Устройство и принцип работы трехфазных асинхронных двигателей. Устройство трехфазного электродвигателя


Устройство и принцип работы трехфазных асинхронных двигателей | RuAut

Устройство трехфазных асинхронных двигателей (статор и ротор асинхронных двигателей)

Трехфазный асинхронный двигатель состоит из неподвижного статора и ротора. Три обмотки размещены в пазах на внутренней стороне сердечника статора асинхронного двигателя. Обмотка же ротора асинхронного двигателя не имеет электрического соединения с сетью и с обмоткой статора. Начало и концы фаз обмоток статора присоединяют к зажимам в коробке выводов по схеме звезда или треугольник.

Асинхронные двигатели в основном различаются устройством ротора, который бывает двух типов: фазный или короткозамкнутый. Обмотка короткозамкнутого ротора асинхронного двигателя выполняется на цилиндре из медных стержней и называется "беличьей клеткой". Торцевые концы стержней замыкают металлическими кольцами. Пакет ротора набирают из электротехнической стали. В двигателях меньшей мощности стержни заливают алюминием. Фазный ротор и статор имеют трехфазную обмотку. Фазы обмотки соединяют звездой или треугольником и ее свободные концы выводят на изолированные контактные кольца.

Получение вращающегося магнитного поля

Обмотка статора асинхронного двигателя в виде трех катушек уложена в пазы расположенные под углом в 120 градусов. Начало и конца катушек обозначаются соответственно буквами A, B, C и X,Y,Z. При подаче на катушки трехфазного напряжения в них установятся токи Ia, Ib, Ic и катушки создадут собственное переменное магнитное поле. Ток в любой катушке положительный, когда он направлен от начала к ее концу и отрицательный при обратном направлении. Векторы намагничивающей силы совпадают с осями катушек, а их величина определяется значениями токов, направление результирующего вектора совпадает с осью катушки. Вектор результирующей намагничивающей силы поворачивается на 120 градусов сохраняя величину совпадает с осью соответствующей катушки. Таким образом за период, результирующее магнитное поле статора совершает оборот с неизменной скоростью. Работа трехфазного асинхронного двигателя основана на взаимодействии вращающегося магнитного поля с токами наводимыми в проводниках ротора.

Принцип работы трехфазного асинхронного двигателя

Совокупность моментов созданных отдельными проводниками образует результирующий вращающий момент двигателя, возникает электромагнитная пара сил, которая стремится повернуть ротор в направлении движения электромагнитного поля статора. Ротор приходит во вращение приобретает определенную скорость, магнитное поле и ротор вращаются с разными скоростями или асинхронно. Применительно к асинхронным двигателям, скорость вращения ротора всегда меньше скорости вращения магнитного поля статора.

Пуск асинхронных двигателей

В асинхронных двигателях с большим моментом инерции необходимо увеличение вращающего момента с одновременным ограничением пусковых токов - для этих целей применяют двигатели с фазным ротором. Для увеличения начального пускового момента в схему ротора включают трехфазный реостат. В начале пуска он введен полностью, пусковой ток при этом уменьшается. При работе реостат полностью выведен. Для пуска асинхронных двигателей с короткозамкнутым ротором применяют три схемы: с реактивной катушкой, с автотрансформатором и с переключением со звезды на треугольник. Рубильник последовательно соединяет реактивную катушку и статор двигателя. Когда скорость ротора приблизится к номинальной, замыкается рубильник, он закорачивает катушка и статор переключаются на полное напряжение сети. При автотрансформаторном пуске по мере разгона двигателя, автотрансформатор переводится в рабочее положение, в котором на статор подается полное напряжение сети. Пуск асинхронного двигателя с предварительным включением обмотки статора звездой и последующим переключением ее на треугольник дает трехкратное уменьшение тока.

Изменение частоты вращения ротора трехфазного асинхронного двигателя 

Параллельные обмотки двух фаз образуют одну пару полюсов сдвинутые в пространстве на 120 градусов. Последовательное соединение обмоток образует две пары полюсов, что дает возможность уменьшить скорость вращения в два раза. Для регулирования скорости вращения ротора изменением частоты тока используют отдельный источник тока или преобразователь энергии с регулируемой частотой выполненный на тиристорах.

Способы торможения двигателей

При торможении противовключением меняются два провода соединяющих трехфазную сеть с обмотками статора, изменяя при этом направление движения магнитного поля машины. При этом наступает режим электромагнитного тормоза. Для динамического торможения обмотка статора отключается от трехфазной сети и включается в сеть постоянного тока. Неподвижное поле статора заставляет ротор быстро останавливаться. Асинхронные двигатели нашли широкое применение в промышленности. В строительных механизмах, на металлообрабатывающих станках, в кузнечно-прессовом оборудовании, в силовых приводах прокатных станов, в радиолокационных станциях и многих других отраслях.

ruaut.ru

12.3. Устройство трехфазных асинхронных двигателей

Все трехфазные асинхронные двигатели имеют конструктивно одинаковые статоры и различаются выполнением обмотки ротора. По конструкции обмотки ротора эти двигатели подразделяются на два типа: с короткозамкнутой обмоткой (короткозамкнутые) и с фазной обмоткой (так называемые двигатели с фазным ротором или с контактными кольцами).

Трехфазный двигатель предназначен для включения в трехфазную сеть, поэтому он должен иметь обмотку статора, состоящую из трех фазных обмоток, при прохождении через которые токи, поступающие из трехфазной сети, возбуждают вращающееся магнитное поле. Для усиления магнитного поля и придания ему необходимой формы сер­дечник статора и ротора выполняют из электротехнической стали. Для уменьшения потерь в стали сердечники собирают из тонких листов электротехнической стали, изолированных друг от друга слоем лака.

На рис. 12.4 показана конструктивная схема поперечного разреза асинхронного двигателя, состоящего из корпуса (станина) статора 1, сердечника статора 2, обмотки статора 3, сердечника ротора 4, обмоток ротора 5, воздушного зазора между внутренней поверхностью сердечника статора и поверхностью ротора 6, вентиляционных каналов 7, вала ротора 8. К корпусу двигателя, который отли­вают из чугуна или стали, прикрепляют все остальные части двигателя. Сердеч­ник статора имеет вид полого цилиндра с продольными пазами по внутренней поверхности. В пазы укладываются три одинаковые фазные обмотки, сдвинутые относительно друг друга на угол 120°. Внутри корпуса сердечник статора укреп­ляется с помощью прокладок из не.магнитного материала для того, чтобы не допускать образования в нем маг­нитного поля и, следовательно, вихре­вых токов.

Ранее было установлено, что вращающееся магнитное поле при р = 1 и f = 50 Гц имеет частоту вращения n = 3000 об/мин. Если же требуется меньшая частота вращения, то необходимо соответственно уменьшить частоту вращения поля. Для этого статоры выполняют с многополюсными обмотками (р > 1). В многополюсной обмотке каждой паре полюсов вращающегося поля соответствуют три катушки. Если же необходимо иметь р пар полюсов, то число катушек обмотки статора равно 3р, т. е. по р катушек в каждой фазной обмотке.

Рассмотрим устройство роторов асинхронных двигателей. Коротко-замкнутый ротор состоит из стального вала, цилиндрического сердеч­ника, насаженного на вал ротора, короткозамкнутой обмотки и лопастей, осуществляющих вентиляцию машины.

Ротор асинхронного двигателя, как и роторы других электрических машин, удерживается с помощью боковых подшипниковых щитов, прикрепленных болтами к корпусу машины. Два боковых подшипниковых щита имеют центральные отверстия для подшипников, в которых вра­щается ротор. На рис. 12.5, а показан продольный разрез асинхронного двигателя с короткозамкнутым ротором, на рис. 12.5, б — схема его включения. На рисунке 1 — корпус; 2 — сердечник статора; 3 — лобовая часть обмотки статора, т. е. часть, находящаяся вне пазов; 4 - сердечник ротора; 5 — вал; 6 — подшипник; 7 — подшипниковый щит.

Сердечник ротора имеет вдоль поверхности продольные пазы, в которые укладывается обмотка, представляющая собой неизолирован­ные медные или алюминиевые стержни, замкнутые накоротко на торцах ротора

двумя торцовыми кольцами.

Если эту обмотку мысленно вынуть из стального цилиндрического сердечника ротора, то она будет выглядеть как беличья клетка (рис. 12.6). Следует отметить, что обмотка короткозамкнутого ротора не изолируется от сердечника из-за того, что между удельными сопротивлениями обмотки и стали сердечника имеется зна­чительная разница и индуцированные в обмотке токи замы­каются в основном по ее стержням и торцовым кольцам.

В асинхронных двигателях средней и малой мощности коротко-замкнутую обмотку ротора получают путем заливки расплавленного алюминиевого сплава в продольные пазы сердечника. Вместе с обмот­кой отливают также торцовые короткозамыкающие кольца и лопасти для вентиляции машины.

У двигателей с фазным ротором в продольные пазы сердечника ротора укладывают три одинаковые изолированные обмотки (фазы), выполненные по типу статорной обмотки, т, е. смещенные между собой в пространстве на 120°, причем концы фаз объединены в общую точку, образуя звезду, а начала присоединены к трем контактным кольцам, размещенным на валу. С помощью щеток, прижимающихся к контактным кольцам, в каждую фазу обмотки ротора можно ввести добавочное активное сопротивление от трехфазного реостата. С увеличением актив­ного сопротивления обмотки ротора уменьшается пусковой ток, т. е. облегчается пуск двигателя, а также увеличивается пусковой момент вплоть до максимального значения. Кроме того, изменяя с помощью реостата активное сопротивление цепей ротора, можно регулировать частоту вращения двигателя. Все это позволяет применять двигатели с фазным ротором для привода машин и механизмов, требующих при пуске больших пусковых моментов (компрессоры, грузоподъемные машины и др.).

Трехфазный асинхронный двигатель с фазным ротором (рис. 12.7) состоит из обмотки статора 1, обмотки ротора 2, вала 3, контактных колец 4, реостата 5.

По конструктивному выполнению двигатели с короткозамкнутым ротором проще двигателей с контактными кольцами. Они более надежны в работе, однако имеют сравнительно небольшой пусковой момент. Поэтому их применяют для привода машин, для которых не требуются большие пусковые моменты, а также машин и механизмов небольшой мощности. Асинхронные двигатели малой мощности и микродвигатели выполняют также с короткозамкнутыми роторами.

studfiles.net

Устройство трехфазного асинхронного двигателя

Устройство статора. Асинхронный двигатель, как и всякая электрическая машина, состоит из статора и ротора (рис. 3.1, а). Статор имеет цилиндрическую форму. Он состоит из корпуса /, сердечника 2 и обмотки 3. Корпус литой, в большинстве случаев стальной или чугунный.  Сердечник статора собирается из тонких листов электротехнической стали (рис. 3.1,б).

Листы для машин малой мощности ничем  не покрываются, так как образующийся на листах оксидный слой является достаточной изоляцией. Собранные листы стали образуют пакет статора, который запрессовывается в корпус статора. На внутренней поверхности сердечника вырубаются пазы, в которые укладывается обмотка статора. Обмотки статора могут соединяться звездой или треугольником. Для осуществления таких соединений на корпусе двигателя имеется коробка, в которую выведены начала фаз С1, С2, СЗ и концы фаз С4, С5, С6. На рис. 3.2, а—в показаны схемы расположения этих выводов и способы соединения их между собой при соединении фаз звездой и треугольником. Схема соединений обмоток статора зависит от расчетного напряжения двигателя и номинального напряжения сети. Например,  в паспорте двигателя указано 380/220. Первое число соответствует схеме соединения обмоток в звезду при линейном напряжении в сети 380 В, а второе — схеме соединения в треугольник при линейном напряжении сети 220 В. В обоих случаях напряжение на фазе обмотки будет 220 В.

Корпус статора с торцов закрыт подшипниковыми щитами, в которые запрессованы подшипники вала ротора.

Устройство ротора. Ротор асинхронного двигателя состоит из стального вала 4 (рис. 3.1, а), на который напрессован сердечник 5, выполненный, как и сердечник статора, из отдельных листов электротехнической стали с выштампованными в них закрытыми или полузакрытыми пазами. Обмотка ротора бывает двух типов: короткозамкнутая и фазная – соответственно роторы называются короткозамкнутыми и фазными.Большее распространение имеют двигатели с короткозамкнутым ротором, так как они дешевле и проще в изготовлении и в эксплуатации. Токопроводящая часть такого ротора, названного М. О. Доливо-Добровольским ротором с беличьей клеткой, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов (рис. 3.3). Как правило, беличья клетка формируется путем заливки пазов ротора расплавленным алюминием.

Фазный ротор (рис.3.4) имеет три обмотки, соединенные в звезду. Выводы обмоток подсоединены к кольцам 2, закрепленным на валу 3. К кольцам при пуске прижимаются неподвижные щетки 4, которые подсоединяются к реостату 5.

electrono.ru

Трехфазный асинхронный двигатель: принцип работы :: SYL.ru

Асинхронные моторы нашли большое применение в хозяйстве. В них преобразуется до семидесяти процентов электроэнергии в механическую. Среди всех электрических двигателей этот вид является самым простым, надежным и дешевым в производстве. Наибольшее распространение имеет трехфазный асинхронный двигатель, принцип работы которого рассмотрен вкратце в этой статье.

Общее об асинхронных моторах

Двигатели не имеют щеточно-коллекторного или скользящего токосъемного узлов, благодаря чему достигаются минимальные расходы при их эксплуатации. Дешевизна и высокая степень надежности сделали эти двигатели широко распространенными в разных сферах.

Моторы бывают:

  • однофазными;
  • трехфазными.

Однофазные механизмы работают в вентиляторах, станках, стиральных машинах, различных электрических инструментах и водоподающих насосах. Трехфазные виды нашли свое применение в разных механизмах, функционирующих в промышленных, сельскохозяйственных, строительных секторах. Также их широко используют и для бытовых нужд.

Устройство

Трехфазный асинхронный двигатель, принцип работы которого выполняется стандартным образом, является электроагрегатом, состоящим из:

  • неподвижного статора;
  • ротора.

Статор включает в себя станину, куда впрессовывается электромагнитное ядро, состоящее из магнитного провода и трехфазной распределительной обмотки. Ядро служит для намагничивания агрегата или появления вращающегося магнитного поля. Магнитопровод состоит из тонких, штампованных, отделенных друг от друга листов, при скреплении которых образуются зубцы и пазы. Он является малым магнитным сопротивлением для потока, который образует обмотка статора. В итоге происходит намагничивание, которое и усиливает поток.

В пазы укладывается трехфазная обмотка статора, которая в самом простом своем варианте состоит из трех катушек с осями, сдвинутыми друг к другу на 120 градусов. Фазные катушки соединяются в форме звезды или треугольника.

Более подробно принцип работы асинхронного электродвигателя в части соединений наглядно раскрывается ниже через проведение простого опыта.

Ротор состоит из магнитопровода, который тоже имеет штампованные стальные листы с пазами, где располагается обмотка. Последняя бывает:

  • фазной, подобной той, что в статоре, которая соединена в звезду;
  • короткозамкнутой, наиболее применяемой, которая представляет собой форму «беличьей клетки».

Принцип действия асинхронного двигателя

Уже говорилось, что трехфазная обмотка статора необходима для намагничивания или образования вращающегося магнитного поля. Нетрудно догадаться, что законом электромагнитной индукции управляется асинхронный двигатель. Принцип работы его заключается в следующем: вращающееся статорное магнитное поле пересекает роторную короткозамкнутую обмотку, что вызывает электродвижущую силу и протекание переменного тока. Этот ток образует свое магнитное поле, а взаимодействуя со статорным вращающимся полем, начинает роторное вращение. Еще в восемнадцатом веке был продемонстрирован этот принцип посредством проведения простого опыта: подковообразный магнит вращали с постоянной скоростью рядом с металлическим диском, который свободно был закреплен на оси. Диск начинал вращаться за магнитом, но с меньшей скоростью.

Если знать закон элетромагнитной индукции, то явление становится понятным. Когда магнитные полюса движутся, то рядом с поверхностью диска под ними наводится электродвижущаяся сила. Из-за нее создаются токи, которые образуют магнитное дисковое поле.

Наглядное представление

Это же явление для простоты можно представить себе как колесо (вместо диска), в котором находится большое количество спиц, соединенных втулкой и ободом. Они проводят ток. Элементарным контуром являются две спицы, соединяющие их обод и втулки. Дисковое поле сцепляется с полюсным магнитным полем, и диск увлекается им. Понятно, что самая большая электродвижущаяся сила будет действовать в неподвижном состоянии, а самая меньшая, наоборот, когда она приближается к скорости дискового вращения.

Если взять асинхронный двигатель, принцип работы короткозамкнутой роторной обмотки подобен диску, а статорной — вращающемуся магниту. Однако в неподвижном статоре вращение магнитного поля реализуется через трехфазную токовую систему, проходящую в обмотке со сдвигом фаз.

www.syl.ru

Трёхфазные электродвигатели Принцип действия | Каталог самоделок

Существует два типа трехфазных электродвигателей, которые различаются по конструкции вращающейся части (ротора). Подвижную часть двигателя иногда называют якорем, но будет правильнее и профессиональнее называть ее ротором.

Асинхронные электродвигатели.

Если у электродвигателя ротор не имеет своей обмотки (к ротору не подводиться напряжение через щетки), то это двигатель с короткозамкнутым ротором, или как еще называю его асинхронный двигатель. Асинхронный он, потому, что в этом двигателе скорость изменения магнитной индукции в обмотках статора не совпадает (не синхронна) со скоростью вращения ротора. Таких трехфазных двигателей выпускается большее количество, из-за простоты конструкции.

Электродвигатель с фазным ротором.

Трехфазный электродвигатель, у которого ротор имеет собственные обмотки и к этим обмоткам подводиться напряжение через щетки, называют двигателем с фазным ротором. Сложная конструкция такого электродвигателя оправдана, когда нужно регулировать скорость вращения и необходимо снизить пусковые токи мощного двигателя.

Статор (неподвижная часть) у всех трехфазных электродвигателей делается одинаковым по устройству. Конструктивно в магнитопровод статора вкладываются обмотки из медных обмоточных проводов. Количество отдельных обмоток может быть от 3, 6, 9 12. С тремя обмотками электродвигатель, при подключении к сети, будет вращаться со скоростью 3000 об. в мин. С шестью, девятью, двенадцатью обмотками электродвигатели будут вращаться, соответственно со скоростями 1500, 1000, 750 об. в мин, но с большими вращающими моментами, чем двигатель на 3000 об. в мин.

Все приведенные значения скорости вращения для отдельных двигателей достигаются только при подключении в трехфазную сеть с напряжением 380В, когда обмотки статора соединении по схеме «звезда».

Принцип действия.

Все дело в магнитной индукции, которая также совершает полезную работу в электромагнитах и трансформаторах. Благодаря магнитной индукции, к включенным электромагнитам притягиваются металлические предметы. Благодаря этой же силе в трансформаторах передается электроэнергия от одной катушки до другой, которые изолированы друг от друга.

В электродвигателях магнитная индукция проявляется, когда создается бесконтактная связь между статором и ротором. Более подробно, это происходит следующим образом. Ток, проходя через обмотки статора электродвигателя, создает магнитное поле. Это поле не постоянно, как в электромагните или трансформаторе. А быстро поочередно изменяет свою полярность, и возвращается в начальное состояние, когда сделает оборот по обмоткам статора.

А польза от этого электромагнитного поля в том, что оно благодаря силе индукции намагничивает отдельный участок на поверхности ротора, параллельный к физической оси двигателя. А дальше, переменное магнитное поле тянет его за собой, таким образом, заставляя вращаться статор вокруг своей оси.

Аварийный режим работы (при обрыве фазы).

Любой обрыв проводов двигателя является аварийной ситуацией, которая приводит к порче, как самого двигателя, так и пусковых устройств подключенных к нему. Серьезность последствий при обрыве фазы зависит от того, по какой схеме подключены обмотки двигателя к питающей сети.

При подключении электродвигателя по схеме «звезда».

Если двигатель работал, то ротор будет и дальше крутиться с неизменным моментом, но заметно снизиться скорость его вращения. При этом в остальных обмотках, которые остались подключенными к напряжению, будет протекать завышенный ток, одинаковый по величине в двух этих обмотках.

Если оставить двигатель долго работать при обрыве фазы, две подключенные обмотки равномерно нагреются. В конечном итоге двигатель не максимально нагруженный, и качественно сделанный, может остаться относительно целым. Но снизиться сопротивление изоляции обмоточных проводов, так как они обуглятся при перегреве. И повторных таких мучений электродвигатель уже не выдержит.

При подключении электродвигателя по схеме «треугольник».

Если двигатель работал, то ротор будет и дальше крутиться, как и в предыдущем рассмотренном случае. Но при этом, в одной из оставшихся подключенных обмоток, будет протекать завышенный 1,73 раза ток, чем при нормальном режиме работы.

Так что, если оставить двигатель долго работать при обрыве фазы, одна из двух подключенных обмоток сильно нагреется. А сам двигатель, в конечном итоге задымиться и остановиться. Так как, разрушиться эмалевая изоляция на обмоточных проводах внутри двигателя, и произойдет короткое замыкание.

Если попытаться запустить электродвигатель с оборванной фазой, он или вовсе не начнет вращаться, или будет очень медленно набирать обороты. И без разницы, по какой схеме двигатель подключен. При этом двигатель будет сильно шуметь, из-за чрезмерного магнитного потока, что проходит через часть магнитопровода двигателя.

При обрыве двух фаз работающий электродвигатель остановиться, не работающий двигатель не запуститься, и никаких вредных последствий не будет.

Подключение к однофазной сети.

Очень часто появляется необходимость использовать трехфазный двигатель вместо однофазного на стиральной машине, вентиляторе, различных деревообрабатывающих станках, водных насосах, шлифовальных станках.

Подключение по схеме «звезда».

Чаще всего электродвигатели подключаются по схеме «звезда», так как в этом случае их можно использовать в трехфазной сети, то есть при максимальном рабочем напряжении 380В. Но при подключении к однофазной сети, на пониженное напряжение 220В, такая схема совсем не годиться. Потому что электродвигатель, подключенный по схеме «звезда» к однофазной сети, потеряет половину своей мощности.

Конкретно, подключение по схеме «звезда», это когда концы трех обмоток скручены вместе, а начала этих обмоток подключаются к питающей сети.

Вот как подключаются провода до клемной колодки и так нужно расположить перемычки в распределительной коробке (борне) электродвигателя при подключении по схеме «звезда».

По схеме «треугольник».

Если нужно подключить трехфазный электродвигатель к однофазной сети с напряжением 220В, тогда желательно собрать обмотки по схеме «треугольник». По тому что, при такой схеме включения двигатель потеряет всего лишь 30% от номинальной мощности. И к тому же, вовсе не снизиться скорость вращения.

В общем, чтобы выполнить подключение по схеме «треугольник», нужно конец одной обмотки подключить к началу другой, и так последовательно соединить все обмотки, а места их соединения подключить к питающей сети.

Так вот должны быть подключены провода до клемной колодки, и так расположены перемычки в борне электродвигателя при подключении по схеме «треугольник».

Будьте внимательны! Существуют трехфазные электродвигатели, рассчитанные на рабочие напряжения 220/127В. И если переключить в борне такой двигатель на схему «треугольник», то есть на пониженное напряжение 127В, а дальше включить его в однофазную сеть стандартного напряжения 220В, то двигатель быстро сгорит.

Для того, чтобы трехфазный электродвигатель работал в однофазной сети необходим еще будет фазосдвигающий, или как его еще называют рабочий конденсатор.

В конечном итоге, нужно концы фазосдвигающего конденсатора подключить к двум клеммам в борне, а два провода от сети подкинуть так: один к любому выводу конденсатора; второй до свободной клеммы в борне.

Автор: Виталий Петрович. Украина.

 

volt-index.ru

Устройство трехфазного асинхронного двигателя

Электродвигателем называется электрическая машина, функциональным назначением которой является преобразование энергии электрической в энергию механическую. Существует несколько типов электродвигателей постоянного или переменного тока.

Одним из наиболее распространенных типов электродвигателей, нашедших свое применение в производственных условиях различного назначения, является трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.

 

 

 

Отличительными особенностями данного типа электродвигателей является отсутствие скользящих контактов, простота и надежность конструкции, легкость технического обслуживания.

Основной функциональный узел трехфазного асинхронного двигателя включает в себя две составные части: статор и короткозамкнутый ротор. Конструктивно статор и ротор представляют собой пакеты пластин, выполненных из специальной электротехнической стали.

Сердечник статора имеет трехфазную обмотку, уложенную и закрепленную в специальных пазах. Фазы обмотки статора соединены по типу «звезда» или «треугольник» в зависимости от напряжения и особенностей питающей сети.

Сердечник ротора и его обмотка не изолированы друг от друга. Обмотка ротора и вентиляционные лопатки представляют собой слитную конструкцию, выполненную из сплава алюминия или полностью алюминиевую. Стержневые выводы обмотки ротора накоротко замкнуты надетыми на них кольцами и образуют конструкцию, называемую «беличьей клеткой».

Принцип действия трехфазного асинхронного двигателя основан на использовании закона электромагнитной индукции. Сердечник статора с трехфазной обмоткой создает вращающееся магнитное поле, силовые линии которого пересекают короткозамкнутые стержневые выводы обмотки ротора. Электродвижущая сила, наведенная в роторе, способствует протеканию переменного тока в его обмотке.

Переменный ток, протекающий в обмотке ротора, создаёт вокруг него магнитное поле, силовые линии которого пересекаются с магнитным полем сердечника статора. Взаимодействующие магнитные поля приводят в движение ротор, который начинает вращаться в направлении магнитного поля статора.

Двигатель назван асинхронным из-за частоты вращения ротора, которая имеет несколько меньшую величину, чем синхронная частота вращения магнитного поля статора и считается асинхронной.

Конструкция асинхронных трехфазных двигателей достаточно проста и надежна в эксплуатации, что позволяет оборудовать ими технические устройства различного назначения. Асинхронные трехфазные двигатели приводят в движение многие виды производственного оборудования и вспомогательных механизмов.

Трехфазными асинхронными двигателями оснащены станки металлообрабатывающей и деревообрабатывающей промышленности, насосное и конвейерное оборудование, строительная техника, многие виды вспомогательных технических устройств.

Трехфазные асинхронные двигатели надежны и не теряют работоспособности в условиях значительных кратковременных перегрузок.

Асинхронные двигатели, наиболее пригодны, для изготовления в герметическом исполнении. Такие двигатели могут эксплуатироваться даже в очень тяжелых специфических условиях.

Простая и надежная конструкция трехфазных асинхронных электродвигателей обуславливает их повсеместное использование в различных сферах производства. Данный тип двигателей нашел широкое применение в технологическом оборудовании для строительной, судостроительной, автомобилестроительной и многих других отраслей.

selectelement.ru

54) Асинхронные трёхфазные двигатели. Устройство и принцип действия

а) ОБЩИЕ СВЕДЕНИЯ

Из числа различных видов современных электрических машин самой распространенной в наши дни является асинхронная бескол­лекторная машина, применяемая обычно в качестве двигателя. Асин­хронная машина — это машина, в которой при работе возбуждается вращающееся магнитное поле, но ротор вращается асинхронно, т. е. с угловой скоростью, отличной от угловой скорости поля. Она была изобретена М. О. Доливо-Добровольским в 1888 г., но до настоящего времени сохранила в основном ту простую форму, которую ей придал талантливый русский изобретатель. Причины исключительно широ­кого распространения асинхронного двигателя (а вместе с ним и трех­фазной системы) — его простота и дешевизна. Можно сказать, что в основном асинхронная машина состоит из трех неподвижных кату­шек (точнее, обмоток), размещенных на общем сердечнике, и помещен­ной между ними четвертой вращающейся катушки. В машине отсутст­вуют какие-либо легко повреждающиеся или быстро изнашивающиеся электрические части (например, коллектор).

Асинхронные машины малой мощности часто выполняются одно­фазными, что позволяет использовать их в устройствах, питающихся от двухпроводной сети. Такие машины находят широкое применение в бытовой технике.

Общим недостатком асинхронных машин является относительная сложность и неэкономичность регулирования их эксплуатационных характеристик.

б) УСТРОЙСТВО ТРЕХФАЗНОЙ АСИНХРОННОЙ МАШИНЫ

Трехфазная асинхронная машина состоит из двух главных частей: неподвижного статора и вращающегося ротора.

Конструкция статора.Статор асинхронной машины представляет собой полый цилиндр, собранный из пластин электротехнической стали,изолированных друг от друга слоем лака (рис. 14.1, а). Три фазные обмотки, возбуждающие вращающееся магнитное поле машины, раз­мещены в пазах на внутренней стороне статора. Чтобы лучше исполь­зовать окружность статора, каж­дая из фазных обмоток распола­гается по нескольким пазам (рас­пределенная обмотка). На рис. 14.1, б показано расположение в пазах статора одной фазной обмот­ки. Здесь А — начало, а X — ко­нец обмотки. Распределение обмот­ки по пазам обусловливает соот­ветствующее распределение маг­нитного поля вдоль окружности статора. Для того чтобы распре­делить многовитковую фазную об­мотку по нескольким пазам, ее раз­деляют на соответствующее число соединенных последовательно сек­ций (рис. 14.1, б), каждая из кото­рых состоит из нескольких витков.

Секции обмотки укладываются в пазы. В асинхронных машинах сердечник статора изготовляется с полуоткрытыми (рис. 14.2, б) илиоткрытыми (рис. 14.2, а) пазами. На стороне полуоткрытых пазов преимущество меньшего магнитного сопротивления, следовательно, в двигателе с такими пазами меньше намагничивающий ток. С другой стороны, при открытых пазах проще осуществляется укладка секцийобмотки и надежнее условия для изоляции, что весьма важно для дви­гателей высокого напряжения.

Минимальное число фазных обмоток в трехфазной асинхронной машине т = 3. Каждая обмотка содержит одну или несколько катушеч­ных групп, соединенных последовательно, например на рис. 14.1, б — две группы. Расположение каждой из обмоток с одной катушечной группой сдвинуто по окружности статора относительно катушечной группы соседней фазной обмотки на угол 120°. В общем случае число фазных обмоток в трехфазной асинхронной машине может быть любым, но кратным трем.

Конструкция ротора. Асинхронные машины в основном разли­чаются устройством ротора. Ротор асинхронной машины представляет собой цилиндрический сердечник (рис. 14.3, а), собранный из пластин электротехнической стали, изолированных друг от друга лаком. Сердечник ротора насажен на вал, закрепленный в подшипниках. В пазах ротора располагаются витки обмотки ротора.

В большинстве двигателей применяется короткозамкнутый ротор. Он значительно дешевле, и, что очень существенно, обслуживание двигателя с короткозамкнутым ротором значительно проще. Обмотка короткозамкнутого ротора выполняется в виде цилиндрической клетки (рис. 14.3,6) из медных или алюминиевых стержней, которые без изоляции вставляются в пазы сердечника ротора. Торцевые концы стержней замыкаются накоротко кольцами из того же материала, что и стержни (так называемое «беличье колесо»). Часто короткозамкнутая обмотка изготовляется путем заливки пазов ротора расплавлен­ным алюминием.

Обмотка фазного ротора, называемого также ротором с контакт­ными кольцами (рис. 14.3, в), выполняется изолированным проводом. В большинстве случаев она трехфазная, с тем же числом катушек, что и обмотка статора данного двигателя. Три фазные обмотки ротора соединяются на самом роторе в звезду, а свободные концы их соеди­няются с тремя контактными кольцами, укрепленными на валу ма­шины, но изолированными от этого вала. На кольца наложены щетки, установленные в неподвижных щеткодержателях. Через кольца и щетки обмотка ротора замыкается на трехфазный реостат.

Обмотка статора такого двигателя включается непосредственно в трехфазную сеть (рис. 14.4). Включение реостата в цепь ротора дает возможность ' существенно улучшить пусковые условия двигателя — уменьшитьпусковой ток и увеличить начальный пусковой момент, кроме того, с помощью реостата, включенного в цепь ротора, можно плавно регу­лировать скорость двигателя. На рис. 14.5 приведены условные обозначения асинхронных ма­шин с короткозамкнутым (а) и фазным (б) ротором на принципиальных электрических схемах.

Общий вид корпуса асинхронной машины с укрепленным на нем, но необмотанным сердечником статора приведен на рис. 14.6.

РЕЖИМЫ РАБОТЫ ТРЕХФАЗНОЙ АСИНХРОННОЙ МАШИНЫ

Режим работы трехфазной асинхронной машины определяется ре­жимом электромагнитного взаимодействия токов в обмотках статора и ротора.

Взаимбдействие вращающегося магнитного поля, создаваемого то­ками в обмотках статора, с токами ротора вынуждает ротор вращаться по направлению вращения поля. Но чем быстрее вращается ротор, тем меньше индуктируемые в его обмотке ЭДС, а следовательно, и токи. Если частота вращения поля пи а частота вращения ротора п, то режим работы асинхронного двигателя можно характеризовать скольжением

.

На рис. 14.11 приведена зависимость частоты вращения ротора от скольженияп (s).

В зависимости от значения скольжения трехфазная асинхронная машина может работать в режимах двигателя, генератора и электро­магнитного тормоза.

В режиме двигателя (0 < s < 1) трехфазная асинхронная машина является преобразователем электрической энергии в механическую. Ротор двигателя должен вращаться асинхронно-медленнее поля, с та­кой частотой вращения, при которой токи в обмотке ротора, взаимодействуя с вращающимся магнитным полем, создаваемым токами в обмотках статора, создают вращающий момент, уравновешивающий тормозной момент от сил трения и нагрузки на валу.

В режиме генератора (s < 0) трехфазная асинхронная машина является преобразователем механической энергии в электрическую. Ротор генератора вращается в направлении вращения магнитного поля, создаваемого токами в обмотках статора, с частотой вращения большей, чем частота вращения поля.

В режиме электромагнитного тормоза (s> 1) ротор трехфазной асинхронной машины вращается в направлении, противоположном направлению вращения магнитного поля, создаваемого токами в об­мотках статора. В режиме электромагнитного тормоза в трехфазной асинхронной машине рассеивается значительная энергия в обмотках, на гистерезис и вихревые токи.

studfiles.net


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

Карта Сайта