16.06.2024

Трехфазная электрическая сеть: Трехфазные и однофазные сети

Содержание

Трехфазные и однофазные сети


2016-10-02 Статьи  


Трехфазная сеть — это способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Те провода, по которым ток идет, называются фазными, а по которому возвращается — нулевым.

Трехфазная цепь состоит из трех фазных проводов и одного нулевого. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120°.  Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно с экономической точки — не нужны еще два нулевых провода. Подходя к потребителю, ток распределяется на три фазы, и каждой из них дается по нулевому проводу. Так он попадает в квартиры и дома. Хотя в частном секторе нередко трехфазная сеть заводится прямо в дом.

Трехфазная сеть

Любая однофазная электрическая цепь состоит из двух проводов. По одному проводу ток поступает к потребителю, а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи.

Однофазная сеть

Земля, или, правильнее сказать, заземление — третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем. Это можно объяснить на примере. В случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю.

От трансформаторной понижающей подстанции до ВРУ (Вводно-распределительное устройство, где происходит прием, учет и распределение электрической энергии) приходит трехфазная сеть пятижильным проводом, а в наши квартиры приходит уже трехжильный. На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри ВРУ выполняется схема разъединения трехфазной цепи на однофазные.

faza3

К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель. В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет. Относительно земли у него нет потенциала в отличие от фа-
зного провода, в котором напряжение (фазное напряжение между фазой и нулем) равно 220 В. Между фазами (так называемое линейное напряжение между любыми из трех фаз) напряжение 380 В. Фазные провода в трехфазной сети обычно маркируются так: фаза А — желтый, фаза B — зеленый, фаза C — красный.

В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи. Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д. Понятно, что нагрузка на 2 эти фазы неодинакова, происходит перекос фаз и ни о каком нейтральном проводнике речи уже не идет. На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше. Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.

На данный момент ситуация усугубляется еще тем, что большинство домашних электроприборов являются импульсными. По этой причине возникают дополнительные импульсные токи, которые не компенсируются в средней точке. Эти импульсные приборы вместе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике может оказаться ток равный или превышающий ток одной из фаз. Однако нейтраль такого же сечения, что и фазный провод, а нагрузка больше.

Вот почему в последнее время все чаще возникает явление, называемое «отгоранием» или обрывом нулевого проводника — нейтральный проводник просто не справляется с нагрузкой, перегревается и отгорает.

Для защиты от такой неприятности надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно). Поэтому оптимальным решением я считаю использование реле контроля напряжения, которое отключит питание квартиры в случае выхода напряжения за допустимые пределы. Тем самым оно защитит ваши электроприборы.

Реле контроля напряжения

Реле контроля напряжения

Какую сеть лучше провести в частном доме?

Если у вас в доме есть трехфазное оборудование, то ответ очевиден. Также к плюсам трехфазной сети можно отнести то, что на ввод можно использовать кабель меньшего сечения, чем при однофазной, так как в трехфазной сети мощность распределяется по трем фазам, благодаря чему на каждую фазу приходится меньшая нагрузка.

К минусам трехфазного ввода можно отнести более высокие расходы на покупку трехфазных автоматов, УЗО, счетчика, габариты распределительного щита будут больше чем однофазного, а также при трехфазной сети необходимо грамотно распределить нагрузку по фазам во избежании перекоса фаз — несимметрии токов и напряжений.

Что касается мощности, то здесь в основном все зависит от максимально разрешенной мощности, указанной в технических условиях на подключение. Если у вас на даче небольшой летний домик или бытовка и разрешенная мощность предположим 5квт, то вполне достаточно будет однофазного ввода, а вот при наличии большого загородного дома со множеством потребителей, или своей мастерской с трехфазными потребителями, то здесь конечно уже не обойтись без трехфазной сети.

 

Трёхфазная система электроснабжения — Википедия

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Описание

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В)Россия, ЕС (ниже 1000 В)ГерманияДания
АL1L1R
BL2L2S
CL3L3T

Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда»
Векторная диаграмма фазных токов. Симметричный режим.
Графическое представление зависимости фазных токов от времени

Преимущества

Возможная схема разводки трёхфазной сети в многоквартирных жилых домах

  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трехфазных цепей

Звезда

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку.

Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.

Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.

Линейные и фазные величины

Напряжение между фазным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя фазными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

IL=IF;UL=3×UF{\displaystyle I_{L}=I_{F};\qquad U_{L}={\sqrt {3}}\times {U_{F}}}

Несложно показать, что линейное напряжение сдвинуто по фазе на π/6{\displaystyle \pi /6} относительно фазных:

uLab=uFa−uFb=UF[cos⁡(ωt)−cos⁡(ωt−2π/3)]=2UFsin⁡(−π/3)sin⁡(ωt−π/3)=3UFcos⁡(ωt+π−π/3−π/2){\displaystyle u_{L}^{ab}=u_{F}^{a}-u_{F}^{b}=U_{F}[\cos(\omega t)-\cos(\omega t-2\pi /3)]=2U_{F}\sin(-\pi /3)\sin(\omega t-\pi /3)={\sqrt {3}}U_{F}\cos(\omega t+\pi -\pi /3-\pi /2)}

uL=3UFcos⁡(ωt+π/6){\displaystyle u_{L}={\sqrt {3}}U_{F}\cos(\omega t+\pi /6)}

Мощность трёхфазного тока

Для соединения обмоток звездой, при симметричной нагрузке, мощность трёхфазной сети равна:

P=3UFIFcosφ=3UL3ILcosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3{\frac {U_{L}}{\sqrt {3}}}I_{L}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }

Последствия отгорания (обрыва) нулевого провода в трёхфазных сетях

Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах
Шины для раздачи нулевых проводов (синяя) и проводов заземления (зелёная)

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый перекос фаз, в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах, который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пиков синусоиды питающего напряжения на интервалах зарядки конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники.
Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания.
Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1.07.2014), ОСТ 45.188-2001.


Треугольник

Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

IL=3×IF;UL=UF{\displaystyle I_{L}={\sqrt {3}}\times {I_{F}};\qquad U_{L}=U_{F}}

Мощность трёхфазного тока при соединении треугольником

Для соединения обмоток треугольником, при симметричной нагрузке, мощность трёхфазного тока равна:

P=3UFIFcosφ=3ULIL3cosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3U_{L}{\frac {I_{L}}{\sqrt {3}}}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }

Распространённые стандарты напряжений

СтранаЧастота, ГцНапряжение (фазное/линейное), Вольт
Россия50230/400[2] (бытовые сети)
133/230, 230/400, 400/690, 690/1200 (промышленные сети)[источник не указан 48 дней]
Страны ЕС50230/400,
400/690 (промышленные сети)
Япония50 (60)120/208
США60120/208,
277/480
240 (только треугольник)

Маркировка

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Трёхфазная двухцепная линия электропередачи

Цвета фаз

Каждая фаза в трёхфазной системе имеет свой цвет. Они меняют в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).

СтранаL1L2L3Нейтраль / нольЗемля

/ защитное заземление

Россия, Белоруссия, Украина, Казахстан (до 2009), КитайЖёлтыйЗелёныйКрасныйГолубойЖёлто/зелёный (в полоску)
Европейский союз и все страны которые используют европейский стандарт CENELEC с апреля 2004 (IEC 60446), Гонконг с июля 2007, Сингапур с марта 2009, Украина, Казахстан с 2009, АргентинаКоричневыйЧёрныйСерыйГолубойЖёлто/зелёный (в полоску)[3]
Европейский союз до апреля 2004[4]КрасныйЖёлтыйГолубойЧёрныйЖёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Индия, Пакистан, Великобритания до апреля 2006, Гонконг до апреля 2009, ЮАР, Малайзия, Сингапур до февраля 2011КрасныйЖёлтыйГолубойЧёрныйЖёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Австралия и Новая ЗеландияКрасный (или коричневый)[5]Белый (или чёрный)

(ранее — жёлтый)

Тёмно синий (или серый)Чёрный (или голубой)Жёлто/зелёный (в полоску)

(зелёный в очень старых установках)

Канада (обязательный)[6]КрасныйЧёрныйГолубойБелый или серыйЗелёный или цвета меди
Канада (в изолированных трехфазных установках)[7]ОранжевыйКоричневыйЖёлтыйБелыйЗелёный
США (альтернативная практика)[8]КоричневыйОранжевый (в системе треугольник), или

фиолетовый (в системе звезда)

ЖёлтыйСерый или белыйЗелёный
США (распространённая практика)[9]ЧёрныйКрасныйГолубойБелый или серыйЗелёный, жёлто/зелёный (в полоску),[10] или провод цвета меди
НорвегияЧёрныйБелый/серыйКоричневыйГолубойЖёлто/зелёный (в полоску), в более старых установках может встречаться только жёлтый или цвета меди

См. также

Примечания

  1. ↑ Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
  2. ↑ Согласно ГОСТ 29322-2014
  3. ↑ Жёлто-зелёная маркировка была принята как международный стандарт для защиты от поражения эл.током дальтоников. От 7 % до 10 % людей не могут точно распознать красный и зелёные цвета.
  4. ↑ В Европе ещё осталось много установок со старой цветовой схемой начала 1970-х. В новых установках используются жёлто/зелёные шины заземления в соответствии с IEC 60446. (Фаза/ноль+земля; Германия: чёрный/серый + красный; Франция зелёный/красный + белый; Россия: красный/серый + чёрный; Швейцария: красныйd/серый + жёлтый или жёлтый и красный; Дания: белый/чёрный + красный
  5. ↑ В Австралии и Новой Зеландии фазы могут быть люього цвета, но только не жёлто-зелёного, зелёного, жёлтого, чёрного или голубого цвета.
  6. ↑ Canadian Electrical Code Part I, 23rd Edition, (2002) ISBN 1-55324-690-X, rule 4-036 (3)
  7. Canadian Electrical Code (англ.)русск. 23-е издание 2002 года, правила 24-208(c)
  8. ↑ Начиная с 1975 в США National Electric Code (англ.)русск. не имел специальных обозначений фаз. По сложившейся практике для соединения звезда 120/208 фазы маркировались чёрным, красным и голубым цветом, а при соединении звезда или треугольник 277/480 фазы обозначались коричневым, оранжевым и жёлтым. В системе 120/240 треугольник с наибольшим напряжением 208 вольт (обычно фаза B) всегда обозначалась оранжевым, общая фаза A была чёрного цвета, а фаза C — красной или голубой.
  9. ↑ See Paul Cook: Harmonised colours and alphanumeric marking. IEE Wiring Matters, Spring 2006.
  10. ↑ В США провод жёлто-зелёного цвета (в полоску) может обозначать изолированную землю[неизвестный термин]. Сегодня в большинстве стран, жёлто-зелёные (в полоску) провода используются для защитного заземления и не могут быть отсоеденины и использованы для других целей.

Ссылки

Как подключить три фазы к частному дому?

Этапы подключения дома к трехфазной сети. Перечень необходимых документов для получения разрешения на проведения 380 Вольт к частном дому.

В наше время без качественной и продуманной системы электроснабжения не обойтись. Если при покупке квартиры эта проблема решается не хозяином жилья, а строительной компанией, то для снабжения электричеством частного дома существует выбор. В квартиру подведено уже однофазное питание, да и такого напряжения там вполне достаточно. Однако в частном секторе трехфазная сеть может быть вполне актуальной. В этой статье мы расскажем, какая электрическая сеть лучше: трёхфазная или же однофазная, а также как провести 380 Вольт в частный дом по закону. Содержание:

Преимущества и недостатки трехфазной системы электроснабжения

Не секрет, что трехфазное электроснабжение частного дома стает всё более актуально, и это связанно не только с величиной напряжения. Давайте разберёмся во всех преимуществах 380 Вольт и вот их перечень:

  1. Подключение самых распространённых в быту и на производстве асинхронных электродвигателей с короткозамкнутым ротором. При подключении к однофазной цепи теряется их мощность, крутящий момент, а также КПД. Ведь они первоначально были рассчитаны на три фазы. Применение таких электромашин в частном доме может понадобиться при обустройстве точильного, сверлильного или деревообрабатывающего станка и других видов техники. Владелец, который обладает навыками работы на таком оборудовании, всегда найдёт ему применение. На даче всегда пригодится мощный насос, поэтому провести 380 Вольт и тут не помешает.
  2. Подключив три фазы, владелец частного дома получает, по большому счёту, сразу три независимые однофазные сети, которыми может распоряжаться по своему усмотрению. Для этого того чтобы получить однофазное напряжение 220 Вольт, нужно подключить один провод к фазе, а другой к нулю. Оно будет называться фазным. Напряжение между двумя фазами равняется 380 Вольт и называется линейное.
  3. При поломке или аварийной ситуации на распределительной подстанции может отгореть одна или даже две фазы. При этом у владельца частного дома с тремя фазами как минимум освещение и холодильник будет работать. При этом нужно помнить, что для трёхфазных двигателей работа на две фазы повлечёт за собой неминуемый выход его из строя.

Учтите, и тут есть свои подводные камни. Трехфазная сеть нужна в том случае, если недостаточно мощности однофазной сети. И даже если однофазной недостаточно не нужно спешить подключать три фазы, лучше уточнить о возможности увеличения лимита мощности для однофазной сети — эта процедура намного проще, чем согласование и подключение трех фаз. Три фазы в обязательном порядке подключают в том случае, если нужно запитать трехфазные электродвигатели, которые не могут работать в однофазном режиме, либо в случае одновременного использования большого количества электроприборов, оборудования, например, если в доме большое хозяйство, налажено какое-то мелкое производство.

Также следует отметить еще несколько недостатков трехфазной системы электроснабжения. Один из минусов — необходимость равномерного распределения нагрузок по каждой из фаз. Второй недостаток — большая сложность в подключении, приобретении другого щитка, защитных аппаратов и т.д. Третий недостаток — большая опасность с точки зрения поражения током, так как в доме будет не только однофазное напряжение 220 В, но и линейное — 380 В

Как видите, преимущества питания потребителя от сети 380 Вольт не всегда очевидны. Теперь стоит разобраться, какие документы нужны для подключения трехфазной сети. Об этом мы сейчас и поговорим.

Как оформить подключение трех фаз

Конечно же, перед тем как перейти к технической стороне вопроса и непосредственно к подключению нужно обратиться в компанию, являющуюся поставщиком электроэнергии в данном конкретном регионе. Для этого заказчику необходимо чётко понимать и согласовать следующие моменты:

  • Мощность сети.
  • Тип счётчика и тариф. Это может быть многотарифный прибора учёта или однотарифный.
  • Количество фаз (в данном случае 3).
  • Схема подключения;
  • Организация заземления, которое крайне необходимо для защиты людей от электрического тока при пробое или ухудшении сопротивления изоляции.

Важно! Самостоятельное подключение к энергосетям запрещено законом! Процедура подключения и организации энергоснабжения должна выполняться высококвалифицированным персоналом. Для того чтобы подключить частный дом к трехфазной сети, она должна быть полностью обесточена, а выполнять это без энергослужбы также запрещается.

Поставщики при этом придерживаются чётких требований и правил. Поэтому, если расстояние от частного дома до сетей 380 Вольт, проходящих чаще всего по столбам, будет больше 300 метров в черте города (500 за городом), то чтобы провести электричество придется оплачивать ещё и установку опоры.

Важно также отметить, что часто перед подключением необходимо предоставлять данные о состоянии домашней электропроводки. Если в доме старая электропроводка, то высока вероятность, что представители электросетей не только не дадут разрешение на подключение трех фаз, но и сократят до минимального лимит по однофазной сети из соображений безопасности, так как проводка не может выдержать большой нагрузки.

Следующим ключевым вопросом по подключению дома к сети 380 Вольт будет мощность, которую потребитель будет брать из сети.

Есть три степени:

  • первая — не больше 16 кВт;
  • вторая — от 16 до 50 кВт.
  • третья — от 50 до 160 кВт.

Конечно, лучше организовать электроснабжение с запасом по мощности, тем более что рост количества приборов, которые работают на этом виде энергии, пока очевиден. Однако стоимость данной системы будет выше.

Еще важно отметить насчет лимита мощности — обычно для рядового потребителя не дают больше 50 кВт. И в данном случае все зависит от состояния электрических сетей, мощности трансформатора в КТП либо в ТП. Если мощность небольшая, то снабжающая организация распределяет примерно мощность по домам и выше этой мощности нельзя подключить, тем более три фазы. В этом случае для подключения трех фаз необходимого лимита мощности нужен отдельный трансформатор — это уже более сложная процедура, так как нужно приобретать КТП, подключать к высоковольтной сети 6 (10) кВ. Поэтому рядовому потребителю приходится довольствоваться определенным лимитом мощности однофазной сети.

В перечень документов, которые должны быть для подключения 380 Вольт (помимо самой заявки), входят:

  1. Удостоверение личности.
  2. Идентификационный номер законопослушного налогоплательщика.
  3. Правоустанавливающая документация на жилое или нежилое помещение (в случае подключения гаража).
  4. Утвержденный полный план жилого помещения (при наличии).

С указанных документов снимается копия, которая и подаётся в компанию поставщику электрической энергии. Однако сверка с оригиналами тоже обязательна.

Некоторые поставщики также могут запросить дополнительные документы, на всякий случай, их нужно тоже взять с собой:

  • Информацию о мощности и список всего имеющегося электрооборудования в частном доме, в гараже или на даче. В зависимости от того, куда нужно провести трехфазное электричество. Если подключение выполняется на участок, не имеющий электрооборудования, то указать придется предположительные его виды и мощность.
  • Сведения об их максимальной мощности.
  • Приблизительное время ввода в эксплуатацию жилья, если это ещё не жилой объект.

Установка многотарифных счётчиков очень выгодна, так как если не использовать мощные приборы в часы пик, можно существенно сэкономить. Например, ночью стоимость электроэнергии в разы дешевле чем днём.

Порядок оформления многотарифного счётчика:

  1. Подготовка заявления с просьбой установки электросчетчика.
  2. Получение технические условий для данного счётчика, который нужно приобрести, если у поставляющей электроэнергию компании нет данного оборудования. Зачастую они и сами предоставляют услуги не только подключения, но и продажи приборов учета.
  3. Приобретение, а также программирование электросчетчика.
  4. Вызов представителя энергоснабжающей компании для проверки правильности подключения прибора учета, а также его опломбировки.
  5. Внесение изменения в соглашение или же составление нового, при организации нового подключения трёх фаз.
  6. Получение разрешения на подключение 380 Вольт.

Кстати, существует еще такой вариант, как преобразование однофазного напряжения в трехфазное. О том, как сделать 380 Вольт из 220 можете узнать, перейдя по ссылке.

Номинальные характеристики автоматических выключателей должны полностью соответствовать нагрузке, подключаемой к ним. На автоматах нет указанной мощности, на корпусе указаны только напряжение и ток, на который он рассчитан. О том, как выбрать автоматический выключатель, мы рассказали в отдельной статье.

Что касается технической части, а именно подключения трехфазного напряжения к частному дому, это дело лучше доверить специалистам, т.к. при отсутствии опыта и навыков самостоятельно провести три фазы будет практически невозможно.

Чтобы вы понимали, насколько все серьезно, ниже предоставлена примерная схема подключения 380 Вольт в частном доме, с разводкой на автоматы:

Для ознакомления с технологией проведения трех фаз рекомендуем изучить следующий блок статей:

  • Как соединить СИП с медным кабелем
  • Как провести электропроводку в доме
  • Как сделать заземление в доме
  • Как собрать трехфазный щит
  • Как распределить нагрузку по фазам
  • Как разделить электропроводку на группы
  • Схема подключения трехфазного УЗО

Конечно же, для того чтобы получить в частный дом, на дачный участок или в гараж выгодное, довольно мощное и универсальное трёхфазное напряжение, придется потратить некоторые усилия, время и средства. Документы, согласование, подключение, более сложная схема проводки и соответственно дороже электромонтаж, поэтому еще раз хорошо подумайте, нужны ли вам три фазы.

Напоследок рекомендуем просмотреть полезные видео, на которых рассказывается целесообразность подключения трех фаз, а также нюансы подготовки документов:

Теперь вы знаете, как провести 380 Вольт в частный дом и какие документы нужны для этого. Надеемся, наша пошаговая инструкция была для вас полезной и помогла самостоятельно подключить дом к трехфазной сети!

НравитсяКак подключить три фазы к частному дому?0)Не нравится0)

Компьютеры и трехфазная электрическая сеть

… вдруг на экране дисплея начало дрожать изображение, сбилась программа, дисплей мигнул и компьютер стал снова загружаться или (самый тяжелый случай) экран компьютера погас и запахло паленой изоляцией. В таких случаях легко выясняется, что причина кроется в плохой силовой электрической сети. Вы обращаетесь за консультацией, и обычно вам советуют купить источник бесперебойного питания (ИБП) или сетевой фильтр. Но иногда и это не помогает.

Решая задачу электропитания вычислительной системы, состоящей из некоторого числа однофазных потребителей (компьютеров, разветвителей и др.), часто не учитывают того, что система в целом подключена к трехфазной электрической сети.

Электрическая сеть. История

Сначала небольшой исторический экскурс. Начинались электрические сети просто: был генератор и от него тянулись два провода, к которым желающие могли подключить электрическую лампочку, мотор и тому подобные устройства.

Многие, зная, что к их розетке подходят два силовых провода, думают, что, с точки зрения подключения нагрузки, с тех пор ничего не изменилось.

На самом деле в 1891 году произошло событие, усложнившее эту простую схему. Русский ученый Доливо-Добро вольский изобрел трехпроводную трехфазную сеть. Пре имущества трехфазной сети для энергетиков настолько велики, что даже в обозримом будущем специалисты не видят ей альтернативы.

Классическая трехпроводная трехфазная сеть создавалась для подключения трехфазных нагрузок (в основном электродвигателей) и идеально подходит для них. В случае трехфазной нагрузки токи, потребляемые в каждой из фаз, одинаковы. Поэтому все три фазных напряжения также одинаковы.

В случае если в трехфазную сеть включены однофазные нагрузки (электрические лампы, компьютеры и т. д.), сопротивления нагрузки в разных фазах могут оказаться не одинаковыми. Фазные напряжения в классической трех фазной сети также станут разными. Например, если две фазы мало нагружены, а третья сильно нагружена, то напряжение в сильно нагруженной фазе будет намного ниже номинального – 220 В (напряжение может оказаться недостаточным для нормальной работы оборудования), а напряжение в недогруженных фазах будет намного больше номинального (и подключенное к ним оборудование может выйти из строя). Описанное явление электрики называют перекосом фаз.

Для того чтобы выровнять напряжения в трехфазной электрической сети, в схему был введен еще один, так называемый нейтральный провод, или просто «нейтраль» (рис. 1).

По нейтральному проводу течет ток, компенсирующий разность токов в отдельных фазах. Благодаря этому напряжения в разных фазах выравниваются.

Теперь понятно, насколько опасным может быть обрыв нейтрального провода. Этот вид неисправности немедленно приведет к перекосу фаз и повреждению однофазного оборудования.

Значительная часть мощности трехфазной электрической сети потребляется трехфазными нагрузками (электродвигателями, печами и т. д.). Каждая из трехфазных нагрузок одинаково нагружает все три фазы сети. В случае если основную часть мощности сети потребляют однофазные нагрузки, например в офисном здании, электрики стараются распределить нагрузку по фазам более или менее равномерно. На рис. 2 приведена типичная осциллограмма токов в трехфазной электрической сети, нагруженной лампами или электродвигателями. Токи в линейных проводах отличаются не более, чем на 25%. Поэтому ток в нейтральном проводе невелик. Он составляет не более 20% от среднего тока в линейных проводах.

В расчете на эту типичную картину нейтральный провод обычно делают тоньше остальных проводов трехфазной электрической сети. Например в трехфазном силовом ка беле, рассчитанном на мощность сети около 70 кВА, линейные провода имеют сечение 35 кв. мм, а нейтральный провод – 16 кв. мм. Это позволяет сэкономить много дорогой меди и обычно не представляет опасности, так как ток, протекающий через нейтральный провод, невелик.

С появлением компьютеров, имеющих беcтрансформаторные импульсные блоки питания, положение сильно ухудшилось. Чем же опасны для сети эти блоки питания?

Линейные и нелинейные нагрузки

Если мы подключим к источнику синусоидального переменного напряжения (например, к сети или к ИБП с синусоидальным выходным напряжением) сопротивление, емкость, индуктивность или любое сочетание этих нагрузок, зависимость тока в цепи от времени тоже будет иметь форму синусоиды (рис. 3). Такие нагрузки (потребители электроэнергии) называются линейными.

Если к источнику синусоидального напряжения подключить компьютер, то зависимость тока, потребляемого компьютером, от времени будет иметь вид, показанный на рис. 4.

На рисунке хорошо видно, что компьютер потребляет ток только в моменты, когда напряжение близко к своему максимуму, и не потребляет ток при низком напряжении.

Нагрузки, у которых при синусоидальном питающем напряжении форма кривой потребляемого тока заметно отличается от синусоидальной, называют нелинейными. К ним относятся и компьютеры.

Такую форму тока можно получить, если искусственно соединить несколько синусоид, имеющих кратные частоты, – гармоник. Гармоники нумеруют по мере роста их частот. Первая гармоника имеет частоту 50 Гц, вторая – 100 Гц, третья – 150 Гц и так далее. Разложенный на гармоники сигнал обычно представляют в виде спектра – графика, где по верти кали показана амплитуда гармоники (обычно в процентах от действующего значения всего сигнала), а по горизонтали ее номер, причем первую гармонику обычно не показывают. На рис. 5 показан такой график для потребляемого компьютером тока.

Как видно из этого графика, гармоники имеют только нечетные номера. Кроме того, по мере роста частоты (номера гармоники) их интенсивность падает. Наибольшую интенсивность имеет третья гармоника.

Гармоники и трехфазная сеть

Чем плохо наличие гармоник?

Оказывается, что великолепный механизм компенсации дисбаланса токов, на котором построена четырех проводная трехфазная электрическая сеть, очень плохо работает с несинусоидальными токами. На рис. 6 показана осциллограмма для несинусоидальных токов в трехфазной электрической сети.

Действующие значения токов в каждой из фаз одинаковы. Несмотря на это, ток в нейтральном проводе не равен нулю, как можно было бы ожидать. Его амплитуда примерно равна амплитуде токов в линейных проводах, а действующее значение существенно превышает действующее значение токов в линейных проводах.

Вспомним теперь, что нейтральный провод может иметь намного меньшее сечение, чем линейные провода. Если трехфазная сеть нагружена «компьютерными» потребителями хотя бы на 50%, то налицо опасная перегрузка нейтрального провода. Опасно также то, что этой пере грузки никто не заметит. На нее не реагирует ни один прибор защиты. Ведь на нейтральном проводе не устанавливают измерительных приборов. Нейтральный провод по правилам техники безопасности запрещено защищать плавкими или автоматическими предохранителями.

Перечислим наиболее очевидные следствия перегрузки нейтрали.

  • Повышенное тепловыделение в нейтральном проводе и его обрыв, возможен даже пожар.
  • Искажение формы кривой напряжения. Искажение формы напряжения в силовой сети чаще вызывается не перегрузкой линейного провода, как многие ошибочно думают, а пере грузкой более тонкого нейтрального провода. Характерным признаком искажений является плоская вершина синусоиды напряжения. Характерное следствие – искажение изображения на мониторах.
  • Большое падение напряжения на нейтральном проводе. При значительных токах в нейтральном проводе малого сечения падение напряжения на нейтрали может быть довольно велико. Его амплитуда при этом может достигать десятков вольт.

Посмотрим на характерную схему подключения компьютеров в здании (рис. 7). Мало какие предприятия готовы вкладывать большие деньги в организацию хорошего заземления. Заземление в большинстве случаев сводится просто к подключению «земли» (то есть третьего провода «компьютерной» розетки) к нейтрали в силовом щите.

На рисунке показан наиболее часто встречающийся в жизни случай, когда предприятие занимает несколько этажей здания и на каждом этаже есть от дельный щиток со своей «землей». Для простоты ограничимся двумя этажа ми (двумя силовыми щитками), каждый со своей «землей».

Видно, что токи, протекающие по нейтрали, создают разность потенциалов между «землями» этажей (щитков). Если компьютеры соединены в локальную сеть, то эта помеха приложена фактически между сетевыми платами компьютеров, расположенных на разных этажах. В результате происходят не только сбои при передаче ин формации, но и выход из строя компьютеров или их узлов.

Как бороться с этим неприятным явлением? Естественно, вам может прийти в голову «оригинальная» мысль – надо провести «землю» по всему зданию от щитка на первом этаже. Но по правилам электробезопасности в каждом силовом щитке нейтральный провод положено заземлять (соединять с корпусом щитка). Поэтому придется применять общие методы борьбы с перегрузкой нейтрального провода.

Методы борьбы с перегрузкой нейтрали

Самый простой путь – применение понижающего разделительного трансформатора. На рис. 8 показан трансформатор, вход которого подключен к линейному напряжению (380 В). На выходе трансформатор имеет напряжение 220 В. Как следует из рисунка, ток в нейтраль не идет, так как входная обмотка трансформатора не имеет с ней контакта. Поэтому при использовании нейтральных проводов в качестве заземления помеха между «землями» не возникает.

Помимо всего прочего, это частично решит проблему равномерного распределения нагрузки по фазам, так как оборудование, подключенное к трансформатору, нагружает не одну фазу, а две, причем одинаково.

Еще лучше, если этот трансформатор выполняет функции стабилизатора напряжения или источника бесперебойного питания (ИБП). Наиболее радикальным способом решения проблемы является применение ИБП с трехфазным входом и с двойным преобразованием энергии (online). Так как практически все такие ИБП имеют на входе как минимум шести импульсный выпрямитель, то они выпрямляют не фазное, а линейное напряжение и, как видно из рисунка, нейтраль вовсе не нагружается (рис. 9).

Трехфазный ИБП не только разгружает нейтральный провод. Он также уменьшает искажения формы кривой тока за счет ликвидации всех гармоник, кратных 3. Исчезает не только наиболее мощная третья гармоника, но и девятая и пятнадцатая гармоники (рис. 10).

Кроме того, применение трехфазного ИБП автоматически решает вопрос равномерного распределения нагрузки по фазам. Некоторые трехфазные ИБП средней мощности имеют однофазный выход. Но даже ИБП с трехфазным входом и однофазным выходом позволяет разгрузить нейтраль, как показано на рис. 11.

Мощные трехфазные ИБП, как правило, позволяют применять на своем входе 12-ти импульсный выпрямитель, который еще более снижает уровень от даваемых в сеть гармоник, ликвидируя пятую гармонику, и понижают требуемую мощность дизельгенератора, питающего ИБП, если он есть в системе бесперебойного питания.

Перечислим основные преимущества применения трехфазных ИБП с двойным преобразованием энергии.

  1. Разгрузка нейтрали и равномерное распределение мощности по фазам.
  2. Высшая степень защиты оборудования и возможность повышения надежности путем горячего резервирования.
  3. Стабилизация напряжения (хороший ИБП стабилизирует напряжение с погрешностью около 1%).
  4. Фильтрация гармонических искажений и шумов (системы с двойным преобразованием являются практически идеальными сетевыми фильтрами).
  5. Фильтрация коротких высоковольтных импульсов (они могут возникать из-за коротких замыканий, ударов молнии рядом с линией электропередачи и т. п.) и относительно более длинных импульсов, связанных с включением или отключением мощных нагрузок, питающихся от этой же подстанции.
  6. Снижение необходимой мощности дизель-генератора для работы в системе.

Владимир Капустин, Александр Лопухин (СТА 2/97)

Чем отличется однофазное напряжение от трёхфазного

Чем отличается трёхфазное и однофазное напряжение, от какой сети питаются наши дома и квартиры, и какие особенности есть у трёхфазной системы электроснабжения.

Чаще всего потребитель не задумывается, от какой сети переменного тока запитана его квартира или частный дом. Это может быть однофазное или трехфазное подключение. Основными потребителями электрической энергии являются приборы, рассчитанные на напряжение 220 В. Сейчас стали производить и устанавливать бытовое электрическое оборудование на 380 В. В основном это электроплиты в высотных зданиях. А в частном домовладении при обустройстве мастерской, где применяются станки с подсоединением к трехпроводной электрической линии. В этой статье мы разберемся в отличиях однофазного напряжения и трёхфазного.

Содержание:

От какой сети питаются наши дома и квартиры

Большинство квартир и частных домов используют однофазное подключение к электросети. При этом общие нагрузки потребителя не превышают 10 кВт. На долю таких подключений приходится порядка 90% всех электроприемников.

Остальные 10% используют трехфазное подключение. Его используют если необходимо подсоединить нагрузку мощностью более 10 кВт. Для этого применяют сети переменного тока на 380 Вольт.

К ним относятся жители коттеджей или частных домов и владельцы квартир, где установлены электроплиты или другие приборы, рассчитанные на подключение 380 В.

Главные отличия

Общим фактором является количество проводов и напряжение. На этом отличия и заканчиваются. Однофазное подключение характеризуется подведением к дому или квартире двух/трех проводов (фаза, ноль, заземление). Обычно сечение проводников составляет 4-6 мм2. А в доме используют проводку 1,5-2,5 мм2.

При этом оно ограничено по максимальной мощности потребления, которая не должна превышать десяти кВт. Могут возникнуть трудности с подключением потребителей, рассчитанных на трехфазное напряжение. При подключении потребуются дополнительные устройства, а также нужно быть готовым, что произойдет потеря мощности.

Обычно к многоквартирному дому подводится три фазы, а в каждую квартиру приходит только одна фаза. При этом стараются распределять нагрузку пропорционально, исключая перекос фаз. Так же учитывают то, что напряжение 220В является менее опасным чем 380В, с точки зрения техники безопасности.

Если потребитель планирует подключение к электрической сети с выделенной мощностью более десяти кВт — необходимо использовать трехфазное напряжение.

Отличие в этом случае заключается в подведении к дому или коттеджу кабеля с четырьмя/пяти жилами. В чем состоит отличие от двухпроводного подключения. В этом случае потребитель получает две величины напряжения: линейное будет равно 380 В, а фазное — 220 В.

Замер производят следующим образом. Фазное напряжение меряют между нулевым проводником и каждой фазой попеременно, линейное замеряют между фазами.

На рисунке снизу показано, как измерить фазное и линейное напряжение.

Чем отличется однофазное напряжение от трёхфазного

Следует учитывать, что в коттеджах, где установленная мощность превышает десять киловатт, но отсутствует трехфазная нагрузка, активная мощность должна распределяться между фазами равномерно.

В этом состоит разница при однофазном подключении, распределять мощности нет необходимости.

На нижеприведенном рисунке представлена схема подсоединения однофазной равномерно распределенной по трём фазам нагрузки и формула зависимости линейного напряжения от фазного.

При этом не требуется использовать коммутационное оборудование (автоматы, пускатели) на большие токи. Чаще трехфазная сеть применяется для промышленных предприятий, магазинов, офисных помещений.

Встречаются ли однофазные сети в чистом виде

Энергосистема нашей страны рассчитана на использование трехфазной сети. Все генераторы на электростанциях вырабатывают три фазы. Это относится к гидроэлектростанциям, АЭС, тепловым, приливным и т.д.

Такая схема передачи энергии на большие расстояния наиболее экономична. Для передачи аналогичной мощности при однофазной линии, потребуются провода большого сечения. Поэтому однофазные сети для передачи электроэнергии не применяются.

На нижеприведенном рисунке представлена схема передачи электроэнергии от ТЭЦ к потребителю.

Однако, однофазные электросети широко используются как аварийные источники питания. Для этого применяются бензиновые или дизельные электростанции. Устанавливают на объектах, где недопустимо отключение электроэнергии. Например, для запитывания электроэнергией больниц (это отделения реанимации или операционные), телефонных станций, систем оперативного оповещения и т.п. Для мощных потребителей используются трехфазные дизельные генераторы.

Опубликовано: 25.07.2020 Обновлено: 25.07.2020 нет комментариев

Трехфазные и однофазные сети в доме. Схема, мощность, расчет трехфазных и однофазных сетей

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это обязательно.

Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть — это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электрическая цепь состоит из двух проводов. По одному ток идет к потребителю (например, к чайнику), а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной сети (рис. 1).

Схема однофазной цепи

Рис. 1. Схема однофазной цепи

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается — нулевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120 °C (рис. 2). Более подробно на этот вопрос поможет ответить учебник по электромеханике.

Схема трехфазной цепи

Рис. 2. Схема трехфазной цепи

Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически — не нужны еще два нулевых провода. Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы. Об этом будет рассказано позднее.

Земля, или, правильнее сказать, заземление — третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем.

Это можно объяснить на примере. В случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю (рис. 3).

схема заземления

Рис. 3. Простейшая схема заземления

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора. Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током. При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что нулевой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции.

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нолевой провод как заземляющий. Никогда так не делайте. При обрыве нолевого провода корпуса заземленных приборов окажутся под напряжением 220 В.

В 99 % случаев для квартиры устанавливается однофазная сеть. Отличить ее от трехфазной очень просто. Если во входящем кабеле 3 или 2 провода, то сеть однофазная, когда 5 или 4 — трехфазная (рис. 4). 

трехфазный и однофазный кабель

Рис. 4. Четырехжильным или двухжильным кабель становится, если убирается заземляющий провод

Как известно, по проводам, передающим энергию на расстояние, течет трехфазный ток — так выгоднее. В квартиру он заходит однофазным. Расщепление трехфазной цепи на 3 однофазных происходит во ВРУ. Туда входит пятижильный кабель, а выходит трехжильный (рис. 5).

Схема расщепления трехфазной сети на однофазные потребители

Рис. 5. Схема расщепления трехфазной сети на однофазные потребители

На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри щита выполняется схема разъединения трехфазной цепи на однофазные (рис. 6).

Однофазная электрическая сеть

Рис. 6. Однофазная электрическая сеть

К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель.

В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет. Относительно земли у него нет потенциала в отличие от фазового, в котором напряжение равно 220 В. В паре «фаза — фаза» напряжение 380 В. В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи. Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая — где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д. (рис. 7).

Трехфазная электрическая сеть

Рис. 7. Трехфазная электрическая сеть

Понятно, что нагрузка на 2 эти фазы неодинакова и ни о каком нейтральном проводнике речи уже не идет. На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше.

Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.

В последнее время ситуация с некомпенсацией токов в такой сети усугубилась тем, что появились новые электроприборы, которые называются импульсными. В момент включения они потребляют намного больше энергии, чем при нормальной работе. Эти импульсные приборы вкупе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике (ноле) возникает напряжение, которое может быть раза в 2 больше, чем на любой фазе. Однако нейтраль такого же сечения, что и фазовый провод, а нагрузка больше.

Вот почему в последнее время все чаще возникает явление, называемое отгоранием ноля — нейтральный проводник просто не справляется с нагрузкой и перегорает. Бороться с таким явлением непросто: надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно). На худой конец можно купить понижающий разделительный трансформатор, он же стабилизатор напряжения.

В частном доме ситуация получше, поскольку хозяин один и распределить электроэнергию по фазам намного проще. Это даже увлекательное занятие — рассчитать мощность электроприборов и распределять их по фазам, чтобы нагрузка была одинаковой. Все расчеты делаются примерно, и вовсе не значит, что надо включать свет и 2 телевизора, а если заработал столярный станок на улице — это перебор. Все зависит от желания хозяина дома: провести трехфазную сеть или однофазную. Здесь есть свои плюсы и минусы.

Минусов трехфазной сети 2.

1. Напряжение на отдельном участке сильно зависит от работы других. Если перегружена одна из фаз, остальные могут работать некорректно. Проявиться это может как угодно. Чтобы такого не происходило, нужен стабилизатор — вещь недешевая.

2. Необходимо оборудование в щит, рассчитанное именно под трехфазную сеть, а также расходы на устройство трехфазной сети. Они будут больше, нежели для однофазной. Кроме того, нужно знать правила эксплуатации трехфазных сетей.

Плюсов трехфазной сети тоже 2.

1. Трехфазная сеть позволяет получить больше мощности. Если однофазная сеть при суммарной мощности приборов в 10 кВт уже испытывает перегрузки, то трехфазная прекрасно справляется и с 30 кВт. Пример очень простой. Если с линии ЛЭП в дом заходит всего 1 фаза, то при сечении входящего проводника 16 мм2 максимальная мощность составит всего 14 кВт, а если все 3 фазы — то уже 42 кВт. Разница весьма ощутимая.

2. Необычайно просто становится подключать электроприборы, имеющие трехфазное питание (электрические плиты). Самое главное в случае с частным домом — трехфазные электрические двигатели, которые стоят на многих станках.

Трёхфазная система электроснабжения — Википедия. Что такое Трёхфазная система электроснабжения

Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Описание

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В)Россия, ЕС (ниже 1000 В)ГерманияДания
АL1L1R
BL2L2S
CL3L3T

Анимированное изображение течения токов по симметричной трёхфазной цепи с соединением типа «звезда»
Векторная диаграмма фазных токов. Симметричный режим.
Графическое представление зависимости фазных токов от времени

Преимущества

Возможная схема разводки трёхфазной сети в многоквартирных жилых домах

  • Экономичность.
    • Экономичность передачи электроэнергии на значительные расстояния.
    • Меньшая материалоёмкость 3-фазных трансформаторов.
    • Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
  • Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
  • Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
  • Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
  • Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трехфазных цепей

Звезда

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку.

Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.

Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.

Линейные и фазные величины

Напряжение между фазным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя фазными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

IL=IF;UL=3×UF{\displaystyle I_{L}=I_{F};\qquad U_{L}={\sqrt {3}}\times {U_{F}}}

Несложно показать, что линейное напряжение сдвинуто по фазе на π/6{\displaystyle \pi /6} относительно фазных:

uLab=uFa−uFb=UF[cos⁡(ωt)−cos⁡(ωt−2π/3)]=2UFsin⁡(−π/3)sin⁡(ωt−π/3)=3UFcos⁡(ωt+π−π/3−π/2){\displaystyle u_{L}^{ab}=u_{F}^{a}-u_{F}^{b}=U_{F}[\cos(\omega t)-\cos(\omega t-2\pi /3)]=2U_{F}\sin(-\pi /3)\sin(\omega t-\pi /3)={\sqrt {3}}U_{F}\cos(\omega t+\pi -\pi /3-\pi /2)}

uL=3UFcos⁡(ωt+π/6){\displaystyle u_{L}={\sqrt {3}}U_{F}\cos(\omega t+\pi /6)}

Мощность трёхфазного тока

Для соединения обмоток звездой, при симметричной нагрузке, мощность трёхфазной сети равна:

P=3UFIFcosφ=3UL3ILcosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3{\frac {U_{L}}{\sqrt {3}}}I_{L}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }

Последствия отгорания (обрыва) нулевого провода в трёхфазных сетях

Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах
Шины для раздачи нулевых проводов (синяя) и проводов заземления (зелёная)

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый перекос фаз, в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах, который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пиков синусоиды питающего напряжения на интервалах зарядки конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники.
Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания.
Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1.07.2014), ОСТ 45.188-2001.


Треугольник

Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

IL=3×IF;UL=UF{\displaystyle I_{L}={\sqrt {3}}\times {I_{F}};\qquad U_{L}=U_{F}}

Мощность трёхфазного тока при соединении треугольником

Для соединения обмоток треугольником, при симметричной нагрузке, мощность трёхфазного тока равна:

P=3UFIFcosφ=3ULIL3cosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3U_{L}{\frac {I_{L}}{\sqrt {3}}}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }

Распространённые стандарты напряжений

СтранаЧастота, ГцНапряжение (фазное/линейное), Вольт
Россия50230/400[2] (бытовые сети)
133/230, 230/400, 400/690, 690/1200 (промышленные сети)[источник не указан 48 дней]
Страны ЕС50230/400,
400/690 (промышленные сети)
Япония50 (60)120/208
США60120/208,
277/480
240 (только треугольник)

Маркировка

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Трёхфазная двухцепная линия электропередачи

Цвета фаз

Каждая фаза в трёхфазной системе имеет свой цвет. Они меняют в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).

СтранаL1L2L3Нейтраль / нольЗемля

/ защитное заземление

Россия, Белоруссия, Украина, Казахстан (до 2009), КитайЖёлтыйЗелёныйКрасныйГолубойЖёлто/зелёный (в полоску)
Европейский союз и все страны которые используют европейский стандарт CENELEC с апреля 2004 (IEC 60446), Гонконг с июля 2007, Сингапур с марта 2009, Украина, Казахстан с 2009, АргентинаКоричневыйЧёрныйСерыйГолубойЖёлто/зелёный (в полоску)[3]
Европейский союз до апреля 2004[4]КрасныйЖёлтыйГолубойЧёрныйЖёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Индия, Пакистан, Великобритания до апреля 2006, Гонконг до апреля 2009, ЮАР, Малайзия, Сингапур до февраля 2011КрасныйЖёлтыйГолубойЧёрныйЖёлто/зелёный (в полоску)

(зелёный в установках до 1970)

Австралия и Новая ЗеландияКрасный (или коричневый)[5]Белый (или чёрный)

(ранее — жёлтый)

Тёмно синий (или серый)Чёрный (или голубой)Жёлто/зелёный (в полоску)

(зелёный в очень старых установках)

Канада (обязательный)[6]КрасныйЧёрныйГолубойБелый или серыйЗелёный или цвета меди
Канада (в изолированных трехфазных установках)[7]ОранжевыйКоричневыйЖёлтыйБелыйЗелёный
США (альтернативная практика)[8]КоричневыйОранжевый (в системе треугольник), или

фиолетовый (в системе звезда)

ЖёлтыйСерый или белыйЗелёный
США (распространённая практика)[9]ЧёрныйКрасныйГолубойБелый или серыйЗелёный, жёлто/зелёный (в полоску),[10] или провод цвета меди
НорвегияЧёрныйБелый/серыйКоричневыйГолубойЖёлто/зелёный (в полоску), в более старых установках может встречаться только жёлтый или цвета меди

См. также

Примечания

  1. ↑ Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
  2. ↑ Согласно ГОСТ 29322-2014
  3. ↑ Жёлто-зелёная маркировка была принята как международный стандарт для защиты от поражения эл.током дальтоников. От 7 % до 10 % людей не могут точно распознать красный и зелёные цвета.
  4. ↑ В Европе ещё осталось много установок со старой цветовой схемой начала 1970-х. В новых установках используются жёлто/зелёные шины заземления в соответствии с IEC 60446. (Фаза/ноль+земля; Германия: чёрный/серый + красный; Франция зелёный/красный + белый; Россия: красный/серый + чёрный; Швейцария: красныйd/серый + жёлтый или жёлтый и красный; Дания: белый/чёрный + красный
  5. ↑ В Австралии и Новой Зеландии фазы могут быть люього цвета, но только не жёлто-зелёного, зелёного, жёлтого, чёрного или голубого цвета.
  6. ↑ Canadian Electrical Code Part I, 23rd Edition, (2002) ISBN 1-55324-690-X, rule 4-036 (3)
  7. Canadian Electrical Code (англ.)русск. 23-е издание 2002 года, правила 24-208(c)
  8. ↑ Начиная с 1975 в США National Electric Code (англ.)русск. не имел специальных обозначений фаз. По сложившейся практике для соединения звезда 120/208 фазы маркировались чёрным, красным и голубым цветом, а при соединении звезда или треугольник 277/480 фазы обозначались коричневым, оранжевым и жёлтым. В системе 120/240 треугольник с наибольшим напряжением 208 вольт (обычно фаза B) всегда обозначалась оранжевым, общая фаза A была чёрного цвета, а фаза C — красной или голубой.
  9. ↑ See Paul Cook: Harmonised colours and alphanumeric marking. IEE Wiring Matters, Spring 2006.
  10. ↑ В США провод жёлто-зелёного цвета (в полоску) может обозначать изолированную землю[неизвестный термин]. Сегодня в большинстве стран, жёлто-зелёные (в полоску) провода используются для защитного заземления и не могут быть отсоеденины и использованы для других целей.

Ссылки

трехфазная электрическая сеть — определение

Примеры предложений с «трехфазной электрической сетью», память переводов

патент-wipoМетод минимизации напряжения нейтральной точки трехфазной электрической сети патент-wipoМетод и устройство для анализа качество электроэнергии в трехфазной электрической сети патентов-wipo Защитный метод и устройство для трехфазной электрической сети патентов-wipo Метод и система для измерения традиционной реактивной мощности при любых условиях эксплуатации трехфазных электрических сетей патентов-wipo Цепи фильтров серии LC (L1, C1, L2, C2, L3, C3) при соединении звездой подключаются к трехфазной электросети через высоковольтные предохранители (F1, F2, F3). Patents-WIPO Устройство для обмена мощностью с трехфазной электрической сетью содержит преобразователь источника напряжения (5), имеющий три фазы (A-C), каждая из которых является последовательным соединением коммутационных ячеек. патент-wipoSaid Устройство подключено к трехфазной электрической сети для непрерывного измерения качества трехфазных сигналов, которые без разбора связаны с тремя сигналами напряжения или тремя сигналами интенсивности и качеством трехфазных сигналов. сигналы, которые связаны с сигналами напряжения и интенсивности. Patents-WIPO Устройство для обмена мощностью с трехфазной электросетью (1) содержит преобразователь источника напряжения (6), имеющий три фазы (7-9), каждая из которых имеет последовательное соединение переключающих ячеек (10). Патенты -wipoСимметричный путь высвобождения частоты, не относящийся к электрической сети, предусмотрен в одной или двух фазах и расположен на первичной стороне системы или на вторичной стороне трансформатора или трансформатора тока (XBYQ), так что Трехфазная симметричная электрическая сеть без мощности частоты преобразуется в трехфазную несимметричную электрическую сеть без промышленной частоты. патент-wipo Устройство для обмена мощностью при параллельном соединении с трехфазной электрической сетью (1) содержит преобразователь источника напряжения (5), имеющий, по меньшей мере, три фазы (6-11), каждая из которых имеет последовательное соединение коммутационные ячейки (15). патентов-wipo Изобретение представляет собой, с одной стороны, способ защиты трехфазной электрической сети (10), в ходе которого сверхкомпенсированное состояние реализуется путем заземления нейтральной точки (11) через индуктивное устройство (13), в В случае возникновения замыкания на землю нормальное компенсированное состояние реализуется с выходом из сверхкомпенсированного состояния, а сверхкомпенсированное состояние восстанавливается, когда замыкание на землю исчезает. патенты-wipo Преобразователь источника напряжения (CONV) подключен на своей стороне переменного напряжения к трехфазной электрической сети (N) через трансформатор (T), а на стороне постоянного напряжения — к конденсаторному оборудованию (C) . Польские Патенты Система для испытания цепей напряжения трехфазного четырехпроводного сетевого электросчетчика патентов-wipo Изобретение представляет собой способ минимизации напряжения нейтральной точки трехфазной электрической сети, в ходе которого возникает асимметрия нулевой последовательности. сети измеряется путем измерения тока асимметрии, на основе этого определяются значения конденсаторов для уравновешивания асимметрии нулевой последовательности, затем асимметрия нулевой последовательности уравновешивается посредством установки высоковольтных конденсаторов (10) в соответствии с указанным конденсатором ценности. патентов-wipo Изобретение относится к способу анализа качества электрической энергии в трехфазной электрической сети, отличающемуся тем, что он включает следующие этапы: измерение (El) набора величин, содержащих одну электрическую величину на фазу, Формирование (E2) пространственного вектора из мгновенного трехмерного преобразования набора измеренных электрических величин. Определение (E3) набора, содержащего, по крайней мере, один параметр, представляющий качество электрической энергии в трехфазной электрической сети, в зависимости от по пространственному вектору.С другой стороны, изобретение представляет собой защитное устройство для трехфазной электрической сети (10), содержащее индуктивное устройство (13), подключенное между нейтральной точкой (11) и землей, способное реализовывать сверхкомпенсированное состояние, сенсорное устройство (16), определяющее возникновение тока замыкания на землю на индуктивном устройстве (13), переключающее устройство (18), управляемое сигналом сенсорного устройства (16), и переключаемая дополнительная индуктивность (19), увеличивающая индуктивность индуктивное устройство (13) в случае возникновения тока замыкания на землю и тем самым реализующее нормальное компенсированное состояние с помощью переключающего устройства (18). патентов-wipo Изобретение относится к способу определения момента включения выключателя в трехфазной высоковольтной электрической сети после контактного (7A, 8A, 7B, 8B, 7C, 8C) разъединения при наличии ошибка в одной из трех фаз A, B или C. WikiMatrix В результате этих успешных полевых испытаний трехфазный ток стал установлен для сетей электропередачи по всему миру. патентов-wipo Устройство и метод измерения качества электрических сигналов в трехфазной сети патентов-wipo Устройство и способ равномерного распределения электрической нагрузки в трехфазной распределительной сети Польские патенты Аппарат для измерения электрических параметров трехфазная распределительная сеть патенты-wipoЭлектрическая установка для трехфазной сети переменного тока, коммутационный узел, следовательно, и способ приведения в действие переключающего узла патентов-wipoСпособ защиты от замыкания на землю и система для трехфазного тока. фазовые системы электропитания, включающие в себя множество блоков GFCI и процессор, образующие систему прерывания цепи замыкания на землю для использования в трехфазной распределительной сети, включая трехфазный источник электроэнергии, трех- или четырехпроводную главную цепь и множество схем механизма подачи проволоки с тремя или четырьмя цепями, подключенных через главную цепь.

Показаны страницы 1. Найдено 57 предложения с фразой трехфазная электрическая сеть.Найдено за 32 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.

.

трехфазная электрическая сеть — определение

Примеры предложений с «трехфазной электрической сетью», память переводов

патент-wipoМетод минимизации напряжения нейтральной точки трехфазной электрической сети патент-wipoМетод и устройство для анализа качество электроэнергии в трехфазной электрической сети патентов-wipo Защитный метод и устройство для трехфазной электрической сети патентов-wipo Метод и система для измерения традиционной реактивной мощности при любых условиях эксплуатации трехфазных электрических сетей патентов-wipo Цепи фильтров серии LC (L1, C1, L2, C2, L3, C3) при соединении звездой подключаются к трехфазной электросети через высоковольтные предохранители (F1, F2, F3). Patents-WIPO Устройство для обмена мощностью с трехфазной электрической сетью содержит преобразователь источника напряжения (5), имеющий три фазы (A-C), каждая из которых является последовательным соединением коммутационных ячеек. патент-wipoSaid Устройство подключено к трехфазной электрической сети для непрерывного измерения качества трехфазных сигналов, которые без разбора связаны с тремя сигналами напряжения или тремя сигналами интенсивности и качеством трехфазных сигналов. сигналы, которые связаны с сигналами напряжения и интенсивности. Patents-WIPO Устройство для обмена мощностью с трехфазной электросетью (1) содержит преобразователь источника напряжения (6), имеющий три фазы (7-9), каждая из которых имеет последовательное соединение переключающих ячеек (10). Патенты -wipoСимметричный путь высвобождения частоты, не относящийся к электрической сети, предусмотрен в одной или двух фазах и расположен на первичной стороне системы или на вторичной стороне трансформатора или трансформатора тока (XBYQ), так что Трехфазная симметричная электрическая сеть без мощности частоты преобразуется в трехфазную несимметричную электрическую сеть без промышленной частоты. патент-wipo Устройство для обмена мощностью при параллельном соединении с трехфазной электрической сетью (1) содержит преобразователь источника напряжения (5), имеющий, по меньшей мере, три фазы (6-11), каждая из которых имеет последовательное соединение коммутационные ячейки (15). патентов-wipo Изобретение представляет собой, с одной стороны, способ защиты трехфазной электрической сети (10), в ходе которого сверхкомпенсированное состояние реализуется путем заземления нейтральной точки (11) через индуктивное устройство (13), в В случае возникновения замыкания на землю нормальное компенсированное состояние реализуется с выходом из сверхкомпенсированного состояния, а сверхкомпенсированное состояние восстанавливается, когда замыкание на землю исчезает. патенты-wipo Преобразователь источника напряжения (CONV) подключен на своей стороне переменного напряжения к трехфазной электрической сети (N) через трансформатор (T), а на стороне постоянного напряжения — к конденсаторному оборудованию (C) . Польские Патенты Система для испытания цепей напряжения трехфазного четырехпроводного сетевого электросчетчика патентов-wipo Изобретение представляет собой способ минимизации напряжения нейтральной точки трехфазной электрической сети, в ходе которого возникает асимметрия нулевой последовательности. сети измеряется путем измерения тока асимметрии, на основе этого определяются значения конденсаторов для уравновешивания асимметрии нулевой последовательности, затем асимметрия нулевой последовательности уравновешивается посредством установки высоковольтных конденсаторов (10) в соответствии с указанным конденсатором ценности. патентов-wipo Изобретение относится к способу анализа качества электрической энергии в трехфазной электрической сети, отличающемуся тем, что он включает следующие этапы: измерение (El) набора величин, содержащих одну электрическую величину на фазу, Формирование (E2) пространственного вектора из мгновенного трехмерного преобразования набора измеренных электрических величин. Определение (E3) набора, содержащего, по крайней мере, один параметр, представляющий качество электрической энергии в трехфазной электрической сети, в зависимости от по пространственному вектору.С другой стороны, изобретение представляет собой защитное устройство для трехфазной электрической сети (10), содержащее индуктивное устройство (13), подключенное между нейтральной точкой (11) и землей, способное реализовывать сверхкомпенсированное состояние, сенсорное устройство (16), определяющее возникновение тока замыкания на землю на индуктивном устройстве (13), переключающее устройство (18), управляемое сигналом сенсорного устройства (16), и переключаемая дополнительная индуктивность (19), увеличивающая индуктивность индуктивное устройство (13) в случае возникновения тока замыкания на землю и тем самым реализующее нормальное компенсированное состояние с помощью переключающего устройства (18). патентов-wipo Изобретение относится к способу определения момента включения выключателя в трехфазной высоковольтной электрической сети после контактного (7A, 8A, 7B, 8B, 7C, 8C) разъединения при наличии ошибка в одной из трех фаз A, B или C. WikiMatrix В результате этих успешных полевых испытаний трехфазный ток стал установлен для сетей электропередачи по всему миру. патентов-wipo Устройство и метод измерения качества электрических сигналов в трехфазной сети патентов-wipo Устройство и способ равномерного распределения электрической нагрузки в трехфазной распределительной сети Польские патенты Аппарат для измерения электрических параметров трехфазная распределительная сеть патенты-wipoЭлектрическая установка для трехфазной сети переменного тока, коммутационный узел, следовательно, и способ приведения в действие переключающего узла патентов-wipoСпособ защиты от замыкания на землю и система для трехфазного тока. фазовые системы электропитания, включающие в себя множество блоков GFCI и процессор, образующие систему прерывания цепи замыкания на землю для использования в трехфазной распределительной сети, включая трехфазный источник электроэнергии, трех- или четырехпроводную главную цепь и множество схем механизма подачи проволоки с тремя или четырьмя цепями, подключенных через главную цепь.

Показаны страницы 1. Найдено 57 предложения с фразой трехфазная электрическая сеть.Найдено за 31 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *