Трехфазная электрическая мощность — Three-phase electric power
Общий метод производства, передачи и распределения электроэнергии для переменного тока
Трехфазный трансформатор с четырехпроводным выходом для сети 208Y / 120 В: один провод для нейтрали, другие для фаз A, B и C
Трехфазная электроэнергия — это распространенный метод производства , передачи и распределения электроэнергии переменного тока . Это разновидность многофазной системы, которая является наиболее распространенным методом передачи энергии в электрических сетях во всем мире. Он также используется для питания больших двигателей и других тяжелых нагрузок.
Трехфазная схема трехпроводной, как правило , более экономичным , чем эквивалентный двухпроводной однофазной цепи в одной и той же линии заземления напряжения , поскольку он использует меньше материала проводника для передачи определенного количества электрической энергии. Полифазные энергосистемы были независимо изобретены Галилео Феррарисом , Михаилом Доливо-Добровольским , Йонасом Венстрёмом , Джоном Хопкинсоном и Николой Тесла в конце 1880-х годов.
Линейное и фазное напряжение
В проводники между источником напряжения и нагрузкой , называются линии, и напряжение между любыми двумя линиями, называется линейное напряжение . Напряжение, измеренное между любой линией и нейтралью, называется фазным напряжением . Например, для сети 208/120 В напряжение в сети составляет 208 В, а фазное напряжение — 120 В.
Принцип
Нормированные формы сигналов мгновенных напряжений в трехфазной системе за один цикл с увеличением времени вправо. Порядок фаз — 1‑2‑3. Этот цикл повторяется с частотой энергосистемы. В идеале напряжение , ток и мощность каждой фазы смещены относительно других на 120 °.
Линии электропередачи трехфазные
Трехфазный трансформатор (Бекешчаба, Венгрия): слева — первичные провода, а справа — вторичные провода.
В симметричной трехфазной системе электропитания по трем проводникам проходит переменный ток той же частоты и амплитуды напряжения относительно общего эталона, но с разностью фаз в одну треть цикла между ними. Общая ссылка обычно соединяется с землей и часто с токоведущим проводом, называемым нейтралью. Из-за разности фаз напряжение на любом проводе достигает своего пика на одной трети цикла после одного из других проводников и на одной трети цикла до оставшегося проводника. Эта фазовая задержка обеспечивает постоянную передачу мощности сбалансированной линейной нагрузке. Это также позволяет создавать вращающееся магнитное поле в электродвигателе и генерировать другие схемы фаз с использованием трансформаторов (например, двухфазную систему с использованием трансформатора Скотта-Т ). Амплитуда разности напряжений между двумя фазами в (1,732 …) раз больше амплитуды напряжения отдельных фаз.
3{\ displaystyle {\ sqrt {3}}}
Симметричные трехфазные системы, описанные здесь, просто называются трехфазными системами, потому что, хотя можно спроектировать и реализовать асимметричные трехфазные системы питания (т. Е. С неравными напряжениями или фазовыми сдвигами), они не используются на практике. потому что им не хватает важнейших преимуществ симметричных систем.
В трехфазной системе, питающей сбалансированную и линейную нагрузку, сумма мгновенных токов трех проводников равна нулю. Другими словами, ток в каждом проводнике по величине равен сумме токов в двух других, но с противоположным знаком. Обратный путь для тока в любом фазном проводе — это два других фазовых проводника.
Преимущества
По сравнению с однофазным источником питания переменного тока, в котором используются два провода (фаза и нейтраль ), трехфазный источник питания без нейтрали и с одинаковым межфазным напряжением и током на фазу может передавать в три раза больше мощности, используя всего в 1,5 раза больше проводов (т.е. три вместо двух). Таким образом, соотношение емкости к материалу проводника удваивается. Отношение емкости к материалу проводника увеличивается до 3: 1 в незаземленной трехфазной системе и однофазной системе с заземленным центром (или 2,25: 1, если в обеих системах заземления того же калибра, что и у проводов).
Постоянная передача мощности и компенсация фазных токов теоретически возможны с любым числом (более одной) фаз, поддерживая соотношение емкости к материалу проводника, которое в два раза больше, чем у однофазной мощности. Однако двухфазная мощность приводит к менее плавному (пульсирующему) крутящему моменту в генераторе или двигателе (что затрудняет плавную передачу мощности), а более трех фаз излишне усложняют инфраструктуру.
Трехфазные системы также могут иметь четвертый провод, особенно в распределительных сетях низкого напряжения. Это нейтральный провод. Нейтраль позволяет обеспечить три отдельных однофазных источника питания при постоянном напряжении и обычно используется для питания групп бытовых объектов, каждая из которых является однофазной нагрузкой. Подключения расположены таким образом, чтобы по возможности в каждой группе от каждой фазы потреблялась одинаковая мощность. Далее в системе распределения токи обычно хорошо сбалансированы. Трансформаторы могут быть подключены таким образом, чтобы они имели четырехпроводную вторичную обмотку и трехпроводную первичную обмотку, при этом допуская несбалансированные нагрузки и связанные с ними нейтральные токи вторичной стороны.
Трехфазные источники питания обладают свойствами, которые делают их очень востребованными в системах распределения электроэнергии:
- Фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки. Это позволяет уменьшить размер нейтрального проводника, поскольку по нему проходит небольшой ток или нет. При сбалансированной нагрузке все фазные проводники проходят одинаковый ток и, следовательно, могут иметь одинаковый размер.
- Передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя.
- Трехфазные системы могут создавать вращающееся магнитное поле с заданным направлением и постоянной величиной, что упрощает конструкцию электродвигателей, так как не требуется пусковая цепь.
Большинство бытовых нагрузок однофазные. В домах в Северной Америке трехфазное питание может питать многоквартирный дом, но бытовые нагрузки подключаются только как однофазные. В районах с более низкой плотностью для распределения можно использовать только одну фазу. Некоторые мощные бытовые приборы, такие как электрические плиты и сушилки для одежды, питаются от двухфазной системы с напряжением 240 вольт или от двух фаз трехфазной системы только с напряжением 208 вольт.
Последовательность фаз
Электропроводка для трех фаз обычно обозначается цветовым кодом, который зависит от страны. Подключение фаз в правильном порядке необходимо для обеспечения заданного направления вращения трехфазных двигателей. Например, насосы и вентиляторы могут не работать в обратном направлении. Сохранение идентичности фаз требуется, если существует возможность одновременного подключения двух источников; прямое соединение между двумя разными фазами — короткое замыкание.
Производство и распространение
Анимация трехфазного тока
Изображение слева: элементарный шестипроводный трехфазный генератор переменного тока, в котором каждая фаза использует отдельную пару проводов передачи. Изображение справа: элементарный трехпроводной трехфазный генератор переменного тока, показывающий, как фазы могут делить только три провода.
На электростанции , электрический генератор преобразует механическую энергию в набор из трех переменного электрического тока , по одному от каждой катушки (или обмотки) генератора. Обмотки расположены таким образом, что токи находятся на одной и той же частоте , но с пиками и впадинами их волновых форм смещения , чтобы обеспечить три дополнительных токов с фазовым разделением одной трети цикла ( 120 ° или 2π / 3 радиан ). Частота генератора обычно составляет 50 или 60 Гц , в зависимости от страны.
На электростанции трансформаторы изменяют напряжение от генераторов до уровня, подходящего для передачи , чтобы минимизировать потери.
После дальнейших преобразований напряжения в сети передачи, напряжение окончательно преобразуется в стандартное значение использования до подачи электроэнергии потребителям.
Большинство автомобильных генераторов генерируют трехфазный переменный ток и преобразуют его в постоянный ток с помощью диодного моста .
Трансформаторные соединения
Обмотка трансформатора, соединенная «треугольником», включается между фазами трехфазной системы. Трансформатор типа «звезда» соединяет каждую обмотку фазного провода с общей нейтралью.
Можно использовать один трехфазный трансформатор или три однофазных трансформатора.
В системе «открытый треугольник» или «V» используются только два трансформатора. Замкнутый треугольник, состоящий из трех однофазных трансформаторов, может работать как открытый треугольник, если один из трансформаторов вышел из строя или его необходимо удалить. В разомкнутом треугольнике каждый трансформатор должен пропускать ток для соответствующих фаз, а также ток для третьей фазы, поэтому мощность снижается до 87%. С одним из трех трансформаторов недостающих , а остальные две эффективности на 87%, емкость составляет 58% ( 2 / 3 из 87%).
Если система с питанием по схеме треугольника должна быть заземлена для обнаружения паразитного тока на землю или защиты от перенапряжения, может быть подключен заземляющий трансформатор (обычно зигзагообразный трансформатор ), чтобы позволить токам замыкания на землю возвращаться из любой фазы на землю. Другой вариант — это система «треугольник с заземлением», которая представляет собой замкнутый треугольник, заземленный на одном из переходов трансформаторов.
Трехпроводные и четырехпроводные схемы
Схема звезды (Y) и треугольника (Δ)
Существует две основные трехфазные конфигурации: звезда (Y) и треугольник (Δ). Как показано на схеме, дельта-конфигурация требует только трех проводов для передачи, но конфигурация звезда (звезда) может иметь четвертый провод. Четвертый провод, если он есть, предоставляется как нейтраль и обычно заземляется. В трех- и четырехпроводном обозначении не учитывается заземляющий провод, расположенный над многими линиями передачи, который предназначен исключительно для защиты от неисправностей и не пропускает ток при нормальном использовании.
Четырехпроводная система с симметричным напряжением между фазой и нейтралью получается, когда нейтраль соединяется с «общей точкой звезды» всех обмоток питания. В такой системе все три фазы будут иметь одинаковую величину напряжения относительно нейтрали. Были использованы другие несимметричные системы.
Четырехпроводная система «звезда» используется, когда необходимо обслуживать смесь однофазных и трехфазных нагрузок, например, смешанные нагрузки освещения и двигателя. Примером применения является местное распределение в Европе (и в других местах), где каждый покупатель может получать питание только от одной фазы и нейтрали (которая является общей для трех фаз). Когда группа потребителей, совместно использующих нейтраль, потребляет неравные фазные токи, общий нейтральный провод переносит токи, возникающие в результате этих дисбалансов. Инженеры-электрики пытаются спроектировать трехфазную систему питания для любого места так, чтобы мощность, потребляемая от каждой из трех фаз, была одинаковой, насколько это возможно на этом участке. Инженеры-электрики также стараются организовать распределительную сеть таким образом, чтобы нагрузки были максимально сбалансированы, поскольку те же принципы, которые применяются к отдельным помещениям, также применимы к электроэнергии крупномасштабной системы распределения. Следовательно, органы электроснабжения прилагают все усилия для распределения мощности, потребляемой на каждой из трех фаз, по большому количеству помещений, чтобы в среднем в точке питания наблюдалась как можно более сбалансированная нагрузка.
Конфигурация «треугольник-звезда» на сердечнике трансформатора (обратите внимание, что у практического трансформатора обычно разное количество витков на каждой стороне).
Для бытового использования некоторые страны, такие как Великобритания, могут подавать одну фазу и нейтраль с высоким током (до 100 А ) на один объект, в то время как другие, такие как Германия, могут подавать 3 фазы и нейтраль каждому потребителю, но с меньшим предохранителем. номинальный ток, обычно 40–63 А на фазу, и «вращается», чтобы избежать эффекта увеличения нагрузки на первую фазу.
Трансформатор для системы « треугольник с высокой ветвью », используемой для смешанных однофазных и трехфазных нагрузок в одной распределительной системе. Трехфазные нагрузки, такие как двигатели, подключаются к L1, L2 и L3. Однофазные нагрузки подключаются между L1 или L2 и нейтралью или между L1 и L2. Фаза L3 в 1,73 раза больше напряжения L1 или L2 относительно нейтрали, поэтому эта ветвь не используется для однофазных нагрузок.
На основе соединения звезда (Y) и треугольник (Δ). Как правило, существует четыре различных типа соединения обмоток трехфазного трансформатора для целей передачи и распределения.
- звезда (Y) — звезда (Y) используется для малого тока и высокого напряжения.
- Дельта (Δ) — Дельта (Δ) используются для больших токов и низких напряжений.
- Дельта (Δ) — звезда (Y) используется для повышающих трансформаторов, т. Е. На генерирующих станциях.
- звезда (Y) — Дельта (Δ) используется для понижающих трансформаторов, т. е. в конце передачи.
В Северной Америке иногда используется питание по схеме «треугольник» с высоким плечом, когда одна обмотка трансформатора, подключенного по схеме «треугольник», питающего нагрузку, имеет центральный ответвитель, а этот центральный ответвитель заземлен и подключен как нейтраль, как показано на второй схеме. Эта установка обеспечивает три различных напряжения: если напряжение между центральным ответвлением (нейтралью) и каждым из верхнего и нижнего ответвлений (фаза и противофаза) составляет 120 В (100%), напряжение между фазной и противофазной линиями составляет 240 В (200%), а напряжение между нейтралью и «верхней ветвью» составляет ≈ 208 В (173%).
Причина, по которой используется питание, подключенное по схеме треугольника, обычно для питания больших двигателей, требующих вращающегося поля. Однако в соответствующих помещениях также потребуются «нормальные» североамериканские источники питания 120 В, два из которых выведены (180 градусов «не в фазе») между «нейтралью» и любой из центральных фазовых точек. { \ circ} — \ theta \ right), \ end {align}}}
где Z total — это сумма импедансов линии и нагрузки ( Z total = Z LN + Z Y ), а θ — фаза полного импеданса ( Z total ).
Разность фазового угла между напряжением и током каждой фазы не обязательно равна 0 и зависит от типа импеданса нагрузки Z y . Индуктивные и емкостные нагрузки приводят к тому, что ток либо отстает, либо опережает напряжение. Однако относительный фазовый угол между каждой парой линий (от 1 до 2, от 2 до 3 и от 3 до 1) по-прежнему будет составлять -120 °.
Векторная диаграмма для звездообразной конфигурации, в которой V ab представляет линейное напряжение, а V an — фазное напряжение. Напряжения сбалансированы как:
- V ab = (1∠α — 1∠α + 120 °) √ 3 | V | ∠α + 30 °
- V bc = √ 3 | V | ∠α — 90 °
- V ca = √ 3 | V | ∠α + 150 °
(в данном случае α = 0. {\ circ} — \ theta \ right), \ end {align}}}
где, опять же, θ — фаза дельта-импеданса ( Z Δ ).
Дельта-конфигурация и соответствующая векторная диаграмма его токов. Фазные напряжения равны линейным напряжениям, а токи рассчитываются как:
- I a = I ab — I ca = √ 3 I ab ∠ − 30 °
- I b = I bc — I ab
- I c = I ca — I bc
Общая передаваемая мощность составляет:
- S 3Φ = 3V фаза I * фаза
Проверка векторной диаграммы или преобразование из векторной нотации в комплексную показывает, как разница между двумя линейными напряжениями приводит к линейному напряжению, которое больше в √ 3 раза . Поскольку в схеме «треугольник» нагрузка соединяется между фазами трансформатора, она обеспечивает разность фазных напряжений, которая в √ 3 раза превышает напряжение между фазами и нейтралью, подаваемое на нагрузку в конфигурации звездой. Поскольку передаваемая мощность равна V 2 / Z, импеданс в конфигурации треугольника должен быть в 3 раза больше, чем он был бы в конфигурации звезды, чтобы передавалась такая же мощность.
Однофазные нагрузки
За исключением двухполюсной системы с треугольником , однофазные нагрузки могут быть подключены к любым двум фазам, или нагрузка может быть подключена от фазы к нейтрали. Распределение однофазных нагрузок между фазами трехфазной системы уравновешивает нагрузку и позволяет наиболее экономично использовать проводники и трансформаторы.
В симметричной трехфазной четырехпроводной системе звезда, три фазных провода имеют одинаковое напряжение относительно нейтрали системы. Напряжение между линейными проводниками в √ 3 раза больше напряжения между фазным проводом и нейтралью:
- VLLзнак равно3VLN.{\ displaystyle V _ {\ text {LL}} = {\ sqrt {3}} V _ {\ text {LN}}.}
Все токи, возвращающиеся от потребителей к трансформатору питания, делятся на нейтральный провод. Если нагрузки равномерно распределены по всем трем фазам, сумма возвратных токов в нулевом проводе будет приблизительно равна нулю. Любая несимметричная фазовая нагрузка на вторичной обмотке трансформатора будет неэффективно использовать мощность трансформатора.
Если нейтраль питания разорвана, напряжение между фазой и нейтралью больше не поддерживается. Фазы с более высокой относительной нагрузкой будут испытывать пониженное напряжение, а фазы с более низкой относительной нагрузкой будут испытывать повышенное напряжение, вплоть до межфазного напряжения.
Высокой ноги дельта обеспечивает фаза-нейтраль отношения V LL = 2 V LN , однако, Л.Н. нагрузка накладывается на одну фазу. На странице производителя трансформатора предполагается, что нагрузка LN не должна превышать 5% мощности трансформатора.
Поскольку √ 3 ≈ 1,73, определение V LN как 100% дает V LL ≈ 100% × 1,73 = 173% . Если V LL был установлен на 100%, то V LN ≈ 57,7% .
Несбалансированные нагрузки
Когда токи в трех проводах под напряжением трехфазной системы не равны или не находятся под точным фазовым углом 120 °, потери мощности больше, чем в идеально сбалансированной системе. Для анализа неуравновешенных систем используется метод симметричных компонент .
Нелинейные нагрузки
При линейных нагрузках нейтраль пропускает ток только из-за дисбаланса между фазами. Газоразрядные лампы и устройства, использующие входной каскад выпрямителя и конденсатора, такие как импульсные источники питания , компьютеры, офисное оборудование и т. Д., Создают гармоники третьего порядка , которые синфазны на всех фазах питания. Следовательно, такие гармонические токи складываются в нейтрали в системе звезды (или в заземленном (зигзагообразном) трансформаторе в системе треугольника), что может привести к тому, что ток нейтрали превысит фазный ток.
Трехфазные нагрузки
Важным классом трехфазной нагрузки является электродвигатель . Трехфазный асинхронный двигатель имеет простую конструкцию, изначально высокий пусковой момент и высокую эффективность. Такие двигатели находят широкое применение в промышленности. Трехфазный двигатель компактнее и дешевле, чем однофазный двигатель того же класса напряжения и номинала, а однофазные двигатели переменного тока мощностью более 10 л.с. (7,5 кВт) встречаются редко. Трехфазные двигатели также меньше вибрируют и, следовательно, служат дольше, чем однофазные двигатели той же мощности, используемые в тех же условиях.
Нагреватели сопротивления, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам. Аналогичным образом может быть подключено электрическое освещение.
Мерцание линейной частоты в свете вредно для высокоскоростных камер, используемых при трансляции спортивных мероприятий для замедленного воспроизведения. Его можно уменьшить путем равномерного распределения источников света, работающих от линейной частоты, по трем фазам, чтобы освещенная область освещалась всеми тремя фазами. Этот прием успешно применялся на Олимпийских играх 2008 года в Пекине.
Выпрямители могут использовать трехфазный источник для создания шестиимпульсного выхода постоянного тока. Выход таких выпрямителей намного более плавный, чем однофазный выпрямитель, и, в отличие от однофазного, не опускается до нуля между импульсами. Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока. «Зигзагообразные» трансформаторы могут производить эквивалент шестифазного двухполупериодного выпрямления, двенадцать импульсов за цикл, и этот метод иногда используется для снижения стоимости фильтрующих компонентов при одновременном улучшении качества получаемого постоянного тока.
Трехфазная вилка, обычно используемая на электрических плитах в Германии.
Одним из примеров трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.
Во многих европейских странах электрические плиты обычно рассчитаны на трехфазное питание. Индивидуальные нагревательные элементы часто подключаются между фазой и нейтралью, чтобы обеспечить подключение к однофазной цепи, если трехфазная сеть недоступна. Другими обычными трехфазными потребителями в бытовой сфере являются безбаквальные системы водяного отопления и накопительные нагреватели . Дома в Европе и Великобритании стандартизированы на номинальное напряжение 230 В между любой фазой и землей. (Существующие источники питания по-прежнему составляют около 240 В в Великобритании и 220 В на большей части континента.) Большинство групп домов питаются от трехфазного уличного трансформатора, так что отдельные помещения с потреблением выше среднего могут получать питание от второго или подключение третьей фазы.
Фазовые преобразователи
Фазовые преобразователи используются, когда трехфазное оборудование необходимо эксплуатировать от однофазного источника питания. Они используются, когда трехфазное питание недоступно или стоимость неоправданна. Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. В некоторых железнодорожных локомотивах используется однофазный источник для привода трехфазных двигателей, питаемых от электронного привода.
Роторный фазовый преобразователь представляет собой трехфазный двигатель со специальными исходными механизмами и коэффициент мощности коррекцией , которая дает сбалансированные трехфазные напряжения. При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного двигателя от однофазного источника. В таком устройстве накопление энергии осуществляется за счет инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.
Трехфазный генератор может приводиться в движение однофазным двигателем. Эта комбинация двигатель-генератор может обеспечивать функцию преобразователя частоты, а также преобразование фазы, но требует двух машин со всеми их затратами и потерями. Метод двигатель-генератор также может формировать источник бесперебойного питания при использовании в сочетании с большим маховиком и двигателем постоянного тока с батарейным питанием; такая комбинация обеспечит почти постоянную мощность по сравнению с временным падением частоты, которое испытывает резервная генераторная установка, пока не сработает резервный генератор.
Конденсаторы и автотрансформаторы могут использоваться для аппроксимации трехфазной системы в статическом преобразователе фазы, но напряжение и фазовый угол дополнительной фазы могут быть полезны только для определенных нагрузок.
Частотно-регулируемые приводы и цифровые преобразователи фазы используют силовые электронные устройства для синтеза сбалансированного трехфазного источника питания из однофазной входной мощности.
Тестирование
Проверка чередования фаз в цепи имеет большое практическое значение. Два источника трехфазного питания нельзя подключать параллельно, если они не имеют одинаковой последовательности фаз, например, при подключении генератора к распределительной сети под напряжением или при параллельном подключении двух трансформаторов. В противном случае соединение будет вести себя как короткое замыкание, и будет течь избыточный ток. Направление вращения трехфазных двигателей можно изменить, поменяв местами любые две фазы; Может оказаться непрактичным или вредным испытание машины путем кратковременного включения двигателя для наблюдения за его вращением. Последовательность фаз двух источников можно проверить, измерив напряжение между парами клемм и наблюдая, что клеммы с очень низким напряжением между ними будут иметь одну и ту же фазу, тогда как пары, которые показывают более высокое напряжение, находятся на разных фазах.
Если абсолютная идентичность фаз не требуется, можно использовать приборы для проверки чередования фаз, чтобы идентифицировать последовательность чередования за одно наблюдение. Прибор для проверки чередования фаз может содержать миниатюрный трехфазный двигатель, направление вращения которого можно наблюдать непосредственно через корпус прибора. Другой шаблон использует пару ламп и внутреннюю фазосдвигающую схему для отображения чередования фаз. Другой тип инструмента может быть подключен к обесточенному трехфазному двигателю и может обнаруживать небольшие напряжения, вызванные остаточным магнетизмом, когда вал двигателя вращается вручную. Лампа или другой индикатор загорается, чтобы показать последовательность напряжений на клеммах для данного направления вращения вала.
Альтернативы трехфазному
- Двухфазная электроэнергия
- Используется, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
- Двухфазная электроэнергия
- Использует два напряжения переменного тока с фазовым сдвигом на 90 градусов между ними. Двухфазные цепи могут быть соединены двумя парами проводов, или два провода могут быть объединены, при этом для схемы требуется только три провода. Токи в общем проводе в 1,4 раза превышают ток в отдельных фазах, поэтому общий провод должен быть больше. Двухфазные и трехфазные системы могут быть соединены между собой трансформатором Скотта-Т , изобретенным Чарльзом Ф. Скоттом . Самые ранние машины переменного тока, особенно первые генераторы на Ниагарском водопаде , использовали двухфазную систему, и некоторые оставшиеся двухфазные распределительные системы все еще существуют, но трехфазные системы вытеснили двухфазную систему для современных установок.
- Моноциклическая мощность
- Асимметричная модифицированная двухфазная система питания, используемая General Electric примерно в 1897 году, отстаиваемая Чарльзом Протеем Штайнметцем и Элиху Томсоном . Эта система была разработана, чтобы избежать нарушения патентных прав. В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с малой долей (обычно 1/4 линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок. После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было трудно анализировать, и его хватило не на то, чтобы разработать удовлетворительный учет энергии.
- Системы высокого фазового порядка
- Были построены и испытаны для передачи энергии. Такие линии передачи обычно используют шесть или двенадцать фаз. Линии передачи высокого фазного порядка позволяют передавать чуть меньшую, чем пропорционально большую мощность, через заданный объем без затрат на преобразователь постоянного тока высокого напряжения (HVDC) на каждом конце линии. Однако, соответственно, они требуют больше оборудования.
Цветовые коды
Проводники трехфазной системы обычно обозначаются цветовым кодом, чтобы обеспечить сбалансированную нагрузку и обеспечить правильное чередование фаз для двигателей . Используемые цвета могут соответствовать международному стан
Три фазы что это такое
Трехфазный переменный ток
В настоящее время во всем мире получила наибольшее распространение трехфазная система переменного тока .
Трехфазной системой электрических цепей называют систему, состоящую из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода ( φ =2 π /3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током .
Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока . По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода, как это показано на рис. 1.
Рис. 1. Графики зависимости от времени ЭДС, индуцированных в обмотках якоря генератора трехфазного тока
Как осуществляется подобный генератор легко понять из схемы на рис. 2.
Рис. 2. Три пары независимых проводов, присоединенных к трем якорям генератора трехфазного тока, питают осветительную сеть
Здесь имеются три самостоятельных якоря, расположенных на статоре электрической машины и смещенных на 1/3 окружности (120 о ). В центре электрической машины вращается общий для всех якорей индуктор, изображенный на схеме в виде постоянного магнита.
В каждой катушке индуцируется переменная ЭДС одной и той же частоты, но моменты прохождения этих ЭДС через нуль (или через максимум) в каждой из катушек окажутся сдвинутыми на 1/3 периода друг относительно друга, ибо индуктор проходит мимо каждой катушки на 1/3 периода позже, чем мимо предыдущей.
Каждая обмотка трехфазного генератора является самостоятельным генератором тока и источником электрической энергии. Присоединив провода к концам каждой из них, как это показано на рис. 2, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные электроприемники, например электрические лампы.
В этом случае для передачи всей энергии, которую поглощают электроприемники, требовалось бы шесть проводов. Можно однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, т. е. значительно сэкономить проводку.
Первый из этих способов, называется соединением звездой (рис. 3).
Рис. 3. Четырехпроводная система проводки при соединении трехфазного генератора звездой. Нагрузки (группы электрических ламп I, II, III) питаются фазными напряжениями.
Будем называть зажимы обмоток 1, 2, 3 началами, а зажимы 1 ‘ , 2 ‘ , 3 ‘ – концами соответствующих фаз.
Соединение звезд заключается в том, что мы соединяем концы всех обмоток в одну точку генератора, которая называется нулевой точкой или нейтралью , и соединяем генератор с приемниками электроэнергии четырьмя проводами: тремя так называемыми линейными проводами , идущими от начала обмоток 1, 2, 3, и нулевым или нейтральным проводом , идущим от нулевой точки генератора. Такая система проводки называется четырехпроводной .
Напряжения между нулевой точкой и началом каждой фазы называют фазными напряжениями , а напряжения между началами обмоток, т, е. точками 1 и 2, 2 и 3, 3 и 1, называют линейными . Фазные напряжения обычно обозначают U1 , U 2 , U 3 , или в общем виде U ф, а линейные напряжения – U12, U23 , U 31 , или в общем виде U л.
Между амплитудами или действующими значениями фазных и линейных напряжений при соединении обмоток генератора звездой существует соотношение U л = √ 3 U ф ≈ 1,73 U ф
Таким образом, например, если фазное напряжение генератора U ф = 220 В, то при соединении обмоток генератора звездой линейное напряжение U л – 380 В.
В случае равномерной нагрузки всех трех фаз генератора, т. е. при приблизительно одинаковых токах в каждой из них, ток в нулевом проводе равен нулю . Поэтому в этом случае можно нулевой провод упразднить и перейти к еще более экономной трехпроводной системе. Все нагрузки включаются при этом между соответствующими парами линейных проводов.
При несимметричной нагрузке ток в нулевом проводе не равен нулю, но, вообще говоря, он слабее, чем ток в линейных проводах. Поэтому нулевой провод может быть тоньше, чем линейные.
При эксплуатации трехфазного переменного тока стремятся сделать нагрузку различных фаз по возможности одинаковой. Поэтому, например, при устройстве осветительной сети большого дома при четырехпроводной системе вводят в каждую квартиру нулевой провод и один из линейных с таким расчетом, чтобы в среднем на каждую фазу приходилась примерно одинаковая нагрузка.
Другой способ соединения обмоток генератора, также допускающий трехпроводную проводку – это соединение треугольником, изображенное на рис. 4.
Рис. 4. Схема соединения обмоток трехфазного генератора треугольником
Здесь конец каждой обмотки соединен с началом следующей, так что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам этого треугольника — точкам 1, 2 и 3. При соединении треугольником линейное напряжение генератора равно его фазному напряжению : U л = U ф.
Таким образом, переключение обмоток генератора со звезды на треугольник приводит к снижению линейного напряжения в √ 3 ≈ 1,73 раза . Соединение треугольником также допустимо лишь при одинаковой или почти одинаковой нагрузке фаз. Иначе ток в замкнутом контуре обмоток будет слишком силен, что опасно для генератора.
При применении трехфазного тока отдельные приемники (нагрузки), питающиеся от отдельных пар проводов, также могут быть соединены либо звездой, т. е. так, что один конец их присоединен к общей точке, а оставшиеся три свободных конца присоединяются к линейным проводам сети, либо треугольником, т. е. так, что все нагрузки соединяются последовательно и образуют общий контур, к точкам 1, 2, 3 которого присоединяются линейные провода сети.
На рис. 5 показано соединение нагрузок звездой при трехпроводной системе проводки, а на рис. 6 — при четырехпроводной системе проводки (в этом случае общая точка всех нагрузок соединяется с нулевым проводом).
На рис. 7 показана схема соединения нагрузок треугольником при трехпроводной системе проводки.
Рис. 5. Соединение нагрузок звездой при трехпроводной системе проводки
Рис. 6. Соединение нагрузок звездой при четырехпроводной системе проводок
Рис. 7. Соединение нагрузок треугольником при трехпроводной системе проводки
Практически важно иметь в виду следующее. При соединении нагрузок треугольником каждая нагрузка находится под линейным напряжением, а при соединении звездой – под напряжением, в √ 3 раз меньшим. Для случая четырехпроводной системы это ясно из рис. 6. Но то же имеет место в случае трехпроводной системы (рис. 5).
Между каждой парой линейных напряжений здесь включены последовательно две нагрузки, токи в которых сдвинуты по фазе на 2 π /3. Напряжение на каждой нагрузке равно соответствующему линейному напряжению, деленному на √ 3 .
Таким образом, при переключении нагрузок со звезды на треугольник напряжения на каждой нагрузке, а следовательно, и ток в ней повышаются в √ 3 ≈ 1,73 раза. Если, например, линейное напряжение трехпроводной сети равнялось 380 В, то при соединении звездой (рис. 5) напряжение на каждой из нагрузок будет равно 220 В, а при включении треугольником (рис. 7) будет равно 380 В.
При подготовке статьи использовалась информация из учебника физики под редакцией Г. С. Ландсберга.
Трехфазные и однофазные сети. Отличия и преимущества. Недостатки
В электрооборудовании жилых многоквартирных домов, а также в частном секторе применяются трехфазные и однофазные сети. Изначально электрическая сеть выходит от электростанции с тремя фазами, и чаще всего к жилым домам подключена сеть питания именно трехфазная. Далее она имеет разветвления на отдельные фазы. Такой метод применяется для создания наиболее эффективной передачи электрического тока от электростанции к месту назначения, а также для уменьшения потерь при транспортировке.
Чтобы определить количество фаз у себя в квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке, либо прямо в квартире, и посмотреть, какое количество проводов поступает в квартиру. Если сеть однофазная, то проводов будет 2 – фаза и ноль. Возможен еще третий провод – заземление.
Если электрическая сеть трехфазная, то проводов будет 4 или 5. Три из них – это фазы, четвертый – ноль, и пятый – заземление. Также число фаз определяется и по количеству автоматических выключателей.
Трехфазные сети в квартирах применяются редко, в случаях подключения старых электроплит с тремя фазами, либо мощных нагрузок в виде циркулярной пилы или отопительных устройств. Число фаз также можно определить по величине входного напряжения. В 1-фазной сети напряжение 220 вольт, в 3-фазной сети между фазой и нолем тоже 220 вольт, между 2-мя фазами – 380 вольт.
Отличия
Если не брать во внимание отличие в числе проводов сетей и схему подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.
- В случае трехфазной сети питания возможен перекос фаз из-за неравномерного разделения по фазам нагрузки. На одной фазе может быть подключен мощный обогреватель или печь, а на другой телевизор и стиральная машина. Тогда и возникает этот отрицательный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что влечет неисправности бытовых устройств. Для предотвращения таких факторов необходимо заранее распределять нагрузку по фазам перед прокладкой проводов электрической сети.
- Для 3-фазной сети требуется больше кабелей, проводников и выключателей, а значит, денежные средства слишком не сэкономить.
- Возможности однофазной бытовой сети по мощности значительно меньше трехфазной. Если планируется применение нескольких мощных потребителей и бытовых устройств, электроинструмента, то предпочтительно подводить к дому или квартире трехфазную сеть питания.
- Основным достоинством 3-фазной сети является малое падение напряжения по сравнению с 1-фазной сетью, при условии одинаковой мощности. Это можно объяснить тем, что в 3-фазной сети ток в проводнике фазы меньше в три раза, чем в 1-фазной сети, а на проводе ноля тока вообще нет.
Преимущества 1-фазной сети
Основным достоинством является экономичность ее использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в 3-фазных сетях – пятипроводные. Чтобы осуществить защиту оборудования в 1-фазных сетях, нужно иметь однополюсные защитные автоматы, в то время как в 3-фазных сетях без трехполюсных автоматов не обойтись.
В связи с этим габариты приборов защиты также будут значительно отличаться. Даже на одном электрическом автомате уже есть экономия в два модуля. А по габаритам это составляет около 36 мм, что значительно повлияет при размещении автоматов в щите на DIN рейке. А при установке дифференциального автомата экономия места составит более 100 мм.
Трехфазные и однофазные сети для частного дома
Расход электроэнергии населением постоянно повышается. В середине прошлого столетия в частных домах было сравнительно немного бытовых устройств. Сегодня в этом плане совсем другая картина. Бытовые потребители энергии в частных домах плодятся не по дням, а по часам. Поэтому в собственных частных владениях уже не стоит вопрос, какие сети питания выбрать для подключения. Чаще всего в частных постройках выполняют сети питания с тремя фазами, а от однофазной сети отказываются.
Но стоит ли трехфазная сеть такого превосходства в установке? Многие считают, что, подключив три фазы, будет возможность пользоваться большим количеством устройств. Но не всегда это получается. Наибольшая допустимая мощность определена в техусловиях на подключение. Обычно, этот параметр составляет 15 кВт на все частное домовладение. В случае однофазной сети этот параметр примерно такой же. Поэтому видно, что по мощности особой выгоды нет.
Но, необходимо помнить, что если трехфазные и однофазные сети имеют равную мощность, то для 3-фазной сети можно применить кабель меньшего сечения, так как мощность и ток распределяется по всем фазам, следовательно, меньше нагружает отдельные проводники фаз. Номинальное значение тока автомата защиты для 3-фазное сети также будет ниже.
Большое значение имеет размер распределительного щита, который для 3-фазной сети будет иметь размеры заметно больше. Это зависит от размера трехфазного счетчика, который имеет габариты больше однофазного, а также автомат ввода будет занимать больше места. Поэтому распределительный щит для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.
Но у трехфазного питания есть и свои преимущества, выражающиеся в том, что можно подключать трехфазные приемники тока. Ими могут быть электродвигатели, электрические котлы и другие мощные устройства, что является достоинством трехфазной сети. Рабочее напряжение 3-фазной сети равно 380 В, что выше, чем в однофазном типе, а значит, вопросам электробезопасности придется уделить больше внимания. Также дело обстоит и с пожарной безопасностью.
Недостатки трехфазной сети для частного дома
В результате можно выделить несколько недостатков применения трехфазной сети для частного дома:
- Нужно получать техусловия и разрешение на подключение сети от энергосбыта.
- Повышается опасность поражения током, а также опасность возгорания по причине повышенного напряжения.
- Значительные габаритные размеры распредщита ввода питания. Для хозяев загородных домов такой недостаток не имеет большого значения, так как места у них хватает.
- Необходим монтаж ограничителей напряжения в виде модулей на вводном щитке. В трехфазной сети это особенно актуально.
Преимущества трехфазного питания для частных домов:
- Есть возможность распределить нагрузку равномерно по фазам, во избежание возникновения перекоса фаз.
- Можно подключать в сеть мощные трехфазные потребители энергии. Это является наиболее ощутимым достоинством.
- Уменьшение номинальных значений аппаратов защиты на вводе, а также снижение сечения кабеля ввода.
- Во многих случаях можно добиться разрешения у компании по энергосбыту на повышение допустимого наибольшего уровня мощности потребления электроэнергии.
В итоге, можно сделать вывод, что практически осуществлять ввод трехфазной сети питания рекомендуется для частных строений и домов с жилой площадью более 100 м 2 . Трехфазное питание особенно подходит тем хозяевам, которые собираются установить у себя циркулярную пилу, котел отопления, различные приводы механизмов с трехфазными электродвигателями.
Остальным владельцам частных домов переходить на трехфазное питание не обязательно, так как это может создать только дополнительные проблемы.
Чем трехфазное напряжение отличается от однофазного
Три фазы = линейное напряжение 380 Вольт, Одна фаза = фазное напряжение 220 Вольт
Статья адресована начинающим электрикам. Я тоже когда-то был начинающим, и всегда рад поделиться знаниями и поднять профессиональный уровень моих читателей.
Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.
Очень коротко, для тех, кто не будет читать дальше: напряжение 380 В называется линейным и действует в трехфазной сети между любыми из трёх фаз. Напряжение 220 В называется фазным и действует между любой из трёх фаз и нейтралью (нулём).
Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.
Чем три фазы отличаются от одной?
В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я подробно рассказал здесь, это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.
Напряжения в трёхфазной системе
Так получается, потому что напряжения (при активной нагрузке , и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.
Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.
Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.
Подробнее о перекосе фаз, и от чего он бывает – здесь.
А защититься от перекоса фаз лучше всего с помощью реле напряжения, например Барьер или ФиФ ЕвроАвтоматика.
Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)
Преимущества и недостатки
Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.
Однофазная сеть 220 В, плюсы
- Простота
- Дешевизна
- Ниже опасное напряжение
Однофазная сеть 220 В, минусы
- Ограниченная мощность потребителя
Трехфазная сеть 380 В, плюсы
- Мощность ограничена только сечением проводов
- Экономия при трехфазном потреблении
- Питание промышленного оборудования
- Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания
Трехфазная сеть 380 В, минусы
- Дороже оборудование
- Более опасное напряжение
- Ограничивается максимальная мощность однофазных нагрузок
Когда 380, а когда 220?
Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.
Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…
Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее трехфазные двигатели), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.
Трехфазный ввод. Вводной автомат на 100 А, далее – на счетчик трехфазный прямого включения Меркурий 230.
Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.
Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.
Про выбор защитного автомата я уже писал здесь. А про выбор сечения провода – здесь. Там же – жаркие обсуждения вопросов.
Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.
Пример трехфазного электрощитка. Потребители и трехфазные, и однофазные.
Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.
Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).
А что там свежего в группе ВК СамЭлектрик.ру?
Подписывайся, и читай статью дальше:
И на вводе (перед счетчиком) стоят примерно такие “ящички”:
Трехфазный ввод. Вводной автомат перед счетчиком.
Существенный минус трехфазного ввода (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.
Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?
Схемы Звезда и Треугольник в трехфазной сети
Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.
Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда”, то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.
В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных калориферах и конвектоматах.
Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.
Система распределения электроэнергии
Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.
На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.
Трехфазное питание – ступени от генератора до потребителя
На рисунке упрощенно показано, как с генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).
Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.
Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.
Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.
Напоследок – ещё несколько фото с комментариями.
Электрощит с трехфазным вводом, но все потребители – однофазные.
Трехфазный ввод. Переход на меньшее сечение проводов, чтобы подключить их к счетчику.
{SOURCE}
Как подключить 3 фазы — Всё о электрике
Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети
Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.
Схемы подключения трехфазного двигателя
Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:
- Схема звезды.
- Схема треугольника.
Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.
Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.
Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.
Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.
Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.
Проверка схемы подключения мотора
Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.
Метод определения фаз статора
После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.
Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.
Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
- Подключить импульсный постоянный ток.
- Подключить переменный источник тока.
Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.
Как проверить полярность обмоток батарейкой и тестером
На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.
Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.
Проверка переменным током
Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.
Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.
Схема звезды
Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.
Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.
Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:
С = (2800 · I) / U
Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.
Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.
В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».
Схема треугольника
Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.
Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:
С = (4800 · I) / U
Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.
Двигатель с магнитным пускателем
Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.
Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.
В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.
Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:
Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.
Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.
Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.
При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.
Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.
Как из 220 Вольт сделать 380 В?
Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?
Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.
Теория
На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.
В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.
Рис. 1. Структура трёхфазного тока
Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.
Способы получения 380 Вольт из 220
Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:
- с помощью электронного преобразователя напряжения;
- путём применения трансформатора;
- использованием трёх фаз;
- используя трёхфазный двигатель в качестве генератора;
- пользуясь конденсаторной схемой.
Преобразователь напряжения
Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.
Рис. 2. Преобразователь напряжения
Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.
Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).
Используя трансформатор
С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор. преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.
Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.
Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.
Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.
Использование 3-х фаз
Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.
При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.
Использование электродвигателя
Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.
Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.
Пример подключения фазосдвигающего конденсатора см. на рис. 3.
Рис. 3. Подключение пускового конденсатора
Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.
Рис. 4. Трёхфазный ток от электромотора
Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.
Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.
Электродвигатель в качестве генератора
Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).
Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для этого необходимо вращать вал с угловой скоростью 1500 об/мин.
Рис. 5. Трёхфазный двигатель в качестве генератора
В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.
Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.
Выводы
Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:
- стабильные параметры тока;
- безопасная эксплуатация;
- обеспечение заявленной выходной мощности;
- компактность установки.
Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.
Трехфазная розетка
В силовых линиях, обеспечивающих электропитание оборудования широко используется трехфазная розетка, составляющая вместе с вилкой единый разъем. Розетка оборудовано как минимум тремя контактами для подключения фаз и дополнительными контактами для рабочего нуля и заземления. Поскольку такие розетки используются в силовых трехфазных линиях и подключаются к мощным устройствам, через их контакты постоянно проходят высокие токи. Поэтому площадь сечения этих контактов должна быть большой, чтобы они могли выдерживать постоянные значительные нагрузки.
Общие сведения о трехфазных розетках
Современная промышленность выпускает два основных вида контактных разъемов. Первый вариант с 4 контактами используется для передачи электроэнергии к нагрузке, подключенной по схеме «треугольник». Это широко распространенная розетка трехфазная с заземляющим контактом, в которой установлены 3 фазных контакта и 1 – заземления. Второй тип разъемов оборудован 5 контактами и подключается по схеме «звезда». В этих устройствах 3 контакта являются фазными, а 2 остальных используются в качестве рабочего нуля и заземления.
С целью обеспечения повышенной защиты от поражения электрическим током используются специальные трехфазные розетки и вилки с 7 контактами. В них каждой фазе соответствует свой рабочий ноль, для чего оказываются задействованными 6 контактов, а 7-й контакт является заземлением. В данной схеме подключения на каждой фазе устанавливается собственное устройство защитного отключения.
Как правило, силовые разъемы используются на линиях, питающих стационарное и переносное оборудование повышенной мощности, используемое в промышленности, строительстве, на транспорте и других областях. Материалом корпусов служит противоударный каучук или пластик на основе полиамидных смол. Он обладает высокой устойчивостью к перепадам температур в пределах от -40 до + 125 градусов, а также к воздействию повышенной влажности и активных веществ. Дополнительная защита от случайных прикосновений, воздействия неблагоприятных внешних условий обеспечивается с помощью герметизирующих откидывающихся крышек или заглушек.
Корпуса трехфазных розеток могут изготавливаться в различных вариантах. Основными модификациями являются монтажные розетки, розетки с заглушкой, наружные, тройные и наклонные розетки с заглушками и без заглушек, а также плоские устройства для электрических щитов.
Трехфазные линии, питающие мощные нагрузки, подключаются к разъемам, способным работать при высоком рабочем напряжении от 440 до 600 В и при токе 30-40 А. Большие нагрузки возникают под действием высокого линейного межфазного напряжения 380 вольт.
Провода и кабели, по которым питание поступает к розетке, также рассчитываются на большие токи и высокое напряжение. Это достигается за счет большой площади сечения и качественной изоляции проводников. Подключение трехфазных розеток может производиться по различным схемам. Данная процедура достаточно сложная и ответственная, поэтому для ее выполнения рекомендуется привлекать только квалифицированных специалистов.
Схема подключения трехфазной розетки
Схема подключения выбирается в соответствии с используемыми бытовыми приборами. Большинство из них подключаются к обычным розетками на 220 В. Однако, существует оборудование, для которого может понадобиться именно трехфазная розетка.
На входе устанавливается трехполюсный автоматический выключатель на 40 ампер. К нему подключаются три фазных и один нулевой провод. После автомата устанавливается такой же трехфазный счетчик. Далее фазы распределяются по нагрузкам, в том числе к ним подключаются и розетки трехфазные силовые. Для прокладки линий внутри помещений применяются провода и кабели только с медными жилами. В наружных сетях допускается использование кабельно-проводниковой продукции с алюминиевыми жилами.
Схема подключения предусматривает наличие разноцветной изоляции, промаркированной в соответствии с их назначением.
- Желто-зеленым цветом обозначается заземляющий провод РЕ
- Голубым цветом – нулевой рабочий провод
- Фазные провода L1, L2 и L3 могут обозначаться любыми цветами, чаще всего – красным, черным и белым.
Эта маркировка является обязательной для всех стандартных многожильных проводников. Если подключается розетка трехфазная 16А с 4 контактами, в этом случае в схеме отсутствует заземляющий провод, а вместо заземление оборудования выполняется его зануление. Такое подключение известно, как TN-C система, объединяющая защитный и нулевой проводники по всей длине электрической цепи.
В соответствии с целевым использованием, силовые розетки могут быть подключены по отдельности, каждая из которых отходит от силового щита или целыми группами по шлейфовой схеме. Подобная схема требует обязательного соблюдения полярности при подключении контактов. В противном случае, при разной полярности контактов, роторы электродвигателей будут вращаться в разных направлениях, в результате агрегаты очень быстро выйдут из строя.
Как подключить трехфазную розетку
После рассмотрения теории можно переходить к непосредственным практическим действиям. Стандартное подключение трехфазной розетки рекомендуется рассматривать на примере типового силового устройства. Такая розетка оборудуется защитной крышкой и применяется для наружного монтажа на поверхности стен. Независимо от производителей, все они являются стандартными и подключаются одними и теми же способами. Трехфазные силовые разъемы используются не только с промышленным оборудованием, но и в домашних условиях для подключения водонагревателей, электрических котлов, тепловентиляторов и других мощных приборов.
Подключение трехфазной розетки выполняется в несколько этапов. Прежде всего она разбирается на отдельные части, путем откручивания крепежных винтов, расположенных с лицевой стороны. Таким образом, в конструкцию розетки входит основание, внутренний механизм, защитная крышка и уплотнительное кольцо. Кроме того, комплект дополняется резиновой заглушкой, применяемой для скрытой подводки силового кабеля. Он входит в розетку через отверстие, находящееся в основании, куда и вставляется эта заглушка. В ней под кабель проделывается отверстие нужного диаметра.
Основание розетки закрепляется на стене, в заранее выбранном месте. Выравнивание производится с помощью уровня, а места крепежных отверстий, расположенных по углам разъема, отмечаются карандашом или маркером. Крепление основания выполняется в соответствии с материалом стен, где оно будет установлено. Большинство перегородок сделаны из кирпича, поэтому для устройства отверстия понадобится перфоратор. На деревянных или гипсокартонных стенах для креплений можно использовать только саморезы, без каких-либо дополнительных отверстий.
После того как основание надежно зафиксировано в стене, начинается подготовка вводного силового кабеля. Он прокладывается до самой розетки и заводится в основание. Сечение кабеля выбирается по проекту или в соответствии с мощностью подключаемого оборудования. Еще до подключения трехфазной розетки, электрическая сеть должна быть обесточена. Конец кабеля нужно отметить таким образом, чтобы гофрированная труба заходила в розетку на 20-30 мм, а сами жилы – на 80-100 мм.
Перед подключением, на гофрированную трубку заранее надевается уплотнительное кольцо, которое входит в конструкцию розетки. Далее оно регулируется таким образом, чтобы обеспечивался свободный вход в пазы, расположенные в основании. При этом, гофра не должна быть излишне натянута или сжата.
На следующем этапе выполняется непосредственное подключение кабеля. С этой целью снимается защитная изоляция так, чтобы от края уплотнительного кольца ее оставалось около 30-40 мм. После этого жилы кабеля располагаются в определенном порядке и с каждой из них также снимается изоляция на расстояние примерно 10-12 мм. Необходимо учесть, что заземляющая жила делается немного короче относительно других, а изоляции нужно снять больше. Наиболее оптимальную длину жил можно подобрать, путем установки в основание механизма розетки. Тогда будет хорошо видно, на какую длину их отрезать.
Все кабельные жилы распределяются по клеммам розетки в соответствии с нанесенной маркировкой. В ней обозначены места подключения фазных, нулевого и заземляющего проводников. После установки проводников в клеммы, их нужно хорошо зафиксировать крепежными болтами. По окончании монтажа устанавливается защитная крышка, и трехфазная розетка готова к работе.
Как подключить трехфазную розетку к сети 220
Очень часто в быту используются мощные электрические плиты, потребляющие ток в пределах 40-50 ампер. Как правило, такое оборудование подключается к выделенным линиям электропитания. Подключение может выполняться напрямую от вводных клемм, расположенным на задней стенке плиты, или через специальные силовые разъемы, состоящие из розетки и вилки.
Чаще всего используется второй вариант, который считается более удобным. Если нет желания ломать кафельную плитку для скрытой проводки, может быть использована розетка накладная трехфазная, наилучшим образом подходящая для подключения. Ее номинальный ток должен быть не менее 32 А.
В первую очередь кабель подключается к самой электроплите по схеме, расположенной справа на задней стенке устройства. На ней схематично обозначена клеммная колодка, расположенная рядом, куда будут подключаться проводники. Фазные контакты соединяются общей перемычкой. Вторая перемычка соединяет контакты нуля. Последний, шестой контакт предусмотрен для подключения заземляющего провода. Обычно перемычки уже заранее установлены, однако на всякий случай рекомендуется проверить их наличие.
Подключение к вилке нужно производить внимательно. Верхний контакт обычно предусмотрен для заземляющего провода. Два других – фаза и ноль, которые могут подключать любой провод. Самое главное, чтобы в силовой розетке все провода были расположены таким же образом. В противном случае неправильное подключение вызовет короткое замыкание.
{SOURCE}
можно ли использовать 2 или 4
Этот вопрос часто задают начинающие домашние мастера перед тем, как приступить к изучению алгоритма работ по электромонтажу в квартире или частном доме. Однако, до недавнего времени, на него не было однозначного ответа и по ходу ознакомления с сегодняшней статьёй читатель поймёт почему. Попробуем разобраться, почему используют именно 3 фазы, бывают ли 2 или 4, какое напряжение у того или иного вида подключения, как именно производится коммутация электроприборов.
Трёхфазные системы довольно широко распространены при электромонтаже в частных домах
Читайте в статье
Общие сведения о величинах напряжений
Если речь идёт об электромонтаже в частном доме, то здесь чаще всего используется трёхфазное напряжение сети, величина которого составляет 380 В. Однако подобный параметр используется лишь для электродвигателей и прочего оборудования промышленного типа. Единственным исключением можно назвать некоторые варочные плиты старого образца. Именно поэтому, даже если к вводному распределительному щитку дома подходят 3 фазы, их делят на группы. Дело в том, что если при делении с каждой из них в паре пускать нейтраль (ноль), то напряжение снизится до привычных всем 220 В.
Пример того, как трёхфазную линию можно разделить на три однофазных
Подобные системы можно наблюдать в большинстве многоквартирных домов. Ведь к каждому из них подходит 3 фазы, которые уже в подъездных щитках распределяются по квартирам. В результате, в каждую подводится только одна фаза, ноль и заземление. Только при таком подключении привычные всем бытовые приборы (холодильник, стиральная и посудомоечная машина, микроволновая печь) смогут нормально функционировать.
А это схема подключения одной квартиры в распределительном шкафу на лестничной клетке
Возможно ли подключение на 2 или 4 фазы
Профессиональные электромонтёры, получившие образование в течение последних 10-12 лет, с полной уверенностью скажут, что это невозможно. И это будет ошибкой. Для примера можно взять сварочные трансформаторы, произведённые в советские времена, которые ещё сравнительно недавно можно было встретить на заводах. Их рабочее напряжение было равным 380 В, однако проводов для подключения они имели всего два. И если подобный агрегат подключить согласно логике, то это будет «ноль» и «фаза». Но загвоздка в том, что варить аппарат при такой коммутации не будет. Их следовало подключать на 2 фазы, без использования третьей и нейтрали.
ТДМ-305 – один из сварочных аппаратов на 300 А, подключаемых на 2 фазы
Чем трёхфазная сеть завоевала популярность
По сути, возможно использование 4, 5 или даже 10 фаз, однако это будет нерациональным и повысит стоимость и без того недешёвой электроэнергии. С точки зрения разумности, электромагнитного поля трёхфазной системы вполне достаточно для вращения электродвигателя. А теперь представим, что фаз будет 5. В этом случае увеличивается количество обмоток двигателя, что приводит к излишним расходам на изготовление, а значит, увеличивает итоговую стоимость агрегата. При этом никаких видимых улучшений по мощности не будет.
Вот так могут подключаться электродвигатели к трёхфазной сети
Если же говорить о двух фазах, то для запуска асинхронного электродвигателя их будет недостаточно, придётся монтировать систему, включая в схему конденсатор, который обеспечит необходимый сдвиг. При этом падение мощности обеспечено.
Немного физики: объяснение рациональности использования трёх фаз
Если говорить цифрами, то можно отметить, что полный цикл вращения ротора электродвигателя составляет 360º, а сдвиг фаз в системе с напряжением 380 В равен 120º. Путём нехитрых вычислений можно сделать вывод, что 3·120º=360. Вот и ответ на вопрос, почему используют именно 3 фазы.
Вне зависимости от количества фаз, вся коммутация должна быть аккуратной
Подведём итоги
На сегодняшний день споры о том, сколько фаз необходимо для большего КПД практически утихли. Всем стало понятно, что трёхфазные сети являются наиболее удобными при электромонтаже как при строительстве жилых домов, так и в промышленности. Ведь именно по трёхпроводной системе передаётся высоковольтное напряжение по ЛЭП, а это также о многом говорит. Значит, не стоит забивать голову, размышляя о том, что бы получилось, будь фаз 4, 5 или 6. Лишние затраты никому не нужны.
Напряжение, протекающее по линиям электропередач, может превышать 750000 В
Редакция HouseChief очень надеется, что вопрос, рассмотренный в сегодняшней статье, больше не будет беспокоить нашего читателя. Если что-либо осталось непонятным для вас, смело спрашивайте об этом в комментариях ниже. Мы обязательно всё разъясним в максимально сжатые сроки.
Если же вы имеете личное мнение по данному вопросу, просим изложить и его. Редакции HouseChief будет весьма интересно с ним ознакомиться. Напоследок предлагаем вашему вниманию короткий видеоролик, который поможет понять суть работы трёхфазной системы.
ПОНРАВИЛАСЬ СТАТЬЯ? Поддержите нас и поделитесь с друзьями
Трехфазная схема распределительного щита — 5 разных вариантов
Сегодня очень часто частные дома стали подключать к трехфазной электросети. Также в некоторых новых многоэтажках в квартиры начали заводить три фазы вместо одной как раньше. Как правило, при данном подключении местные сетевые компании выделяют на дом или на квартиру мощность 15 кВт. Это означает, что номинал вводного автоматического выключателя должен быть 25 А. Для небольших офисов, кафе и т.д. выделяют большую мощность. Поэтому в их щитах номиналы вводных автоматов будут совершенно другими.
Подключение к 3-х фазной электросети обуславливает установку трехфазных электрощитов. Ниже разберем пять разных вариантов простых трехфазных схем для распределительного щита.
Все схемы простые и носят рекомендательный характер. Они наглядно показывают суть самих подключений разных защитных устройств в одном щитке. К разработке схемы каждого щита нужно подходить индивидуально, так как у всех условия разные. Система заземления в представленных вариантах TN-S.
Вариант 1
Здесь представлена самая простая трехфазная схема щита. На вводе обязательно должен стоять вводной автоматический выключатель. Он будет ограничивать потребляемый ток, каждого потребителя — дома или квартиры. Далее идет 3-х фазный прибор учета электроэнергии.
На самом деле места размещения счетчиков могут быть разные. Они могут устанавливаться на улице в щите учета для частных домов, в этажных щитах в многоквартирных домах или непосредственно в домашних щитах. Где ставить счетчики указываю в технических условиях на подключение местные сетевые компании или это строго определяется проектной документацией зданий.
Большинство бытовых потребителей подключаются к однофазной сети. Тут составляют исключения мощные варочные поверхности, проточные водонагреватели, электрокотлы и т.д. Такие потребители имеют возможность подключения к 3-х фазной сети.
После прибора учета электроэнергии необходимо всю однофазную нагрузку равномерно распределить по фазам. Для этого нужно сосчитать мощность приборов, количество однополюсных автоматических выключателей и постараться их разделить на три равные части.
В предложенном варианте трехфазной схемы щита для наглядного понимания на каждой фазе подключено по два. Рабочий ноль от счетчика подключается к общей нулевой шине, а нулевые защитные проводники подключаются к общей шине заземления. Фазы подключаются через групповые автоматы. Таким образом получается, что при отключении потребителя будет разрываться только один фазный проводник. Это стоит учитывать и следить, чтобы при подключении щита к сети на вводе не были перепутаны между собой фаза и ноль. С такими ошибками мне пару раз приходилось сталкиваться. Получалось, что ноль коммутировался автоматами, а фаза сидела на нулевой шине. При отключении автомата в розетки все равно оставалось опасное напряжение, что могло привести к плачевным последствиям. Будьте внимательны и осторожнее.
Вариант 2
Данный вариант схемы по своей сути аналогичен с предыдущем вариантом. Тут только нет прибора учета электроэнергии и изображен 3-х полюсный автоматический выключатель для 3-х фазной нагрузки. Также тут изменено чередование однополюсных автоматов. То есть автоматы, подключенные к фазе «А» — это первый, третий и т.д. устройства. Чередование происходит через каждые два полюса. Тут так это показано для возможности использования 3-х фазной гребенчатой шины. Зубчики ее шины от одной фазы как раз имеют такое чередование. С ее помощью очень удобно соединять между собой несколько защитных устройств. Она исключает изготовления множества перемычек между ними.
Вариант 3
Этот вариант схемы трехфазного электрощита уже больше отвечает современным нормам электробезопасности. В нем после счетчика стоит общее УЗО. В текущем примере показано устройство защитного отключение с током утечки на 30мА. Данная схема щита полностью защищает человека от поражения электрическим током. Но есть некоторые минусы у использования всего одного УЗО 30мА на вводе:
- При его срабатывании будут одновременно отключаться все потребители в доме. Если это произойдет в темное время суток и поиск места утечки займет много времени, то это будет не очень удобно.
- Есть возможность появления ложного срабатывания УЗО из-за естественных токов утечки, которые присутствуют в бытовых приборах. В данной схеме также устанавливается одна общая нулевая шина после УЗО и одна общая шина заземления. Здесь с подключением кабелей от розеток сложно запутаться.
Вариант 4
Вот в данном варианте уже можно немного запутаться с подключением нулевых рабочих проводников, так как тут стоит несколько УЗО. А мы знаем, что у каждого УЗО должна быть своя индивидуальная нулевая шина, иначе ничего работать не будет.
В текущей трехфазной схеме на вводе стоит уже противопожарное селективное УЗО на 300 мА. Оно будет защищать кабели от возгорания при замыкании фазы на землю. Для человека ток 300 мА уже опасен и поэтому для его защиты нужно ставить дополнительное УЗО на 10-30 мА.
Ниже на рисунке показано одно УЗО с током утечки 30 мА только на первой фазе, к которому подключено два автоматических выключателя. У этого УЗО будет своя нулевая шина и поэтому нулевые рабочие проводники от других групп к его шине подключать нельзя. А шина заземления всегда и для всех потребителей будет одной общей.
В текущем варианте можно рассмотреть схему с установкой трех 2-х полюсных УЗО по одному на каждую фазу. Так все группы будут иметь защиту от утечек тока. Тогда здесь можно будет отказаться от общего вводного УЗО на 300 мА, так как у вас и так все будет иметь защиту с уставкой 30 мА.
Вариант 5
В пятом варианте представлена схема трехфазного щита без вводного УЗО, но с использованием однофазных дифавтоматов на некоторые потребители. АВДТ ставится один на одну группу и поэтому их количество может быть равно количеству групп. Так все группы потребителей будут независимы друг от друга. То есть при возникновении утечки тока в одном приборе, отключится только дифавтомат, к которому он подключен. При использовании УЗО с 3-5 автоматами при срабатывании УЗО будет отключаться соответственно 3-5 групп. А это уже не очень удобно со стороны эксплуатации потребителей.
Вышеприведенные схемы имеют наглядный вид, чтобы донести саму суть подключений разных защитных устройств в одну общую схему электрощита. Также эти примеры очень элементарные и поэтому ваши схемы будут намного больше и сложнее.
Источник: Компания «Уралэнерго».
Три фазы в частном доме: подключение, схема и назначение
Меня часто спрашивают: «Зачем ты подвёл к дому трёхфазную линию, у тебя, что какой-то особый электроинструмент?» Нет, инструмент самый обычный на 220 вольт, правда, мощность порой достигает два киловатта. Ну и в самом деле зачем мне нужны три фазы в доме? Как их подключить без ошибок?
Теория и практика подключения
Сначала совсем немного общей информации. Подводящая линия по выбору может быть однофазной, когда только два провода, или трехфазной, когда четыре провода, три провода фазных и один провод нулевой. Так устроены генераторы, вырабатывающие электроэнергию, что у них только три катушки. Поэтому, если в технических условиях укажете мощность до 5 кВт, Вас запитают от одной катушки, запросите больше, то сразу от трёх катушек.
Как провести три фазы в частный дом? Если есть техническая возможность требуется запросить (заявить) о таком подключении. Правда, по пути от генератора до вас будет стоять трансформатор, уменьшающий высоковольтное напряжение до бытовой величины, поэтому вы получите не 380, а родные 220. Но у Вас будет целых три фазы 220 вольт! В последнем случае от щитка с автоматическими выключателями в доме, сразу пойдут три сетевые линии, имеющая каждая напряжение 220 вольт и мощность от 3,5 до 5 кВт в зависимости от установленного автомата.
Схемы подключения и проводки с учётом наличия трёх фаз могут быть различными, в зависимости от потребностей и наличия строений на участке, но общие принципы, конечно одинаковые. Далее мой персональный вариант:
Схема подключения на три фазы частного дома и хозяйственных построек на участке
Кстати, и в бане и в хозблоке автоматические выключатели (предохранители) тоже необходимы. Установленные на тот же ток, что и при центральном вводе, они в этих постройках, при неисправной нагрузке сработают быстрее, из-за потерь в подводящей линии.
Этой зимой я уже прочувствовал преимущество трёхфазной подводки, когда пёс Боб, наигравшись на первом снегу, укутанный в плед грелся у масляного радиатора в бытовке, дополнительно направив морду на нагретый воздух, идущий от тепловентилятора. Можно было не бояться, что предохранитель сработает от перегрузки при работе с электроинструментом большой мощностью, подключившись к временной розетке с другой фазой.
Зачем нужна временная розетка?
Ну, конечно, не из-за собаки. Когда уже стоят стены и окна, есть крыша над головой и настелен черный пол, но не хватает только внутренней отделки, вот тогда и настаёт время для временной розетки внутри дома. А каждый раз затаскивать удлинитель из бытовки крайне неудобно. Хотя розетка и называется временной, делать её надо как настоящую, по всем правилам техники безопасности с использованием автоматического выключателя.
Определяем фазу правильно: цвет и нумерация
Честно сказать особо не задумывался о фазах, когда в своё время делал проводку у себя на даче. Отец мой так же не обращал на это внимание, в те времена вся проводка была практически одинаковая, в потрескавшейся резиновой изоляции. Однако я когда решил заняться к электрификацией хозяйства и собрать щиток на три фазы, то волей не волей узнал не мало фактов об истории электричества в нашей стране.
Какого цвета фаза?
Дело в том, в Советском Союзе, фазные провода были желтого, красного или зелёного цветов. После исчезновения Союза с карты мира цвета поменялись на коричневый, чёрный и серый. Однако этот факт абсолютно не связан с цветами с символикой флагов. Дело в том, что в отношении маркировки проводов были приняты европейские стандарты. Последняя, перечисленная цветовая гамма является различимой для людей с дефектами зрения. Но что нас с Европой объединяло довольно долго, это то, что земля и нейтраль у нас всегда были одного цвета, — желто-зеленая земля и голубая (светло-синяя) нейтраль.
Запомнив последнее, что нейтральный провод голубой или синий (светло-синий), а заземляющий зелёный с желтой полосой, логически понимаем, что фаза будет любого другого оставшегося цвета, уверенно соединяем провода для следующих поколений, невзирая на будущие революции и сотрясения мира. Это и есть ответ на вопрос как подключить три фазы.
Но в других странах маркировка проводов другая. Как подумаешь об этом, сразу появляется зайти на броневик и громко крикнуть: «Электрики всех стан – объединяйтесь!»
Зачем нумеровать три фазы?
Для однофазной цепи, где одна фаза, нет смысла. А вот для трёхфазной линии передач пронумеруем, так сказать, на будущее по последовательности цветов подводящего к дому кабеля. Прижавшись к шестиметровой лестнице и подсоединяя орехами к воздушке выходящие из отверстия в стене дома провода, не забудьте прокричать:
«Первая фаза – коричневый провод! Вторая фаза – черный провод! Третья фаза – серый провод!»
В такой же последовательности необходимо подсоединить провода к строенному автоматическому выключателю. Не помешает жирный фломастер для нумерации.
Рядом с электрощитом обязательно надо повесить картину в рамке с полной электрической схемой, с нумерацией каждого защитного автомата, и цветовую гамму проводов. Думаю, что план эвакуации в этом случае не потребуется.
Да, я так и не ответил на вопрос, зачем нужна нумерация. Пока ещё не знаю. Вдруг сын купит электроприбор исключительно для трёхфазной цепи с инструкцией, где фазы указаны цифрами? Вот тогда не придётся повторно подниматься по семиметровой лестнице, полностью забыв к тому времени и цвета и цифры.
Как всё же соединять провода в распределительных коробках?
Вопрос действительно важный. Контакты — наиболее уязвимое место в любой электроцепи. И на сегодня решен вопрос как НЕ соединять.
Отбрасываем все резьбовые соединения. Тот, кто ездил на отечественных машинах, и каждый год протягивал резьбу, спорить со мной не будет. Под воздействием разных температур, болт и гайка будут менять свои линейные размеры, и соединение ослабнет, плюс ещё плохое покрытие, и как следствие — ржавчина. Конец контакта наступит быстро. Многие ещё помнят разогревшиеся и расплавленные штепсельные вилки и розетки.
Из прошлого века пока остаётся скрутка с последующей пайкой. А в новом веке пока на первом месте контакты с пружинами, например от фирмы WAGO. Монтаж проводки в этом случае может напоминать игру в конструктор ЛЕГО. Но помните, что многожильный провод для контакта всё равно придётся скручивать и паять. Если меня пригласят на шашлык, а пока он готовится, попросят помочь с электропроводкой, то я заранее набью все карманы пружинными клеммниками, чтобы побыстрее освободиться, иначе мясо съедят без меня. А себе всё равно буду делать скрутку.
P.S. Кому интересно досконально узнать о проводке в деревянной бане или доме (начиная с азов и заканчивая практикой) обязательно посмотрите мою статью «Проводка в бане и парилке: правила и рекомендации»
Зачем свет и силовые розетки вести от разных автоматических выключателей (предохранителей)?
Здесь несколько вариантов ответа. Кому что понравиться… На выбор:
- Легче найти неисправность, когда в люстре замкнуло, если сработало по свету, или электрочайнику наступил конец, если сработало по розеткам.
- По освещению электропотребление меньше, особенно при использовании энергосберегающих ламп, следовательно, автоматическое устройство будет стоять на меньший ток и оно сработает быстрее, не успев перегреть провода. Это условие позволяет использовать осветительные провода с меньшим сечением (0,75 мм), опять же экономия. Да и обидно будет, когда время работы на компьютере пройдёт в пустую, после замыкания лампочки в люстре, в случае общего предохранителя.
- Свечи искать не придётся, в полной темноте не останемся.
Есть ли необходимость в устройстве защитного отключения (УЗО)?
Да есть, будем ставить УЗО и делать заземление, без последнего первое не работает. Розетки класса евро с заземляющими ламелями. Есть ребенок и собака. Техника безопасности должна стоять на первом месте. Сейчас обсуждается вопрос поставить общее УЗО на всё, или только на ванную комнату. Еще есть время: чай не совсем остыл:)
P.S. Три фазы в частном доме действительно стоящая вещь, позволяющая чувствовать себя более уверенно и спокойно. Не отказывайте себе в дополнительном удобстве…
Автор статьи В.Ю. Белк
Однофазное и трехфазное питание
Обновлено 20 февраля 2018 г.
Питание подается в разные фазы. Вы можете использовать однофазное питание дома и трехфазное питание на работе. Однофазная система является наиболее распространенной и в основном используется в домах, в то время как трехфазная система распространена в промышленных или коммерческих зданиях, где требуются большие нагрузки электроэнергии. В чем разница между однофазной и трехфазной системой питания? Эта статья поможет вам различить их.
Определения
Полюс с однофазной передачей энергии
Однофазный источник питания имеет три провода с переменным током. Ток и напряжение меняются по направлению и величине циклически со скоростью 60 колебаний в секунду. Один провод обычно передает питание, а другой — нейтральный. В США домашние хозяйства обычно оснащены силовой цепью на 120 В с проводом питания на 120 В и нейтральным проводом. В некоторых странах стандартное напряжение 230 В для однофазных подключений, где один провод нейтральный, а другой провод питания 230 В.
Трехфазная линия питания
Система трехфазного питания — это система, в которой чередуются три тока. Цепь питания состоит из четырех проводов, три из которых — провода питания, а один — нейтраль.
Сравнительная таблица
Однофазное питание | Трехфазное питание |
Имеет три линии (одна мощность + одна нейтраль + земля) | Имеет четыре провода (три питания + одна нейтраль) |
Дорого с точки зрения рабочей силы и оборудования | Дешево с точки зрения рабочей силы и оборудования |
Обычно используется в домашних условиях | Обычно используется в коммерческих помещениях |
Однофазное и трехфазное питание
Что такое разница между однофазным питанием и трехфазным питанием? Разница между этими двумя фазами заключается в стоимости установки и обслуживания, обычном использовании и величине силовой нагрузки.
Типичная однофазная система питания содержит три провода, силовой провод, нулевой провод и провод заземления. С другой стороны, трехфазный состоит из трех проводов питания, нулевого провода и провода заземления, который часто является дополнительным.
Для трехфазной сети питание может потребляться либо по схеме треугольника, либо по схеме звезды. Два провода питания объединены, чтобы создать цепь в конфигурации треугольником, а нейтраль объединена с любым из проводов питания в конфигурации звезды.Дельта-конфигурация дает 208 В, а конфигурация звездой — 120 В. Такая гибкость помогает сбалансировать мощность различного оборудования в заведении. Помимо гибкости, трехфазное питание безопасно и требует меньше оборудования и труда.
Однофазная система питания обычно используется в домашних условиях для освещения и питания приборов. Он имеет ограниченную нагрузку по мощности, которая необходима в коммерческих или промышленных зданиях. Трехфазная система удобна в коммерческих или промышленных зданиях, поскольку она обеспечивает большие нагрузки.
Трехфазная программа | NIH SBIR / STTR
Обе программы SBIR и STTR разделены на три фазы, перечисленные ниже. У NIH есть специальные программы технической помощи, чтобы помочь малым предприятиям передать свои технологии из лабораторий в руки клиентов. Программа NIH Niche Assistance Program и программа I-Corps at NIH предназначены для победителей этапа I, а Программа ускорения коммерциализации NIH предназначена для участников этапов II или IIB.
NIH также имеет приложение Fast-track, которое позволяет малым предприятиям подавать по одной заявке для Фазы I и Фазы II; Прямое обращение к SBIR Phase II, которое позволяет малым предприятиям обходить награду Phase I, если они уже доказали осуществимость своей технологии; и запрос на участие в экспериментальной программе готовности к коммерциализации, которая может помочь в поддержке деятельности по коммерциализации.Для получения дополнительной информации о том, какое предложение лучше всего подходит для вашего малого бизнеса, просмотрите страницу «Финансирование» и поговорите с соответствующим менеджером программы SBIR / STTR.
Этап I: Технико-экономическая осуществимость и подтверждение концепции Целью Этапа I является определение технических достоинств, осуществимости и коммерческого потенциала предлагаемых НИОКР и определение качества работы организации, получившей приз от малого бизнеса, до предоставление дальнейшей федеральной поддержки на этапе II.Гранты на этапе I обычно не превышают $ 150 000 общих затрат на 6 месяцев (SBIR) или 1 год (STTR).
Этап II: Исследования / Исследования и разработки Целью Этапа II является продолжение исследований / НИОКР, начатых в Этапе I. Финансирование основано на результатах, достигнутых на Этапе I, а также на научных и технических достоинствах и коммерческом потенциале проекта. проект, предложенный на Фазе II. Только победители этапа I имеют право на получение награды этапа II. Сумма затрат SBIR / STTR Phase II обычно не превышает 1 000 000 долларов США в течение 2 лет.
Этап III: Коммерциализация Цель этапа III, где это уместно, заключается в том, чтобы малый бизнес преследовал цели коммерциализации, вытекающие из научно-исследовательских и опытно-конструкторских работ на этапе I / II. Программы NIH SBIR / STTR не финансируют Фазу III, а NIH обычно не предоставляет финансирование Фазы III малым предприятиям.
Лучшее соотношение выходных сигналов от 1 фазы к 3 фазам — Отличные предложения по выходу от 1 фазы до 3 фаз из глобальных продавцов выхода от 1 фазы до 3 фаз
Отличные новости !!! Вы находитесь в правильном месте для вывода от 1 фазы до 3 фаз.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, которые предлагают быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как этот выход из 1 фазы в 3 фазы в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что у вас есть выход от 1 до 3 фаз на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в выводе от 1 до 3 фаз и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы согласитесь, что вы получите от 1 до 3 фаз по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
Шаг 3: Клинические исследования | FDA
Хотя доклинические исследования дают ответы на основные вопросы о безопасности лекарств, они не заменяют изучение способов взаимодействия лекарств с организмом человека.«Клинические исследования» относятся к исследованиям или испытаниям, проводимым на людях. По мере того, как разработчики разрабатывают клиническое исследование, они рассматривают то, чего они хотят достичь для каждой из различных фаз клинических исследований, и начинают процесс исследования новых лекарственных средств (IND), процесс, который они должны пройти до начала клинических исследований.
На этой странице вы найдете информацию о:
Планирование клинических испытаний
Исследователи планируют клинические испытания, чтобы ответить на конкретные исследовательские вопросы, связанные с медицинским продуктом.Эти испытания следуют конкретному плану исследования, называемому протоколом, который разрабатывается исследователем или производителем. Перед началом клинических испытаний исследователи изучают предыдущую информацию о препарате, чтобы определить вопросы и цели исследования. Затем они решают:
Кто имеет право на участие (критерии отбора)
Сколько людей примут участие в исследовании
Как долго продлится исследование
Будет ли контрольная группа и другие способы ограничения предвзятости исследования
Как будет вводиться препарат пациентам и в какой дозировке
Какие оценки будут проводиться, когда и какие данные будут собираться
Как будут проверяться и анализироваться данные
Клинические испытания следуют типичной серии от ранних, мелкомасштабных исследований фазы 1 до поздних стадий крупномасштабных исследований фазы 3.