Явление электромагнитной индукции тока: суть, кто открыл. В чем суть явления электромагнитной индукции
40) Явление электромагнитной индукции
Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.
Особенности явления:
чем быстрее изменится число линий магнитной индукции, тем больше возникающий ток;
независимость явления возникновения индукционного тока от причины изменения числа линий магнитной индукции.
Практическое значение явления:
Фарадей первым сконструировал несовершенную модель генератора электрического тока, превращающего механическую энергию вращения в ток, состоящую из медного диска, вращающегося между полюсами сильного магнита. Зафиксированный гальванометром ток был слаб, но было сделано самое важное: найден принцип построения генераторов тока.
М. Фарадей (1791-1867) открыл явление электромагнитной индукции. Для раскрытия сущности этого явления введем понятие потока вектора магнитной индукции через поверхность площадью дельта S. Эта величина равна произведению модуля вектора магнитной индукции В на площадь AS и косинус угла амежду векторами В и n (нормалью к поверхности):
Произведение В • cos а= Вnпредставляет собой проекцию вектора магнитной индукции на нормаль к элементу площади. Поэтому дельта Ф = Вп• AS. Поток может быть как положительным, так и отрицательным в зависимости от угла а.
Если магнитное поле однородное, то поток через плоскую поверхность площадью S равен:
В замкнутом проводящем контуре возникает ток при изменении магнитного потока, пронизывающего поверхность, ограниченную этим контуром. Этот ток получил название индукционного тока, а само явление возникновения тока в проводящем контуре при изменении магнитного потока, пронизывающего поверхность, ограниченную контуром, назвали явлением электромагнитной индукции.
В электрической цепи появляется ток, если на свободные заряды действуют электрические силы. Следовательно, при изменении магнитного потока, пронизывающего поверхность, ограниченную контуром, в контуре возникает электродвижущая сила, ЭДС индукции еiЗакон электромагнитной индукции утверждает, что ЭДС индукции в замкнутом контуре численно равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:
Направление индукционного тока определяется правилом (законом) Э. X. Ленца (1804-1865), которое утверждает: возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, стремится препятствовать тому изменению потока, которое порождает данный ток. Закон Ленца есть следствие закона сохранения энергии.
Дж. Максвеллом было высказано следующее фундаментальное свойство магнитного поля: изменяясь во времени, магнитное поле порождает электрическое поле. Это электрическое поле имеет совсем другую структуру, чем электростатическое. Линии напряженности возникшего электрического поля представляют собой замкнутые линии, подобные линиям индукции магнитного поля. Такое поле называют вихревым электрическим полем. Вихревое электрическое поле действует на электрические заряды, так же как и электростатическое F = q • Е, где E - напряженность вихревого поля. В отличие от статического или стационарного электрического поля работа вихревого поля на замкнутом пути не равна нулю. Вихревое электрическое поле, так же, как и магнитное, непотенциально.
Работа вихревого электрического поля по перемещению единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.
Если проводник длиной lперемещать в магнитном поле с индукцией В, направленной перпендикулярно скорости перемещения, то магнитная сила Лоренца разделяет электрические заряды проводника и между его концами возникает ЭДС индукции, равная ei=lvE.
Возникновение изменяющегося магнитного поля создает ЭДС индукции в том контуре, по которому течет ток, создающий это изменяющееся поле. Такое явление назвали самоиндукцией.
Магнитный поток, проходящий через контур, прямо пропорционален силе тока в контуре:
Физическая величина, равная отношению магнитного потока, проходящего через контур, к силе тока в контуре, называется индуктивностьюэтого контура:
ЭДС, возникающая в контуре, при изменении силы тока, протекающего по контуру, называется ЭДС самоиндукции.
По закону электромагнитной индукции ЭДС самоиндукции равна
За единицу индуктивности в СИ принимается 1 генри (1 Гн), это индуктивность такого контура, в котором при равномерном изменении силы тока в цепи со скоростью 1 А за 1 с возникает ЭДС самоиндукции, равная 1 В:
studfiles.net
Современный человек пользуется всеми благами, которые дало ему электричество. Однако далеко не каждый понимает принцип выработки этого самого электричества, которое поставляется с электростанций. Происхождение явления электромагнитной индукцииЕще около двухсот лет назад Ганс Христиан Эрстед заметил, что протекающий в цепи ток вызывает отклонение магнитной стрелки, лежащей неподалеку. Отсюда и пошло развитие идеи о том, что электричество и магнетизм взаимосвязаны. Особенно сильно эта мысль заняла М. Фарадея, который и положил начало опытам, приведшим к открытию закона электромагнитной индукции. В одном из своих опытов он обнаружил, что при выдвигании полосового магнита из катушки, подключенной к гальванометру, в катушке наводится некоторая электродвижущая сила. В чем же тут секрет?Собственно явление электромагнитной индукцииНачнем с того, что любой магнит порождает вокруг себя магнитное поле. Если это полосовой магнит, как в опыте Фарадея, то важно заметить, что поле вблизи магнита отличается от того, что вдали от него. Если вы подносите магнит к катушке, то магнитное поле пронизывает ее. Причем в зависимости от того, как глубоко вы задвинули магнит в катушку, катушку будет пронзать разное магнитное поле. Но каким же образом возникает Э.Д.С.? Возникновение напряжения в катушке обусловлено перемещением зарядов (электронов) в какую-либо одну сторону, то есть возникают полярно противоположные концы с избытком зарядов одного знака. Значит, переменное магнитное поле фактически перемещает заряды.Строгое объяснение явления электромагнитной индукцииИзначально предполагалось, что магнитное и электрическое поле взаимосвязаны таким образом, что переменное магнитное поле оказывается способным перемещать электрические заряды, а переменное электрическое – так называемые магнитные. Однако на самом деле это оказалось не совсем так. Дело в том, что переменное магнитное поле порождает вокруг себя переменное электрическое поле и наоборот. И именно это электрическое поле и перемещает заряды в катушке Фарадея. Этот факт о такой взаимосвязи полей отражен в уравнениях Джеймса Клерка Максвелла. А само явление электромагнитной индукции, проявляющееся в появлении Э.Д.С. в замкнутом контуре при изменении магнитного потока, проходящего через него – это частный случай, вытекающий из этих уравнений. Не стоит также забывать о том, что электромагнитная индукция предполагает изменение магнитного потока не только посредством изменения магнитного поля. Другой способ изменить поток – это менять площадь контура. В этом случае напряжение также появляется, то есть заряды также перемещаются по той причине, что само изменение площади означает перемещение контура, что фактически подразумевает собой макроскопическое перемещение зарядов внутри него. Движущиеся таким образом электрические заряды становятся магнитными, что и обуславливает их взаимодействие с внешним магнитным полем. |
completerepair.ru
феномен возникающий в индуцированном поле
В начале 19-го века учёным М.Фарадеем при проведении опытов с проводящими материалами был открыт интересный феномен, который заключался в следующем. При размещении в магнитном поле проводящей рамки наблюдалось протекание тока в ней, величина которого возрастала по мере увеличения скорости её перемещения. Этот эффект был назван явлением электромагнитной индукции, а создаваемое проводником собственное поле – индуцированным.
Эффект индукции
Таким образом, явление электромагнитной индукции наблюдается всегда, когда замкнутый на нагрузку проводник перемещается во внешнем магнитном поле. Аналогичное явление можно было наблюдать, если оставить рамку неподвижной, а изменять величину внешнего магнитного поля электромагнитной индукции (подносить постоянный магнит к рамке или отодвигать его).
Обоснование явления
В качестве теоретического обоснования того, в чем состоит явление электромагнитной индукции, открывшим его учёным М.Фарадеем была предложена следующая трактовка:
- При размещении рамки в поле магнита её начинают пронизывать линии, перпендикулярные её плоскости или направленные под определённым углом к ней;
- При её вращении число этих линий или напряжённость магнитного поля (его поток) изменяется, что приводит к появлению ЭДС на концах проводника;
- Величина этой силы прямо пропорциональна скорости перемещения проводящей рамки, а знак определяется направлением её вращения.
Изменять напряженность поля допускается и при неподвижной рамке, но для получения того же эффекта в этом случае придётся перемещать около неё сам магнит.
Направление индукционного тока
Для количественного представления открытого явления и оценке действующей магнитной силы учёным было введено понятие потока через заданную поверхность с общей площадью S. Оно вычисляется следующим образом:
F=B S cos а.
Обратите внимание! Вектор индукции магнитного поля всегда совпадает по направлению с указателем стрелки компаса, помещённого между полюсами.
Для оценки величины индукции «В» введена специальная единица измерения, имеющая в системе СИ наименование Тесла (по фамилии знаменитого естествоиспытателя). На основании всех приведённых ранее выкладок индукция определяется таким образом:
B=F/ S cos а.
Сравните её с приведённой выше формулой.
Направление действия магнитного поля
Согласно проверенному на практике правилу (его называют правилом буравчика), определить направление действия вектора поля можно очень просто, если воспользоваться следующим простым пояснением.
Если вворачивать мнимый буравчик в сторону протекания тока в проводе, то вращающий импульс укажет искомое направление (эту закономерность называют иногда правилом «правой руки»).
Для данного эффекта справедливо и обратное утверждение: если правой рукой вращать буравчик в сторону действия магнитного потока, то вектор его вворачивания укажет направление потока электронов, который инициируется этим полем.
Правило «буравчика»
Ещё одна трактовка этой закономерности касается определения вектора силовых линий индуцированного током поля в соленоиде (обычной катушке с намотанной на сердечнике обмоткой). Это правило, подобно предыдущим, может быть представлено следующим образом.
Если сердечник обхватывается правой кистью так, чтобы пальцы ладони были направлены в сторону перемещения потока электронов, то большой палец укажет на вектор действия поля внутри катушки.
Явление самоиндукции
Общие положения
Помимо того, что в замкнутой рамке или проводнике при изменении магнитного потока появляется ЭДС, учёными был обнаружен ещё один эффект. Последний проявляется в том, что протекающий в рамке (витке) ток порождает собственное э/м поле, действующее в направлении, противоположном порождающему его полевому образованию. Это явление впервые было открыто российским учёным Э. X. Ленцем (1804-1865), предложившим ему следующую трактовку:
- Под действием поля магнита в витке провода возникает так называемый «наведённый» ток;
- Сила индукционного тока и его направление определяются согласно рассмотренным выше правилам;
- Создаваемое током собственное магнитное поле, линии которого действуют через очерченную контуром или витком поверхность, всегда препятствует изменению породившего его поля.
Важно! Полученное в эксперименте явление было названо законом Ленца, являющегося прекрасным подтверждением принципа сохранения энергии.
Явление самоиндукции
Простыми словами открытие Ленца описывается следующим образом:
- При перемещении рамки определённой длины в магнитном поле с фиксированной индукцией на её провод воздействует ЭДС, которая разделяет подвижные электрические заряды;
- Вследствие этого в рамочном проводнике образуется рассчитываемая по закону Максвелла электродвижущая сила индукционного тока;
- Протекающий под её воздействием ток вызывает появление ещё одной ЭДС, направленной в противоположном направлении. При этом она препятствует изменению вызвавшего её тока.
Описанному выше явлению и было присвоено название самоиндукции, в простейшем выражении состоящей в появлении дополнительного поля.
Основные величины и наименования измеряемых единиц
Наведённый в витках катушки магнитный поток пронизывает её строго перпендикулярно и имеет величину, пропорциональную силе тока в ней. Величину, выражаемую как отношение потока поля к силе тока в исследуемом контуре, принято называть его индуктивностью.
За её единицу в классической системе СИ договорились принимать 1 генри. Иными словами, 1 Гн представляет собой индуктивность такого витка или обмотки, в которых при изменении тока на 1 Ампер за 1 секунду наводится ЭДС самоиндукции, по своей величине равная одному Вольту.
В последующие за открытиями М. Максвелла и Х. Ленца годы учёными предпринималось множество попыток объяснения всей совокупности обнаруженных э\м явлений и получения единой теории поля.
Общая теория электромагнитного поля
Фундаментальные основания
По итогам проведённых исследований Дж. Максвеллом было сформулировано следующее основополагающее предположение, позволяющее разобраться с тем, в чем заключается явление электромагнитной индукции:
- Изменение во времени параметров магнитного поля порождает соответствующий этим переменам электрический полевой эффект;
- Такое образование имеет структуру, отличную от электростатического поля, создаваемого неподвижными зарядами;
- Линии напряженности порождённого током электрического образования (подобно тем же характеристикам для всех известных полей) являются замкнутыми;
Обратите внимание! В ряде источников это поле называют «вихревым», что при изучении материала не так важно для понимания его истинной сути.
- Оно воздействует на свободные электрические заряды подобно электростатическому полю, а сила индукционного тока в нём зависит от показателя напряжённости (E).
Работа, производимая силами в вихревом поле
В отличие от всех других электрических полевых образований, работа такого поля на всём протяжении замкнутого контура из проводников не равна нулю. Она имеет вполне конкретное положительное значение, вследствие чего его принято относить к потенциальным полевым структурам.
Величина такой работы в простейшем случае может быть представлена как результат действия наведённой в замкнутом контуре ЭДС.
В заключение несколько слов о значимости рассмотренных выше открытий, позволяющих понять, что такое электромагнитная индукция. Рассмотренные феномены и явления широко применяются в практической электротехнике и позволяют изготавливать такие полезные для любого человека приборы, какими являются электродвигатели, генераторы и трансформаторы. Этот перечень может быть дополнен большим количеством наименований агрегатов и приборов, работающих за счёт рассмотренных ранее эффектов.
Видео
Оцените статью:elquanta.ru
Изучение явления электромагнитной индукции
Изучение возникновения электрического тока всегда волновало ученых. После того, как в начале XIX века датский ученый Эрстед выяснил, что вокруг электрического тока возникает магнитное поле, ученые задались вопросом: может ли магнитное поле порождать электрический ток и наоборот.Первым ученым, кому это удалось, был ученый Майкл Фарадей.
Опыты Фарадея
После многочисленных проведенных опытов Фарадей смог достичь кое-каких результатов.
1.Возникновение электрического тока
Для проведения опыта он взял катушку с большим количеством витков и присоединил ее к миллиамперметру (прибору, измеряющему силу тока). По направлению вверх и вниз ученый передвигал магнит по катушке.
Во время проведения эксперимента, в катушке действительно появлялся электрический ток по причине изменения магнитного поля вокруг нее.
По наблюдениям Фарадея стрелка миллиамперметра отклонялась и указывала на то, что движение магнита порождает собой электрический ток. При остановке магнита стрелка показывала нулевую разметку, т.е. ток не циркулировал по цепи.
рис. 1 Изменение силы тока в катушке за счет передвижения реjcтата
Данное явление, при котором ток возникает под действием переменного магнитного поля в проводнике, назвали явлением электромагнитной индукции.
2.Изменение направления индукционного тока
В своих последующих исследованиях Майкл Фарадей пытался выяснить, что влияет на направление возникающего индукционного электрического тока. Проводя опыты, он заметил, что изменяя числа мотков на катушке или полярность магнитов, направление электрического тока, которое возникает в замкнутой сети меняется.
3.Явление электромагнитной индукции
Для проведения опыта ученый взял две катушки, которые расположил близко друг к другу. Первая катушка, имеющая большое количество витков проволоки, была подсоединена к источнику тока и ключу, замыкающему и размыкающему цепь. Вторую такую же катушку он присоединил к миллиамперметру уже без подключения к источнику тока.
Проводя эксперимент, Фарадей заметил, что при замыкании электрической цепи возникает индуцированный ток, что видно по движению стрелки миллиамперметра. При размыкании цепи миллиамперметр также показывал, что в цепи есть электрический ток, но показания были прямо противоположными. Когда же цепь была замкнута и равномерно циркулировала ток, тока в электрической цепи согласно данным миллиамперметра не было.
Вывод из экспериментов
В результате открытия Фарадея была доказана следующая гипотеза: электрический ток появляется только при изменении магнитного поля. Также было доказано, что изменение числа витков в катушке изменяет значение силы тока (увеличение мотков увеличивает силу тока). Причем индуцированный электрический ток может появиться в замкнутой цепи только при наличии переменного магнитного поля.
От чего зависит индукционный электрический ток?
Основываясь на всем вышесказанном, можно отметить, что даже если есть магнитное поле, это не приведет к возникновению электрического тока, если данное поле не будет при этом переменным.
Так от чего же зависит величина индукционного поля?
- Число витков на катушке;
- Скорость изменения магнитного поля;
- Скорость движения магнита.
Магнитный поток является величиной, которая характеризует магнитное поле. Изменяясь, магнитный поток приводит к изменению индуцированного электрического тока.
рис.2 Изменение силы тока при перемещении а) катушки , в котором находится соленоид; б) постоянного магнита , внесением его в катушку
Закон Фарадея
Основываясь на проведенных опытах, Майкл Фарадей сформулировал закон электромагнитной индукции. Закон заключается в том, что, магнитное поле при своем изменении приводит к возникновению электрического тока, Ток же указывает на наличие электродвижущей силы электромагнитной индукции (ЭДС).
Скорость магнитного тока изменяясь влечет за собой изменение скорости тока и ЭДС.
Закон Фарадея: ЭДС электромагнитной индукции равна численно и противоположна по знаку скорости изменения магнитного потока, который проходит через поверхность, ограниченную контуром
Индуктивность контура. Самоиндукция.
Магнитное поле создается в том случае, когда ток протекает в замкнутом контуре. Сила тока при этом влияет на магнитный поток и индуцирует ЭДС.
Самоиндукция – явление, при котором ЭДС индукции возникает при изменении силы тока в контуре.
Самоиндукция изменяется в зависимости от особенностей формы контура, его размеров и среды, его содержащей.
При увеличении электрического тока, ток самоиндукции контура может замедлить его. При его уменьшении, ток самоиндукции, напротив, не дает ему так быстро убывать. Таким образом, контур начинает обладать своей электрической инертностью, замедляющей любое изменение тока.
Применение индуцированного ЭДС
Явление электромагнитной индукции имеет применение на практике в генераторах, трансформаторах и двигателях, работающих на электричестве.
При этом ток для этих целей получают следующими способами:
- Изменение тока в катушке;
- Движение магнитного поля через постоянные магниты и электромагниты;
- Вращение витков или катушек в постоянном магнитном поле.
Открытие электромагнитной индукции Майкла Фарадея внесло большой вклад в науку и в нашу обыденную жизнь. Это открытие послужило толчком для дальнейших открытий в области изучения электромагнитных полей и имеет широкое применение в современной жизни людей.
Похожие статьи
infoelectrik.ru
Раздел 4. Электромагнитная индукция
№1 Сущность явления электромагнитной индукции.
Явление электромагнитной индукции - обнаружена Фарадеем в 1831 г. - заключается в возникновение электродвижущей силы (ЭДС) в проводнике, находящемся в изменяющемся магнитном поле или благодаря движению проводника относительно неподвижного магнитного поля.
№2 Сформулировать и записать закон электромагнитной индукции в форме Фарадея.
З-н. э-м.и.Фарадея: Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур или (Генерируемая ЭДС пропорциональна скорости изменения магнитного потока.)
Е - (ЭДС), действующая вдоль произвольно выбранного контура в [В]вольтах, а ΦB — магнитный поток через поверхность, натянутую на этот контур в [веберах].
№3 Сформулировать правило Ленца.
Правило Ленца: Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток (или ИТ всегда направлен так, чтобы противодействовать причине, её вызывающей)
№4 Записать закон электромагнитной индукции в трактовке Максвелла. Пояснить смысл записанного выражения рисунком.
З-н э-м. и. Максвелла: Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле. Циркуляция вектора напряженности Е этого поля по любому неподвижному замкнутому контуру Sопределяется выражением:
S- Произвольный математический замкнутый контур.
По Максвеллу: сущность э-м и.в возбуждении электрического поля, а не тока.
индукционный ток обусловлен возникающим в проводе электрическим полем, тогда ЭДС
ℇ = Магнитный поток по определению Ф = . Подставляя в закон ЭМИ получим:
Это первое уравнение Максвелла.
Интеграл в правой части берется по произвольной поверхности S, опирающейся на контур ℓ (рис. 30.3). (Поскольку в общем случае может быть функцией и координат, то берем частнуюпроизводную )
Смысл первого уравнения соответствует
максвелловской трактовке явления ЭМИ, то
есть, изменяющееся со временем магнитное поле порождает вихревое электрическое поле.
№5 Дать определение индуктивности контура с током.
Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре: Ф=LI, где коэффициент пропорциональности L называется индуктивностью контура[Гн] или (коэф. пропорциональности м/у эл. током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур).l-сила тока в гуассовой СЕ.
№6 Что такое самоиндукция контура с током? Записать выражение для ЭДС самоиндукции.
Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру или (явление возникновения ЭДС индукции в контуре прирезком увеличении или изменении тока).
При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией. Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока I: E= -L*(dI/dt), коэф. пропорциональности L-коэф. самоиндукции
№7 Дать определение взаимной индуктивности двух контуров.
Взаимная индуктивность 2-х контуров- возникновение ЭДС в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников . Взаимоиндукция- величина, равная потоку через 2-ой контур. Не нужна эта часть?à(происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи)).
№8 Записать формулу для индуктивности последовательно и параллельно соединенных магнитно не связанных катушек.
Последовательное соединение катушек: i2/2= (L1 + L2 + 2M)= L(i2/2)
Параллельное соединение катушек: Lэкв= L1*L2/(L1 + L2), M=0
№9 Записать формулу энергии контура с током.
Энергии контура с током: W= Фi/2 = W1+ W2=( i1*Ф1)/2 +(i2*Ф2)/2, где W1- энергия 1 контура, W2- энергия 2 контура.
studopedya.ru
Явление электромагнитной индукции. Открытие, опыт, применение :: SYL.ru
Сегодня мы расскажем о явлении электромагнитной индукции. Раскроем, почему этот феномен был открыт и какую пользу принес.
Шелк
Люди всегда стремились жить лучше. Кто-то может подумать, что это повод обвинить человечество в алчности. Но часто речь идет об обретении элементарного бытового удобства.
В средневековой Европе умели делать ткани шерстяные, хлопковые и льняные. А еще в то время люди страдали от избытка блох и вшей. При этом в китайской цивилизации уже научились виртуозно ткать шелк. Одежда из него не подпускала кровососов к коже человека. Лапки насекомых скользили по гладкой ткани, и вши сваливались. Поэтому европейцы захотели во что бы то ни стало одеваться в шелк. А торговцы подумали, что это еще одна возможность разбогатеть. Поэтому был проложен Великий шелковый путь.
Только так желанную ткань доставляли страждущей Европе. И настолько много людей вовлекались в процесс, что в результате возникали города, империи спорили за право взимать налоги, а некоторые отрезки пути до сих пор наиболее удобный способ добраться до нужного места.
Компас и звезда
На пути караванов с шелком вставали горы и пустыни. Бывало, что характер местности оставался прежним недели и месяцы. Степные дюны сменялись такими же холмами, один перевал следовал за другим. И людям надо было как-то ориентироваться, чтобы доставить свой ценный груз.
Первыми на выручку пришли звезды. Зная, какой сегодня день, и каких созвездий ожидать, опытный путешественник всегда мог определить, где юг, где восток, и куда идти. Но людей с достаточным объемом знаний всегда не хватало. Да и время точно отсчитывать тогда не умели. Закат солнца, восход – вот и все ориентиры. А снежная или песчаная буря, пасмурная погода исключали даже возможность видеть полярную звезду.
Потом люди (вероятно, древние китайцы, но ученые еще спорят на этот счет) поняли, что один минерал всегда определенным образом расположен по отношению к сторонам света. Это свойство использовалось, чтобы создать первый компас. До открытия явления электромагнитной индукции было далеко, но начало было положено.
От компаса к магниту
Само название «магнит» восходит к топониму. Вероятно, первые компасы делались из руды, добываемой в холмах Магнезии. Эта область располагается в Малой Азии. И выглядели магниты как черные камни.
Первые компасы были весьма примитивными. В чашу или другую емкость наливалась вода, сверху клался тонкий диск из плавучего материала. А в центр диска помещалась намагниченная стрелка. Один ее конец всегда указывал на север, другой – на юг.
Трудно даже представить себе, что караван сохранял воду для компаса, пока от жажды умирали люди. Но не потерять направление и позволить людям, животным и товару добраться до безопасного места было важнее нескольких отдельных жизней.
Компасы проделывали множество путешествий и встречались с различными феноменами природы. Неудивительно, что явление электромагнитной индукции было открыто в Европе, хотя магнитная руда первоначально добывалась в Азии. Вот таким замысловатым образом желание европейских жителей спать удобнее привело к важнейшему открытию физики.
Магнитное или электрическое?
В начале девятнадцатого века ученые поняли, как получать постоянный ток. Была создана первая примитивная батарейка. Ее хватало для того, чтобы пустить по металлическим проводникам поток электронов. Благодаря первому источнику электричества был совершен ряд открытий.
В 1820 году датский ученый Ханс Кристиан Эрстед выяснил: магнитная стрелка отклоняется рядом со включенным в сеть проводником. Положительный полюс компаса всегда расположен определенным образом по отношению к направлению тока. Ученый производил опыт во всех возможных геометриях: проводник был над или под стрелкой, они располагались параллельно или перпендикулярно. В результате всегда получалось одно и то же: включенный ток приводил в движение магнит. Так было предвосхищено открытие явления электромагнитной индукции.
Опыты Фарадея
Но мысль ученых должна подтверждаться экспериментом. Сразу после опыта Эрстеда английский физик Майкл Фарадей задался вопросом: «Магнитное и электрическое поле просто влияют друг на друга, или они связаны теснее?» Первым ученый проверил предположение, что если электрическое поле заставляет отклоняться намагниченный предмет, то магнит должен порождать ток.
Схема опыта проста. Сейчас ее может повторить любой школьник. Тонкая металлическая проволока была свернута в форме пружины. Ее концы подключались к прибору, регистрирующему ток. Когда рядом с катушкой двигался магнит – стрелка устройства показывала напряжение электрического поля. Таким образом был выведен закон электромагнитной индукции Фарадея.
Продолжение опытов
Но это еще не все, что сделал ученый. Раз магнитное и электрическое поле связаны тесно, требовалось выяснить, насколько.
Для этого Фарадей к одной обмотке подвел ток и вдвинул ее внутрь другой такой же обмотки радиусом больше первой. И снова было индуцировано электричество. Таким образом, ученый доказал: движущийся заряд порождает и электрическое, и магнитное поля одновременно.
Стоит подчеркнуть, что речь идет о движении магнита или магнитного поля внутри замкнутого контура пружины. То есть поток должен все время меняться. Если этого не происходит, ток не генерируется.
Формула
Закон Фарадея для электромагнитной индукции выражается формулой
ε = -dΦ / dt.
Расшифруем символы.
ε обозначает ЭДС или электродвижущую силу. Эта величина скалярная (то есть не векторная), и она показывает работу, которую прикладывают некие силы или законы природы, чтобы создать ток. Надо отметить, что работу должны совершать непременно неэлектрические явления.
Φ – это магнитный поток сквозь замкнутый контур. Данная величина является произведением двух других: модуля вектора магнитной индукции В и площади замкнутого контура. Если магнитное поле действует на контур не строго перпендикулярно, то к произведению добавляется косинус угла между вектором В и нормалью к поверхности.
Для более полного понимания формулы мы советуем вспомнить отличие вектора от скаляра и простейшую тригонометрию.
Последствия открытия
За этим законом последовали другие. Последующие ученые устанавливали зависимости напряженности электрического тока от мощности, сопротивления от материала проводника. Изучались новые свойства, создавались невероятные сплавы. Наконец, человечество расшифровало структуру атома, вникло в тайну рождения и смерти звезд, вскрыло геном живых существ.
И все эти свершения требовали огромного количества ресурсов, а, прежде всего, электричества. Любое производство или большое научное исследование проводились там, где были доступны три составляющие: квалифицированные кадры, непосредственно материал, с которым надо работать и дешевая электроэнергия.
А это было возможно там, где силы природы могли придавать большой момент вращения ротору: реки с большим перепадом высот, долины с сильными ветрами, разломы с избытком геомагнитной энергии.
Интересно, что современный способ получать электричество не отличается принципиально от опытов Фарадея. Магнитный ротор очень быстро вращается внутри большой катушки проволоки. Магнитное поле в обмотке все время меняется и генерируется электрический ток.
Конечно, подобраны и наилучший материал для магнита и проводников, и технология всего процесса совсем другая. Но суть в одном: используется принцип, открытый на простейшей системе.
www.syl.ru
Явление электромагнитной индукции тока: суть, кто открыл
Явление электромагнитной индукции представляет собой феномен, который заключается в возникновении электродвижущей силы или напряжения в теле, находящемся в магнитном поле, которое постоянно изменяется. Электродвижущая сила в результате электромагнитной индукции также возникает, если тело движется в статическом и неоднородном магнитном поле или же вращается в магнитном поле так, что его линии, пересекающие замкнутый контур, изменяются.
Индуцированный электрический ток
Под понятием "индукция" подразумевается возникновение какого-либо процесса в результате воздействия другого процесса. Например, электрический ток может быть индуцирован, то есть может появиться в результате воздействия особым образом на проводник магнитного поля. Такой электрический ток называется индуцированным. Условия образования электрического тока в результате явления электромагнитной индукции рассматриваются далее в статье.
Понятие о магнитном поле
Прежде чем начать изучение явления электромагнитной индукции, необходимо разобраться, что представляет собой магнитное поле. Говоря простыми словами, под магнитным полем подразумевают область пространства, в которой магнитный материал проявляет свои магнитные эффекты и свойства. Эта область пространства может быть изображена с помощью линий, которые называются линиями магнитного поля. Количеством этих линий изображают физическую величину, которая называется магнитным потоком. Линии магнитного поля являются замкнутыми, они начинаются на северном полюсе магнита и заканчиваются на южном.
Магнитное поле обладает способностью воздействовать на любые материалы, обладающие магнитными свойствами, например, на железные проводники электрического тока. Это поле характеризуется магнитной индукцией, которая обозначается B и измеряется в теслах (Тл). Магнитная индукция в 1 Тл - это очень сильное магнитное поле, которое действует с силой в 1 ньютон на точечный заряд в 1 кулон, который пролетает перпендикулярно линиям магнитного поля со скоростью 1 м/с, то есть 1 Тл = 1 Н*с/(м*Кл).
Кто открыл явление электромагнитной индукции?
Электромагнитная индукция, на принципе работы которой основаны многие современные приборы, была открыта в начале 30-х годов XIX века. Открытие явления электромагнитной индукции принято приписывать Майклу Фарадею (дата открытия - 29 августа 1831 года). Ученый основывался на результатах опытов датского физика и химика Ханса Эрстеда, который обнаружил, что проводник, по которому течет электрический ток, создает магнитное поле вокруг себя, то есть начинает проявлять магнитные свойства.
Фарадей, в свою очередь, открыл противоположное обнаруженному Эрстедом явление. Он заметил, что изменяющееся магнитное поле, которое можно создать, меняя параметры электрического тока в проводнике, приводит к возникновению разности потенциалов на концах какого-либо проводника тока. Если эти концы соединить, например, через электрическую лампу, то по такой цепи потечет электрический ток.
В итоге Фарадей открыл физический процесс, в результате которого в проводнике появляется электрический ток из-за изменения магнитного поля, в чем и заключается явление электромагнитной индукции. При этом для образования индуцированного тока не важно, что движется: магнитное поле или сам проводник. Это можно легко показать, если провести соответствующий опыт по явлению электромагнитной индукции. Так, расположив магнит внутри металлической спирали, начинаем перемещать его. Если соединить концы спирали через какой-либо индикатор электрического тока в цепь, то можно увидеть появление тока. Теперь следует оставить магнит в покое и перемещать спираль вверх и вниз относительно магнита. Индикатор также покажет существование тока в цепи.
Эксперимент Фарадея
Опыты Фарадея заключались в работе с проводником и постоянным магнитом. Майкл Фарадей впервые обнаружил, что при перемещении проводника внутри магнитного поля на его концах возникает разность потенциалов. Перемещающийся проводник начинает пересекать линии магнитного поля, что моделирует эффект изменения этого поля.
Ученый обнаружил, что положительный и отрицательный знаки возникающей разности потенциалов зависят от того, в каком направлении движется проводник. Например, если проводник поднимать в магнитном поле, то возникающая разность потенциалов будет иметь полярность +-, если же опускать этот проводник, то мы уже получим полярность -+. Эти изменения знака потенциалов, разность которых называется электродвижущей силой (ЭДС), приводят к возникновению в замкнутом контуре переменного тока, то есть такого тока, который постоянно изменяет свое направление на противоположное.
Особенности электромагнитной индукции, открытой Фарадеем
Зная, кто открыл явление электромагнитной индукции и почему возникает индуцированный ток, объясним некоторые особенности этого явления. Так, чем быстрее перемещать проводник в магнитном поле, тем будет больше значение силы индуцированного тока в контуре. Еще одна особенность явления заключается в следующем: чем больше магнитная индукция поля, то есть чем сильнее это поле, тем большую разность потенциалов она сможет создать при перемещении проводника в поле. Если же проводник находится в покое в магнитном поле, никакого ЭДС в нем не возникает, поскольку нет никакого изменения в пересекающих проводник линиях магнитной индукции.
Направление электрического тока и правило левой руки
Чтобы определить направление в проводнике электрического тока, созданного в результате явления электромагнитной индукции, можно воспользоваться так называемым правилом левой руки. Его можно сформулировать следующим образом: если левую руку поставить так, чтобы линии магнитной индукции, которые начинаются на северном полюсе магнита, входили в ладонь, а оттопыренный большой палец направить по направлению перемещения проводника в поле магнита, тогда оставшиеся четыре пальца левой руки укажут направление движения индуцированного тока в проводнике.
Существует еще один вариант этого правила, он заключается в следующем: если указательный палец левой руки направить вдоль линий магнитной индукции, а оттопыренный большой палец направить по направлению движения проводника, тогда повернутый на 90 градусов к ладони средний палец укажет направление появившегося тока в проводнике.
Явление самоиндукции
Ханс Кристиан Эрстед открыл существование магнитного поля вокруг проводника или катушки с током. Также ученый установил, что характеристики этого поля прямым образом связаны с силой тока и его направлением. Если ток в катушке или проводнике будет переменным, то он породит магнитное поле, которое не будет стационарным, то есть будет меняться. В свою очередь это переменное поле приведет к возникновению индуцированного тока (явление электромагнитной индукции). Движение тока индукции будет всегда противоположно циркулирующему по проводнику переменному току, то есть будет оказывать сопротивление при каждом изменении направления тока в проводнике или катушке. Этот процесс получил название самоиндукции. Создаваемая при этом разность электрических потенциалов называется ЭДС самоиндукции.
Отметим, что явление самоиндукции возникает не только при изменении направления тока, но и при любом его изменении, например, при увеличении за счет уменьшения сопротивления в цепи.
Для физического описания сопротивления, оказываемого любому изменению тока в цепи за счет самоиндукции, ввели понятие индуктивности, которая измеряется в генри (в честь американского физика Джозефа Генри). Один генри - это такая индуктивность, для которой при изменении тока за 1 секунду на 1 ампер возникает ЭДС в процессе самоиндукции, равная 1 вольт.
Переменный ток
Когда катушка индуктивности начинает вращаться в магнитном поле, то в результате явления электромагнитной индукции она создает индуцированный ток. Этот электрический ток является переменным, то есть он систематически изменяет свое направление.
Переменный ток является наиболее распространенным, чем постоянный. Так, многие приборы, которые работают от центральной электрической сети, используют именно этот тип тока. Переменный ток легче индуцировать и транспортировать, чем постоянный. Как правило, частота бытового переменного тока составляет 50-60 Гц, то есть за 1 секунду его направление изменяется 50-60 раз.
Геометрическим изображением переменного тока является синусоидальная кривая, которая описывает зависимость напряжения от времени. Полный период синусоидальной кривой для бытового тока приблизительно равен 20 миллисекундам. По тепловому эффекту переменный ток аналогичен току постоянному, напряжение которого составляет Umax/√2, где Umax - максимальное напряжение на синусоидальной кривой переменного тока.
Использование электромагнитной индукции в технике
Открытие явления электромагнитной индукции произвело настоящий бум в развитии техники. До этого открытия люди были способны производить электричество в ограниченных количествах только с помощью электрических батарей.
В настоящее время это физическое явление используется в электрических трансформаторах, в обогревателях, которые индуцированный ток переводят в тепло, а также в электрических двигателях и генераторах автомобилей.
fb.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.