22.11.2024

Устройство и принцип работы автоматического выключателя: Устройство и принцип работы автоматического выключателя | Полезные статьи

Содержание

Принцип действия автоматического выключателя

В наше время в быту уже не встретишь плавких предохранителей – это вчерашний день. Сегодня на смену «пробкам» пришли автоматические выключатели модульного исполнения, которые обеспечивают надежную защиту электропроводки квартиры. Наверняка многие задавались вопросом о том, как работает автоматический выключатель. С другой стороны знание принципа работы автоматического выключателя помогут правильно определить причину его отключения и соответствующую проблему, которая привела к его отключению. Ниже кратко охарактеризуем данный электрический аппарат и рассмотрим его принцип действия.

Для начала определимся с понятием автоматический выключатель. Это коммутационный аппарат, который предназначен для включения и отключения в цепях тока нагрузки в обычном, нормальном режиме, а также для автоматического отключения (разрыва цепи) при протекании через него тока перегрузки или тока короткого замыкания.

Функции отключения аппарата выполняют так называемые расцепители. Модульный автоматический выключатель, как правило, имеет независимый, тепловой и электромагнитный расцепители.

Независимый расцепитель или механизм свободного расцепления предназначен для отключения аппарата вручную. Кроме того, данный механизм отключает автомат при воздействии на него теплового или электромагнитного расцепителей.

Устройство автоматического выключателя

Устройство автоматического выключателя.

Тепловой расцепитель предназначен для автоматического отключения выключателя при протекании по нему тока, значение которого больше номинального. Основной конструктивный элемент данного типа расцепителя – биметаллическая пластина, которая деформируется в результате нагрева при протекании определенного значения тока. При достижении заданного положения пластина воздействует на механизм свободного расцепления, чем обеспечивается автоматическое отключение аппарата. Время, в течение которого происходит отключение автоматического выключателя, обратно пропорционально величине протекаемого через него тока. То есть чем больше ток, протекающий через данный автоматический выключатель, тем быстрее произойдет его автоматическое отключение.

Например, автоматический выключатель, рассчитанный на номинальный ток в 16 А при протекании через него тока величиной в 19 А отключится в течении 40-45 мин. А при значении тока 32 А отключиться за 5-10 мин. Следует отметить, что на скорость срабатывания теплового расцепителя оказывает влияние температура окружающей среды. Таким образом, летом, при температуре 450 номинальный ток 16-ти амперного аппарата составляет 15 А. В то время как зимой, при температуре -200 величина предельно допустимого тока для данного аппарата увеличивается до 21 А.

Благодаря тепловому расцепителю, автоматический выключатель осуществляет защиту конструктивных элементов электропроводки квартиры от перегрузки, которая возникает при включении в бытовую сеть электроприборов, мощность которых больше максимально допустимой для электропроводки.

Следующий тип расцепителя – электромагнитный. Он предназначен для отключения автоматического выключателя при протекании через него большого значения тока – тока короткого замыкания. Такой режим работы имеет место при повреждении электропроводки или включенного в сеть бытового электроприбора. Рассмотрим принцип работы электромагнитного расцепителя.

Электромагнитный расцепитель конструктивно представляет собой электромагнит с якорем, включенный в цепь последовательно. При протекании через автоматический выключатель номинального тока сердечник электромагнита находится в неподвижном состоянии. Если через электромагнит будет протекать большое значение тока (выше тока уставки), то он втянет сердечник с якорем и воздействует на механизм расцепления автоматического выключателя. То есть при протекании тока короткого замыкания автомат отключится автоматически действием электромагнитного расцепителя. При этом время отключения автоматического выключателя составляет доли секунды.

Ток, при котором происходит срабатывание электромагнитного расцепителя можно определить по классу автоматического выключателя. Например, электромагнитный расцепитель аппарата класса В отключается при протекании через него 3-5 номинальных значений тока. Автомат класса С отключится при протекании через него 6-10 номиналов. Данная особенность учитывается при выборе автоматических выключателей для защиты электропроводки. Это связано с тем, что некоторые потребители электрической энергии, в частности электродвигатели, характеризуются большим значением пускового тока. То есть если пусковой ток больше тока срабатывания электромагнитного расцепителя, то данный электродвигатель не запустится по причине отключения автоматического выключателя. Решением проблемы в данном случае является установка автоматического выключателя следующего класса (например, замена аппарата с классом В на аналогичный по номинальному току теплового расцепителя аппарата с классом С).

Устройство и принцип работы автоматических выключателей – Справочник электрика


Автоматические выключатели предназначены для защиты разветвленной или линейной электрической цепи от перегрузок и короткого замыкания. Устанавливаются выключатели сразу же после счетчика электроэнергии. Если в цепи повысилась допустимая сила тока, то срабатывает тепловой или электромагнитный контур и подача тока прекращается. Устройство автоматического выключателя не предусматривает автоматического включения, только выключение. Возобновить подачу тока можно только вручную, после обнаружения и ликвидации причины неисправности.

Электрическая схема автоматического выключателя


Принципиальная схема автоматического выключателя очень простая — ток проходит по проводнику, который последовательно подключен к биметаллической пластине, индукционной катушке и расцепителю. Под термином «расцепитель» подразумевается контактное устройство с подвижной перемычкой. Под действием определенных усилий перемычка отодвигается от проводника, и ток прекращает поступать в цепь.


Типовое устройство электрического автоматического выключателя предполагает использование в качестве источника расцепляющего усилия биметаллическую пластину или электромагнит. В первом случае пластина реагирует на нагревание и изгибается. Изгиб происходит за счет того, что одна часть пластины сделана из металла с низким коэффициентом терморасширения, а другая — с высоким. Неравномерное увеличение длины приводит к деформации пластины, которая тянет за собой перемычку размыкателя и отключает ток.


Нагрев и деформация пластины происходит достаточно медленно. Это сделано преднамеренно, если в сети незначительно повысилась допустимая сила тока, то автомат среагирует не сразу. Возможно, в этот момент запустился двигатель холодильника или включился насос подпитки. Если перегрузка не превышает 3–5 номиналов на протяжении нескольких секунд, автомат не сработает. После отключения потребителей, ток возвращается к предыдущим параметрам, и сеть функционирует в заданном режиме. Но при длительной перегрузке автомат отключит подачу тока. Это может произойти, например, если в домашнюю сеть включается сварочный аппарат или мощный компрессор.


По-другому происходит, если возникает короткое замыкание. В этом случае биметаллическая пластина слишком медленная, чтобы справиться с нагрузкой. Выручает электромагнитная катушка. Сильное изменение силы тока порождает мощное электромагнитное поле вокруг катушки. Специальный стальной стержень, связанный с расцепителем, притягивается к сердечнику катушки и цепь размыкается. Время срабатывания электромагнита измеряется долями секунды.


Но возникает другая опасность — угроза появления электрической дуги, которая может попросту сжечь автоматический выключатель. Для защиты в схеме устройства автоматического выключателя предусмотрен узел гашения дуги. Он состоит из нескольких металлических пластин, которые рассекают дугу на мелкие потоки и поглощают часть тепла.


В описании устройство и принцип действия автоматического выключателя несколько упрощены, но процессы внутри АВ протекают именно в таком порядке. Типовой автоматический выключатель оснащен двумя контурами — электромагнитным и тепловым. Но есть и модели АВ, которые работают только по одной схеме защиты. Например, автоматы для электродвигателей не оснащаются тепловой защитой, только электромагнитной от КЗ. По уровню чувствительности автоматы подразделяются на несколько типов:


  • В — ток размыкания в диапазоне 3–5 номинала;

  • С — 5–10 от номинала;

  • D — 10–20 номинала.


Сам номинал конкретного АВ указан на корпусе после буквенного индекса, например, С16. Для бытового использования лучше всего подходят именно автоматы класса С.

Устройство и принцип работы УЗО

Автоматы защиты в электрических цепях представляют собой устройства, автоматически выключающие электропитание путём размыкания контактов. Контакты размыкаются при коротком замыкании, превышении токовой нагрузки сверх расчётной и при появлении ненормированных токов утечки в сети. Автоматы защиты служат также в качестве выключателя для ручного размыкания сети.
В свою очередь, автоматы защиты делятся на следующие группы:

В последнее время появились также комбинированные приборы, совмещающие автомат защиты и УЗО, так называемые диффавтоматы.

В данной статье мы рассмотрим автоматы защиты, особенности их устройства, выбора и монтажа.

разнополюсные автоматические выключатели

  • 2.Для размыкания контактов достаточно отодвинуть защёлку, и пружина размыкания, прикреплённая к размыкающему контакту (контактам), разомкнёт цепь. Возникающая при размыкании контактов электрическая дуга гасится специальным устройством гашения. Защёлка отодвигается для размыкания, во-первых, соленоидом, включённым в цепь последовательно при определённом

камера автоматического выключателя

значении протекающего через него тока, и, во-вторых, биметаллической пластиной, тоже включённой последовательно, изгибающейся при нагреве и сдвигающей защёлку для размыкания. Можно так же разомкнуть контакты вручную, нажав на кнопку, которая механически связана с защёлкой.Сверху и снизу расположены контакты (клеммы) для соединения с проводами. Крепится устройство защёлкиванием на так называемой DIN — рейка (DIN – Дойче Индустри Нормен – немецкие стандарты промышленности) DIN – рейка оснащаются входные щитки электросетей, в эти щитки также устанавливаются электросчётчики. Ставится автомат на DIN-рейку простым защёлкиванием, а для снятия необходимо отвёрткой сдвинуть специальную рамку фиксации.

дин-рейка для крепления автоматов защиты

Автомат защиты, защищает электросеть и приборы, подключённые после него.
При коротком замыкании сила тока, протекающего через соленоид, многократно увеличивается, соленоид втягивает сердечник, соединённый с защёлкой и цепь размыкается. Если же токовая нагрузка увеличивается (до срабатывания соленоида) и это вызывает сверхнормативный нагрев проводов, срабатывает биметаллическая пластина. При этом если время срабатывания соленоида составляет около 0,2 сек., то время срабатывания биметаллической пластины – около 4 сек.

автомат защиты

Номинальный ток и ток мгновенного расцепления автомата. Выбор автомата защиты

Основной характеристикой при выборе автомата является номинальный ток, который указывается на маркировке автоматов. Чтобы понять его смысл, нужно знать, что любая электросеть состоит из так называемых групп, каждая группа образует независимую «петлю», все петли подключены к входным проводам параллельно, то есть независимо. Это делается, во-первых, для повышения надёжности работы электросети и уменьшения возможности перегрузок, во-вторых, с помощью групп все токовые нагрузки выравниваются и приводятся к некоторым стандартным значениям, что позволяет экономить на проводах – для каждой группы выбирается своё сечение проводов.
Как правило, одну группу составляют приборы освещения, другую – розетки, третью энергопотребляющие электроплиты, стиральные машины и т.д. По каждой группе при проектировании сети электроснабжения определяется номинальный ток, исходя из которого, рассчитывается поперечное сечение проводов. Нужно заметить, что номинальный ток группы потребителей рассчитывается не простым суммированием мощностей потребителей, а с учётом вероятности одновременного включения нескольких потребителей в сеть. Для этого вводится так называемый коэффициент вероятности, рассчитываемый по специальной методике.

схема подклюючения автоматов защиты

Исходя из расчётных номинальных токов каждой группы потребителей, рассчитывается необходимое сечение проводов, и выбираются автоматы защиты (на каждую группу ставится свой автомат). Выбираются автоматы таким образом, что по известному номинальному току группы выбирается автомат с ближайшим в большую сторону значением номинального тока. Например, при номинальном токе группы 15А, выбираем автомат со значением номинального тока 16А.

номинал автоматических выключателей

Нужно понимать, что автомат защиты срабатывает не при небольшом превышении номинального тока, а при токе в сети, в несколько раз превышающем номинальный. Этот ток называется – ток мгновенного расцепления (в отличие от тока срабатывания биметаллической пластины) автомата защиты. Это второй параметр, который нужно учитывать при выборе автомата. По величине тока мгновенного расцепления, вернее по его отношению к номинальному току, автоматы делятся на три группы, обозначаемые латинскими буквами В; С; и D. (В Европейском Союзе выпускаются автоматы и класса А.) Что означают эти буквы?

Автоматы класса В рассчитаны на мгновенное расцепление при токе выше 3-х и до 5-ти номинальных токов.
Класс С соответственно выше 5-ти и до 10-ти номинальных токов.
Класс D – выше 10-ти и до 20-ти номинальных токов.

классификация автоматических выключателей

Для чего введены эти классы?

Дело в том, что существует такое понятие как пусковой ток нагрузки, который может для некоторых потребителей превышать номинальный рабочий ток в несколько раз. Например, любые электродвигатели в момент пуска (пока ротор двигателя неподвижен) работают практически в режиме короткого замыкания, то есть нагружают сеть только активным сопротивлением медных обмоток, которое невелико. И лишь когда ротор двигателя набирает обороты, появляется реактивное сопротивление, уменьшающее ток. Пусковые токи электродвигателей в 4-5 раз превышают номинальные (рабочие токи). (Правда длительность протекания пусковых токов невелика, биметаллическая пластина автомата защиты сработать не успеет).

Если мы для защиты двигателей применим автоматы класса В, то получим при каждом пуске двигателя ложное срабатывание автомата на пусковой ток. И возможно вообще не сможем запустить двигатель. Именно поэтому для защиты двигателей нужно применять автоматы класса D.

защита автомата от пусковых токов — электродвигатель

Класс В – для защиты осветительных сетей, нагревательных приборов, где пусковые токи минимальны или вообще отсутствуют. Соответственно класс С – для приборов со средними пусковыми токами.

средние пусковые токи — лампы освещения

Естественно для выбора автомата защиты нужно учитывать напряжение, тип тока, рабочую среду и т.д., но всё это в особых комментариях не нуждается.

Установка и монтаж автоматов защиты

Сразу отметим, что работы по установке и монтажу автоматов защиты должны проводиться квалифицированным персоналом, прошедшим соответствующее обучение и имеющим допуск на право проведения подобных работ. Это – требование безопасности, изложенное в ПУЭ.

монтаж электрического щита

Установка и монтаж автоматов производятся на основе принципиальной схемы, которая должна быть прикреплена на видном месте внутри входного щитка электропитания. Принципиальная схема конкретной установки разрабатывается на основе типовых схем. Как правило, во входном щитке располагается следующее оборудование:

электрический щит с автоматами защиты

  1. На входе устанавливается выключатель – рубильник, пакетный выключатель или общий автомат защиты (в современных щитках ставятся автоматы защиты). Это делается для того, чтобы можно было проводить электромонтажные работы внутри щитка, просто отключив весь щиток от электропитания.
  2. Далее подключается электросчётчик, который пломбируется для защиты от всякого рода «умельцев» «экономить» электроэнергию.
  3. После счётчика питающие провода разветвляются на группы, и на входе каждой группы ставится свой автомат защиты, а после него – УЗО (устройство защитного отключения). УЗО выбираются таким образом, чтобы их номинальный ток превышал номинальный ток автомата защиты. Далее провода выходят из щитка к группам потребителей, к каждой группе своим отдельным кабелем.

Автоматы защиты и УЗО крепятся на DIN-рейке. Сам монтаж сложностей не представляет, нужно только заметить, что для облегчения монтажа существуют готовые планки перемычек или перемычки – это для подачи, к примеру, на все автоматы фазного напряжения, входной провод подключается к первому автомату, а к остальным – с помощью перемычек. Также в щитке устанавливаются общие зажимные планки для нулевых проводов и для проводов заземления. Всё это значительно облегчает монтаж.

автоматы защиты для дома и офиса

Автоматические выключатели — устройство, принцип работы, классификация

Автоматические выключатели (могущие также именоваться автоматами) — приборы, используемые для коммутации электросети, а также для защиты проводки от таких явлений как замыкание и излишняя нагрузка. Данный прибор объединяет в себе сразу две основные функции: управленческую и защитную. Выполнение защитной функции достигается путем отключения того сегмента электроцепи за который отвечает автомат при возникновении значительной перегрузки или коротком замыкании.

Виды автоматических выключателей

Автоматы подразделяются в зависимости от мощности цепей, для которых они предназначены. Всего выделяются три основных вида данных устройств:

  1. Модульные выключатели, которые наиболее распространены в повседневной жизни и используются в стандартных электросетях. Модульность их конструкции обусловлена стандартной шириной выключателя, зависящей от числа полюсов устройства и кратной 17,5 мм.  
  2. Автоматы, выполненные в литом корпусе, могут применяться в самых разных электрических цепях, где сила тока варьируется от шестнадцати до тысячи ампер. 
  3. Выключатели воздушного типа используются в электросетях большой мощности с силой тока превышающей тысячу ампер. Такие аппараты применяются преимущественно в производственной сфере. 

Конструкция автоматических выключателей

Корпус автомата выполнен из диэлектрика. Конструктивно данное устройство состоит из нескольких основных элементов:

  • Рукояти управления, которая позволяет включать либо отключать аппарат;
  • Теплового расцепителя, выполненного из биметалла, который позволяет отключать прибор от электроцепи в случае когда сила тока превышает безопасное значение. Это достигается путем придания расцепителю формы пластины, которая под воздействием температуры от избыточной силы тока выгибается и производит выключение автомата;
  • Электромагнитного расцепителя, выполненного в форме катушки с проволокой, намотанной на нее. Внутри катушки располагается сердечник с пружиной. Электромагнитный расцепитель предназначен для защиты от коротких замыканий. Это достигается генерированием в катушке электромагнитного поля, возникающего из-за резкого возрастания силы тока при замыкании, которое, преодолевая сопротивление пружины, перемещает сердечник вниз и отключает устройство;
  • Двух контактов (подвижного и неподвижного) которые дают возможность включать и выключать устройство;
  • Двух клемм, а также фиксатора для крепления автомата на DIN-рейку.
    Более подробно читайте про конструкцию автоматических выключателей

При нормальном функционировании прибора электроток попадает в автомат через провод, имеющий подключение к клемме, расположенной в верхней части аппарата. Затем, проходя через пластину теплового и катушку электромагнитного расцепителей, а также через неподвижный и подвижный контакты (во включенном положении замыкающих цепь), электроток достигает клеммы, расположенной внизу выключателя, и покидает устройство.

Посмотрите также: промышленные автоматические выключатель серии А3700

Работа автоматического выключателя при перегрузке электросети

При возникновении перегрузки пластина теплового расцепителя выгибается, что ведет к выключению устройства. При этом время, которое необходимо пластине для изгибания, находится в зависимости от уровня перегрузки и может варьироваться от нескольких секунд до часа. Так как данный аппарат является аналоговым устройством то минимальное значение перегрузки, способное вызвать срабатывание автоматического выключателя, варьируется от тринадцати до сорока пяти процентов от номинального мощности устройства. Однако на температуру биметаллической пластины оказывает влияние и окружающая среда, что может привести к уменьшению силы тока, необходимой для срабатывания выключателя в нагретом помещении и увеличению избыточной нагрузки, требующейся для отключения устройства при пониженной температуре среды. Поэтому для расчета точных параметров автоматического выключателя необходимо учитывать коэффициент тепловой поправки, который указывается производителями в технической документации к устройству. Из-за инерционности теплового расцепителя автоматический выключатель срабатывает не мгновенно, что не допускает срабатывания аппарата при кратковременных перегрузках.

Перегрузка в сети может возникнуть при подключении какого-либо прибора, имеющего слишком большую мощность для данной электросети, либо при одновременной работе нескольких мощных потребителей электроэнергии или большого количества электроприборов. Использование же автомата позволяет исключить перегрев электросети, оплавление изолирующих материалов и значительно уменьшает риск пожара, возникшего от горения проводки.    

     

Фото: электромагнитный расцепитель

Работа автоматического выключателя при коротком замыкании

Короткое замыкание в электросети ведет к многократному возрастанию силы тока за крайне небольшой промежуток времени. Это вызывает вырабатывание магнитного поля в катушке электромагнитного расцепителя и опускание сердечника, который преодолевает сопротивление пружины. Сердечник вызывает срабатывание механизма и размыкает контакты, что вызывает отключение аппарата и приводит к разрыву электрической цепи. Это дает возможность предохранить от воздействия замыкания, как сам автомат, так и проводку и подключенные к электросети приборы, предотвращая их повреждение и возгорание.

Из-за природы короткого замыкания скорость срабатывания электромагнитного расцепителя значительно превышает аналогичный показатель теплового расцепителя, но для его активации требуется куда большое значение силы тока. Для срабатывания этого устройства сила электротока должна как минимум втрое превысить номинальную мощность данного автомата.

Гашение электродуги

В автоматическом выключателе при размыкании электрической сети возникает электродуга, мощность которой находится в прямой зависимости от силы тока, который проходит через данную цепь. Образование электродуги приводит к повреждению контактов внутри автомата и значительно сокращает время эксплуатации прибора. Поэтому необходимо специальное устройство, которое позволило бы защитить автоматический выключатель от негативного воздействия электрической дуги. Для этого предназначена дугогасительная камера, представляющая собой ряд параллельных пластин, используемых для раздробления дуги и ее последующего затухания и охлаждения. Горение электродуги вызывает газообразование, поэтому для удаления газов необходимо специальное отверстие.

Из-за возникновения электрической дуги автоматические выключатели не рекомендуется применять в роли обычных выключателей. Поэтому защитная функция данного устройства превалирует над управленческой, хотя и не исключается возможность использования автоматического выключателя для коммутации.

Устройство и принцип работы автоматического выключателя

Произошло отключение автомата: что делать

Неопытный пользователь при срабатывании автоматического выключателя и отключении света спешит восстановить работу бытовых приборов, поэтому просто открывает защитную крышку и включает устройство. Однако это не совсем правильное решение, лучше предварительно выяснить причину отключения.

Первое, что необходимо сделать, – совершить проверку подключенных бытовых агрегатов и устройств, обращая внимание на внешний вид розеток и вилок, наличие или отсутствие запаха жженой пластмассы. Слишком горячие вилки также должны насторожить

Одна из частых причин – увеличение энергетической нагрузки. Если у вас работает стиральная машина и микроволновка, а при включении пылесоса сработала защита, значит, произошла эксплуатационная перегрузка. Решение одно – равномерно распределить нагрузку, то есть включать мощные приборы по очереди.

Если из нескольких устройств постоянно реагирует только одно, проверьте исправность всех приборов, имеющих отношение к данной цепи (перегорела лампочка, произошло замыкание). Причина может крыться в проводке – в этом случае обязательно пригласите электрика

Если количество приборов не увеличилось, нагрузка не изменилась, а выключение произошло – возможно, виновата высокая температура. При повышении температурной нормы в щитке автомат также может сработать.

И последняя причина – выход из стоя самого автоматического выключателя. После нескольких реагирований на серии возросших токов, ТКЗ, гашений дуги он приходит в негодность, что можно определить по внешним признакам. Если клеммы обуглились или пластик оплавился, необходимо произвести замену устройства.

Почему необходимы знания об электрике

Информации об электрических устройствах, известной со школьных уроков физики, для практического применения недостаточно.

Рядовой потребитель чаще сталкивается с автоматическими выключателями, так как именно они срабатывают в связи с сетевыми перегрузками. Недостаточно просто вернуть рычажок в привычное положение, нужно обязательно разобраться в причинах отключения, иначе в ближайшее время ситуация может повториться.

Чтобы ориентироваться в начинке электрощитка (который, кстати, является обязательным элементом энергосистемы частных домов), необходимо знать состав и назначение всех устройств – импульсных реле, выключателей нагрузки, УЗО и т. д.

Нужно ли уметь самостоятельно менять автоматику? Рекомендуем для начала изучить теорию, а при первом же отключении – и практику.

Дело в том, что не всегда существует возможность быстрой помощи профессионалов: в выходной день электрики отдыхают наравне с остальными. А если дом находится на даче или в деревне, лучше познакомиться с электросетью и сопутствующими устройствами досконально.

Принцип работы автоматического выключателя

Механизм автомата и находится внутри пластикового корпуса. Кроме того здесь находятся ещё и предохранительные устройства или расцепители, которых может быть два – электромагнитный и тепловой. Они предназначены для отсечки электрической цепи.

Тепловой расцепитель – это биметаллическая пластинка, которая, в случае прохождения токов высокого значения, выпрямляется, размыкая электрическую цепь. Это достаточно медленный прерыватель.

Электромагнитный расцепитель представляет собой специальную катушку, которая рассчитана на токи определенного порогового значения. В том случае, если данное значение превысило норму – катушка разрывает электрическую цепь. Благодаря этому свойству – автомат с электромагнитным расцепителем имеет значительно короткое время отсечки.

Уровень чувствительности автоматов

В современных автоматах имеется возможность отключения напряжения в двух вариантах. Первый из них – быстрый. Благодаря электромагнитному расцепителю автомат срабатывает при превышении напряжения более чем на 140% (это пороговое значение для стандартных автоматов). Если превышение напряжения не достигает заданного уровня, то со временем, от перегрева, сработает тепловой расцепитель.

В зависимости от тепловых характеристик самого расцепителя, напряжения, а также температуры окружающей среды – процесс отсечки может длиться и несколько часов.

Полярность автоматических выключателей

Все современные автоматы также делятся и в зависимости от полюсов. Это значит, что автомат может иметь несколько электрических линий, которые будут независимы одна от другой, но объединенные одним отключающим механизмом. В настоящее время автоматы могут иметь 1,2,3,4 полюса.

Пороговая сила тока автоматического выключателя

Автоматические выключатели также делятся и по определенной пороговой чувствительности. Это позволяет отсечь от сети напряжение соответствующей силы тока. Автоматы с номинальным значением изготавливаются и настраиваются на заводе-изготовителе. Значение этого показателя прописывается на самом автомате.

В частном строительстве и быту используют автоматические выключатели с такими значениями силы тока: 3А, 6А, 10А, 16А, 25А, 32А, 40А, 63А, 100А, 160А. Кроме того существуют и автоматические выключатели с повышенными показателями – это 1000А, 2600А, которые не используют в частном строительстве. Это значение показывает нам общую мощность потребителей электрической цепи, которые будут находиться под контролем заданного автомата. Помимо общей мощности приборов также необходимо учитывать и электропроводку электроцепи, розетки, выключатели и т.д.

Типы современных автоматических выключателей

В настоящее время все автоматы делятся производителями на несколько типов, обозначаемых определенными буквами:

• А – предназначен для работы в цепях, имеющих полупроводниковые приборы, а также довольно большой протяженности;
• В – ставятся в цепи системы освещения общего назначения;
• С – устанавливаются в цепях систем освещения, а также и в электроустановках, имеющих умеренные пусковые токи. К таким установкам относят двигатели, трансформаторы.
• D – устанавливаются в цепи активно-индуктивной нагрузки. Кроме того эти автоматы можно ставить и на электродвигатели, имеющие большие пусковые токи.
• К – автоматы, предназначенные для установки в сетях с индуктивными нагрузками.
• Z – обеспечивают защиту электронных приборов.

Характеристики срабатывания защитных автоматических выключателей

Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.

В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.

Автоматы типа МА

Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.

Приборы класса А

Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.

Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.

Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.

Защитные устройства класса B

Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.

Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.

Автоматы категории C

Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.

Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.

Автоматические выключатели категории Д

Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.

Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.

Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.

Защитные устройства категории K и Z

Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.

Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.

Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.

Наглядно про категории автоматов на видео:

Принцип работы автоматического выключателя во время короткого замыкания

Устройство автоматических выключателей позволяет защищать электрическую цепь не только от перегруза, но и от коротких замыканий. Во время таких аварийных ситуаций ток повышается настолько, что может расплавиться изоляция проводки. Для предотвращения такой неприятности следует моментально отключить сеть. Эта задача возложена на электромагнитный расцепитель.

Данный элемент состоит из катушки соленоида и стального сердечника, который фиксируется специальной пружиной. Моментальный скачок силы тока в обмотке катушки ведет к пропорциональному повышению магнитной индукции, вследствие чего сердечник плотнее прилегает к пружине. По мере нарастания магнитной индукции стальной сердечник преодолевает воздействие пружины и прижимает выключатель.

После этого моментально размыкаются контакты, и подача электричества в защищаемый участок прекращается. Электромагнитный элемент включается моментально и предотвращает воспламенение изоляции.

Во время отключения контактов при аварийной ситуации между ним возникает так называемая дуга, максимальная температура которой составляет 3000 градусов. Само собой разумеется, что элементы защитного электрооборудования следует защитить от настолько высоких температур. Для этих целей автоматы оснащаются специальными системами гашения дуги. Это устройство внешне похоже на коробку, которая состоит из нескольких пластинок из металла.

Разные дугогасительные камеры

Высокотемпературная дуга появляется в месте отключения контактов. После этого один край дуги движется по динамичному контакту, а другой проходит по статичному элементу, переходит на металлический проводник, а затем доходит до задней грани системы гашения дуги. Попадая на решетку из пластинок, дуга делится на части, теряет температуру и в итоге гаснет. Снизу автоматического выключателя находятся специальные отверстия для вывода образующихся в момент гашения дуги газов.

Если защитное электрооборудование сработало из-за короткого замыкания, то у вас не получится включить электричество, пока вы не обнаружите саму причину возникновения поломки. В большинстве случаев проблема кроется в выходе из строя какого-либо электрооборудования.

Для повторного запуска устройства следует отсоединить электрооборудование и попытаться запустить выключатель. Если сделать это получилось и оборудование не выбило в ближайшее время, значит, проблема заключается в поломке техники. Останется только опытным путем выяснить, какое именно устройство вышло из строя. Если автоматический выключатель срабатывает после отключения всех приборов, значит, проблема в нарушении изоляции проводки. Для устранения подобной неисправности придется вызывать специалистов, которые смогут обнаружить и устранить поломку.

Если вы столкнулись с такой проблемой, как постоянные отключения защитного электрооборудования, то не стоит устанавливать новое устройство с более высоким номинальным значением силы тока – эти действия проблему не разрешат. Данное оборудование монтируется с учетом площади поперечного сечения провода, а значит, слишком высокий ток попросту не сможет возникнуть в проводке. Выяснить причину неисправности и устранить ее помогут соответствующие специалисты, самостоятельные действия крайне рискованны.

Схемы подключения автоматических выключателей

Классическим вариантом включение автоматических модульных выключателей в схему сети осуществляется при размещении их в распределительном щите. Крепление осуществляется на фабричную дин – рейку расположенную горизонтально внутри щита. В пространство между рейкой и задней стенкой шкафа заводятся провода, идущие к нагрузке. Они подключаются на нижние выходные контакты автоматов, на входные, верхние контакты включается провод с выхода вводного автомата.

Крепление на дин-рейку автоматических выключателей на сегодняшний день считается самой простой и эффективной технологией.

На задней стенке автомата под рейку сделан канал, верхняя грань корпуса цепляется за рейку и нажатием на фронтальную плоскость корпуса рычаг с пружиной фиксирует к рейке нижнюю часть корпуса. Снимается автомат с рейки в обратной последовательности, рычаг оттягивается, отводится нижняя часть корпуса, приподнимая вверх, таким образом, весь корпус снимается с рейки.

Однополюсные автоматы

Подключение однополюсных автоматов считается наиболее простым, они подключаются на розеточные и осветительные группы.

Через автоматический выключатель подключают фазный провод, заземляющий и нейтральный проводник, на осветительные приборы и розетки проходит напрямую.

Двухполюсные автоматы

Более мощные приборы, такие как электроплиты, нагревающие бойлеры, кабины для душа, сплит системы и другие, где надо обеспечить полный разрыв цепи, нулевого и фазного проводов подключаются через двухполюсные приборы.

Трехполюсные автоматы используются в трехфазных сетях с применением мощных приборов с соответствующим питанием в 380В. Это могут быть нагревательные ТЭНы, электродвигатели и другие. Когда при превышении номинального тока обеспечивается отключение всех трех фаз, таким образом, исключается перекос фаз во всей цепи при превышении тока в одной из трех линий.

Нагрузка к автомату подключается по схеме звезда без нейтрального провода, в этом случае автоматический выключатель ставится индивидуальный на конкретный вид оборудования.

Четырехполюсные автоматы подключаются в трехфазную сеть как вводные автоматы, где фазы используются как отдельные линии сети с индивидуальными элементами нагрузки. При этом надо стараться величину токов нагрузки равномерно распределять по фазам, для исключения перекоса по фазам. Для удаления излишних токов используется нейтральный провод, схема с заземленной нейтралью.

Характеристики контакторов

Как правило, эти устройства должны иметь такие характеристики:

  • Тип аппарата.

  • Предельное, номинальное значение показателя в главной цепи.

  • Категория эксплуатации.

  • Управляющая цепь.

  • Цепь вспомогательная.

  • Характеристики, тип реле, расцепителей.

  • Соотношение с защитными аппаратами от коротких замыканий.

  • Перенапряжение коммутационное.

  • Типы, параметры регуляторов ускорений, автоматических переключателей.

  • Тип, параметр автотрансформаторов для пускателей 2-ступенчатых трансформаторных.

  • Тип, характеристика пусковых сопротивлений в реостатных роторных пускателях.

По наличии определенного количества полюсов, можно выделить контакторы однополюсные, двухполюсные, трехполюсные. Они все, за исключением   трехполюсных, применяются в своем большинстве в сетях с постоянными токами, трехполюсные же – в трехфазных сетях. Есть также и четырех полюсные и пяти полюсные механизмы. Состоит прибор с неподвижного и подвижного контакта, что зависимо от назначения в определенном электрическом механизме.  Для подключения вспомогательных устройств, — как например, сигнализационной цепи, индикации, цепи определенных автоматических и защитных устройств, в контакторах расположены блок-контакты.

Электромагнитная система, как одна из важных составляющих, включает в себя сердечники, электромагниты, якори, а также другие механизмы, замыкающие контакты электроаппарата.

Дугогасительная система гасит появившуюся электродугу во время коммутации токов. Дуга гасится при помощи поперечных магнитных полей в камерах с удлиненным отверстием или в камерах, имеющих деионные решетки.

Отличие автоматов по количеству полюсов

Комплектация автоматических выключателей предусматривают наличие до четырех полюсов. Чтобы приобрести подходящий прибор, достаточно разобраться в видах электрических автоматов, назначении и характеристиках каждого и них:

  • Один полюс. Предназначены для безопасности в электросети, обеспечивающей питанием обычные розетки и освещение в доме. Устанавливаются на фазный провод, исключая захват нулевого.
  • Два полюса. Подключаются к цепи, которой обеспечивается питание бытовых приборов, отличающейся высоким потреблением энергии. В эту категорию входят электроплиты, стиральные машины и другие.
  • Три полюса. Устанавливаются в полупромышленные сети, которые обеспечивают питанием мощные устройства наподобие скважинных насосов или установок для автомобильной мастерской.
  • Четыре полюса. Обеспечивают безопасность сети от перегрузок и коротких замыканий, позволяя подключать к ней сразу четыре кабеля.

Устройства выбираются только в зависимости от области их применения.

Коротко принцип работы и предназначение защитных автоматов

Автоматический выключатель при коротком замыкании срабатывает практически моментально благодаря электромагнитному расщепителю. При определённом превышении номинального значения тока нагревающаяся биметаллическая пластина отключит напряжение спустя некоторое время, которое можно узнать из графика время токовой характеристики.

Данное предохранительное устройство защищает проводку от КЗ и сверх токов, превышающих расчётное значение для данного сечения провода, которые могут разогреть токопроводящие жилы до температуры плавления и возгорания изоляции. Чтобы этого не произошло, нужно не только правильно подобрать защитный выключатель, соответствующий мощности подключаемых устройств, но и проверить, выдержит ли имеющаяся сеть такие нагрузки.

Внешний вид трех полюсного автоматического выключателя

Провода должны соответствовать нагрузке

Очень часто бывает, что в старом доме устанавливается новый электросчётчик, автоматы, УЗО, но проводка остаётся старой. Покупается много бытовой техники, суммируется мощность и под неё подбирается автомат, который исправно держит нагрузку всех включённых электроприборов.

Вроде всё правильно, но вдруг изоляция проводов начинает выделять характерный запах и дым, появляется пламя, а защита не срабатывает. Это может случиться, если параметры электропроводки не рассчитаны на такой ток .

Допустим, поперечное сечение жилы старого кабеля — 1,5мм², с максимально допустимым пределом по току в 19А. Принимаем, что одновременно к нему подключили несколько электроприборов, составляющих суммарную нагрузку 5кВт, что в токовом эквиваленте составляет приблизительно 22,7А, ему соответствует автомат 25А.

Провод будет разогреваться, но данный автомат будет оставаться включённым все время, пока не произойдёт расплавление изоляции, что повлечёт короткое замыкание, а пожар уже может разгораться полным ходом.

кабель силовой NYM

Защитить самое слабое звено электропроводки

Поэтому, прежде чем сделать выбор автомата соответственно защищаемой нагрузке, нужно удостовериться, что проводка данную нагрузку выдержит.

Согласно ПУЭ 3.1.4 автомат должен защищать от перегрузок самый слабый участок электрической цепи, или выбираться с номинальным током, соответствующим токам подключаемых электроустановок, что опять же подразумевает их подключение проводниками с требуемым поперечным сечением.

При игнорировании этого правила не стоит нарекать на неправильно рассчитанный автомат и проклинать его производителя, если слабое звено электропроводки вызовет пожар.

Расплавленная изоляция проводов

Расчет номинала автомата

Допускаем, что проводка новая, надёжная, правильно рассчитанная, и соответствует всем требованиям. В этом случае выбор автоматического выключателя сводится к определению подходящего номинала из типичного ряда значений, исходя из расчетного тока нагрузки, который вычисляется по формуле:

где Р – суммарная мощность электроприборов.

Подразумевается активная нагрузка (освещение, электронагревательные элементы, бытовая техника). Такой расчет полностью подходит для домашней электросети в квартире.

Допустим расчет мощности произведён: Р=7,2 кВт. I=P/U=7200/220=32,72 А. Выбираем подходящий автомат на 32А из ряда значений: 1, 2, 3, 6, 10, 16, 20, 25, 32, 40, 63, 80, 100.

Данный номинал немного меньше расчётного, но ведь практически не бывает одновременного включения всех электроприборов в квартире. Также стоит учитывать, что на практике срабатывание автомата начинается со значения в 1,13 раза больше от номинального, из-за его времятоковой характеристики, то есть 32*1,13=36,16А.

Для упрощения выбора защитного автомата существует таблица, где номиналы автоматов соответствуют мощности однофазной и трёхфазной нагрузки:

Таблица выбора автомата по току

Найденный по формуле в вышеприведённом примере номинал наиболее близок по значению мощности, которое указано в выделенной красном ячейке. Также, если вы хотите рассчитать ток для трехфазной сети, при выборе автомата, ознакомьтесь со статьей про расчет и выбор сечения провода

Подбор защитных автоматов для электрических установок (электродвигателей, трансформаторов) с реактивной нагрузкой, как правило, не производится по мощности. Номинал и тип время токовой характеристики автоматического выключателя подбирается соответственно рабочему и пусковому току, указанному в паспорте данного устройства.

Таблица подбор сечения провода по мощности

Какое сечение провода нужно для 3 квт

Формула как найти мощность тока

Плавный пуск асинхронного электродвигателя с короткозамкнутым ротором

Новогодние поздравления с юмором

Компании производители и марки

Автомат однополюсной ABB 1P C25

Прежде чем выбрать и купить автоматический выключатель C25, следует ознакомиться с представляющими их фирмами и ценой. Известные производители приборов:

  • Шведско-швейцарская компания ABB, по праву считающаяся лидером на рынке электротехнической продукции данного класса.
  • Автоматические выключатели от Legrand (Франция) не уступают по качеству предыдущей марке, стоимости примерно сравнимы по величине.
  • Изделия еще одной французской фирмы (Schneider Electric) хорошо знакомы отечественному потребителю, прекрасно отзывающемуся об этом товаре.

Цена автомата С25 на отечественном рынке колеблется от 100 р. до 100 тыс.р. в зависимости от количества полюсов, фирмы и марки.

Выводы и полезное видео по теме

В видеороликах представлена информация, которая поможет вам разобраться в устройстве и подключении автоматического выключателя.

Часть 1. Как выбрать автоматический выключатель – изучаем теорию:

Часть 2. Инструктаж по грамотному подбору автомата:

Пошаговый процесс сборки электрического щитка:

Полезный совет от профессионала:

Как видите, для подключения автоматического выключателя, необходимо правильно выбрать устройство, следовать определенному порядку монтажа и соблюдать меры безопасности.

Если вы сомневаетесь в собственных силах или не можете найти причину постоянных отключений защиты, обязательно обратитесь к квалифицированному электрику.

Пытаетесь самостоятельно установить автоматический выключатель? А может, не согласны с изложенным материалом, или остались вопросы по теме? Ждем ваших комментариев – блок для связи расположен ниже.

Защита в действии. Принцип действия автоматического выключателя

21vek-220v.ru

3-12-2014

3-12-2014

Защита в действии. Принцип действия автоматического выключателя

21vek-220v.ru

Основные принципы работы автоматических выключателей

Так как автоматический выключатель кроме коммутационных операций выполняет функции защиты электрических сетей и различного электрического оборудования в аварийных ситуациях, то его нужно рассматривать с учетом вариантов использования.
Коммутационные функции автоматический выключатель может выполнять не часто — не более 30 раз в сутки. Для более частых переключений, отключений и включений существуют специальные устройства и приборы.
Автоматические выключатели (автоматы) сконструированы таким образом, чтобы обеспечивалась простата и удобство их эксплуатации и обслуживания, особенно в установках большой мощности.
В основном, коммутация автоматических выключателей выполняется в ручном режиме, но есть модели, разработанные для использования со специальным (электромагнитным или электродвигательным) приводом. Такие устройства позволяют проводить управление выключателем дистанционно.
Но ручной (или приводный) режим управления относится к операции включения. Отключение автоматического выключателя (автомата) происходит в автоматическом режиме. Выключение может происходить при достижении максимально допустимых токов или (в некоторых устройствах) при достижении минимально допустимых токов.
В зависимости от функциональности автоматического выключателя их делят на:

  • • автоматы тока максимального,
  • • автоматы понижения напряжения,
  • • автоматы обратной мощности.

Автомат тока максимального применяется для разрыва электрической цепи в условиях достижения предельных нагрузок или тока короткого замыкания. Такое использование автоматического выключателя повторяет использование рубильника с предохранителями. Но в выключателе не нужно менять плавкие вставки, а достаточно его повторно включить. Хотя рубильник с предохранителем незаменим при некоторых особых режимах использования электрической системы.
Использование автоматических выключателей в условиях с повышенной влажностью или запыленностью должно быть в закрытом щите или шкафу с достаточной степенью защиты IP.
Скорость срабатывания (отключения цепи) определяется принципом работы и системой гашения дуги. Эти характеристики свойственны для токоограничивающих автоматов.
Регулируемая скорость срабатывания (отключения) автоматического выключателя реализована в селективных (регулируемых) автоматах.
Но если требуется защита от токов другой направленности по сравнению с рабочими, то применяют автоматы обратного тока.
Особую конструкцию имеют неполяризованные автоматические выключатели, которые могут отключать цепь, контролируя его величину во всех направлениях. Поляризованный автомат производит контроль величины тока только в одном направлении.

Конструкция автоматических выключателей

Конструкция автоматического выключателя зависит от его назначения и предполагаемого применения.
Управление автоматическим выключателем может выполняться в ручном режиме или приводом (дистанционно). Ручное управление применяется для автоматов с номиналом до 1000 А. Причем включение должно производиться уверенно, без остановок и возвратов. Начатое движение рукоятки автомата должно закончиться его включением.
Привод управления автоматическим выключателем должен иметь исключение повторного включения при коротком замыкании. Но важную конструкционную особенность должны выполнять автоматические выключатели при срабатывании защитного механизма вне зависимости от положения включающего привода. Это достигается за счет применения специальных расцепителей.
Расцепитель автоматического выключателя отслеживает контролируемый параметр и управляет расцепляющим устройством.
Расцепители могут иметь несколько вариантов исполнения:

  • • электромагнитный — защищают от короткого замыкания цепи,
  • • тепловой — защищают от перегрузок цепи,
  • • комбинированный — совмещают защиту от КЗ и перегрузок,
  • • полупроводниковый — настраиваемые системы защиты с точной установкой параметров.

Если автоматический выключатель устанавливается для выполнения включения и отключения цепи без токов или коммутация производится редко, то применяют автоматы без расцепителя.
Различные автоматические выключатели могут иметь совершенно разную степень защиты IP. Так как автоматы применяются в различных условиях с различными факторами воздействия (пыль, влага и т.д.), то информация об их степени защиты и типаже должна быть указана в документации, прилагаемой к устройству. Хотя большинство производителей работают по ТУ (техническим условиям), некоторые автоматы получили уровень государственного стандарта (ГОСТ).

Узлы и механизмы автоматического выключателя

Конструкция автомата предусматривает применение многих механизмов и узлов, среди которых:

  • • контактная система,
  • • система расцепителей,
  • • система дугогашения,
  • • система управления,
  • • механизм свободного расцепления.

Контактная система — это неподвижные контакты установленные в корпус и подвижные контакты на оси (одинарный разрыв).
Система дугогашения — это дугогасительная камера со стальной решеткой или фибровые пластины (искрогаситель). Устанавливаются отдельно для каждого полюса автоматического выключателя.
Механизм свободного расцепления — шарнирный механизм с 3 или 4 звеньями. Выполняет отключение контактов при ручном и автоматическом управлении.
Расцепитель тока с электромагнитом — это якорный электромагнит срабатывающий при коротком замыкании. Существуют электромагнитные расцепители с системой гидравлического замедления, которые обеспечивают защиту от перегрузочных токов.
Расцепитель тепловой — это биметаллическая пластина с тепловой характеристикой. Когда ток перегрузки деформирует пластину, она создает усилие необходимое для отключения автомата.
Расцепитель на основе полупроводников — это прибор содержащий измерительный элемент, полупроводниковые реле и электромагнит на выходе, который связан с механизмом свободного расцепления.
Комбинированные расцепители — это сочетание нескольких систем защиты. Например, тепловые и электромагнитные.

Автоматические выключатели могут снабжаться многими другими устройствами и приспособлениями, которые помогают сконцентрировать в одном устройстве максимальное количество функций и характеристик. Все эти устройства ориентированы на удобное использование прибора с исключением дополнительных действий и операций по защите и коммутации электрической системы.
Особые конструкции автоматических выключателей, таких как автоматы с минимальным или независисмым расцепителем позволяют обеспечить дистанционное выключение. Применение специальных устройств замковой фиксации положения рукоятки обеспечивают дополнительную защиту персонала при выполнении ремонтных или регламентных работ. А сигнализация положения контактов автомата упрощает контроль рабочего режима электрической системы.
Поэтому, применение автоматических выключателей должно быть предварительно взвешенным и тщательно обдуманным. Это гарантирует максимальную функциональность электрических систем и обеспечит их надежную защиту.

Основные принципы работы автоматических выключателей

Так как автоматический выключатель кроме коммутационных операций выполняет функции защиты электрических сетей и различного электрического оборудования в аварийных ситуациях, то его нужно рассматривать с учетом вариантов использования.
Коммутационные функции автоматический выключатель может выполнять не часто — не более 30 раз в сутки. Для более частых переключений, отключений и включений существуют специальные устройства и приборы.
Автоматические выключатели (автоматы) сконструированы таким образом, чтобы обеспечивалась простата и удобство их эксплуатации и обслуживания, особенно в установках большой мощности.
В основном, коммутация автоматических выключателей выполняется в ручном режиме, но есть модели, разработанные для использования со специальным (электромагнитным или электродвигательным) приводом. Такие устройства позволяют проводить управление выключателем дистанционно.
Но ручной (или приводный) режим управления относится к операции включения. Отключение автоматического выключателя (автомата) происходит в автоматическом режиме. Выключение может происходить при достижении максимально допустимых токов или (в некоторых устройствах) при достижении минимально допустимых токов.
В зависимости от функциональности автоматического выключателя их делят на:

  • • автоматы тока максимального,
  • • автоматы понижения напряжения,
  • • автоматы обратной мощности.

Автомат тока максимального применяется для разрыва электрической цепи в условиях достижения предельных нагрузок или тока короткого замыкания. Такое использование автоматического выключателя повторяет использование рубильника с предохранителями. Но в выключателе не нужно менять плавкие вставки, а достаточно его повторно включить. Хотя рубильник с предохранителем незаменим при некоторых особых режимах использования электрической системы.
Использование автоматических выключателей в условиях с повышенной влажностью или запыленностью должно быть в закрытом щите или шкафу с достаточной степенью защиты IP.
Скорость срабатывания (отключения цепи) определяется принципом работы и системой гашения дуги. Эти характеристики свойственны для токоограничивающих автоматов.
Регулируемая скорость срабатывания (отключения) автоматического выключателя реализована в селективных (регулируемых) автоматах.
Но если требуется защита от токов другой направленности по сравнению с рабочими, то применяют автоматы обратного тока.
Особую конструкцию имеют неполяризованные автоматические выключатели, которые могут отключать цепь, контролируя его величину во всех направлениях. Поляризованный автомат производит контроль величины тока только в одном направлении.

Конструкция автоматических выключателей

Конструкция автоматического выключателя зависит от его назначения и предполагаемого применения.
Управление автоматическим выключателем может выполняться в ручном режиме или приводом (дистанционно). Ручное управление применяется для автоматов с номиналом до 1000 А. Причем включение должно производиться уверенно, без остановок и возвратов. Начатое движение рукоятки автомата должно закончиться его включением.
Привод управления автоматическим выключателем должен иметь исключение повторного включения при коротком замыкании. Но важную конструкционную особенность должны выполнять автоматические выключатели при срабатывании защитного механизма вне зависимости от положения включающего привода. Это достигается за счет применения специальных расцепителей.
Расцепитель автоматического выключателя отслеживает контролируемый параметр и управляет расцепляющим устройством.
Расцепители могут иметь несколько вариантов исполнения:

  • • электромагнитный — защищают от короткого замыкания цепи,
  • • тепловой — защищают от перегрузок цепи,
  • • комбинированный — совмещают защиту от КЗ и перегрузок,
  • • полупроводниковый — настраиваемые системы защиты с точной установкой параметров.

Если автоматический выключатель устанавливается для выполнения включения и отключения цепи без токов или коммутация производится редко, то применяют автоматы без расцепителя.
Различные автоматические выключатели могут иметь совершенно разную степень защиты IP. Так как автоматы применяются в различных условиях с различными факторами воздействия (пыль, влага и т.д.), то информация об их степени защиты и типаже должна быть указана в документации, прилагаемой к устройству. Хотя большинство производителей работают по ТУ (техническим условиям), некоторые автоматы получили уровень государственного стандарта (ГОСТ).

Узлы и механизмы автоматического выключателя

Конструкция автомата предусматривает применение многих механизмов и узлов, среди которых:

  • • контактная система,
  • • система расцепителей,
  • • система дугогашения,
  • • система управления,
  • • механизм свободного расцепления.

Контактная система — это неподвижные контакты установленные в корпус и подвижные контакты на оси (одинарный разрыв).
Система дугогашения — это дугогасительная камера со стальной решеткой или фибровые пластины (искрогаситель). Устанавливаются отдельно для каждого полюса автоматического выключателя.
Механизм свободного расцепления — шарнирный механизм с 3 или 4 звеньями. Выполняет отключение контактов при ручном и автоматическом управлении.
Расцепитель тока с электромагнитом — это якорный электромагнит срабатывающий при коротком замыкании. Существуют электромагнитные расцепители с системой гидравлического замедления, которые обеспечивают защиту от перегрузочных токов.
Расцепитель тепловой — это биметаллическая пластина с тепловой характеристикой. Когда ток перегрузки деформирует пластину, она создает усилие необходимое для отключения автомата.
Расцепитель на основе полупроводников — это прибор содержащий измерительный элемент, полупроводниковые реле и электромагнит на выходе, который связан с механизмом свободного расцепления.
Комбинированные расцепители — это сочетание нескольких систем защиты. Например, тепловые и электромагнитные.

Автоматические выключатели могут снабжаться многими другими устройствами и приспособлениями, которые помогают сконцентрировать в одном устройстве максимальное количество функций и характеристик. Все эти устройства ориентированы на удобное использование прибора с исключением дополнительных действий и операций по защите и коммутации электрической системы.
Особые конструкции автоматических выключателей, таких как автоматы с минимальным или независисмым расцепителем позволяют обеспечить дистанционное выключение. Применение специальных устройств замковой фиксации положения рукоятки обеспечивают дополнительную защиту персонала при выполнении ремонтных или регламентных работ. А сигнализация положения контактов автомата упрощает контроль рабочего режима электрической системы.
Поэтому, применение автоматических выключателей должно быть предварительно взвешенным и тщательно обдуманным. Это гарантирует максимальную функциональность электрических систем и обеспечит их надежную защиту.

Принцип работы автоматического выключателя — схема подсоединения к сети и советы по выбору автомата (видео + 130 фото)

Автомат – один из видов электрических аппаратов защиты. Его главная задача – отключать и включать электрическую цепь. Благодаря этому, он предохраняет кабели, провода и электрические приборы от повреждений, которые могут возникнуть вследствие нештатного тока.

Если сказать кратко, автоматический выключатель выполняет две функции – коммутация и защита цепи. Давайте подробнее рассмотрим эти особенности.

 

Краткое содержимое статьи:

Разновидности автоматов

Конструктивно, данные устройства можно разделить на несколько видов, а точнее три. Различают воздушный автоматический выключатель, изделие в литом корпусе и модульный. Различные типы автоматических выключателей используются при разных условиях.

Первый вид распространен на промышленных объектах, где сила тока может достигать тысячу и более ампера. Литой корпус используется в различных диапазонах токов, а модульный знаком практически всем и применим в обычной квартире. Именно последние будем рассматривать детальнее.

Конструктивные особенности

Конструкция автоматических выключателей является сложной – здесь объединено несколько элементов. Для корпуса автомата используются диэлектрические материалы. Передняя панель маркируется в зависимости от технических характеристик. Там обязательно указывается брэнд производителя и номер. Первое, на что обращают внимание – номинальный ток и характеристика времени-тока.

Задняя  часть оснащено креплением и защелками для специальной реи. Она используется в электрических щитках, и для монтажа достаточно защелкнуть фиксатор.

Разобрав пластиковый корпус, можно рассмотреть устройство изделия. Рукоятка используется для включения и выключения тока в цепи. Также, внутри есть биметаллическая пластина, которая играет роль теплового расцепителя. Когда через неё проходит ток высокого значения, пластинка гнется и защищаемая цепь отключается.

Благодаря соленоиду выполняются функции электромагнитного расцепителя. Конструктивно, он представляет собой катушку с сердечником, обмотанным проволокой.

Когда в защищаемой цепи возникает короткое замыкание, катушка наводит магнитные потоки. Они, в свою очередь, перемещают сердечник, который отключает устройство. В современных моделях, этот процесс происходит за доли секунд.

Принцип работы

Как мы упоминали раньше, во время возникновения перегрузки, по цепи проходит ток, превышающий значение номинального. Благодаря биметаллической пластинке, которая изгибается от температуры, срабатывает устройство расцепления. Таким образом, перегруженная сеть разомкнута.

Время срабатывания зависит от того, какой номинальной ток выключателя, и чем больше, тем быстрее произойдет выключение. После остывания, устройство может работать дальше, однако мы советуем, перед включением найти причину, по которой произошло повышение тока.

Когда возникает короткое замыкание, показатели электрического тока  мгновенно растут. Это приводит к тому, что в соленоиде перемещается сердечник, который в свою очередь «включает» расцепитель.

Таким образом, происходит размыкание силовых контактов, и как следствие, защищаемая цепь выключается. Благодаря почти мгновенному действию, удается спасти изоляцию на проводах, электроприборы и сам автомат.

Размыкание контактов приводит к возникновению электрической дуги. Её мощность зависит от тока. Эта дуга портит контакты, поэтому конструкция предусматривает определенную защиту от её воздействия. Когда возникло размыкание контактов, дуга направлена к дугогасительной камере, благодаря чему она затухает, и её негативное воздействие максимально нивелируется.

Заключение

Зная особенности автоматического выключателя и его принцип работы, вам будет легче подобрать необходимое устройство для своего дома или квартиры. Достоинства автомата заключается в том, что он грамотно выполняет функции защиты электрической цепи от внештатных ситуаций, вроде короткого замыкания или превышения допустимых значений тока.

Правильно установив и подключив выключатель, вы сможете не беспокоиться о сохранности проводки – об этом позаботиться устройство.

Фото автоматического выключателя

Вам понравилась статья? Поделитесь 😉

 

Автоматический выключатель | Работа и типы автоматического выключателя

Что такое автоматический выключатель?

Автоматический выключатель — это переключающее устройство, которым можно управлять вручную и автоматически для управления и защиты системы электроснабжения. Поскольку современная энергосистема имеет дело с большими токами, при проектировании автоматического выключателя следует уделять особое внимание, чтобы гарантировать, что он сможет безопасно прервать дугу, возникающую при включении автоматического выключателя.Это было основным определением автоматического выключателя.

Введение в автоматический выключатель

Современная энергосистема имеет дело с огромной электросетью и огромным количеством связанного с ней электрического оборудования. Во время короткого замыкания или любого другого типа электрической неисправности (например, неисправности электрического кабеля) через это оборудование, а также через саму электросеть будет протекать высокий ток повреждения. Этот высокий ток может навсегда повредить оборудование и сети.

Для сохранения этих единиц оборудования и электрических сетей, ток короткого замыкания должен быть удален из системы как можно быстрее.Опять же, после устранения неисправности система должна как можно скорее прийти в нормальное рабочее состояние, чтобы обеспечить надежное качественное питание на приемных концах. В дополнение к тому, что для правильного управления энергосистемой, требуются различные операции переключения.

Таким образом, для своевременного отключения и повторного включения различных частей сети энергосистемы для защиты и управления должны быть какие-то особые типы коммутационных устройств, которые могут безопасно работать в условиях сильного течения.

Во время отключения большого тока между переключающими контактами может возникнуть большая дуга, поэтому следует позаботиться о безопасном гашении этих дуг в автоматическом выключателе. Автоматический выключатель — это специальное устройство, которое выполняет все необходимые коммутационные операции в токопроводящем состоянии. Это было основное введение в автоматический выключатель .

Принцип работы автоматического выключателя

Автоматический выключатель в основном состоит из неподвижных и подвижных контактов.В нормальном состоянии «ВКЛ» выключателя эти два контакта физически соединены друг с другом из-за приложенного механического давления на подвижные контакты. В приводном механизме выключателя есть устройство, в котором хранится потенциальная энергия, которая высвобождается, если на выключатель подается сигнал переключения.

Потенциальная энергия может накапливаться в выключателе различными способами, например, деформированием металлической пружины, сжатым воздухом или гидравлическим давлением.Но каким бы ни был источник потенциальной энергии, она должна высвобождаться во время работы. Высвобождение потенциальной энергии ускоряет скольжение движущегося контакта.

Все выключатели имеют рабочие катушки (катушки отключения и катушки включения), каждый раз, когда эти катушки возбуждаются импульсами переключения, и плунжер внутри них смещается. Этот плунжер рабочей катушки обычно прикреплен к рабочему механизму выключателя , в результате механически накопленная потенциальная энергия в механизме выключателя высвобождается в виде кинетической энергии, которая заставляет подвижный контакт двигаться, когда эти подвижные контакты механически прикрепляются. через механизм рычага переключения передач с приводным механизмом.

После цикла срабатывания выключателя общая накопленная энергия высвобождается и, следовательно, потенциальная энергия снова сохраняется в приводном механизме автоматического выключателя с использованием двигателя взвода пружины или воздушного компрессора или любых других средств.

До сих пор мы обсуждали механический принцип работы выключателя . Но есть электрические характеристики автоматического выключателя, которые также следует учитывать при обсуждении работы автоматического выключателя.Давайте обсудим электрический принцип выключателя .

Автоматический выключатель должен выдерживать большую номинальную или аварийную мощность. Из-за этой большой мощности всегда существует опасно высокая дуга между подвижными и неподвижными контактами во время работы автоматического выключателя. Опять же, как мы обсуждали ранее, дуга в автоматическом выключателе может безопасно гаситься, если диэлектрическая прочность между токоведущими контактами автоматического выключателя быстро увеличивается во время каждого перехода переменного тока через ноль.

Диэлектрическую прочность среды между контактами можно увеличить несколькими способами, например, сжав ионизированную среду искрения, поскольку сжатие ускоряет процесс деионизации среды, охлаждая среду искрения, поскольку охлаждение увеличивает сопротивление пути искрения или путем замены ионизированной среды искрения свежими газами. Следовательно, в работе автоматического выключателя должны быть задействованы некоторые процессы гашения дуги.

Хотя автоматические выключатели выполняют свои функции независимо и без присмотра, существуют также автоматические выключатели с дистанционным управлением, которые могут управляться по запросу на расстоянии.

Типы автоматических выключателей

По разным критериям существуют разные типы автоматических выключателей. По средствам гашения дуги автоматический выключатель можно разделить на:

  1. Масляный выключатель.
  2. Воздушный выключатель.
  3. SF 6 автоматический выключатель.
  4. Вакуумный выключатель.

В соответствии с их услугами автоматический выключатель можно разделить на:

  1. Открытый автоматический выключатель.
  2. Внутренний выключатель.

По принципу действия автоматического выключателя их можно разделить на:

  1. Пружинный выключатель.
  2. Пневматический выключатель.
  3. Гидравлический выключатель.

По уровню напряжения установки автоматический выключатель обозначается как —

  1. Высоковольтный выключатель.
  2. Автоматический выключатель среднего напряжения.
  3. Автоматический выключатель низкого напряжения.

Автоматический выключатель: принцип работы, типы и конструкция

Введение

Автоматический выключатель — это коммутационное устройство, способное замыкать, проводить и отключать ток в нормальных и ненормальных условиях цепи в течение определенного времени. Его можно разделить на высоковольтный выключатель и низковольтный выключатель в зависимости от диапазона их использования. Разделение высокого и низкого напряжения относительно нечеткое. Как правило, выключатели с напряжением выше 3 кВ являются высоковольтными выключателями.

Автоматические выключатели

могут использоваться для распределения электроэнергии, нечастого пуска асинхронных двигателей и защиты линий электропередач и двигателей. При серьезной перегрузке, коротком замыкании или пониженном напряжении они могут автоматически отключать электрическую цепь, как комбинация реле максимального напряжения и предохранителя. После отключения тока короткого замыкания замена деталей не требуется.

Посмотрите это, чтобы узнать больше:

Что такое автоматический выключатель?

О чем мы поговорим:

I Принцип работы

Автоматический выключатель обычно состоит из контактной системы , системы гашения дуги , рабочего механизма , расцепителя и корпуса .

Когда происходит короткое замыкание, магнитное поле, создаваемое сильным током (обычно от 10 до 12 раз), преодолевает противодействующую пружину, расцепитель срабатывает на приводной механизм, и переключатель мгновенно срабатывает. Когда цепь перегружена, ток становится больше, тепловыделение увеличивается, и биметаллический лист до определенной степени деформируется, заставляя механизм двигаться (чем больше ток, тем короче время работы).

Высоковольтный выключатель должен отключать дугу 1500 В и 1500-2000 А.Эти дуги можно растянуть до 2 м и продолжать гореть без тушения. Поэтому гашение дуги — актуальная проблема для высоковольтных выключателей.

Рисунок 1. Погасание дуги

Принцип дуги и гашения дуги в основном заключается в уменьшении тепловыделения охлаждающей дуги. С другой стороны, удлинение дуги используется для усиления рекомбинации и диффузии заряженных частиц. При этом заряженные частицы в дуговом промежутке сдуваются, и диэлектрическая прочность среды быстро восстанавливается.

Низковольтные выключатели , также называемые автоматическими воздушными выключателями, могут использоваться для подключения и отключения цепей нагрузки, а также для управления двигателями, которые запускаются редко. Его функция эквивалентна сумме некоторых или всех электрических систем, таких как рубильник, реле максимального тока, реле нулевого напряжения, тепловое реле и устройство защиты от утечек, которое является важным устройством защиты в распределительной сети низкого напряжения.

Автоматические выключатели низкого напряжения

имеют множество функций защиты (защита от перегрузки, короткого замыкания, пониженного напряжения и т. Д.).). Кроме того, они имеют регулируемое рабочее значение, высокую отключающую способность и простую и безопасную работу, поэтому они широко используются.

Низковольтный выключатель состоит из исполнительного механизма, контактов, устройств защиты (различных расцепителей) и системы дугогашения. Его главный контакт управляется вручную или электрически замкнут. После замыкания главного контакта устройство свободного отключения блокирует главный контакт в закрытом положении.

Катушка расцепителя максимального тока и тепловой элемент теплового расцепителя подключены последовательно с главной цепью, а катушка расцепителя минимального напряжения подключена параллельно источнику питания.

При коротком замыкании или сильной перегрузке цепи якорь устройства отключения по току втягивается, вызывая срабатывание устройства свободного отключения, затем главный контакт отключает главную цепь. При перегрузке цепи термоэлемент теплового расцепителя нагревается и изгибает биметаллический лист, толкая механизм свободного отключения. Когда в цепи пониженное напряжение, срабатывает якорь расцепителя пониженного напряжения, активируя механизм свободного отключения.

Рисунок 2. Устройство отключения максимального тока

Независимый расцепитель используется для дистанционного управления. Во время нормальной работы катушка выключена. Когда требуется дистанционное управление, нам нужно нажать кнопку пуска, чтобы подать питание на катушку.

II Условия труда

1. Температура окружающей среды

Верхний предел: 40 ℃;

Нижний предел: -5 ℃;

Среднее значение в течение 24 часов: <35 ℃.

2. Высота

Высота места установки не превышает 2000м.

3. Атмосферные условия

Относительная влажность атмосферы не превышает 50% при температуре окружающего воздуха 40 ℃. Он может иметь более высокую относительную влажность при более низкой температуре. Среднемесячная максимальная относительная влажность самого влажного месяца составляет 90%, а среднемесячная минимальная температура месяца — 25 ℃. Кроме того, следует учитывать конденсацию, которая возникает на поверхности продукта из-за перепадов температуры.

4. Уровень загрязнения: уровень 3

5. Цепь управления

(1) Целостность защитного устройства, а также цепей отключения и замыкания в цепи управления следует контролировать, чтобы гарантировать нормальную работу автоматического выключателя.

(2) Должен быть указан статус положения нормального включения и отключения выключателя, и должен быть очевидный индикаторный сигнал во время автоматического включения и автоматического отключения.

(3) После завершения замыкания и отключения должен сработать командный импульс, чтобы отключить подачу питания на замыкание или отключение.

(4) При отсутствии механического устройства защиты от срабатывания следует установить устройство защиты от срабатывания ;

Рисунок 3. Электрическое устройство защиты от срабатывания

(5) Цепь сигнала аварийного отключения автоматического выключателя должна быть подключена по «принципу несоответствия».

(6) Для оборудования, которое может иметь ненормальные условия работы или неисправности, должен быть установлен предупреждающий сигнал.

(7) Источник питания механизма пружинного привода и механизма ручного управления может быть постоянным или переменным током, а источник питания электромагнитного рабочего механизма должен быть постоянным током.

III Характеристики автоматического выключателя

Характеристики автоматического выключателя:

1. Номинальное рабочее напряжение (Ue)

Напряжение, при котором автоматический выключатель срабатывает в нормальных (непрерывных) условиях.

2. Номинальный ток (In)

Максимальное значение тока, которое автоматический выключатель, оборудованный специальным реле отключения по максимальному току, может выдержать при температуре окружающей среды, указанной производителем, и не будет превышать температурный предел, указанный для компонента подшипника тока.

3. Ток срабатывания реле короткого замыкания (Im)

Реле отключения при коротком замыкании (мгновенная или с кратковременной задержкой) используется для быстрого отключения автоматического выключателя при появлении большого тока повреждения, а его предел срабатывания — значение настройки lm.

4. Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Номинальный ток отключения при коротком замыкании автоматического выключателя равен наивысшему значению (ожидаемого) тока, которое автоматический выключатель может отключить без повреждения. Стандартное значение тока представляет собой среднеквадратичное значение переменной составляющей тока повреждения, а переходная составляющая постоянного тока (которая всегда возникает при коротком замыкании) предполагается равной нулю. Номинальное значение промышленного автоматического выключателя (Icu) и бытового автоматического выключателя (Icn) обычно выражается в среднеквадратических кА.

5. Отключающая способность при коротком замыкании (Ics)

Номинальная отключающая способность автоматического выключателя делится на два типа: номинальная предельная отключающая способность при коротком замыкании и номинальная рабочая отключающая способность при коротком замыкании .

Независимо от того, какой это автоматический выключатель, он будет иметь два важных технических индикатора: Icu и Ics. Однако, поскольку автоматический выключатель используется на ответвлении, этого будет достаточно для соответствия Icu.

Некоторые люди предпочитают выбирать большее значение. Однако, если он слишком большой, это приведет к ненужным отходам. Например, для автоматического выключателя того же типа цена типа H высокого отключающего типа 一 в 1,3–1,8 раза дороже, чем тип S 一 обычного типа). Следовательно, нет необходимости слепо гоняться за лучшим Ику.

Напротив, для автоматических выключателей, используемых на главной линии, должны выполняться требования Icu и Ics. Если для измерения отключающей способности использовать только Icu, возникнут некоторые скрытые опасности.

IV Автоматический выключатель Типы

Существует много типов автоматических выключателей, которые можно классифицировать в зависимости от использования, формы конструкции, метода работы, количества полюсов, способа установки, средства гашения дуги и области применения.

Согласно …

Типы

с использованием категории

неселективный тип (тип A) и селективный тип (тип B)

структура

универсальный тип и пластиковый корпус типа

режим работы

ручное управление и немручное управление (электричество, накопление энергии) тип

количество полюсов

монопольный, двухполюсный, трехполюсный и четырехполюсный типа

способ установки

фиксированного типа, вставного типа и выдвижного типа

Дугогасящая среда

воздушный и вакуумный

Дугогасящая техника

дугогасящий и токоограничивающий тип

использование

Типы

, используемые для распределения электроэнергии, защиты двигателя, бытового использования, защиты от остаточного тока (утечки), специального использования и т. Д.

Автоматический выключатель

В Конструкция

1. Внутренние аксессуары

(1) Вспомогательный контакт

Вспомогательный контакт — это контакт между механизмом размыкания и замыкания главной цепи, в основном используется для отображения размыкания и замыкания состояния выключателя. Он подключен к цепи управления для управления или блокировки связанных с ней электрических приборов посредством размыкания и замыкания автоматического выключателя, например, для вывода сигналов на сигнальные лампы, реле и т. Д.

Для автоматического выключателя в литом корпусе (MCCB) с номинальным током корпуса корпуса (lnm) 100A он имеет схему преобразования с одной точкой останова, а схема с 225A lnm и выше имеет мостовую структуру контактов, а обычный тепловой ток составляет 3A. . Кроме того, один с внутренним диаметром 400 А и выше может быть установлен с двумя обычно открытыми и двумя обычно закрытыми контактами, а обычный тепловой ток составляет 6 А. Число рабочих характеристик такое же, как общее число рабочих характеристик выключателя.

Рисунок 4. Блок вспомогательных контактов в масляном автоматическом выключателе

(2) Контакт сигнализации

Контакт аварийной сигнализации в основном используется при аварии выключателя и срабатывает только при срабатывании выключателя и его поломке. Когда происходит перегрузка, короткое замыкание или сбой пониженного напряжения на нагрузке автоматического выключателя, автоматический выключатель срабатывает свободно, и контакт аварийной сигнализации перемещается из исходного разомкнутого положения в замкнутое положение, включая индикатор, электрический звонок, зуммер и т. д.во вспомогательной строке для отображения статуса аварийного отключения.

Так как автоматический выключатель редко срабатывает из-за сбоя нагрузки, срок службы аварийного контакта составляет 1/10 срока службы автоматического выключателя. Рабочий ток контакта сигнализации обычно не превышает 1 А.

(3) Независимый расцепитель

Независимый расцепитель — это расцепитель, который возбуждается источником напряжения , напряжение которого не зависит от напряжения главной цепи. Это аксессуар для дистанционного управления открыванием.Когда напряжение источника питания равно любому напряжению между 70% -110% номинального управляющего напряжения источника питания, автоматический выключатель может быть надежно отключен.

Независимый расцепитель имеет кратковременную рабочую систему, и время проводимости катушки, как правило, не должно превышать 1 с, в противном случае провод сгорит. Чтобы предотвратить возгорание катушки, микровыключатель соединен последовательно с катушкой независимого расцепителя. Когда независимый расцепитель втягивается якорем, микровыключатель переключается с нормально замкнутого на нормально разомкнутый.

Из-за отключения цепи питания и управления независимого расцепителя, даже если кнопка нажата вручную, катушка шунта никогда не включится. Это позволяет избежать перегорания катушки. Когда автоматический выключатель снова включается, микровыключатель снова находится в нормально замкнутом положении.

Рисунок 5. Автоматический выключатель с независимым расцепителем

(4) Отключение при пониженном напряжении

Отключение при пониженном напряжении — это тип отключения, который позволяет выключить автоматический выключатель с задержкой или без задержки, когда его напряжение на клеммах падает до заданного диапазона.Он работает, когда напряжение источника питания падает (даже медленно) до диапазона от 70% до 35% от номинального рабочего напряжения.

Когда напряжение источника питания равно 35% от номинального рабочего напряжения отключения, отключение при пониженном напряжении должно быть способно предотвратить включение автоматического выключателя; когда напряжение источника питания равно или превышает 85% от номинального рабочего напряжения, он должен обеспечивать надежное включение автоматического выключателя в жарких условиях. Таким образом, при возникновении определенного падения напряжения в напряжении источника питания в защищаемой цепи автоматический выключатель может быть автоматически отключен, так что электрические устройства нагрузки или оборудование, расположенное ниже автоматического выключателя, будут защищены от повреждения из-за пониженного напряжения.

При использовании катушка отключения при пониженном напряжении подключается к стороне источника питания автоматического выключателя, и автоматический выключатель может быть включен только после срабатывания отключения при пониженном напряжении.

2. Внешние аксессуары

(1) Электрический привод

Это аксессуар для автоматических выключателей дальнего действия , который включает моторный привод и электромагнитный привод.

Приводной механизм двигателя представляет собой автоматический выключатель в литом корпусе с внутренним диаметром 400 А и выше, электромагнитный привод подходит для автоматического выключателя в литом корпусе с внутренним диаметром 225 А и ниже. Будь то электромагнит или двигатель, их направления втягивания и вращения одинаковы, только благодаря положению кулачка внутри электрического рабочего механизма, обеспечивающего закрытие и открытие. Когда автоматический выключатель приводится в действие электрическим механизмом, автоматический выключатель должен иметь возможность замыкания при любом напряжении от 85% до 110% от номинального управляющего напряжения.

Рисунок 6. Автоматический выключатель в литом корпусе

(2) Поворотная ручка

Подходит для автоматических выключателей в литом корпусе. На крышке выключателя установлен механизм ручки поворота. Поворотный вал ручки установлен в отверстие для согласования ее механизма. Другой конец вращающегося вала проходит через дверное отверстие шкафа с выдвижным ящиком, и ручка устанавливается на головке вала, выступающей на дверце всего устройства, круглое или квадратное основание которого закреплено на дверце винтами.

Эта установка позволяет оператору вращать ручку по часовой стрелке или против часовой стрелки за пределами двери, чтобы обеспечить включение или отключение автоматического выключателя. В то же время поворот ручки может гарантировать закрытие двери шкафа при включении автоматического выключателя до тех пор, пока поворотная ручка не откроется или не сработает снова. В аварийной ситуации, когда автоматический выключатель «замкнут» и электрическая панель должна быть открыта, мы можем нажать красную кнопку разблокировки сбоку от основания ручки.

(3) Удлинитель

Это внешняя удлинительная рукоятка, которая устанавливается непосредственно на рукоятку автоматического выключателя. Обычно он используется для автоматических выключателей большой мощности на 600 А и выше для ручного отключения и включения.

(4) Устройство блокировки ручки

Зажим устанавливается на раму ручки, ручка пробивается и затем фиксируется навесным замком. Когда автоматический выключатель включен, устройство блокировки ручки может остановить других, чтобы отключить питание и вызвать сбой.Кроме того, когда сторону нагрузки автоматического выключателя необходимо отремонтировать или питание отключено, это может предотвратить ошибочное включение автоматического выключателя.

Рис. 7. Устройство блокировки выключателя

VI Метод подключения

Способы подключения автоматического выключателя следующие: проводка перед платой, за платой, вставного типа, выдвижного типа, среди которых проводка перед платой является наиболее распространенным методом подключения.

1. Электропроводка за платой

Самая большая особенность проводки за платой заключается в том, что автоматический выключатель можно заменить или отремонтировать без повторного подключения , только отключив предварительный источник питания.

Из-за особой конструкции изделие оснащено специальными монтажными пластинами, монтажными винтами и винтами для проводки в соответствии с требованиями проекта. Следует отметить, что надежность контакта автоматического выключателя большой мощности напрямую влияет на нормальное использование автоматического выключателя, поэтому мы должны устанавливать его строго в соответствии с требованиями производителя.

2. Подключаемая проводка

На монтажной плате укомплектованного устройства сначала установите монтажное основание автоматического выключателя с 6 розетками на нем. На поверхности монтажного основания имеется соединительная пластина или болты позади монтажного основания, а шнур питания и линия нагрузки подключаются к монтажному основанию заранее.

Во время использования вставляйте автоматический выключатель прямо в крепление. Если автоматический выключатель сломан, просто вытащите сломанный и замените на исправный.Время замены подключаемой проводки короче, чем проводки до и за платой, что более удобно.

Рисунок 8. Электропроводка в автоматическом выключателе

3. Электропроводка выдвижного типа

Ящики входа и выхода автоматического выключателя вращаются по часовой стрелке или против часовой стрелки с помощью рычага. И основная цепь, и вторичная цепь используют съемную структуру, исключая изолятор , необходимый для фиксированного типа.Одна машина с двумя видами использования более экономична и в то же время обеспечивает большое удобство эксплуатации и обслуживания, повышая безопасность и надежность. В частности, держатель контактов главной цепи на основании ящика может использоваться взаимозаменяемо с держателем контактов предохранителя типа NT.

Последние Электронные Блог:

Устройство и принцип работы полевых транзисторов

Что такое электрический разъем?

Назначение и принцип действия выключателя

Автоматический выключатель — это коммутационное устройство, которое может замыкать, передавать и отключать ток в нормальных условиях контура, а также может замыкать, переносить и отключать ток в ненормальных условиях контура (включая условия короткого замыкания) в течение определенного времени. Автоматические выключатели могут использоваться для распределения электроэнергии, нечастого запуска асинхронных двигателей и защиты линий электропередач и двигателей. Они могут автоматически отключать цепь при серьезной перегрузке, коротком замыкании или пониженном напряжении. Его функция эквивалентна комбинации предохранителя с реле перегрева и недогрева. Кроме того, как правило, нет необходимости менять детали после отключения тока короткого замыкания. В настоящее время он получил широкое распространение.

Автоматический выключатель обычно состоит из контактной системы, системы гашения дуги, рабочего механизма, расцепителя и корпуса.Автоматические выключатели делятся на автоматические выключатели, автоматические выключатели в литом корпусе и автоматические выключатели рамного типа в зависимости от их конструкции.

Роль автоматических выключателей

Отключите и включите цепь нагрузки, а также отключите неисправную цепь, чтобы предотвратить распространение аварии и обеспечить безопасную работу. Высоковольтный выключатель должен разорвать дугу 1500 В, ток 1500-2000 А, эти дуги можно растянуть до 2 м, но они продолжают гореть и не гаснуть.Поэтому гашение дуги — это проблема, которую необходимо решать с помощью высоковольтных выключателей.

Низковольтные выключатели также называются автоматическими воздушными выключателями, которые могут использоваться для подключения и отключения цепей нагрузки, а также могут использоваться для управления двигателями, которые запускаются нечасто. Его функция эквивалентна сумме части или всех электрических устройств, таких как рубильник, реле максимального тока, реле потери напряжения, тепловое реле и устройство защиты от утечек. Это важный защитный электрический прибор в низковольтных распределительных сетях.

Низковольтные автоматические выключатели обладают множеством функций защиты (защита от перегрузки, короткого замыкания, пониженного напряжения и т. Д.), Регулируемым значением срабатывания, высокой отключающей способностью, удобством в эксплуатации и безопасностью, поэтому в настоящее время они широко используются. Устройство и принцип работы Низковольтный автоматический выключатель состоит из исполнительного механизма, контактов, устройств защиты (различных расцепителей), системы гашения дуги и т. Д.

Принцип работы выключателя

Когда происходит короткое замыкание, магнитное поле, создаваемое большим током (обычно в 10–12 раз), преодолевает пружину силы реакции, расцепитель тянет рабочий механизм, и переключатель мгновенно срабатывает.

При перегрузке ток становится больше, увеличивается тепловыделение, и биметалл до определенной степени деформируется, заставляя механизм двигаться (чем больше ток, тем короче время действия).

Главные контакты выключателей низкого напряжения управляются вручную или электрически замыкаются. После того, как главный контакт замкнут, механизм свободного отключения блокирует главный контакт в замкнутом положении. Катушка расцепителя максимального тока и термоэлемент теплового расцепителя включены последовательно с главной цепью, а катушка расцепителя минимального напряжения подключена параллельно источнику питания. Когда цепь закорочена или сильно перегружена, якорь расцепителя максимального тока втягивается, вызывая срабатывание свободного отключающего механизма, и главный контакт разъединяет главную цепь. Когда цепь перегружена, нагревательный элемент теплового расцепителя изгибает биметалл и толкает механизм свободного срабатывания. Когда в цепи пониженное напряжение, якорь расцепителя минимального напряжения отпускается. Это также приводит в действие механизм свободного отключения. Независимый расцепитель используется для дистанционного управления.Во время нормальной работы его катушка обесточена. Когда требуется дистанционное управление, нажмите кнопку пуска, чтобы возбудить катушку, и якорь приводит в действие механизм свободного отключения для перемещения главного контакта. Щелкните отключить.

Теперь есть электронные типы, которые используют трансформаторы для сбора токов каждой фазы и сравнения их с заданными значениями. Когда ток ненормальный, микропроцессор отправляет сигнал, чтобы электронный расцепитель приводил в действие рабочий механизм.

Параметры выключателя

Номинальное рабочее напряжение (Ue): это напряжение, при котором автоматический выключатель работает в нормальных (непрерывных) условиях.

Номинальный ток (In): максимальное значение тока, которое автоматический выключатель, оснащенный специальным реле максимального тока, может выдерживать неограниченно долго при температуре окружающей среды, указанной производителем, и не будет превышать температурный предел, указанный токоведущим компонентом.

Значение уставки тока срабатывания реле короткого замыкания (Im): Реле срабатывания короткого замыкания (мгновенное или с короткой задержкой) используется для быстрого отключения автоматического выключателя при возникновении высокого значения тока короткого замыкания и его предела срабатывания Im.

Номинальная отключающая способность при коротком замыкании (Icu или Icn): Номинальный ток отключения при коротком замыкании автоматического выключателя — это наибольшее (ожидаемое) значение тока, которое автоматический выключатель может отключить без повреждения. Текущее значение, указанное в стандарте, представляет собой среднеквадратическое значение переменной составляющей тока повреждения. При вычислении стандартного значения переходная составляющая постоянного тока (всегда возникающая при наихудшем случае короткого замыкания) принимается равной нулю. Номинальные характеристики промышленных выключателей (Icu) и бытовых выключателей (Icn) обычно выражаются в кА (действующее значение).

Отключающая способность при коротком замыкании (Ics): Номинальная отключающая способность автоматического выключателя делится на два типа: номинальная предельная отключающая способность при коротком замыкании и номинальная рабочая отключающая способность при коротком замыкании.

Принцип работы автоматического выключателя

— инженер-электрик

Это правда, что распределительное устройство используется для выполнения самых тяжелых работ, когда оно находится в эксплуатации. Для лучшего понимания мы узнаем о работе автоматических выключателей в принципах работы распределительных устройств. Понять принцип работы распределительного устройства будет несложно, если мы знаем и принцип действия выключателя . Итак, начнем.

Принцип действия выключателя

:

Конструкция: Однажды я разобрал MCCB на 1000 А. Я обнаружил, что сердце традиционного автоматического выключателя — это контактная система. Автоматический выключатель обычно состоит из набора подвижных контактов, также имеется набор фиксированных контактов, их токоведущих проводников или, можно сказать, выводов с механизмом размыкания, который часто подпружинен.

Чаще всего неподвижные и подвижные контакты изготавливаются из чистой меди достаточного размера и сечения. Но он будет постоянно проводить номинальный ток, когда подключен между входящей и выходной нагрузкой. Контактные наконечники или поверхности прикреплены или нанесены на медь. Обычно он сделан из металла, такого как серебро или сплав.

Этот контактный наконечник является основной точкой соприкосновения неподвижного и подвижного контактов и позволяет току течь. Важным требованием является постоянное поддержание низкого сопротивления контактного перехода.Кроме того, контакты не свариваются, из-за чрезмерной эрозии из-за высоких тепловых и динамических нагрузок в случае короткого замыкания.

Связано: Введение в распределительное устройство

Операция закрытия: Когда в это время устройство закрывается, контактные поверхности сжимаются пружиной. Можно использовать другие виды давления, создаваемое механизмом. Этот тип пружины или внешнего давления требуется для уменьшения сопротивления контактного перехода. Это омический нагрев на контактах; он также способствует разрушению посторонних материалов, таких как оксиды, которые могут загрязнять контактные поверхности во время работы.

Как правило, процессу замыкания внутри этого устройства дополнительно способствует такая геометрия, которая обеспечивает протирающее действие при соединении контактов. Это очищающее действие помогает гарантировать, что во время операции замыкания образуются точки чисто металлического контакта.

Размыкание: Разрыв контактов особенно затруднен из-за образования дуги внутри устройства при разъединении контактов. Дуга внутри устройства обычно образуется, когда ток достигает естественного нуля в цикле AC .Этому механизму обычно помогает вытягивание дуги на максимальную длину. Следовательно, увеличивая его сопротивление и ограничивая ток дуги во время торможения.

Обычно прерывание тока резистивной нагрузки не является проблемой во время работы. В этом случае коэффициент мощности близок к единице. Обычно, когда контакты выключателя размыкаются, возникает дуга и прерывается ток, тогда напряжение медленно повышается от нуля до пикового значения, следуя его естественной форме 50 или 60 Гц.Таким образом, нарастание напряжения на размыкающих контактах относительно невелико. Его можно поддерживать как контактный зазор, когда он увеличивается до полностью открытой точки. Во многих цепях индуктивная составляющая тока намного выше резистивной составляющей.

Связано: принцип работы предохранителя с конструкцией

Работа от короткого замыкания: Мы используем распределительное устройство или автоматический выключатель для защиты нашего электрооборудования . Теперь, если короткое замыкание происходит рядом с автоматическим выключателем, не только сопротивление короткого замыкания очень низкое, а ток замыкания — максимальное значение, но также коэффициент мощности может быть очень низким и может быть ниже 0.1, а ток и напряжение сдвинуты по фазе почти на 90 градусов. Когда контакты размыкаются и ток гаснет в нулевых точках, напряжение мгновенно стремится подняться до своего пикового значения.

Срабатывание выключателя

Срабатывание выключателя

Связанные: особенности MCCB и ACB с преимуществом

Это приводит к высокой скорости нарастания напряжения на контактах с целью восстановления пикового переходного процесса напряжения , которое значительно выше, чем нормальное пиковое напряжение системы.

Автоматические выключатели

: принцип действия и номинальные характеристики | Устройства

В этой статье мы обсудим: — 1. Значение автоматических выключателей 2. Принцип работы автоматических выключателей 3. Явление дуги 4. Гашение дуги 5. Переключение сопротивления 6. Номинальные характеристики.

Значение автоматических выключателей:

Автоматические выключатели — это механические устройства, предназначенные для замыкания или размыкания контактных элементов, тем самым замыкая или размыкая электрическую цепь в нормальных или ненормальных условиях.

Автоматические выключатели, которые обычно используются для защиты электрических цепей, оснащены катушкой отключения, подключенной к реле или другим средствам, предназначенным для автоматического отключения выключателя в ненормальных условиях, таких как перегрузка по току.

Автоматические выключатели выполняют следующие функции:

(i) Он непрерывно пропускает ток полной нагрузки без перегрева или повреждения,

(ii) Открывает и замыкает цепь без нагрузки,

(iii) Включает и отключает нормальный рабочий ток и

(iv) Он замыкает и размыкает токи короткого замыкания величиной, на которую рассчитано.

Автоматический выключатель удовлетворительно выполняет первые три режима работы, но при выполнении четвертого режима, т.е. когда он должен включать или отключать токи короткого замыкания, он подвергается механическим и термическим нагрузкам. Автоматические выключатели рассчитаны на максимальное напряжение, количество полюсов, частоту, максимальную длительную пропускную способность по току, максимальную отключающую способность и максимальную мгновенную пропускную способность и пропускную способность по току 4 с.

Отключающая или отключающая способность автоматического выключателя — это максимальное значение тока, которое может быть отключено им без каких-либо повреждений.Автоматические выключатели также имеют номинальную мощность в МВА, которая является произведением тока отключения, номинального напряжения и 10 –6 .

Принцип действия автоматических выключателей :

Автоматический выключатель — это устройство переключения и прерывания тока. Он состоит, по существу, из неподвижных и подвижных контактов, которые соприкасаются друг с другом и пропускают ток при нормальных условиях, то есть при включенном выключателе. Когда автоматический выключатель замкнут, токоведущие контакты, называемые электродами, сцепляются друг с другом под давлением пружины.

В нормальном рабочем состоянии выключатель может быть отключен или включен оператором станции с целью переключения и технического обслуживания. Чтобы размыкать автоматический выключатель, требуется лишь небольшое давление на спусковой крючок. Всякий раз, когда в какой-либо части энергосистемы возникает неисправность, на катушки отключения выключателя подается напряжение, и подвижные контакты разъединяются каким-либо механизмом, размыкая цепь.

Разделение токоведущих контактов вызывает дугу.Таким образом, ток может продолжаться до тех пор, пока разряд не прекратится. Возникновение дуги не только задерживает процесс прерывания тока, но также выделяет огромное количество тепла, которое может вызвать повреждение системы или самого выключателя. Поэтому основная проблема автоматического выключателя — погасить дугу в кратчайшие сроки, чтобы выделяемое им тепло не достигало опасного значения.

Базовая конструкция автоматического выключателя требует разделения контактов в изолирующей жидкости, которая выполняет две функции:

1.Гасит дугу между контактами при размыкании выключателя.

2. Обеспечивает изоляцию между контактами и от каждого контакта к земле.

Для этой цели обычно используются следующие изоляционные жидкости:

и. Воздух атмосферного давления.

ii. Сжатый воздух.

iii. Нефть производит водород для гашения дуги.

iv. Сверхвысокий вакуум.

v. Гексафторид серы (SF 6 ).

Жидкости, используемые в выключателях, должны обладать такими свойствами, как высокая диэлектрическая прочность, негорючесть, высокая термическая стабильность, способность гасить дугу, химическая стабильность и коммерческая доступность при умеренной стоимости.

Из простых газов воздух — самый дешевый и наиболее широко используемый для отключения цепи. Водород обладает лучшими характеристиками гашения дуги, но имеет более низкую диэлектрическую прочность по сравнению с воздухом. Также, если водород загрязнен воздухом, он образует взрывоопасную смесь.Азот имеет те же свойства, что и воздух. CO 2 имеет почти такую ​​же диэлектрическую прочность, что и воздух, но является лучшим средством для гашения дуги при умеренных токах. Кислород — хорошее средство пожаротушения, но он химически активен. SF 6 обладает выдающимися характеристиками гашения дуги и хорошей диэлектрической прочностью. Из всех этих газов SF 6 и воздух используются в промышленных газовых выключателях.

Явления дуги автоматических выключателей :

Дуга представляет собой столб ионизированного газа, молекулы которого потеряли один или несколько электронов.Отрицательно заряженные электроны с высокой скоростью притягиваются к положительному контакту (т. Е. К аноду) и по пути отрывают больше электронов от удара. Положительные ионы притягиваются к отрицательному контакту (то есть к катоду), но, поскольку они составляют почти весь вес атома, они движутся к нему относительно медленно. Таким образом, ток возникает из-за движения электронов.

Возбуждение дуги :

Для зажигания дуги необходимо, чтобы электроны выходили из катода, как только контакты начинают разъединяться при возникновении неисправности.

Считается, что инициирующие электроны производятся следующими двумя процессами:

(i) Из-за градиента высокого напряжения на катоде, приводящего к полевой эмиссии:

При удалении подвижного контакта площадь контакта и давление между разделяющими контактами уменьшаются, а из-за уменьшения площади контакта сопротивление увеличивается (но все равно намного меньше ома). Хотя контактное сопротивление довольно мало, но из-за большой величины тока короткого замыкания между разделяющими контактами возникает достаточно высокое падение потенциала, порядка 10 6 В / см, чтобы вытеснить электроны с поверхности катода.

(ii) Путем повышения температуры, приводящего к термоэлектронной эмиссии:

По мере того, как контакты разъединяются, уменьшение площади контакта вызывает увеличение плотности тока до очень высоких значений, порядка 10 6 А / см 2 . Эти очень высокие плотности тока повышают температуру поверхности контакта (катода), что приводит к тепловому излучению.

В автоматических выключателях используются контакты, как правило, из меди, термоэлектронная эмиссия из такого металла довольно мала, поэтому за возникновение дуги в основном ответственна автоэлектронная эмиссия.

Техническое обслуживание дуги :

Электроны, испускаемые таким образом из катода, совершают множество столкновений с атомами и молекулами газов и паров, существующих между двумя контактами, во время их движения к аноду. Такие столкновения вызывают ионизацию атомов и молекул, вытесняя больше электронов.

Ионизации способствует:

(i) Высокая температура среды вокруг контактов, вызванная высокой плотностью тока, при высокой температуре кинетическая энергия, полученная движущимися электронами, увеличивается.

(ii) Напряженность поля или градиент напряжения, который увеличивает кинетическую энергию движущихся электронов и увеличивает шансы отрыва электронов от нейтральных молекул.

(iii) Увеличение длины свободного пробега — расстояния, на которое электрон перемещается свободно. По мере того, как контакты расходятся, средний пробег увеличивается и увеличивается количество нейтральных молекул, а также увеличение среднего пробега уменьшает плотность газа, что дополнительно увеличивает свободный пробег электронов.

Все вышеперечисленные три процесса (термоэмиссия, ионизация и автоэмиссия) могут запускаться либо один за другим, либо почти одновременно, что позволяет инициировать и поддерживать дугу, и, наконец, если ток дуги высокий, дуга может достигать высокой температуры. достаточно, чтобы термическая ионизация стала основным источником электропроводности.

Напряжение дуги :

При разъединении контактов автоматического выключателя образуется дуга. Напряжение, которое появляется на контактах автоматического выключателя, называется напряжением дуги.

Для умеренных значений тока и напряжения характеристика дуги может быть выражена уравнением Айртона —

e a = A + B / i a … (6.1)

Таким образом, с увеличением тока дуги напряжение падает как гипербола. Константы A и B линейно изменяются с длиной дуги l

А = α + ϒl

и B = β + δl… (6.2)

Средние значения α, ϒ, β и δ для воздушных дуг между медными электродами следующие —

α = 30 В; ϒ = 10 В / см; β = 10 ВА; δ = 30 ВА / см

Сверху Ур.Из (6.1) очевидно, что вольт-амперная характеристика напряжения дуги отрицательна, т. Е. Напряжение дуги высокое, когда ток дуги мал, и наоборот. Это, конечно, хорошо известное свойство дуг.

На рис. 6.1 показаны временные характеристики переменного тока и напряжения. Из рис. 6.1 видно, что напряжение на дуге практически постоянно в то время, когда ток близок к своим пиковым значениям. При нулевом токе напряжение дуги быстро возрастает до пикового значения, и это пиковое значение имеет тенденцию поддерживать ток в форме дуги.

Напряжение на дуге синфазно с током дуги, поскольку ток дуги преимущественно резистивный. Величина напряжения дуги увеличивается в каждом последующем токовом контуре. Это связано с тем, что предполагается, что контакты выключателя разъединяются, увеличивая длину дуги и, следовательно, напряжение дуги.

Погашение дуги в автоматических выключателях :

При разъединении токоведущих контактов выключателя образуется дуга, которая сохраняется в течение короткого периода после разъединения контактов.Дуга обеспечивает постепенный переход контактов из токоведущего состояния в изолирующее по напряжению, но это опасно из-за генерируемой в ней энергии в виде тепла, которое может привести к взрывной силе.

Автоматический выключатель должен быть способен гасить дугу без повреждения оборудования или опасности для персонала. Дуга играет жизненно важную роль в работе автоматического выключателя. Прерывание дуги постоянного тока относительно сложнее, чем дуги переменного тока.В дугах переменного тока, когда ток становится равным нулю во время регулярной волны, дуга исчезает и предотвращается повторное зажигание.

Прежде чем обсуждать методы гашения дуги, необходимо изучить факторы, ответственные за поддержание дуги между контактами.

Это:

(i) Разница потенциалов между контактами и

(ii) Ионизированные частицы между контактами.

Падение потенциала между разъединяющими контактами достаточно для поддержания дуги и довольно мало.Один из способов погасить дугу — разделить контакты на такое расстояние, чтобы падение потенциала стало недостаточным для поддержания дуги. Однако этот метод неприменим в высоковольтных системах, где для этой цели потребуется разделение на несколько счетчиков.

Проводимость дуги пропорциональна количеству электронов на кубический сантиметр, произведенному ионизацией, квадрату диаметра дуги и обратной величине длины. Мы не можем добиться многого, увеличивая длину дуги до разумного значения.Что можно сделать, так это уменьшить плотность свободных электронов, то есть уменьшить ионизацию и уменьшить диаметр дуги. Следовательно, гашение дуги может быть облегчено за счет деионизации дуги. Это может быть достигнуто путем охлаждения дуги или путем удаления ионизированных частиц из пространства между контактами выключателя.

Переключение сопротивления в автоматических выключателях :

Преднамеренное включение сопротивления параллельно контактному пространству (или дуге) называется переключением сопротивления.Переключение сопротивления используется в автоматических выключателях, имеющих высокое сопротивление нулевого поста контактного пространства (т. Е. Автоматических выключателях с воздушным ударом).

Сильные колебания напряжения возникают из-за:

(i) Отключение малых индуктивных токов (т. Е. Отключение тока) и

(ii) Прерывание емкостных токов.

Это может поставить под угрозу работу системы. Этого можно избежать, применив переключение сопротивления (подключив резистор к контактам автоматического выключателя).

При возникновении неисправности контакты автоматического выключателя размыкаются и между контактами возникает дуга. При шунтировании дуги сопротивлением R часть тока дуги отводится через это сопротивление. Это приводит к уменьшению тока дуги и увеличению скорости деионизации дугового пути. Таким образом, сопротивление дуги увеличивается, что приводит к дальнейшему увеличению тока через шунтирующее сопротивление R. Этот процесс нарастания продолжается до тех пор, пока ток не станет настолько малым, что он не сможет поддерживать дугу.Теперь дуга гаснет и ток в цепи прерывается.

В качестве альтернативы сопротивление может включаться автоматически путем передачи дуги от главных контактов к контакту зонда, так как в случае с осевым автоматическим выключателем время, необходимое для этого действия, очень мало (обычно менее половины -цикл текущей волны). Если путь дуги заменен металлическим путем, ток, протекающий через сопротивление, ограничивается, а затем легко прерывается.

Типовые схемы подключения резисторов показаны на рис. 6.18. На рис. 6.18 (а) предусмотрен второй разрыв для отключения тока резистора. На рис. 6.18 (b) зазоры расположены так, что подвижный контакт в конечном итоге разрушает резистивные элементы. На рис. 6.18 (c) дуга сначала возникает на неподвижных и подвижных контактах F и M, затем передается через неподвижные и контактные контакты F и P и затем разрывается там.

Шунтирующий резистор также помогает ограничить колебательный рост переходных процессов повторного зажигания.Математически можно доказать, что собственная частота колебаний схемы, показанной на рис. 6.17 (а), равна —

.

Шунтирующий резистор R предотвращает колебательный рост напряжения повторного включения и вызывает его экспоненциальный рост вплоть до восстанавливающегося напряжения. Это наиболее эффективно, когда значение R выбрано так, чтобы схема была критически демпфированной. Значение R, необходимое для критического демпфирования, составляет 0,5. √L / C. Рис. 6.17 (b) показывает колебательный и экспоненциальный рост при критическом затухании контура.

Подводя итог, можно сказать, что резисторы на контактах выключателя могут использоваться для выполнения одной или нескольких из следующих функций:

1. Это снижает RRRV и, таким образом, снижает нагрузку на автоматический выключатель.

2. Обеспечивает демпфирование высокочастотных переходных процессов повторного включения при отключении индуктивных или емкостных нагрузок.

3. В автоматическом выключателе с несколькими размыкателями он помогает более равномерно распределять переходное восстанавливающееся напряжение по всем контактным промежуткам.

Используемые резисторы могут быть нелинейными или проволочными. Нелинейные резисторы подходят как по пространству, так и по соображениям надежности для малых шунтирующих токов, когда проволочные резисторы имеют тенденцию быть менее удовлетворительными по механическим соображениям. В случае сильных токов могут возникнуть трудности с размещением относительно большого объема необходимого резисторного материала.

Нелинейные резисторы не подходят для модификации RRRV и пика напряжения, как линейные резисторы, но они особенно подходят для приложений выравнивания напряжения и подавления перенапряжения, в которых относительно небольшие токи порядка 1-10 А при нормальном пиковом напряжении. адекватны.

В масляных автоматических выключателях с прямым размыканием (баковые) сопротивление контактного пространства после нуля низкое. Следовательно, переключение сопротивления не обязательно. Однако характеристики при малых токах можно улучшить, применив переключение сопротивления, и это иногда применяется; при прерывании небольшого тока значение реактивного сопротивления в цепи будет иметь тенденцию быть настолько большим, что индуктивность L в выражении для критического сопротивления будет больше, что приведет к появлению резисторов порядка тысяч Ом.

Пост-нулевое сопротивление воздушного выключателя высокое. Это может привести к серьезным скачкам напряжения из-за прерывания тока. Следовательно, используется переключение сопротивления. Вспомогательные контакты здесь заменены изолирующими контактами, которые являются частью воздушных выключателей.

Номинальные характеристики автоматического выключателя:

Номинальные характеристики автоматического выключателя указываются в соответствии с выполняемыми им функциями. Полные технические характеристики, стандартные характеристики и различные испытания переключателей и автоматических выключателей можно найти в IS 375/1951.

Помимо нормальной работы автоматических выключателей, автоматический выключатель должен выполнять следующие три основные функции в условиях короткого замыкания:

1. Автоматический выключатель должен быть способен отключать цепь и изолировать неисправную секцию в случае неисправности. Это описывается как отключающая способность автоматического выключателя.

2. Поскольку на практике автоматический выключатель включается 2-3 раза, чтобы обеспечить постоянство неисправности, т. е., он должен быть способен замкнуть цепь в максимальном асимметричном пике в волне тока. Это относится к включающей способности автоматического выключателя.

3. Когда автоматический выключатель работает вместе с другими автоматическими выключателями и в случае неисправности в какой-либо одной секции, выключатели в звуковых секциях не должны срабатывать, т. Е. Цепь должна быть способна безопасно переносить токи повреждения в течение короткого времени. пока другой автоматический выключатель (включенный последовательно) устраняет неисправность. Это относится к кратковременной мощности автоматического выключателя.

В дополнение к вышеперечисленным номинальным характеристикам автоматический выключатель должен быть указан с точки зрения (i) количества полюсов (ii) номинального напряжения (iii) номинального тока (iv) номинальной частоты и (v) рабочего режима. Число полюсов на фазу выключателя зависит от рабочего напряжения.

Номинальное напряжение:

В нормальных условиях эксплуатации напряжение в любой точке энергосистемы непостоянно. За счет этого производитель гарантирует безупречную работу выключателя при номинальном максимальном напряжении, которое, как правило, выше номинального номинального напряжения.

Номинальное максимальное напряжение автоматического выключателя — это максимальное действующее значение напряжения, превышающее номинальное напряжение системы, на которое автоматический выключатель рассчитан, и является верхним пределом срабатывания. Прежняя практика определения номинального напряжения автоматического выключателя в качестве номинального напряжения системы больше не применяется. Номинальное напряжение выражается в кВ действующее значение и относится к межфазному напряжению для трехфазной цепи.

и. Номинальный ток:

Номинальный нормальный ток автоматического выключателя — это действующее значение тока, который автоматический выключатель должен выдерживать при номинальной частоте и номинальном напряжении непрерывно при определенных условиях.В определенных условиях важным является повышение температуры различных компонентов автоматического выключателя при нормальной нагрузке. Важным условием нормальной работы масляного выключателя является то, что температура масла не должна превышать 40 ° C, а температура контактов не должна превышать 35 ° C.

ii. Номинальная частота:

Номинальная частота автоматического выключателя — это частота, на которой он рассчитан на работу. Стандартная частота 50 Гц. Особого внимания требуют применения на других частотах.

iii. Эксплуатационная нагрузка:

Рабочий режим автоматического выключателя состоит из заданного количества единичных операций с заданными интервалами.

Операционная последовательность обозначает последовательность операций включения и выключения, которые автоматический выключатель может выполнять при определенных условиях.

Отключающая способность:

Этот термин выражает наивысшее действующее значение тока короткого замыкания, которое автоматический выключатель способен отключить при определенных условиях переходного восстанавливающегося напряжения и напряжения промышленной частоты. Выражается в кА, действующее значение при разрыве контактов.

Из волны тока короткого замыкания, показанной на рис. 6.19, видно, что действующее значение тока изменяется со временем из-за наличия постоянной составляющей тока, которая со временем спадает.

Известно, что в конкретной фазе ток максимален в момент повреждения, после чего ток спадает. Кроме того, из-за времени реле выключатель начинает размыкать свои дугогасительные контакты только через некоторое время после возникновения короткого замыкания.Следовательно, фактический ток, прерываемый автоматическим выключателем, меньше начального значения тока короткого замыкания I 1 .

Пусть в момент разъединения контактов.

Переменная составляющая тока короткого замыкания, I перем. Ток = x

Постоянная составляющая тока короткого замыкания, I dc = y

Теперь симметричный ток отключения —

= действующее значение переменной составляющей тока короткого замыкания в момент размыкания контактов

= x / √2… (6. 19)

Несимметричный ток отключения —

= среднеквадратичное значение комбинированных сумм компонентов переменного и постоянного тока

Теперь согласно этим двум значениям отключающих токов есть два соответствующих значения отключающих способностей. Обычно отключающая способность автоматического выключателя в МВА выражается как √3 x номинальное напряжение в кВ x номинальный ток отключения в кА.

Такая практика определения отключающей способности в МВА удобна при определении уровня неисправности.Однако в соответствии с пересмотренными стандартами отключающая способность выражается в кА для заданных условий TRV, и этот метод учитывает как ток отключения, так и TRV.

Теперь две отключающие способности можно определить следующим образом:

(i) Симметричная отключающая способность автоматического выключателя — это значение симметричного отключающего тока, которое автоматический выключатель способен отключать при установленном восстанавливающемся напряжении и заявленном эталонном напряжении повторного включения при заданных условиях.

(ii) Асимметричная отключающая способность автоматического выключателя — это значение асимметричного отключающего тока, который автоматический выключатель способен отключить при установленном восстанавливающемся напряжении и заявленном эталонном напряжении повторного включения при заданных условиях.

Производительная мощность:

Всегда существует вероятность того, что автоматический выключатель сработает при коротком замыкании. Включающая способность автоматического выключателя зависит от его способности противостоять воздействию электромагнитных сил, которые пропорциональны квадрату пикового значения тока включения.Ток включения автоматического выключателя при замыкании на короткое замыкание — это пиковое значение максимальной волны тока (включая составляющую постоянного тока) в первом цикле тока после замыкания цепи автоматическим выключателем.

Для определения тока включения автоматического выключателя необходимо умножить симметричный ток отключения на √2, чтобы преобразовать действующее значение в пиковое значение, а затем на 1,8, чтобы учесть «эффект удвоения» максимальной асимметрии.

Таким образом, номинальный ток включения = 1.8 x √2 номинальный ток отключения при коротком замыкании

= 2,55 номинальный ток отключения при коротком замыкании

или Включающая способность = 2,55 x симметричная отключающая способность… (6.21)

Кратковременный ток Рейтинг:

иногда требуется автоматический выключатель для передачи тока короткого замыкания на короткие промежутки времени без отключения. Это происходит в случае кратковременных неисправностей, таких как сбой на линиях электропередачи, и неисправность автоматически устраняется и сохраняется только в течение 1 или 2 секунд.По этой причине автоматические выключатели рассчитаны на кратковременное отключение и срабатывают только тогда, когда неисправность сохраняется в течение более длительного времени, чем указанный предел времени.

Кратковременный ток автоматического выключателя — это действующее значение тока, которое автоматический выключатель может выдерживать в полностью замкнутом положении без повреждений в течение указанного интервала времени при заданных условиях. Обычно он выражается в кА за период в 1 или 4 секунды, известный как рейтинг в одну секунду и рейтинг в четыре секунды соответственно.Эти характеристики основаны на тепловых ограничениях.

Низковольтные выключатели

не имеют такой кратковременной защиты, потому что они обычно оснащены последовательными расцепителями перегрузки прямого действия.

Принцип работы автоматического выключателя

Анимация

Автоматический выключатель — это автоматический выключатель, предназначенный для защиты электрической цепи от повреждений, вызванных перегрузкой электричеством или коротким замыканием. Функция автоматических выключателей заключается в обнаружении неисправности и немедленном прекращении электрического тока путем прерывания цепи.

Анимация выключателя

Введение в автоматический выключатель

При работе энергосистемы часто желательно и необходимо отключать или отключать различные устройства или линии передачи в нормальных и ненормальных условиях. Раньше для этой цели использовались переключатели и предохранители, чтобы размыкать или замыкать контакт.

Но если предохранитель выйдет из строя по причине неисправности, потребуется время для его замены, что приведет к значительному прерыванию передачи энергии.Оператор должен отправиться в поле, чтобы заменить предохранитель в случае его выхода из строя. Выключатели или предохранители не могут выдерживать большие токи из-за своей конструкции.

Эти недостатки выключателей и предохранителей заставили их использовать в более низком диапазоне напряжений. Но в развивающейся электротехнике каждый день мы имеем дело с новой технологией, состоящей из более высокого диапазона напряжений, что побудило использовать устройство, называемое автоматическим выключателем.

Определение автоматического выключателя

Автоматический выключатель — это устройство, которое замыкает цепь по желанию оператора и размыкает цепь на основании намерения оператора, а также при любой неисправности в цепи.

Вкратце важные функции автоматических выключателей следующие:
  1. Выключателем можно управлять вручную или дистанционно из диспетчерской.
  2. Автоматический выключатель может автоматически срабатывать при неисправности через логическую схему.
  3. Он может выдерживать более высокие напряжения, обеспечивая более высокую изоляцию между двумя контактами в разомкнутом состоянии.

Принцип действия выключателя

Каждому инженеру-электрику необходимо знать, как работает автоматический выключатель. . Автоматический выключатель состоит из двух электродов, один неподвижный, а другой подвижный. Цепь будет замкнута, если два контакта находятся в контакте, и она будет разомкнута, когда эти два разъединены.

Это основано на требовании оператора, должна ли цепь быть замкнута или открыта в исходном случае. Предположим, что если выключатель изначально включен для замыкания цепи, если в цепи возникает какая-либо неисправность или если оператор хотел ее размыкать, то логический сигнал активирует реле отключения, которое разделяет два контакта, перемещая подвижную катушку на расстояние от фиксированной катушки. .

Это выглядит легким в эксплуатации, но реальное препятствие здесь только здесь, т.е. когда два контакта разделяются, между концами контактов будет большая переходная разность потенциалов, которая позволяет огромным электронам перескакивать с высокого потенциала на низкий. Но переходное расстояние между двумя контактами в этот момент действует как диэлектрик для перехода электронов от одного электрода к другому.

Если разность потенциалов выше, чем электрическая прочность, электроны пытаются перейти к другому электроду, который ионизирует диэлектрическую среду, что приводит к сильной искре между электродами.Эта искра между электродами называется « arc ».

Даже несмотря на то, что дуга сохраняется в течение микросекунд, достаточно взорвать изолирующий кожух выключателя и компоненты в нем из-за высокой теплоты искрения.

Таким образом, чтобы избежать этого повреждения автоматического выключателя, силу дуги необходимо уменьшить за счет увеличения диэлектрической прочности между двумя электродами, когда они разделяются, а проявленный электрод должен гаснуть непосредственно перед тем, как повредить выключатель.

Такие среды, как воздух, масло, вакуум и SF6 (гексафторид серы), используются в качестве среды для гашения дуги, которая обеспечивает высокую диэлектрическую прочность, а также гасит дугу в кратчайшие сроки.

Выключатель главный назначение

  • Коммутатор токов нагрузки
  • Устранить неисправность
  • Нормальный ток отключения и ток короткого замыкания
  • Перенести ток короткого замыкания, не открываясь (или не поднимаясь вверх!), Т. Е. Без искажений из-за магнитных сил в условиях короткого замыкания.
  • Важными характеристиками с точки зрения защиты являются: Скорость, с которой открывается основной ток после получения отключающего импульса.

Преимущества автоматического выключателя перед предохранителем

  • Автоматический выключатель работает при высоком напряжении по сравнению с предохранителем.
  • Автоматическим выключателем

  • можно управлять дистанционно, запитав катушку включения или отключения, что невозможно в случае плавкого предохранителя.
  • Функционирование выключателя (срабатывание или включение) можно легко проверить.
  • Нет необходимости заменять автоматический выключатель после неисправности.

Основы технического обслуживания выключателей

Автоматические выключатели используются практически во всех электрических системах — от жилых домов до инженерных сетей.Мы полагаемся на них для защиты наших систем от сверхтоков и коротких замыканий. Понимание конструкции и работы автоматического выключателя является ключом к пониманию их ограничений и правильного использования. В этой статье рассматриваются основные компоненты и работа популярных типов автоматических выключателей, включая автоматические выключатели в литом корпусе (MCCB), изолированные корпуса (ICCB), низковольтные силовые (LVPCB), средневольтные воздушно-магнитные (MVACB) и средневольтные. автоматические выключатели напряжения вакуумные (МВВКБ).

Ключевые компоненты

Автоматические выключатели состоят из пяти компонентов: рамы, рабочего механизма, структуры прерывания, расцепителя и клеммных соединений. Эти компоненты показаны на рис. 1 .

    1. Рама — вмещает и поддерживает компоненты, а также обеспечивает изоляцию для сдерживания дуги.
    2. Привод — размыкает и замыкает контакты.
    3. InterruptingStructure — включает дугогасительные камеры и все токоведущие части, кроме расцепителя. Дугогасительные камеры предназначены для быстрого прерывания дуги, обычно 1.От 5 до двух циклов для MCCB и ICCB.
    4. Расцепитель — определяет ненормальный ток и заставляет рабочий механизм размыкать контакты. Расцепители MCCB обычно бывают термомагнитного типа.
    5. Клеммные соединения — обеспечивает подходящее соединение выключателя с проводом. Автоматические выключатели в литом корпусе обычно крепятся болтами непосредственно к шине.

Автоматические выключатели большинства производителей имеют похожие компоненты и похожий внешний вид.

ICCB имеют ту же базовую конструкцию, что и MCCB, но используют твердотельные и цифровые расцепители (в отличие от термомагнитных расцепителей) и имеют гораздо более высокие отключающие характеристики. ICCB часто бывают выдвижного типа, в отличие от болтов, хотя могут быть и того, и другого.

LVPCB (, фото 1 справа) также известны как выключатели с воздушной рамой и выкатные выключатели. Типичная LVPCB состоит из пяти основных сборок:

    1. Отсоединяет или наносит удар

      • Главные разъединители — подключите автоматический выключатель к главной шине.
      • Вторичные разъединители — подключите автоматический выключатель к цепям управления.
      • Разъединитель заземления — подключает автоматический выключатель к шине заземления.
    2. Контакты

      • Дуга — передает дугу на направляющие дуги в дугогасительной камере.
      • Main — переносят основной ток нагрузки.
      • Вспомогательные — замыкают и размыкают цепи управления.
    3. Дуговые гасители или дугогасительные камеры — прерывают и сдерживают дугу.
    4. Привод — размыкает и замыкает контакты.
    5. Устройство отключения по максимальному току — современные автоматические выключатели имеют цифровые расцепители, хотя более старые устройства могут быть типа пневматических или масляных. Типичными функциями являются длительная задержка (LTD), кратковременная задержка (STD), мгновенная задержка (INST) и замыкание на землю (GF).

Выключатели среднего напряжения имеют те же основные компоненты, что и их аналоги с более низким напряжением, но используют защитные реле, которые отдельно устанавливаются в распределительном устройстве. В MVVCB используется вакуумный баллон вместо контактных узлов и дугогасительных камер, имеющихся в MVACB. Фотография 2 (справа) показывает типичный MVACB, а Фотография 3 показывает MVVCB.

Главные разъединители (штыри)

Основные разъединители подключают автоматический выключатель к шине.В LVPCB обычно используются вертикальные или горизонтальные ряды прямых подпружиненных пальцев для контакта с шиной, хотя на каркасах больших размеров они могут иметь круглые или «тюльпановые» разъединения. Фотография 4 показывает сборку задней панели LVPCB с четко видимыми разъединителями первичной, вторичной обмотки и заземления.

В большинстве автоматических выключателей среднего напряжения в металлической оболочке используются разъединители типа «тюльпан» (, фото 5 ), и они имеют пружину определенного типа для обеспечения хорошего контакта с шиной.Выкатные выключатели среднего напряжения имеют основные разъединители в распределительном устройстве, защищенные механизмом заслонки, установленным в шкафу распределительного устройства. При удалении (выкатывании) автоматического выключателя заслонка закрывается. Когда автоматический выключатель установлен в положение «включено», заслонка открывается, позволяя произвести отключение первичной обмотки.

Вторичные разъединители (штыри)

Вторичные разъединители передают питание от цепей управления на автоматический выключатель. Фотография 4 показывает LVPCB и его вторичные разъединители. Типичная компоновка этого выключателя состоит в том, чтобы подключать и отключать эти ножки по мере того, как выключатель вставляется и выкатывается в свою ячейку. Фотография 6 показывает типичное устройство MVACB, которое часто приходится подключать вручную.

Разъединитель заземления (контактный башмак)

Рама автоматического выключателя должна быть подключена к шине заземления, чтобы короткое замыкание или повреждение немедленно устранялось и позволяло защитным устройствам срабатывать как можно быстрее.Разъединитель заземления соединяет раму выключателя с шиной заземления ( Фото 7 справа). Разъединитель заземления — это первое соединение, выполненное при вкатывании выключателя, и последнее соединение, разорванное при выкатывании. Это гарантирует, что рама выключателя будет заземлена всякий раз, когда есть вероятность того, что рама находится под напряжением.

Дуговые контакты

Дугогасительные контакты предназначены для предотвращения повреждения основных контактов и могут быть изготовлены из сплавов серебра, кадмия, вольфрама и цинка.Вольфрам, кадмий и цинк делают дугогасительные контакты более прочными, поэтому при размыкании и замыкании контактов они не так быстро изнашиваются. Когда автоматический выключатель размыкается, сначала разделяются главные контакты, а затем часть дугогасительных контактов, протягивая дугу через них. Когда автоматический выключатель замыкается, сначала замыкаются дугогасительные контакты, снова протягивая дугу через них. Это предотвращает перенос дуги через главные контакты и сохраняет их.

Контактные поверхности имеют такую ​​форму, что они имеют движение трения, называемое «протирание».«Протирание помогает очистить контактную поверхность, так как одна из контактных поверхностей имеет контур, а другая — плоская. Когда контакты замыкаются, фасонная поверхность будет совершать вытирающее движение против плоского контакта. Дугогасительные контакты обычно имеют дугогасительный «рог» на самом верху контактной структуры. Дугогасительный рожок помогает передавать дугу от дугового контакта к дугогенератору в дугогасительной камере.

Основные контакты

Основные контакты изготовлены из более мягкого сплава с меньшим содержанием вольфрама или цинка и большим количеством серебра.Они несут ток нагрузки, поэтому должны иметь меньшее сопротивление току. Сети больше, что также снижает их сопротивление.

Вспомогательные контакты

Вспомогательные контакты управляют электрическими функциями автоматического выключателя, такими как включение и выключение двигателя взвода пружины в соответствующее время. На платах LVPCB вспомогательные контакты устанавливаются на раме выключателя ( Фото 8 справа). В распределительном устройстве среднего напряжения в металлическом корпусе обычно устанавливаются вспомогательные контакты, а не на корпусе выключателя. Вспомогательные контакты механически приводятся в действие от рабочего механизма и используются для цепей управления и индикации. Они соединены тягой с приводным механизмом и работают одновременно с главными контактами.

Дуговые огнетушители

Дуговые гасители (дугогасительные камеры) удерживают дугу, растягивают ее, охлаждают и деионизируют. Это происходит в течение одной десятой секунды или меньше и имеет решающее значение для безопасной работы автоматического выключателя и энергосистемы. Время, необходимое для прерывания дуги, известно как «максимальное общее время гашения» — время от начала дуги до ее полного гашения.Эта характеристика используется для правильной координации энергосистем, чтобы они сработали в правильной последовательности (выборочное отключение). Выборочное отключение также называется «координацией энергосистемы», так как устройства будут работать в правильной последовательности, если это выполнено правильно.

Когда контакты начнут размыкаться, возникнет горячая дуга. У большинства воздушных автоматических выключателей дугогасительные камеры расположены над контактными узлами, так как естественная тенденция дуги состоит в том, чтобы подниматься и помогать в гашении дуги.Дуга ускоряется по ходу процесса с помощью различных компонентов в дугогасительной камере, таких как буферы, обмоточные катушки, направляющие дуги и дугогасительные рожки. Есть исключения из этого порядка. Автоматический выключатель одного производителя размещает дугогасительную камеру позади выключателя.

Фото 9 (справа) показывает дугогасительную камеру. Обратите внимание, что на дугогасительную камеру приходится два набора контактов из-за большой нагрузки и дуговых токов, которые необходимо учитывать. Фотография 10 показывает узел вентиляции и глушителя на одном и том же гасителе дуги.В низковольтных гасителях дуги не должно быть предохранительных катушек или магнитных полюсных наконечников, таких как те, что используются в MVACB.

Фотография 11 показывает расположение дугогасительной камеры на воздушном магнитном выключателе. Фотография 12 показывает деталь узла предохранительной катушки автоматического выключателя. Когда контакты разъединяются, обмотка продувки находится под напряжением, проталкивая через них ток дуги. Это создает магнитное поле, которое быстрее втягивает дугу в дугогасительную камеру.

Вакуумные бутылки

Альтернативой, которая фактически заменила MVACB, является MVVCB.Вакуумные выключатели прерывают дугу, препятствуя проникновению воздуха. В чистом вакууме дуги быть не может. Несмотря на то, что вакуум в вакуумных баллонах очень хороший, он не идеален — поэтому некоторые дуги все же возникают. Дуга прерывается очень быстро, обычно за два-три цикла, в зависимости от области применения. Фото 13 — это вакуумный баллон в разрезе, в котором показаны его компоненты.

Вакуумные баллоны требуют очень небольшого обслуживания по сравнению с узлами с воздушно-магнитными контактами. Контакт перемещается только на ½ дюйма.в вакуумном баллоне, а открывающие пружины намного легче. Это снижает износ сборки, а также снижает вес, поскольку можно уменьшить тяжелые металлические опоры и раму. Основные компоненты вакуумного баллона:

  • Бутыль —Изготовлен из чрезвычайно закаленной керамики или стекла. Бутылка должна выдерживать взрывную силу дуги.
  • Гибкие металлические сильфоны — Припаяны / приварены к штоку подвижного контакта, он поддерживает уплотнение между подвижным контактом и бутылкой.
  • Щиток сильфона — Защищает металлический сильфон от сильного нагрева дуги. Поскольку вакуум не идеален, внутри бутылки может возникнуть искрение.
  • Контакты — Здесь нет дуги и сети, только один набор контактов. Когда дуга прерывается, часть металла испаряется. Большинство вспоминает на контактной поверхности, а некоторые смещаются к внутренней части бутылки.
  • Защитный экран для конденсации паров металла (дуга) — Поскольку небольшое количество контактной поверхности не рекомбинируется с контактной поверхностью, оно начинает двигаться к стенке бутылки. Экран конденсации паров металла спроектирован так, что оба конца открыты и не соприкасаются с бутылкой. Попадающий на него пары металла не могут замкнуть контакты.

Работа выключателя. Современные приводные механизмы быстродействующие, быстродействующие. Это означает, что скорость срабатывания контакта не зависит от скорости ручки управления. Рабочие механизмы также называются механизмами с «накопленной энергией», потому что есть как открывающие, так и замыкающие пружины.Один комплект пружин обычно имеет натяжение. По этой причине будьте предельно осторожны при работе с автоматическими выключателями или рядом с ними. У них тяжелые подвижные контактные узлы и мощные пружины. Если ваша рука находилась между подвижным и неподвижным контактами, когда он замыкался, это могло вас искалечить.

Замыкающие пружины не удерживают контакты замкнутыми. Со временем они ослабнут, заставляя контакты подпрыгивать, вибрировать и гореть. Контакты удерживаются в закрытом положении с помощью приводного механизма опоры и валика. Стойка и ролик механически соединяют контактную связь, заставляя контакты оставаться плотно замкнутыми. Типичный опорный и роликовый механизм показан на рис. 2 , 3 и 4 .

На рисунке 2 показан рабочий механизм в «закрытом» положении. Изолированная муфта (12) удерживает контакты замкнутыми из-за того, что детали 2, 5, 6, 11 и 14 находятся в посадке с натягом. Защелка отключения (11) удерживает вторичную защелку (14) от вращения по часовой стрелке.Вторичная защелка располагается напротив вторичного фиксирующего ролика (6 — желтый), который, в свою очередь, выдвигает кулачковый (основной) ролик (5 — красный) к стойке (2). Открывающая пружина (15) на этом виде не показана, но оказывает давление на контакты для размыкания.

Обратите внимание, что вторичная защелка (14) прижимается к вторичному фиксирующему ролику (6), который толкает основной ролик (5) и его рычажный механизм в вертикальное положение. Основной ролик, в свою очередь, прижимается к стойке (2), что предотвращает его чрезмерное выдвижение.Центральная линия изолирующего соединительного штифта проходит по прямой линии с главным роликом через распределительный вал. В этом положении контакты не могут открыться до тех пор, пока рычажный механизм не разрушится, что не может произойти до тех пор, пока защелка отключения (11) не освободит дополнительную защелку (14).

Рисунок 3 показывает тот же механизм в «отключенном» положении. Чтобы размыкать выключатель, расцепляющая защелка поворачивается по часовой стрелке, позволяя вторичной защелке вращаться против часовой стрелки. Когда это происходит, основной ролик (5) и вторичный фиксирующий ролик (6) разрушаются.Это позволяет размыкающим пружинам размыкать контакты. Часть 7 представляет собой коленчатый рычаг, который используется для изменения движения в одном направлении на движение в другом направлении. Когда рычаг разрушается, коленчатый рычаг вращается, позволяя контактам размыкаться.

Рисунок 4 показывает механизм в положении «сброс». Это положение — состояние механизма перед закрытием. Защелка отключения (11) и вторичная защелка (14) возвращаются в то же положение, что и при нахождении выключателя в положении «замкнуто».Чтобы установить механизм в это положение, кулачок (3) необходимо слегка повернуть против часовой стрелки до тех пор, пока стойка (2) не будет поднята вверх, позволяя основному ролику (5) и рычажному механизму (зеленому) соскользнуть в изгиб опора При этом рычажный механизм немного выдвигается, и вторичная защелка (14) входит в контакт с передней частью рамы, как показано (синим цветом), что обеспечивает зазор между отключающей защелкой и дополнительной защелкой. Стойка и кулачок возвращаются в исходное положение, и, если нажимается кнопка включения выключателя, замыкающие пружины ускоряют замыкание контактов.Кулачок и опора будут вращаться, выдвинув рычажный механизм и заставив компоненты занять те же положения, как показано на рис.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *