "Понятие о магнитном равновесии трансформатора"). Поэтому через УР, замыкающий контур вторичных обмоток утроителя частоты, проходит ток тройной частоты, что и требуется в данном случае (смотрите статью "Шестифазная звезда и двойной зигзаг").

Следующий пример дан из другой области. На рисунке 1, г показан фильтр напряжения нулевой последовательности 1, который служит для обнаружения замыканий на землю в сети с изолированной нейтралью. Первичные обмотки соединены в звезду, ее нейтраль обязательно заземлена, благодаря чему первичная обмотка каждой фазы включена на ее напряжение относительно земли. Вторичные обмотки, соединенные в разомкнутый треугольник, питают реле Р.

В нормальных условиях, а также при коротких замыканиях, но без заземления геометрическая сумма фазных напряжений равна нулю. Следовательно, напряжение на обмотке реле равно нулю и оно не срабатывает. Однако при замыкании на землю в напряжениях появляется составляющая нулевой последовательности U0. Реле срабатывает и производит заданные действия (включает сигнал, отключает заземленный участок, включает резерв и тому подобное).

Обращается внимание на следующее. Заземление нейтрали первичной обмотки (рисунок 1, г) – необходимое условие для действия схемы. Заземление вторичной обмотки – средство обеспечения безопасности (смотрите статью "Схема соединения "Звезда"). Токи третьих гармоник в контуре вторичных обмоток не возникают, так как трансформаторы напряжения работают при малых индукциях, благодаря чему их магнитопроводы далеки от насыщения.

Открытый треугольник

Открытый треугольник в силовых электроустановках редко используется, но в цепях измерения, учета и сложных релейных защит находит самое широкое применение.

На рисунке 2, а в открытый треугольник соединены два однофазных силовых трансформатора. Это равносильно тому, что из трехфазной группы один трансформатор попросту отсоединен, но все внешние выводы как с первичной, так и со вторичной стороны оставлены. Особенности такого соединения состоят в следующем:1. В фазах ab и ac проходят линейные токи, сдвинутые по фазе при активной нагрузке относительно соответствующих фазных напряжений на 30°. Значит, каждый трансформатор при активной нагрузке работает с cos φ = 0,866 (а не cos φ = 1). Поэтому отдаваемая мощность двух трансформаторов, соединенных в открытый треугольник, составляет не 2/3, а только 58% (2/3 от 86,6%) мощности, которая была бы при закрытом треугольнике.

Рисунок 2. Примеры соединений в открытый треугольник.

2. Различные сопротивления для линейных токов нарушают симметрию под нагрузкой.

Другой пример, (рисунок 2, б) показывает соединение в открытый треугольник обмоток напряжения 2 трехфазного счетчика для трехпроводных сетей трехфазного тока (схема Арона). Токовые обмотки 1 включены в фазы a и c. К обмоткам напряжения подведены напряжения между фазами ab и bc. Буквы Г и Н соответственно обозначают "генератор" и "нагрузка". Звездочками отмечены начала обмоток (смотрите статью "Примеры соединений измерительных трансформаторов").

Третий пример (рисунок 2, в) показывает соединение в открытый треугольник двух однофазных трансформаторов напряжения. Такое включение применяется в электроустановках высокого напряжения, если достаточно контролировать линейные напряжения UAB, UBC, UCA2. Вторичные обмотки трансформаторов напряжения заземлены для обеспечения безопасности.

1 Прямая, обратная и нулевая последовательности – термины метода симметричных составляющих, с помощью которого рассчитываются схемы с несимметричной нагрузкой.2UAB = k × Uab, UBC = k × Ubc, UCA = k × Uca, где k – коэффициент трансформации трансформатора напряжения, в нашем примере 10000 : 100 = 100. Вольтметры градуируют в киловольтах.

Источник: Каминский Е. А., "Звезда, треугольник, зигзаг" – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

www.electromechanics.ru

Схема соединения обмоток трансформатора: основные виды

На сегодняшний день самыми распространенными и хорошими принято считать трехфазные трансформаторы. Каждая из трех сторон должна иметь соответствующую обмотку. Каждая выбранная обмотка обязательно должна быть соединена по определенной схеме, которая оптимально подходит.

Схема трансформатора с двумя обмотками.

Есть много типов соединения всех обмоток для трансформаторов. Три простейшие схемы должны использоваться комплексно, чтобы обеспечить нормальную работу установки. Но для определения конкретного вида нужно принять во внимание и некоторые советы и параметры.

Параметры, которые важно учитывать при выборе схемы

Как правило, очень сложно самостоятельно определиться с тем, какую именно схему обмотки для трансформаторной установки выбрать. И даже если вы будете привлекать для такого дела специалистов, важно знать основные параметры, которые необходимо учитывать во время выбора. К ним относятся:

Таблица значений трехфазных трансформаторов.

  1. Мощность трансформатора. Важно учесть не только общую мощность, но и ее меняющиеся значения на отдельных участках. Ведь современные трансформаторные установки отличаются своими значениями по мощности в разных фазах.
  2. Схема питания. Прибор может питаться как от сети, так и от преобразователя. При этом даже сетевое питание может быть от трех или четырех проводов.
  3. Учет экономии. Как правило, во время выбора схем именно экономичность использования материалов для обмоток играет одну из важнейших ролей. Чем меньше материалов нужно для схемы, тем выгоднее будет обмотка.
  4. Уровень напряжения аналогично мощности принимается во внимание как в общем виде, так и по показателям на отдельных участках.
  5. Симметрия или асимметрия нагрузки. Она полностью зависит от симметричной или асимметричной схемы напряжения. Соответственно, достигается определенное значение по симметрии.

Итак, указанные параметры принято считать главными при выборе схемы соединения обмотки для трансформатора. Только после подсчетов необходимо приниматься за более детальный подбор схемы, который очень важен для эффективной работы установок.

Вернуться к оглавлению

Простейшие виды обмоток

Схема броневого типа трехфазного трансформатора.

Есть три основных варианта обмоток для трансформатора. Это соединение звездой, зигзагом и треугольником. Каждая характеризуется определенными параметрами, которые выполняют свои функции. Поэтому чрезвычайно важно подобрать тип соединения правильно. Чтобы понимать, о чем идет речь, рассмотрим все три варианта более подробно.

Соединение обмоток треугольником (D, d) делается в виде кольца, где все три фазы соединены последовательно. Оно является самым распространенным и востребованным на сегодняшний день. Соединение дает возможность циркулировать свободно току внутри кольца. Это так называемая третья гармоника. Если хотя бы на одной части трансформатора не будет обеспечен такой треугольник (или кольцо), то ток внутри свободно перемещаться не сможет, что очень сильно исказит напряжение.

Соединение обмоток звездой (Y, y) представляет собой наличие в единственной нейтральной точке всех концов обмотки. В итоге получается фигура, похожая на звезду, в середине которой всегда будет сохраняться нейтралитет. Оно позволяет максимально защитить прибор от перенапряжения. Также можно будет всегда создать необходимое по параметрам заземление.

Соединение обмоток трансформатора зигзагом (Z, z) в обязательном порядке должно иметь два отвода, в которых будут циркулировать токи нулевой последовательности.

Рисунок 1. Схема соединения обмоток для трансформаторных установок вида Yd.

Так будет происходить хорошая балансировка токов и напряжений в трансформаторе. При этом сопротивление будет полностью зависеть от магнитного рассеивания между отводами зигзагом.

Итак, можно сделать вывод, что для стандартного трехфазного трансформатора могут быть комплексно использованы все три схемы. При этом для стороны с наибольшим напряжением предпочтительно выбрать соединение звездой, а остальные стороны сделать зигзагообразной и треугольной обмотками.

Вернуться к оглавлению

Основные 5 схем обмоток для трехфазного трансформатора

Но ни один трансформатор не может содержать исключительно определенный вид обмотки. Поэтому для трехфазных типов трансформаторов применяются конкретные групповые схемы. Есть всего 5 самых распространенных схем. Они идентифицируются латинскими буквами, которые обозначают вид обмотки (описаны выше), и цифрами, обозначающими сдвиги по фазе. Дополнительно могут вводиться латинские буквы N и n, которые обозначают вывод нейтрального зажима для первичной и вторичной обмоток соответственно на клеммные части.

Соединение обмоток для трансформаторных установок вида Yd, например, как на рис. 1, используется для повышающих трехфазных установок. Если первичная и вторичная обмотки будут соединены посредством треугольника, то гармоника всех токов будет течь по замкнутой цепочке, а магнитный поток будет почти полностью отсутствующим, что очень выгодно. Можно сделать первичную обмотку методом звезды. Но ее нейтральная часть обязательно должна быть надежно заземлена дросселем. Это тоже считается очень удобным.

Рисунок 2. Схема соединения обмоток типа Dy.

Схема типа Dy применяется в основном для понижающих типов трансформаторов, имеющих большую мощность. Пример такой схемы показан на фото (рис. 2). Это очень хорошо, особенно в условиях асимметричных нагрузок, так как нейтральная часть будет позволять использование одновременно и фазного, и линейного типов напряжения за счет хорошего своего заземления. Оптимально использовать эту схему обмотки для трансформаторов, которые работают от сети с низким напряжением.

Соединение обмоток силовых трансформаторов по типу Dz и Yz применяется для понижающих типов установок, основная мощность которых совсем низкая. Здесь обычно в качестве основного используется соединение посредством зигзага, а его нейтральная точка выводится на клеммную колодку для использования напряжений через фазы. Но часто вместо зигзага используют форму звезды. Это делается только по той причине, что звезда подразумевает меньшее количество используемой меди для обмотки, что дает возможность экономить.

Эти два вида хорошо использовать, когда в одной части трансформатора необходимо распределить напряжения симметрично. Во всех остальных случаях их использовать не рекомендуется, так как может просто снизиться уровень работы прибора.

Еще одной самой распространенной схемой для трехфазного трансформатора принято считать схему по типу Yy. Ее пример показан на рис. 3. Она подразумевает использование исключительно обмотки по типу звезды. Она не самая удобная, однако успешно используется для трансформаторов, имеющих не очень большую номинальную мощность. Приходится сталкиваться с необходимостью компенсировать влияние высших гармоник тока.

Для нейтрализации целесообразно дополнительно вводить компенсационную обмотку по типу треугольника. Это особенно важно, если в трансформаторе кроме треугольника применяется еще звезда, дающая нейтральную точку.

Вернуться к оглавлению

Полезные советы для групповых схем

Но есть много модифицированных трансформаторов. Поэтому имеет смысл рассмотреть некоторые полезные советы по соединению обмоток в отдельных случаях. Очень важно учитывать здесь параметры сердечника трансформатора и количество стержней в сердечнике.

Рисунок 3. Схема соединения обмоток типа Yy.

  1. Если сердечник содержит в себе 5 стержней, то крайне важно правильно осуществить обмотку в виде треугольника. В этом случае именно треугольник будет провоцировать затухание гармонических потоков, что обеспечит их выравнивание по синусоиде. Так, напряжение практически невозможно будет исказить. В сердечнике с пятью стержнями необходимо треугольную обмотку делать именно там, где измерения показывают ярко выраженный недостаток токов по синусоиде и неравномерные скачки напряжения.
  2. Если на трансформаторе нейтраль нужно использовать для зарядки, то лучше всего сделать ее обмотку в виде звезды, а близлежащую сторону — треугольником. Это даст хороший уровень для основного сопротивления последовательности по нулю и обеспечит баланс для токов. Другая сторона трансформаторной установки может быть выполнена как треугольником, так и зигзагом. Такая групповая схема подходит в данном случае как для сердечника с пятью, так и с тремя стержнями.
  3. Для некоторых типов трансформаторных установок целесообразно применять компенсационные обмотки. По смыслу это те же соединения треугольником, только они уже будут третичными. Для вторичного напряжения будет использоваться вид зигзага, а для первичного можно сделать соединение треугольником. Такая схема соединения обмоток трансформатора предусматривает хорошее понижение полного сопротивления нулевой последовательности и максимальное выравнивание напряжений.

Схемы обмоток являются своеобразными регуляторами напряжения. Они способны не только его выравнивать, но и менять значение, что является очень важным в некоторых случаях.

Итак, какое бывает соединение обмоток силовых трансформаторов, вы теперь знаете.

С помощью простых действий есть возможность добиться необходимого уровня напряжения на установке и его смещения между сторонами относительно друг друга.

moiinstrumenty.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.