08.07.2024

В машине переменный ток или постоянный: Ток в автомобиле постоянный или переменный

Содержание

Какой ток в аккумуляторе постоянный или переменный


В чем разница между постоянным и переменным током

Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?

Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди — получается ток.

Генератор — как насос для воды, а провод — как шланг. Генератор-насос качает электроны-воду через провода-шланги.

Переменный ток — это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает —  это и есть смена направлений движения. А 220 вольт — это максимально возможный «напор», с которым движутся электроны в этой сети.

В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.

Постоянный ток — это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.

Чем отличается постоянный ток от переменного

Постоянный и переменный ток

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный.                                                                                                                                    Чем отличается переменный ток от постоянного?                                                       Характеристики постоянного тока.

Постоянный ток

Direct Current или DC так по-английски обозначают электрический ток который на протяжении  любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос.                                                                                                                        Важная особенность постоянного электрического тока — это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках.                                                                                        Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств. 

 

Переменный ток           

 (Alternating Current) или АС английская аббревиатура  обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических  аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «~».                               Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.                                                                         На рисунке обратное направление – это область графика ниже нуля.

 Теперь давай разберемся, что такое частота.  Частота это — период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц.                                                                                                                                       Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.        Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока.  Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный?  Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов.                                                                                                                    Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.             

 Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно  подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”.  Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

   что такое диод  и как работает диодный мост , ты можешь узнать в моих следующих статьях.

Отличие переменного тока от постоянного

Август 20, 2014

49077 просмотров

Электрический ток— это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах — ионов, а в газах — электронов и ионов. Электрический ток может быть как постоянным, так и переменным.

Определение постоянного электрического тока, его источники

Постоянный ток ( DC, по-английски Direct Current) — это электрический ток, у которого  свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток  из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.

Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока , потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется  в переменный с использованием специальных преобразователей (инверторов).

Принцип работы переменного тока

Переменный ток  (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ». Иногда после синусоиды могут указываться характеристики переменного тока — частота, напряжение, число фаз.

Переменный ток может быть как одно- , так и  трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.

Основные характеристики переменного тока — действующее значение напряжения и частота.

Обратите внимание, как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.

Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).

И так мы подошли к понятию частота— это отношение числа полных циклов  (периодов) к единице времени периодически меняющегося  электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.

Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!

Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями  к электрощиту. У многих возникает вопрос: а почему  в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах.  С электростанции, где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 Вольт, далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между фазой и нулем или землей напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.

И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.

Как переменный ток сделать постоянным

Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи  выпрямителей.

  1. Первоначальный этап преобразования— это подключение диодного моста, состоящего из 4 диодов достаточной мощности (на рисунке ниже), который срезает верхние границы переменных синусоид или делает ток однонаправленным.
  2. Второй этап— это подключение параллельно на выход с диодного мостика конденсатора или сглаживающего фильтра, который исправляет провалы между пиками синусоид. Обратите внимание, как выглядит синусоида после прохождения через диодный мост (на рисунке выделена зеленным цветом).

    И как уменьшаются пульсации (изменения напряжения) после подключения конденсатора- на рисунке выделено синим цветом.

  3. Далее при необходимости для уменьшения уровня пульсаций,  дополнительно могут применяются стабилизаторы тока или  напряжения.

Преобразователь постоянного тока в переменный

Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.

Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.

Что такое фаза, ноль, заземление читайте в следующей нашей статье.

Почему автомобильные генераторы вырабатывают переменный ток?

Задумывались ли вы когда-нибудь о том, что питает все системы вашего автомобиля? За счет чего заводится мотор, горят лампочки на приборной панели, движутся стрелки и работают бортовые компьютеры? Откуда берется электричество на борту? Конечно, их вырабатывает генератор и аккумулирует химический накопитель энергии многоразового действия – электрический аккумулятор. Это знают все. Скорее всего, вы также в курсе, что аккумуляторная батарея вырабатывает постоянный ток, который используется в любом автомобиле для запитывания приборов. Однако во всей этой стройной теории, проверенной практикой, присутствует одно странное звено, не желающее поддаваться логике, – генератор вырабатывает ток переменный, тогда как все механизмы на борту машины потребляют ток постоянный. Это не кажется вам странным? Почему так происходит?

На самом деле это интересный вопрос, потому что в этой истории на первый взгляд нет никакого смысла. Если все потребители электричества в вашем автомобиле работают на 12 вольтах постоянного тока, почему автопроизводители больше не используют генераторы, которые производят постоянный ток? Ведь раньше так и делали. Почему необходимо сперва сгенерировать переменный ток, а затем преобразовывать его в постоянное электричество?

Задавшись такого рода вопросами, мы начали докапываться до истины. Ведь есть же в этом какая-то тайная причина. И вот что мы выяснили.

Во-первых, давайте проясним, что мы подразумеваем под переменным и постоянным током. Автомобили используют постоянный ток, или прямой ток, как его еще называют. В названии скрыта суть феномена. Это тип электричества, который производится батареями, он течет в одном постоянном направлении. Этот же тип электричества производился генераторами, которые ставились на первые автомобили с начала 1900-х годов до 60-х годов прошлого века. На старушках ГАЗ М-20 «Победа» и ГАЗ-69 ставились именно генераторы постоянного тока.

Другой вид электричества – переменный ток – назван так из-за того, что он периодически обращает течение по направлению, а также изменяется по величине, сохраняя свое направление в электрической цепи неизменным. Доступ к этому типу электричества можно получить в любой розетке обычной квартиры по всему миру. Мы используем его для питания электроприборов в частных домах, зданиях, огни больших городов также дают свет благодаря переменному току, потому что его легче передавать на большие расстояния.

Большая часть электроники, в том числе почти вся в вашем автомобиле, использует постоянный ток, преобразуя переменный ток в постоянный для выполнения полезной работы. В бытовых приборах установлены так называемые блоки питания, в которых происходит конвертация одного вида энергии в другой. Побочным результатом работы преобразования является немного тепла на выходе. Чем сложнее бытовая утварь, к примеру компьютер или Smart TV, тем сложнее цепочка преобразований. В некоторых случаях переменный ток частично не изменяется, а лишь корректируется его частота. Поэтому очень важно при замене вышедшего из строя блока питания заменять его на оригинальный, требуемого типа. Иначе технике наступит очень быстрый конец.

Но что-то мы отошли от главных вопросов, поставленных на повестку дня сегодня.

Итак, зачем в автомобилях вырабатывать «неправильный» вид электричества?

В общем, ответ очень прост: таков принцип работы генератора переменного тока. Наиболее высокий КПД при переводе механической энергии вращения двигателя в электрическую энергию происходит именно по такому принципу. Но есть нюансы.

Кратко принцип работы автомобильного генератора таков:

При включении зажигания на обмотку возбуждения подается напряжение через блок щеток и контактные кольца.

Инициируется появление магнитного поля.

Магнитное поле воздействует на обмотки статора, что приводит к появлению электрического переменного тока.

Далее переменный ток отправляется на выпрямительный блок, где происходит его преобразование в постоянный ток.

Завершающая стадия «готовки» правильного тока – регулятор напряжения.

После всего процесса часть электричества запитывает электропотребители, часть идет на подзарядку аккумулятора, некоторая часть уходит обратно на щетки альтернатора (так когда-то называли генератор переменного тока) для самовозбуждения генератора.

Выше был описан принцип работы современного генератора переменного тока, но так было не всегда. Ранние автомобили с двигателями внутреннего сгорания использовали магнето – простейшее приспособление для преобразования механической энергии в электрическую (переменного тока). Внешне, да и внутренне, эти машинки были даже схожи с более поздними генераторами, но использовались на очень простых автомобильных электрических системах без батарей. Все было просто и безотказно. Не зря некоторые сохранившиеся до наших времен 90-летние автомобили заводятся до сих пор.

Индукторы (второе название магнето) впервые были разработаны человеком с неподражаемым именем – Ипполит Пикси.

Смотрите также: Сколько стоит зарядить электромобиль?

На данный момент мы с вами выяснили, что тип вырабатываемого генераторами тока зависит от продуктивности перевода механической энергии в электрическую, но также немаловажную роль во всей этой истории сыграло снижение массы и габаритов устройства по сравнению с аналогичными по мощности устройствами-производителями постоянного тока. Разница в весе и габаритах оказалась почти в три раза! Но есть еще один секрет, почему автомобильные генераторы сегодня вырабатывают переменный ток. Вкратце это более передовой эволюционный путь развития генераторов постоянного тока, которых, признаться честно, по сути, и не существовало в чистом виде.

Историческая справка:

Более того, генераторы постоянного тока на самом деле также производили переменный ток, когда якорь (подвижная часть) вращался внутри статора (внешний «корпус», который имеет постоянное магнитное поле). Разве что частота тока была иной и «сгладить» ее в постоянный ток можно было проще – при помощи коммутатора.

Коммутатором тогда называлось механическое приспособление с вращающимся цилиндром, поделенным на сегменты с щетками для создания электрического контакта.

Система работала, но была неидеальна. В ней было множество механических частей, контактные щетки быстро изнашивались, и общая надежность системы была так себе. Тем не менее это был лучший способ получить постоянный ток, который был нужен вам для зарядки аккумулятора и системы запуска автомобиля.

Так было до конца 1950-х годов, когда начала появляться твердотельная электроника, ставшая решением проблемы преобразования переменного тока в постоянный посредством кремниевых диодных выпрямителей.

Эти выпрямители тока (иногда называемые диодным мостом) показали себя с гораздо лучшей стороны в качестве преобразователей переменного тока в постоянный, что, в свою очередь, позволило использовать более простые, а значит, более надежные генераторы переменного тока в автомобилях.

Первым зарубежным автопроизводителем, который развил эту идею и вывел ее на рынок легковых автомобилей, был Chrysler, имевший опыт работы с выпрямителями и электронными регуляторами напряжения благодаря исследовательской работе, спонсируемой Министерством обороны США. В Википедии отмечается, что американская разработка «…повторяла разработку авторов из СССР», первая конструкция генератора переменного тока была представлена в Советском Союзе за шесть лет до этого. Единственным, но важным улучшением американцев стало применение кремниевых выпрямительных диодов вместо селеновых.

Смотрите также: Разряд автомобильного аккумулятора: причины и как его избежать

В СССР же, хоть и опоздали на 7 лет с введением в серию генераторов переменного тока на легковые автомобили, опередили весь мир в самой разработке новых типов генераторов. Еще в 1955 году на Горьковском автозаводе было выпущено 2.000 машин с альтернаторами вместо магнето.

«Одними из ведущих разработчиков, благодаря которым в СССР и на европейском континенте появилась первая серийная конструкция генераторов переменного тока, были Ю. А. Купеев (НИИ автоприборов) и В. И. Василевский (КЗАТЭ г. Самара)», – говорится на страницах Википедии.

Итог. Почему генераторы на авто вырабатывают переменный ток?

Ну, а мы завершаем наш рассказ. Первым легковым автомобилем, в базовой комплектации которого устанавливался генератор новой конструкции, стал Plymouth 1960 года выпуска. Некоторыми из наиболее очевидных преимуществ генератора было то, что на низкой скорости или на холостом ходу он по-прежнему производил достаточно тока, чтобы заряжать аккумулятор, что большинство генераторов того времени были не в состоянии сделать.

Оказалось, что альтернаторы, после того как был налажен массовый выпуск, производить дешевле, чем генераторы старой конструкции, они надежнее, выносливее и производят больше электричества на разных скоростях вращения коленчатого вала. Они сделали настолько большой шаг вперед, что все их плюсы запросто перекрывали единственный минус – они не могли производить постоянный ток. Позиция закрепилась после того, как инженерами был разработан дешевый и надежный твердотельный выпрямитель.

Видите? В конце концов, в этом есть смысл!

Аккумуляторы постоянного тока тенденции развития.

Под выражением «постоянный ток» понимается движение заряженных частиц в одну сторону — от отрицательного электрода к положительному.

Переменный ток — такое движение заряженных частиц, что и его направление, и получаемое напряжение меняются с определенной периодичностью.

Переменный ток может создаваться генератором или преобразователем.

Разнообразные источники тока, работающие по принципу сохранения и последующей отдачи энергии — то есть аккумуляторы — могут выдавать только постоянный ток.

Выражение «аккумуляторы переменного тока» можно считать оксюмороном.

Впрочем, его иногда используют для обозначения источника бесперебойного питания. Как известно, ИБП применяются в тех случаях, когда важно обезопасить технику от скачков напряжения в сети.

Например, персональный компьютер может быть подключен к сети через индивидуальный ИБП.

Аккумулятор ИБП создает постоянный ток. Однако компьютер работает на переменном токе.

Для того, чтобы обеспечить работоспособность техники в схему ИБП включается инвертор.

Так как на выходе получается переменный ток, создается впечатление, что ИБП и есть аккумуляторы переменного тока.



Почему в автомобилях используется именно 12V? | CAR.RU

Меня всегда мучал этот вопрос. Я решил разобраться и обратился к профессиональному автоэлектрику. Первое, на что обратили мое внимание — есть две части этого вопроса.

Первая часть. Почему автомобиль использует постоянный ток

На этот вопрос относительно легко ответить:

  1. Аккумулятор машины вырабатывает постоянный ток.
  2. Генератор вырабатывает переменный ток (поточу что так мы получим самый высокий КПД, переводя механическую энергию вращения двигателя в электрическую), а благодаря выпрямительному мосту (диодный мост) — ток становиться постоянным.

Вторая часть. Почему номинальное напряжение аккумулятора составляет 12𝑉

На этот вопрос ответить немного сложнее.
Номинальное значение 12𝑉 является результатом химических процессов, протекающих в аккумуляторе плюс мировые соглашения. Другой вопрос, почему мы не используем напряжения 24𝑉, 48𝑉 или даже более?

Более высокие напряжения более эффективны. Отсюда и желание их использовать. Вот почему в 1950-х годах был сделан переход от батареи 6𝑉 к батарее 12𝑉 — требования к питанию стали слишком высокими для 6𝑉 батареи.

Преимущества высоковольтных аккумуляторов значительны. Вы можете сэкономить деньги на проводке, уменьшить падение напряжения, снизить нагрузку на аккумулятор (поскольку текущая потребность в электроэнергии уменьшается при той же величине потребляемой мощности), а компоненты, такие как реле и щетки двигателя, служат дольше. Можно долго рассуждать о батареях более высокого напряжения.

Однако слишком высокое напряжение может стать небезопасным для здоровья.
А сочетание относительно низких требований к мощности в автомобиле в сочетании с потенциальной угрозой безопасности при высоком напряжении означает, что любая батарея более 50𝑉 исключена для обычных транспортных средств.

Но это все еще не объясняет, почему мы не видим, скажем, 48𝑉 батарею.

Первая причина

Первая причина состоит в том, что привычки сложно менять.
12𝑉 — это стандарт на протяжении десятилетий. Для изменения потребовалась бы очень веская причина, которой просто нет. Инфраструктура, построенная в соответствии с соглашением о 12𝑉 от зарядных устройств до аксессуаров для любой части электромобиля, просто огромна.

Вторая причина

Вторая причина — это электрическая эрозия контактов постоянного тока. При более высоких напряжениях является довольно серьезной проблемой.

При постоянном токе перенос материала с одного контакта на другой проявляется более интенсивно, чем при переменном токе, так как направление тока в цепи не меняется.

При малых значениях токов эрозия контактов обусловлена разрушением контактного перешейка не в средине, а ближе к одному из электродов. Чаше разрыв контактного перешейка наблюдается у анода — положительного электрода.

Этот эффект, очевидно, гораздо более значим при более высоких напряжениях, и, вероятно, потребует дорогостоящей модернизации многих компонентов.
Само по себе это не является непреодолимой проблемой. Но в сочетании со старым соглашением и количеством изменений, которые потребуются внести в огромную инфраструктуру, построенную вокруг батареи 12𝑉, это, вероятно, последний аргумент в пользу того, чтобы этого не делать.

Итог

Как говориться, старый дуб не скоро сломится. Нужны веские причины для того, чтобы уйти от исторически сложившейся батареи 12𝑉 в машине.
А пока мы «застряли» с этим решением в большинстве автомобилей.

А что вы думаете? Пишите в комментариях!

Поставьте, пожалуйста, лайк — для вас не сложно, а нам это очень важно.
И подписывайтесь на канал, спасибо!

Источники тока в автомобиле | Устройство автомобиля

 

Как и в быту роль электричества в автомобиле неоценима. Необходимо знать, какие источники тока в автомобиле. Позади то время, когда заводная рукоятка была единственным средством пуска двигателя. Сейчас стоит повернуть ключ зажигания и двигатель ожил. С ярким светом фар вам не страшна темная ночь. Забыли спички – не беда, и об этом позаботились конструкторы, придумав прикуриватель. Щелкнул выключатель – и в салоне светло, уютно. В машине можно отдохнуть, послушать хорошую музыку или последние известия, а любители футбола могут поболеть за свою команду.

Благодаря источникам тока на автомобиле, в поездке можно посмотреть телепередачу, воспользоваться электрохолодильником и даже побриться электробритвой, а если нужно, то и завулканизировать камеру. Да разве перечесть все те услуги, которые оказывает автомобильная электростанция. Источниками тока в автомобиле используется генератор и аккумуляторная батарея. С помощью генератора происходит питание всех потребителей электрического тока в автомобиле, а также происходит заряд аккумуляторной батареи при работе двигателя на средних и больших оборотах. В свою очередь аккумуляторная батарея питает потребители электрического тока, когда двигатель совсем не работает или же работает на малых оборотах холостого хода.

Аккумулятор – накопитель электрической энергии. На автомобилях применяют свинцово-кислотные аккумуляторные батареи, состоящие в основном из 6 аккумуляторов, соединенных последовательно.

Аккумуляторная батарея (рис.1) состоит из эбонитового моноблока 7, в котором установлены аккумуляторы.

Рис.1. Кислотная аккумуляторная батарея:
1 – отрицательная пластина, 2 – сепаратор, 3 – положительная     пластина, 4 – защитная сетка, 5, 6 – штыри, 7 – эбонитовый моноблок, 8 – пробка, 9 – крышка, 10 – межэлементная перемычка, 11 – вентиляционное отверстие.

Каждый аккумулятор состоит из блока отрицательных и положительных пластин (отрицательных на одну больше), Пластины изготовлены из сплава свинца с сурьмой в виде решеток, заполненных активной массой, принимающей участие в химических процессах аккумулятора. Активной массой служит свинцовый сурик (Pb2O2) и свинцовый глет (PbO).

Для предотвращения короткого замыкания между положительными и отрицательными пластинами установлены сепараторы из пористой пластмассы, стекловаты или дерева. Сверху пластины закрыты защитной сеткой 4. Через отверстие в крышке 9, закрытое пробкой 8, заливается электролит. Электролитом служит раствор серной кислоты и дистиллированной воды. Плотность электролита, которая, в зависимости от климатического пояса, для северных районов должна равняться 1,290, для центральных – 1,270 и для южных – 1,250, определяется после зарядки с помощью ареометра. Уровень электролита должен быть на 10-15 мм выше защитной сетки.

Аккумуляторы в батарее соединены посредством межэлементных перемычек 10, приваренных к выводным штырям. Вентиляционные отверстия сообщают аккумуляторную батарею с атмосферой. Напряжение на клеммах одного аккумулятора в заряженном состоянии равно 2 В. При проверке напряжения нагрузочной вилкой показание шкалы в конце пятой секунды должно быть в пределах 1,7-1,8.

Каждая аккумуляторная батарея имеет определенную маркировку. Аккумуляторная батарея 6-СТ-42 ЭМ устанавливается на автомобиле «Москвич-412».

Первая цифра обозначает число аккумуляторов в батарее, буквы СТ – что батарея стартерная, число, стоящее за СТ, указывает на емкость батареи в ампер-часах, первая буква после цифр означает материал банки. В нашем примере «Э» – эбонит и «М» – материал сепаратора (мипласт).

Генератор (от латинского – производитель) – машина для превращения механической энергии в электрическую. Различают генераторы постоянного и переменного тока. В настоящее время на автомобилях устанавливают в основном генераторы переменного тока, так как они имеют ряд преимуществ перед генераторами постоянного тока.

Генератор (рис.2) состоит из статора 1, представляющего собой пакет пластин из электротехнической стали. В пазах статора уложена трехфазная обмотка 3, состоящая из шести намотанных катушек, образующих одну фазу. Фазы соединяются с тремя изолированными от массы клеммами 2.

Рис.2. Генератор переменного тока:
1 – статор, 2 – клеммы, 3 – обмотка статора, 4 – вал ротора, 5 – контактное кольцо, 6 – шарикоподшипник, 7, 8 – клинообразные полюсные наконечники, 9 – крышка, 10 – вентилятор, 11 – обмотки возбуждения, 12 – графитовая щетка, 13 – щеткодержатель.

Ротор генератора включает в себя электромагнит, имеющий два штампованных клинообразных полюсных наконечника 7 и 8, напрессованных на вал 4, и два контактных кольца, изолированных от вала, к которым припаяны оба конца обмотки возбуждения. Ротор вращается в двух шарикоподшипниках 6, установленных в крышках генератора (на рисунке видна только передняя крышка 9). На задней крышке расположены щеткодержатели с двумя графитовыми щетками 12 и блок-выпрямитель, состоящий из шести диодов. Передняя и задняя крышки стянуты тремя шпильками. На валу ротора на шпонке закрепляется шкив с вентилятором 10.

Генератор работает так: при вращении ротора магнитное поле, созданное его электомагнитами (полюсные наконечники 7 и 8), пересекает обмотки статора 1, в которых индуктируется переменный электрический ток. Переменный ток выпрямляется в постоянный блоком выпрямителей и поступает в сеть.

Так как привод генератора осуществляется от шкива коленчатого вала двигатели, у которого обороты меняются в очень широких пределах, то соответственно меняются и обороты ротора, а это приводит к изменению напряжения на зажимах генератора, что очень нежелательно. Для поддержания постоянного напряжения генератора, независимо от числа оборотов коленчатого вала двигателя, служит электромагнитный регулятор напряжения.

Регулятор напряжения монтируется в общем корпусе с полупроводниковым транзистором и реле защиты транзистора от коротких замыканий в цепи возбуждения генератора, образуя прибор – реле-регулятор.

автомобиль, аккумулятор, аккумуляторный, батарея, генератор

Смотрите также:

Принцип действия генератора электрического тока в кране

Генераторы постоянного тока вырабатывают по сути дела переменное напряжение, которое выпрямляется особым устройством — коллектором. Рассмотрим работу простейшего генератора переменного тока (рис. 3.1), который приводится во вращение каким-либо механическим двигателем и преобразует механическую энергию в электрическую.

Рис. 3.1. Схематическое устройство простейшего генератора переменного тока

Будем считать, что якорь вращается с постоянной скоростью в направлении против часовой стрелки. Так как проводники аЬ и ей находятся в одинаковых условиях относительно полюсов С и Ю, то достаточно рассмотреть процесс создания ЭДС только в одном проводнике, например в проводнике аЪ.
Направление наводимой ЭДС определяется по правилу правой руки. Ладонь правой руки надо расположить в магнитном поле так, чтобы магнитные силовые линии были направлены в ладонь, а большой палец был отведен на 90° в плоскости ладони и направлен в сторону движения проводника. Тогда остальные пальцы руки покажут направление наведенной в проводнике ЭДС (рис. 3.2). Напомним, что принято считать магнитные силовые линии исходящими из северного полюса.

Рис. 3.2. Правило правой руки

Из рис. 3.3 видно, что каждая щетка соединена через кольцо только с одним проводником: щетка А — с проводником ab, а щетка В — с проводником cd. Значит, на зажимах внешней цепи имеется переменное во времени напряжение и по ней течет переменный ток частотой /. Итак, внутри машины получается переменный ток, но во внешнюю цепь можно выдавать постоянный или выпрямленный ток. Для этого применяют специальное устройство — коллектор, по сути дела являющийся механическим выпрямителем.

Принцип действия его состоит в следующем. Концы витка ab-cd присоединяются не к двум кольцам, как было сделано вначале, а к одному кольцу, разрезанному по диаметру, обе половинки которого изолированы друг от друга и от вала, на который они насажены. На эти полукольца или пластины коллектора наложены щетки А и В, к которым присоединяется внешняя цепь. Только теперь положение щеток на пластинках не безразлично, как на рис. 3.1, а имеет существенное значение.

С целью выпрямить переменный ток надо поставить щетки так, чтобы наводимая в витке ЭДС была равна нулю в момент перехода щетки с одной пластины на другую (рис. 3.3).

Рис. 3.3. Схема простейшего генератора постоянного тока

Тогда ток во внешней цепи будет протекать только в одном направлении — от щетки А к щетке В. Здесь происходит выпрямление наводимой в витке ab-cd переменной ЭДС в пульсирующую ЭДС, и ток во внешней цепи будет также пульсирующим, т. е. меняющимся по величине в течение периода в соответствии с изменением ЭДС, но направление его остается неизменным. Щетка А, от которой отводится ток во внешнюю цепь, является положительной и обозначается знаком плюс, а щетка В, через которую ток возвращается в машину — отрицательной и обозначается знаком минус. Чтобы пульсирующий ток стал постоянным током, необходимо сделать не две коллекторные пластины, а значительно больше, а также следует уложить на якорь обмотку, состоящую из большого числа проводников. Витки обмотки соединены с коллекторными пластинами по определенному закону.

Итак, мы ознакомились с устройством машины постоянного тока, являющейся генератором или источником электрической энергии. Но генератор может быть легко обращен в электрический двигатель. Для этого необходимо дать такое же напряжение постоянного тока на зажимы машины, какое она вырабатывала в качестве генератора. Это свойство электрических машин носит название обратимости. При работе такой машины в качестве двигателя коллектор попеременно посылает в секции обмотки якоря ток определенного направления.

Каждая машина постоянного тока состоит из следующих основных частей: неподвижной части станины, т. е. статора, предназначенного для создания магнитного потока; вращающейся части, или якоря; двух подшипниковых щитов. На статоре укреплены основные полюсы, служащие для создания основного магнитного потока, и добавочные полюсы, выравнивающие магнитный поток при работе машины, что необходимо для подавления искрения на коллекторе.

Рис. 3.4. Основной полюс

Якорь представляет собой цилиндрическое тело, вращающееся в пространстве между полюсами. Якорь имеет пазы, в которые уложены проводники обмотки. На одном валу с якорем насажен коллектор, к пластинам которого припаяны выводы от обмотки якоря. Зазор между якорем и неподвижной частью машины колеблется в пределах 0,7—3 мм для машин мощностью до 50 кВт, а в машинах большей мощности может достигать 10 мм. Сердечник 1 основного полюса (рис. 3.4) выполнен из листовой электротехнической стали толщиной 1 мм. Со стороны, обращенной к якорю, сердечник имеет полюсный наконечник 2, служащий для равномерного распределения магнитного потока через воздушный зазор. На сердечник полюса надета катушка обмотки возбуждения 3, по которой проходит постоянный ток. Катушка наматывается на каркас 4, выполняемый из листовой стали толщиной 1—2 мм, пластмассы или картона. Полюсы крепятся к статору 6 при помощи болтов 5.

Добавочные полюсы, так же как и основные, состоят из сердечника, оканчивающегося полюсным наконечником, и надетой на сердечник катушки. Добавочные полюсы устанавливают строго посередине между основными полюсами и крепят к станине болтами.

Станиной или статором называют неподвижную часть машины, к которой крепятся основные и добавочные полюсы и при помощи которой машина крепится к фундаменту или другому основанию. Станину делают из чугуна или стали с разъемом или без него в зависимости от типа и мощности машины. К станине крепятся подшипниковые щиты, поддерживающие подшипники, в которых вращается якорь.

Якорь машин постоянного тока представляет собой барабан с пазами, выполненный из листовой стали толщиной 0,5 мм. Частота перемагничивания якоря составляет 20—60 Гц. Листы набираются в осевом направлении и для уменьшения потерь от вихревых токов изолируются друг от друга лаком или бумагой толщиной 0,03— 0,05 мм. Листы якоря спрессовывают с обеих сторон нажимными приспособлениями, которые крепят на валу или стягивают болтами. Для улучшения охлаждения на вал якоря насаживают вентилятор.

Секции обмотки якоря изготовляют на шаблонах и укладывают в пазы якоря. Обмотку якоря присоединяют к коллектору, который выполняют из медных пластин трапецеидальной формы, изолированных друг от друга и от корпуса посредством слюды или миканитовых прокладок. Коллекторные пластины закрепляют на ласточкиных хвостах. После запрессовки коллектор обтачивают на станке, чтобы его поверхность имела правильную цилиндрическую форму. Концы секций якоря впаиваются в пластины коллектора.

Для подвода тока к вращающемуся коллектору и отвода от него тока применяют щеточный аппарат, состоящий из щеткодержателей, укрепленных на щеточных пальцах, и щеток, установленных в щеткодержателях. Все щеточные пальцы крепятся на общей траверсе, устройство которой показано на рис. 3.5.

Генератор переменного тока — Генератор переменного тока состоит он из неподвижной части, которая называется статор или якорь и вращающейся части — ротор или индуктор

В 1832-м году неизвестным изобретателем был создан первый однофазный синхронный многополюсный генератор переменного тока. Но в самых первых электронных устройствах применялся только постоянный ток, в то время как переменный ток долгое время не мог найти своего практического применения. Тем не менее, вскоре выяснили, что намного практичнее использовать не постоянный, а переменный ток, то есть тот ток, который периодически меняет свое значение и направление. Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций, генераторы переменного тока экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Поэтому были собраны надежные электрические двигатели переменного тока, которые сразу нашли свое широкое применение в промышленных и бытовых сферах. Надо отметить, что благодаря существованию переменного тока, его особенным физическим явлениям, смогли появиться такие изобретения, как радио, магнитофон и прочая автоматика и электротехника, без которой сложно представить современную жизнь.

Устройство генератора переменного тока

Генератор переменного тока – это устройство, которые преобразует механическую энергию, в электрическую.

Состоит он из неподвижной части, которая называется статор или якорь (см. рисунок) и вращающейся части — ротор или индуктор. В генераторе переменного тока ротор — это электромагнит, который обеспечивает магнитное поле, которое передается на статор. На внутренней поверхности статора есть осевые впадины, так называемые пазы, в которых расположена обмотка переменного тока (проводник). Статор генератора изготавливается из 0.35 мм спрессованных стальных листов, которые изолированы покрытой лаком пленкой. Эти листы устанавливаются в станине устройства. Ротор крепится внутри статора и вращается посредством двигателя. Вал – одна из деталей, для передачи крутящего момента под действием расположенных на нём опор. На общем валу с генератором, располагается так называемый возбудитель постоянного тока, который питает постоянным током обмотки ротора. Аккумулятор в генераторе переменного тока выполняет функции стартерной батареи, которая имеет свойство накапливать и хранить электроэнергию при нехватке в отсутствии работы двигателя и при нехватке мощности, которую развивает генератор.

Применение генераторов переменного тока в жизни

В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Используются они как в промышленных, так и в бытовых сферах. Промышленные генераторы являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес центрах, а так же на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме. Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием.

Обслуживание

Практически любая дизельная электростанция в независимости от ее мощности (500 кВт) и производителя имеет 2 главные составляющие. Это генератор переменного тока и двигатель внутреннего сгорания. Так как поддерживать данные узлы необходимо в рабочем исправном состоянии, в ходе их эксплуатации нужен определенный перечень обязательных работ по их техническому обслуживанию. К сожалению, подавляющее большинство владельцев считает, что можно ограничиться лишь своевременной заменой масла и фильтра, при этом «техническое обслуживание» можно провести и самостоятельно. Но результатом этого зачастую становится полный отказ работы устройства. В результате чего, не сложно сделать вывод, что проще и дешевле, доверить оборудование профессионалам, которые благодаря знаниям и огромному опыту, смогут увеличить срок службы ДГУ и сократить расходы при аварийных ситуациях.

как HVDC спасли переменный ток / Хабр

В мире, казалось бы, победившего переменного тока назревает — нет, не революция, но органичная эволюция: постоянный ток не просто возвращается, а претендует на лавры победителя. Инвестиции в возобновляемые источники энергии и трансграничная передача электричества сделали высоковольтные сети постоянного тока как никогда актуальными. В этом посте мы рассказываем, почему постоянный ток уступил току переменному и как спустя век после «Войны токов» постоянный ток взял реванш.

Источник: Shutterstock

Постоянный ток — это основа современного технологического общества: вся полупроводниковая электроника, работающая от сети или аккумуляторов, использует постоянный ток, с его помощью добывают чистый алюминий, магний, медь и другие вещества. В бортовой сети автомобиля тоже постоянный ток, как и в электрической передаче дизельных судов. Ну и конечно электропоезда: трамваи, метро и некоторые электровозы питаются постоянным током. И космос: все рукотворные космические объекты функционируют исключительно благодаря постоянному току от батарей или РИТЭГов.

Помимо всего этого, есть еще одна область, где постоянный ток если не незаменим, то по крайней мере значительно эффективнее переменнее тока, — высоковольтные линии для передачи высокой мощности. Линии постоянного тока (HVDC, High-voltage direct current) еще век назад стали спасением высоковольтных линий переменного тока (HVAC, High-voltage alternating current). Если бы не постоянный ток, электричество в наших розетках было бы куда дороже и исчезало чаще, чем это происходит сейчас. Давайте разберемся в этой интересной истории «взаимовыручки».

Ирония судьбы постоянного тока

Чтобы оценить всю иронию ситуации с возвращением постоянного тока в высоковольтные линии электропередач, нужно вспомнить о событиях «Войны токов» — сражения апологетов постоянного тока в лице изобретателя и бизнесмена Томаса Эдисона и тока переменного, преимущества которого осознавал предприниматель Джордж Вестингауз. Вкратце напомним о том, как постоянный ток проиграл битву за то, чтобы стать основой мирового энергоснабжения.

После того, как человечество подчинило себе электричество и научилось извлекать из него пользу в промышленности, дальновидные бизнесмены смекнули, что на электрификации городов в перспективе можно сколотить не просто капитал, а фантастическое состояние. Изобретатель Томас Эдисон отлично умел монетизировать свой талант инноватора и зарабатывал не столько на собственных изобретениях, сколько на усовершенствовании чужих идей. Одним из примеров такой успешной «доводки» стало создание лампы накаливания, которая появилась благодаря попавшем в руки Эдисона дуговым лампам с угольными электродами. Такие лампы хоть и давали свет, но в качестве постоянных источников освещения не годились — в те времена угольные дуговые лампы работали от силы несколько часов, а включить их можно было только один раз.

Первая серийная лампа Эдисона — еще с угольной нитью и временем работы в несколько десятков часов. Источник: Terren / Wikimedia Commons

Усовершенствовав конструкцию и создав свою знаменитую лампу накаливания, которая могла работать 40 часов, а после доработки 1200 часов, Эдисон осознал, что его лампочка может стать основой систем освещения городов и помещений — давая более яркий свет по сравнению со свечами и газовыми фонарями, лампы накаливания имели меньшую стоимость, не чадили, не жгли кислород в помещениях, а замены требовали реже, чем те же свечи. Производством ламп занялось предприятие Edison Electric Light, а генераторов постоянного тока — Edison General Electric. Продавая лампы ниже себестоимости, Эдисон завоевал рынок освещения, а для первых потребителей начал строить энергосети в Лондоне и Нью-Йорке.

Лампа накаливания может работать и с переменным, и с постоянным током, но Эдисон сделал выбор в пользу постоянного тока. Причина этого решения очень тривиальна и далека от физики. Как мы говорили, Эдисон был не только изобретателем, но и очень предприимчивым бизнесменом. В электричестве он видел не только способ дешевого освещения городов, но и возможность для модернизации промышленности за счет внедрения электрической тяги. Существовавшие в то время электромоторы работали только на постоянном токе.

К тому же для заработка на поставках электричества надо было как-то измерять потребление каждого абонента. Эдисон создал индивидуальный счетчик, представлявший собой резервуар с электролитом и пластиной, на которой под действием проходящего тока оседала медь — каждый месяц пластину взвешивали и по разнице массы вычисляли потребление электроэнергии. Такой счетчик работал только с постоянным током.

Счетчик постоянного тока конструкции Томаса Эдисона. «Передача показаний» заключалась в передаче банки с пластинами представителям энергетической компании. Источник: Thomas A. Edison Papers / edison.rutgers.edu

Но были у постоянного тока и нерешенные проблемы, главная из которых — невозможность передачи высокой мощности на большие (более 2 км) расстояния. Чтобы передать высокую мощность, которая необходима для электроснабжения предприятия или системы освещения города, в электросети нужно повысить либо ток, либо напряжение (мощность, напомним, равна произведению напряжения и силы тока). Но в конце XIX века не было способов менять напряжение постоянного тока. Выпускаемые в США электроприборы работали от напряжения 110 В, поэтому электростанции Эдисона, работавшие на паровых генераторах, должны были посылать в сеть именно 110 В.

Оставалось управлять силой тока. При повышении тока часть энергии уходит на нагрев проводов (с высоким напряжением такой проблемы нет). Для снижения потерь и нагрева нужно уменьшать сопротивление, увеличивая диаметр проводника или применяя материалы с хорошей электропроводностью, например, медь. И всё равно потери будут расти в зависимости от длины кабеля.

Чтобы сократить длину проводника до допустимой, потребители должны были располагаться не далее, чем в 1,5-2 км от электростанции, иначе мощность в сети падала до неприемлемых значений. Например, на 56-километровой линии между французскими городами Крей и Париж потери достигали 45%. Как Эдисон ни бился с проблемой потерь в сетях постоянного тока, решить ему ее так и не удалось. Единственным выходом было только строительство маломощных электростанций рядом с потребителями. Тогда это не казалось надругательством над экологией и жителями — именно такие станции и строила компания Эдисона. Первая из них была построена на Пёрл-стрит на Манхэттене в Нью-Йорке в 1882 году, в том же году началась прокладка подземных кабелей сети постоянного тока с напряжением 110 В.

Эдисон прокладывал под землей линии электропередач уличного освещения еще до того, как это стало модным в Москве. На иллюстрации укладка линии постоянного тока в Нью-Йорке в 1882 году. Источник: W. P. Snyder / Wikimedia Commons

Ошибочность своего выбора Томас Эдисон осознал, хотя и не признал публично, когда его конкурент по электрическому бизнесу — Джордж Вестингауз, — начал вкладываться в строительство электростанций и сетей переменного тока, имевших серьезные преимущества перед сетями тока постоянного. Благодаря уже изобретенным к тому моменту трансформаторам напряжение переменного тока можно было без труда повышать и понижать. Трансформаторы решали проблему передачи высокой мощности, ведь вместо силы тока можно было просто увеличить напряжение, для передачи которого не требовались толстые провода из дорогой меди.

Таким образом сети Вестингауза могли передавать очень высокую мощность по дешевым кабелям меньшего диаметра и при этом практически без потерь. Это доказывает пример 175-километровой сети переменного тока между немецким городом Лауффен-ам-Неккар и Франкфуртом — ее КПД составил 80,9% после запуска в 1891 году и 96% после модернизации — несравнимо выше 45% на втрое меньшей дистанции у сети постоянного тока.

Трехфазный генератор переменного тока в Лауффен-ам-Неккар, Германия. Источник: Historisches Museum, Frankfurt

У сетей переменного тока не было жесткого ограничения на длину. Благодаря этому стало возможным строительство гидроэлектростанций, электричество с которых могло передаваться в крупные города, расположенные за десятки и даже сотни километров от места выработки. А гидроэлектростанция — это куда более значимый и прибыльный проект, чем маломощная угольная станция внутри города.

«Война токов» продолжилась некрасивой пиар-кампанией Эдисона против переменного тока (показана, в частности в художественном фильме 2017 года «Война токов», или The Current War, режиссёра А. Гомес-Рехона), судебной и законотворческой волокитой против Вестингауза и постепенной потерей позиций бизнеса Эдисона под давлением всё более популярных сетей переменного тока. Последняя эдисоновская электростанция постоянного тока прекратила свою работу в 1981 году, что же до потребителей, в Сан-Франциско до сих пор сотни объектов (в основном старинные лифты) используют постоянный ток через выпрямители переменного тока. Но для нас это уже не так важно.

Постоянный ток спасает переменный

Всего через несколько лет после начала масштабного строительства электростанций и сетей переменного тока выяснилось, что переменный ток имеет проблемы при передаче энергии… на большие расстояния! Коронный разряд в высоковольтных воздушных линиях, на который может приходиться до половины потерь, поверхностный эффект, при котором переменный ток протекает по проводнику неравномерно и из-за этого требует проводники бо́льшего диаметра, реактивная мощность из-за высокого емкостного сопротивление подводных кабелей, «съедавшая» почти 100% переменного тока уже через 50 км — всё это вызывало потери процентов и десятков процентов мощности в первых магистральных сетях переменного тока.

Утечки на больших расстояниях — это во-первых. А во-вторых, объединение энергосетей переменного тока требовало идеальной синхронизации генераторов, расположенных в разных частях страны. При отсутствии синхронизации генератор в лучшем случае не будет подавать ток в сеть, в худшем — произойдет короткое замыкание.

Спасением высоковольтных сетей переменного тока стали высоковольтные сети постоянного тока, избавленные от некоторых недостатков конкурента. Постоянный ток не создает поверхностный эффект в проводнике и потому использует всю площадь сечения проводника с максимальной эффективностью (это уменьшает диаметр и стоимость проводов). В цепях постоянного тока нет реактивной мощности, поэтому в подводных кабелях с высокой емкостью потерь не происходит.

В высоковольтных сетях переменного тока толщина скин-слоя (отмечен буквой δ) определяется точкой падения плотности тока на 63%.В сетях с частотой 50 Гц скин-слой достигает 9,34 мм — часть объема дорогостоящего проводника просто не работает. Источник: biezl / Wikimedia Commons

Вырисовывалась замечательная синергия: электростанции и потребители используют переменный ток, но для его транспортировки на сотни километров применяются сети постоянного тока. Оставалась лишь одна «пустяковая» проблема — как превратить переменный ток в постоянный и обратно?

В конце XIX века швейцарский инженер Рене Тюри предложил использовать для соединения сетей с разным типом тока систему «мотор-генератор», в которой на одном конце сети переменный ток вращал мотор, приводящий в действие генератор постоянного тока, а на другом конце постоянный ток в свою очередь вращал мотор с генератором переменного тока. Идея, гениальная в своей простоте, но с невысоким КПД — двойное преобразование за счет моторов и генераторов «съедало» часть мощности. Тем не менее, других решений, кроме системы Тюри, не было, поэтому с 1883 года началось строительство магистральных сетей постоянного тока с машинами Тюри, связывающих крупные электростанции и города в Европе.

Одна из машин Тюри. Самая крупная из них, весом 4500 кг, генерировала 66 кВт. Источник: Wikimedia Commons

В 1902 году американец Питер Купер-Хьюитт изобрел ртутно-дуговой выпрямитель — несложное устройство для превращения переменного тока в постоянный. Оригинальный выпрямитель Купера-Хьюитта представлял собой замысловатую стеклянную колбу с выходящими из нее электродами, дно которой было заполнено ртутью. В работе выпрямитель выглядит очень эффектно. Впрочем, из-за хрупкости колбы стекло в выпрямителе вскоре заменили на металл.

Работа ртутно-дуговых выпрямителей завораживает. Увы, но сейчас полюбоваться такой красотой можно разве что в музеях — ртутные выпрямители давно не используются, да и те, что остались, сделаны из металла.

Ртутные выпрямители дали толчок к развитию высоковольтных сетей постоянного тока — вместо громоздких и ненадежных машин системы Тюри достаточно было установить выпрямители, в числе недостатков которых была только потенциальная токсичность при разгерметизации и необходимость в хорошем охлаждении из-за тепловых потерь. КПД устройства достигал 98-99%.

На смену ртутным выпрямителям были созданы газотроны и тиратроны (1940-е), полевые транзисторы с изолированным затвором MOSFET и полярные транзисторы с изолированным затвором IGBT (1959 год), запираемые тиристоры GTO (1962 год) — более совершенные, компактные и надежные преобразователи.

Современный тиристорный конвертер AC/DC. Источник Toshiba Energy Systems & Solutions Corporation

Когда каждый процент на счету

Несмотря на заметный прогресс в области выпрямления тока, оборудование для преобразования переменного тока в постоянный и обратно до сих пор стоит очень больших денег. Настолько больших, что строительство сетей переменного тока, даже с учетом повышенного расхода материала для проводов, выходит сильно дешевле. Вне зависимости от длины линии, стартовая цена высоковольтной магистрали постоянного тока обязательно включает стоимость двух преобразователей в начале и конце линии — габаритных и очень дорогих устройств, производимых всего несколькими компаниями в мире, в числе которых и Toshiba. На это оборудование приходится до половины стоимости сети.

Но по мере увеличения длины магистрали стоимость линии на переменном токе растет быстрее, чем на токе постоянном. Виной тому сложность магистрали HVAC — для передачи аналогичной мощности HVDC нужно вдвое меньше проводников меньшего диаметра, а значит, вдвое меньше опор, которые и сами стоят немало, и требуют крайне дорогостоящего монтажа. При длине линии около 600 км стоимость HVDC и HVAC равна, но на больших расстояниях, порядка 2000 км, HVDC выходит сильно дешевле, чем HVAC, примерно на 30-40%, а это сотни миллионов долларов экономии.

Стоимости HVDC и HVAC пересекаются на линии, длинной около 600 км. Далее HVDC становится заметно выгодней. Источник: wdwd / Wikimedia Commons

На каждые 1000 км линии потери в HVDC составляют 2-3%, а самое современное оборудование позволяет снизить этот параметр до 1%. Потери в HVAC могут достигать 6%. Даже в самых эффективных сетях переменного тока с самым лучшим оборудованием потери будут на 30-40% больше, чем в HVDC Несколько процентов от полной мощности — вроде бы терпимая ерунда? Когда речь идет о сетях, передающих несколько гигаватт, каждый процент превращается в десятки потраченных впустую мегаватт, которые можно было бы использовать для электроснабжения маленького города. Не говоря уже о потерянной прибыли.

Прошлое, настоящее и будущее HVDC

HVDC-ветка в между Данией и Швецией передает 350 МВт всего по двум проводникам. Всего два провода — это отличительная особенность воздушных линий постоянного тока, в линиях переменного тока проводников больше в два-три раза. Встречаются и монополярные HVDC с всего одним проводником (второй вывод из выпрямителя соединяют с землей), но их использование несет проблемы для подземных металлоконструкций, поэтому чаще применяется биполярная схема с двумя проводниками. Источник: Shuttertock

HVDC является оптимальным решением для связи сетей стран, разделенных морем. Так ветка между итальянским городом Чепагатти и муниципалитетом Котор в Черногории, которая экспортирует электроэнергию в Италию, пролегает по дну Адриатического моря — используй эта 400-километровая ветка переменный ток, емкостные потери в кабеле были бы слишком большими, и это бы удорожало стоимость электроэнергии для Италии. Кстати, в строительстве этой линии участвовала Toshiba: мы поставили преобразователи напряжения.

Но всё же больше всего Toshiba поучаствовала в строительстве HVDC-сетей в Японии, где исторически сложилась очень необычная ситуация: западная часть страны эксплуатирует ток с частотой 60 Гц, а восточная — 50 Гц. Эта коллизия, которую уже невозможно устранить, возникла еще в конце XIX века, когда Япония одновременно закупила генераторы в Европе и США с выходной частотой тока 50 Гц и 60 Гц соответственно. Результатом поспешного решения далекого прошлого стала вынужденная необходимость строить HVDC-ветки для соединения энергосистем разных частей страны.

HVDC-сети и вставки постоянного тока в Японии помогала строить Toshiba. Первой стала вставка для соединения внутри страны сетей на 50 Гц и 60 Гц, построенная в 1977 году при участии Toshiba. Ее мощность на момент постройки составила 600 МВт. К 2021 году Toshiba провела глубокую модернизацию вставки, увеличив ее мощность на 900 МВт и уменьшив число используемых тиристоров, что позволило немного сэкономить на оборудовании.

Элегазовые выключатели и трансформатор на линии 550 кВ, соединяющей восточную и западную энергосети Японии. Источник: Toshiba Energy Systems & Solutions Corporation

Первая высоковольтная линия постоянного тока, длиною 193 км, связала острова Хоккайдо и Хонсю в 1979 году. Сеть передает 300 МВт с напряжением 250 кВ. В 2000 году мы поставили тиристорные конверторы для мощнейшей подводной HVDC-линии между островами Сикоку и Хонсю — ветка передает 1400 МВт. На момент строительства линии в ней использовались самые крупные в мире тиристоры, которые в следующий раз применялись только 10 лет спустя при постройке китайской HVDC Lingbao 2.

Третья японская HVDC, построенная между островами Хоккайдо и Хонсю, была запущена совсем недавно — в 2019 году. Toshiba выступила главным поставщиком преобразователей на полярных транзисторах с изолированными затворами (IGBT).

На сегодняшний день в мире построено более 150 сетей HVDC и 50 вставок постоянного тока. Среди них есть как объекты, построенные в 1970-х годах прошлого века, так и совсем новые. Около 10 HVDC в Европе находятся в стадии строительства прямо сейчас с планируемым сроком запуска 2021-2025 годы. Строящиеся линии соединяют некоторые европейские страны с Великобританией (для выравнивания нагрузки на европейскую энергосеть), тянуть до которой подводный HVAC бессмысленно.

Однако интерес к HVDC-сетям в последние годы растет, и причина тому — «зеленая» энергетика. В отличие от угольных, газовых и атомных электростанций, возобновляемые источники энергии имеют очень четкую географию: в одних областях больше солнечных дней, в других чаще и стабильней дует ветер.

В Германии около 63 ГВт установленной мощности приходится на ветряные электростанции, 7,8 ГВт из которых — оффшорные станции, расположенные в Северном море в десятках километров от берега. Если нужно передать гигаватты мощности от «ветряков» по кабелям, лежащим под водой, лучшим выбором будет, как вы помните, сеть постоянного тока.

Вот так аккуратно выглядит конвертор для HVDC будущей оффшорной ветряной электростанции Dogger Bank на севере Великобритании. Агрегат будет полностью автономным, не требующим присутствия технического персонала. Источник: Aibel

В Австралии компания Sun Cable готовится приступить к постройке гигантской фотовольтаической (солнечной) электростанции, мощностью 14 ГВт. Причем электроэнергию с нее будут потреблять не в Австралии, а в Сингапуре, куда она будет поступать по подводной HVDC-сети.

Чем больше в мире будет появляться масштабных проектов, связанных с возобновляемыми источниками энергии, тем сильнее будут востребованы высоковольтные линии постоянного тока. Не стоит фантазировать о том, что однажды мечты Эдисона осуществятся и в наших розетках переменное напряжение сменится постоянным, — этого не будет, пожалуй, никогда. Тем лучше, что переменный и постоянный токи пришли к органичному сосуществованию и взаимовыручке в деле электроснабжения планеты.

Все, что нужно знать о генераторе строительной техники

При каких условиях генератор дорожно-строительной техники может выйти из строя?

Генератор дорожно-строительной техники может прийти в негодность по нескольким причинам:

1. При несвоевременном или неправильном проведении технического обслуживания, а также установке на машину нештатного электрооборудования (магнитолы, системы слежения/автоматизации вождения, дополнительного освещения). Помимо этого, несоблюдение требований производителя по степени натяжения приводного ремня генератора может стать причиной преждевременного выхода из строя опорных подшипников ротора.

2. При накоплении пыли и грязи на корпусе генератора и их попадание внутрь между статором и ротором способно спровоцировать короткое замыкание или механический износ изоляции обмоток, однако это случается крайне редко.

3. Из-за использования пуско-зарядного устройства в режиме «пуск». Это связано с тем, что очень часто, особенно в зимний период эксплуатации, возникает необходимость применения внешних источников питания во время запуска ДВС в связи с разрядкой аккумуляторных батарей. Иногда этот процесс также связан со спешкой.

В результате, вместо установки заряженных аккумуляторов или проведения цикла заряда разряженных батарей, используют пуско-зарядные устройства в режиме «пуск», что крайне нежелательно, ибо во время стартерной прокрутки сила тока в цепи стартера может достигать нескольких сотен ампер. Так как аккумуляторные батареи разряжены, то основным источником тока служит в этот момент пуско-зарядное устройство.

После запуска ДВС начинается процесс зарядки АКБ. Так как их емкость заметно ниже нормального значения, то в начальный период работы двигателя после запуска им требуются максимально возможные значения зарядного тока по напряжению и силе для восполнения утраченного заряда. Пуско-зарядное устройство, оставаясь в режиме «пуск» на работающем ДВС, следуя «потребностям» аккумуляторных батарей, продолжает подавать в сеть машины повышенные значения напряжения и силы тока, что может быть причиной выхода из строя регулятора напряжения, диодного моста генератора, а так же электронных блоков управления, широко применяемых в электросистеме современных дорожно-строительных машин и оборудования.

Автомобили переменного тока или постоянного тока?

Довольно увлекательно представить себе, как работают различные процессы, когда вы ведете свой автомобиль.

Помимо топлива, электричество является наиболее важным фактором при питании большинства транспортных средств. Большинство людей уже знают об этом, но, вероятно, принимают как должное, как работает весь процесс.

Возможно, вы понимаете основные принципы работы с переменным и постоянным током, но какой из этих двух токов питает ваш автомобиль?

Автомобильные аккумуляторы вырабатывают постоянный ток, который питает большинство процессов в автомобиле. Однако вашему автомобилю требуется постоянный поток переменного тока от генератора для пополнения заряда аккумулятора. Без переменного и постоянного тока ваш автомобиль не проработает долго.

Как работают автомобильные аккумуляторы?

Вы должны понимать, что в вашем автомобиле есть аккумулятор, который вырабатывает и распределяет постоянный ток по всем электрическим компонентам автомобиля.

Он также имеет генератор переменного тока, который генерирует переменный ток, который преобразует его в постоянный ток и сохраняет его в батарее для будущего использования.

Следовательно, автомобиль имеет оба тока, но использует постоянный ток.

История автомобильных аккумуляторов

Давным-давно в автомобилях с бензиновым двигателем внутреннего сгорания были магниты, которые действовали как примитивные генераторы переменного тока.

Они обслуживали простые электрические системы в автомобилях без аккумуляторов. Эта технология была идеей Ипполита Пиксии.

Генератор был бесполезен до тех пор, пока в конце 1950-х не появилась твердотельная электроника.

В этой технологии использовались кремниевые диодные выпрямители для преобразования переменного тока в постоянный, который можно было использовать в автомобилях.

Лидером по использованию генераторов в автомобилях в этот период была компания Chrysler.

Они уже были знакомы с использованием электронных регуляторов напряжения и выпрямителей из-за их исследовательской работы, спонсируемой Министерством обороны.

Первым автомобилем на рынке со стандартным генератором переменного тока был Plymouth Valiant 1960 года выпуска.

Более заметное отличие от других транспортных средств, благодаря генератору, было на низких оборотах, все еще оставался достаточный ток для зарядки аккумулятора.

Это было невозможно с генераторами постоянного тока.

Кроме того, генераторы были дешевле в производстве и работали дольше, чем генераторы постоянного тока.

Благодаря надежному, дешевому твердотельному выпрямителю, это изменило правила игры для автомобилей, выпускаемых с тех пор.

Прочтите, чтобы узнать, как работает электрическая система автомобиля.

Объяснение постоянного и переменного тока

Постоянный ток (DC) — это тип электроэнергии, вырабатываемой батареями и протекающей в одном направлении.

Генератор также вырабатывает постоянный ток, который использовался в большинстве автомобилей 1900-1960 годов.

Томас Эдисон использовал постоянный ток в первых изобретенных им электрических устройствах.

Переменный ток (DC) периодически меняет направление, обычно в розетках и других розетках.

Никола Тесла использовал переменный ток для питания своих изобретений.

Он предпочтителен для домов, зданий и городов, поскольку по нему легко передавать переменный ток на большие расстояния, сохраняя ту же мощность.

Большинство электронных устройств, используемых дома, включая автомобили, используют постоянный ток для внутренних целей.

Следовательно, он должен преобразовывать переменный ток из розетки в постоянный.

Вилки, соединяющие электронное устройство с розеткой, оснащены оборудованием, которое помогает с этим преобразованием, а также снижает количество тепла, выделяемого в процессе.

Нет батарей переменного тока, поэтому вы можете использовать преобразователь переменного тока с батареей постоянного тока.

Это позволяет вам лучше контролировать энергию, вырабатываемую батареей, но с возможностью хранить эту энергию в портативном устройстве.

Примером этого является электросеть, которая подает электроэнергию в ваш дом.

Машины работают от постоянного или переменного тока?

В автомобиле аккумулятор обеспечивает постоянный ток через автомобиль, но генератор переменного тока генерирует переменный ток.

Итак, вопрос в том, как работает автомобильный аккумулятор?

В большинстве автомобилей используется герметичный свинцово-кислотный аккумулятор, но есть и более новые модели автомобилей, в которых используются литий-ионные аккумуляторы.

Свинцово-кислотная батарея состоит из 6 ячеек, которые производят 12.6 Вольт, хотя их мощность будет отличаться в зависимости от размера и мощности автомобиля.

Например, небольшой автомобиль будет использовать батареи с диапазоном заряда 65–80 Ач, в то время как внедорожники будут использовать аккумуляторы 100–120 Ач.

Автомобильные аккумуляторы переменного или постоянного тока?

Электричество — это поток электронов от положительного конца к отрицательному в цепи.

Все сущее имеет электрический заряд, но в большинстве случаев его слишком мало, чтобы его можно было обнаружить.

Они сделали батареи для двигателей, которые используют химические процессы для производства электричества.

Большинство компонентов автомобиля работают от постоянного тока.

Следовательно, автомобильный аккумулятор будет использовать постоянный ток для питания этих электронных компонентов.

Однако аккумулятор не может хранить энергию бесконечно долго и в конечном итоге полностью разрядится, и все компоненты отключатся.

Это причина, по которой в транспортных средствах есть генераторы переменного тока, небольшой генератор, который преобразует механическую энергию во время движения автомобиля в электрическую.

Это, в свою очередь, будет преобразовано в химическую энергию, которая является единственным способом хранения энергии.

Каждый раз, когда возникает спор о том, используются ли автомобильные аккумуляторы переменного или постоянного тока, важно помнить, что электрические приборы и низковольтные системы питания будут использовать постоянный ток.

Производят ли автомобильные генераторы переменного или постоянного тока?

Для поддержания заряда батареи генератор переменного тока должен постоянно вырабатывать трехфазный переменный ток.

Этот переменный ток от генератора немедленно преобразуется в постоянный.

Первоначально в транспортных средствах использовались генераторы постоянного тока (динамо-машины) вместо генераторов переменного тока.

Со временем автомобили стали иметь более сложную конструкцию с большим количеством электронных компонентов. Это увеличило среднее энергопотребление, которое генераторы постоянного тока не смогли выдержать.

Генератор заменил генераторы постоянного тока из-за их эффективности при зарядке различных оборотов.

По сравнению с генераторами постоянного тока, генераторы увеличили возбуждение в своих обмотках возбуждения, чтобы производить больше мощности при низких оборотах.

Генератор вырабатывает переменный ток, который нельзя использовать в электронике.

Следовательно, он должен быть преобразован в постоянный ток, что осуществляется с помощью 4 диодов мостового выпрямителя.

Постоянный ток поступает в батарею, и батарея сохраняет его в виде химической энергии для использования в будущем.

Итог

Обычному человеку может быть сложно понять электрическую систему автомобиля.

Несмотря на всю сложность, электрическая система является сердцем и душой автомобиля.Если он неисправен, автомобиль вообще не будет работать.

Таким образом, все, что вам нужно знать, это то, что автомобильный аккумулятор работает от постоянного тока и его следует регулярно проверять и чистить.

Похожие сообщения

Вот почему в автомобилях используются генераторы переменного тока, когда они работают от постоянного тока

Вы когда-нибудь задумывались об электричестве, которое проходит через ваш автомобиль? Вы подозреваете, что в волшебном сосуде заключена молния? Конечно, нет.Вы не неандерталец. Вы знаете, что есть аккумулятор и генератор. Возможно, вы даже знаете, что ваша батарея вырабатывает постоянный ток, который используется в автомобиле, но ваш генератор вырабатывает переменный ток. Разве это не кажется странным? Это почему?

Это интересный вопрос, потому что он просто не имеет смысла. Если все в вашем автомобиле работает от 12 вольт постоянного тока, почему автопроизводители больше не используют генераторы, которые вырабатывают богатое сливочное электричество постоянного тока? Почему имеет смысл генерировать переменный ток, а затем преобразовывать его в постоянный ток?

Как вы, наверное, догадались, на то есть веская причина, и я попытаюсь рассказать ее вам сейчас.

Во-первых, давайте проясним, что мы подразумеваем под электричеством постоянного и переменного тока. В автомобилях используется постоянный ток, постоянный ток. Это электричество, производимое батареями, и оно течет в одном постоянном направлении. Это также тип электричества, производимого генератором, который использовался в автомобилях с начала 1900-х до 1960-х годов.

Другой вид тока — это переменный ток, поскольку он периодически меняет направление. Это вид электричества, доступ к которому осуществляется через любую стенную розетку, и мы используем его для питания домов, зданий, городов и так далее, потому что его легче передавать на большие расстояния. Большая часть электроники — в том числе почти все в вашем автомобиле — использует постоянный ток внутри и должна преобразовывать мощность от настенной розетки из переменного тока в постоянный. Вот почему так много электронных устройств имеют эти большие вилки, похожие на кирпичи: внутри есть оборудование для преобразования переменного тока в постоянный (и немного тепла).

G / O Media может получить комиссию

Итак, опять же, зачем приводить в движение двигатель автомобиля, который вырабатывает неправильную электроэнергию?

Ответ прост: генераторы просто лучше преобразуют вращательное движение в электричество.Однако так было не всегда. Что ж, очень ранние автомобили с двигателем внутреннего сгорания использовали магнето, которое было чем-то вроде грубых генераторов переменного тока для очень простых автомобильных электрических систем без батарей. Их разработал человек с самым лучшим именем Ипполит Пикси.

Вот настоящий секрет всего этого. Генераторы постоянного тока (также известные как динамо) на самом деле также вырабатывают переменный ток, поскольку якорь (вращающаяся часть) вращается внутри статора (внешнего «корпуса», имеющего постоянное магнитное поле). Чтобы превратить этот реверсивный ток в электричество постоянного тока, используется коммутатор. Коммутатор — это механическое устройство, которое использует сегментированный цилиндр на вращающихся битах и ​​некоторых щетках для электрического контакта.

Это работает, но здесь много механических деталей, а щетки иногда могут быть привередливыми. Тем не менее, это был лучший способ получить постоянный ток, необходимый для зарядки аккумулятора и работы автомобильных систем.

Генератор проще и легче, но он не выдает постоянного тока, который нужен автомобилю.Преобразование механически просто делает генератор, так в чем же смысл генератора переменного тока?

Что ж, не было смысла до конца 1950-х годов, когда появилось твердотельное электронное решение для преобразования переменного тока в постоянный с помощью кремниевых диодных выпрямителей.

Эти выпрямители (иногда называемые диодными мостами) намного лучше справлялись с преобразованием переменного тока в постоянный, что позволяло использовать более простые и надежные генераторы переменного тока в автомобилях. Первым автопроизводителем, который действительно разработал эту идею и представил ее на рынке, был Chrysler, у которого был опыт работы с выпрямителями и электронными регуляторами напряжения благодаря исследовательской работе, спонсируемой Министерством обороны.

Первым автомобилем, который стандартно поставлялся с генератором переменного тока, был, хотите верьте, хотите нет, Plymouth 1960 года (хотя сначала они хотели, чтобы Valiant была собственной маркой) Valiant. Некоторые из наиболее очевидных преимуществ генератора переменного тока заключались в том, что на низких оборотах холостого хода генератор все еще вырабатывал достаточный ток, чтобы поддерживать заряженную батарею, что не под силу большинству генераторов.

Генераторы дешевле в производстве, чем генераторы, они служат дольше и вырабатывают больше тока во всем диапазоне скоростей.Они настолько сильно улучшились, что преобразовать их переменный ток в постоянный нет ничего страшного — ну, по крайней мере, это не было большой проблемой с тех пор, как был разработан дешевый, надежный твердотельный чередующийся звук.

Итак, давайте просто резюмируем: все методы производства электричества путем вращения чего-либо внутри магнитного поля или вращения магнитного поля вокруг чего-либо, или что-то еще, приводят к переменному току, который необходимо превратить в постоянный ток для использования в автомобиле. Генератор обрабатывает это внутренне и механически с помощью коммутатора и щеток.Генератор проделывает тот же трюк с внешней электроникой.

Конечным результатом, тем не менее, является постоянный ток, а генератор с выпрямителем просто дешевле, надежнее и лучше превращает вращение в свет фар, музыку по радио, очистку дворников или что-то еще.

Видите? В конце концов, это имеет смысл!

Автомобильный аккумулятор переменного или постоянного тока? ❤️ Вот как узнать!

Транспортные средства состоят из ряда систем, которые работают вместе в гармонии.Каждый компонент важен для целого. Одна система особенно важна — электрические компоненты автомобиля. Когда дело доходит до электричества, легко запутаться, так как существует так много сокращений и запутанных понятий, как, например, аббревиатуры AC и DC, которые являются типами электричества. Возможно, вас не слишком заботят эти сокращения, но после того, как вы начнете испытывать электрические проблемы, связанные с аккумулятором вашего автомобиля, и начнете сталкиваться с терминами типа напряжения переменного и постоянного тока, вы, несомненно, начнете спрашивать, и общий вопрос, который задают, когда дело доходит до автомобилей это автомобильный аккумулятор переменного или постоянного тока?

Авторемонт стоит ДОРОГОЙ

Прежде чем мы ответим на вопрос, важно ознакомиться с тем, что на самом деле означает AC (переменный ток) и DC (постоянный ток).Чтобы лучше понять вещи, вы должны сначала понять концепции напряжения и тока. Напряжение означает, насколько быстро и резко электроны перемещаются по кабелю, а ток, с другой стороны, — это скорость потока электронов или количество частиц, перемещающихся по кабелю.

Переменный ток (AC) описывает поток электрического заряда, который время от времени меняет направление. Этот тип тока использовался в системе передачи энергии, изобретенной Никола Тесла. Постоянный ток (DC), с другой стороны, описывает электрический ток, который течет только в одном направлении.Томас Эдисон разработал первые системы передачи электроэнергии еще в 19 веке, и в этих системах передачи использовался постоянный ток.

.

Батареи переменного или постоянного тока?

Электричество просто относится к потоку электронов через цепь, в которой один конец положительный, а другой — отрицательный. Каждый объект имеет электрический заряд, но поскольку большинство из них настолько малы, их невозможно почувствовать или обнаружить. Поэтому для питания двигателей были разработаны батареи, представляющие собой химические элементы с высоким электрическим потенциалом.

Теперь вопрос в том, какие батарейки — переменный или постоянный ток? Обычно переменный ток используется для выработки электрического тока и подачи энергии в здания. Это логично, потому что транспортировка переменного тока на большие расстояния значительно проще и эффективнее по сравнению с постоянным током. Также проще преобразовать переменный ток в очень высокое напряжение. Почему при транспортировке электроэнергии на большие расстояния используются такие высокие напряжения? Ответ прост. Более высокие напряжения также означают более низкие токи, что также означает меньшие потери мощности.Но нет батарейки переменного тока.

Есть только некоторые батареи постоянного тока, в которых используются преобразователи для генерации переменного тока. Использование преобразователя переменного тока на батарее постоянного тока позволяет ему лучше контролировать источник энергии, и не только потому, что он также дает преимущество сохранения мощности в портативном аккумуляторном блоке.

Примером использования батарей постоянного тока с преобразователями переменного тока является электросеть, которая подает питание на электрические розетки в домах. Поскольку постоянный ток течет в одном направлении, он в основном используется в электронике.Этот однонаправленный поток используется для управления транзисторами, которые являются строительным блоком электроники. Разряжающиеся батареи излучают постоянный ток постоянного тока в одном направлении и подают электричество через положительный полюс на отрицательный.

Общее практическое правило гласит, что все, что работает от адаптера переменного тока, USB-кабеля или аккумулятора, полагается на постоянный ток, поскольку мы просто не можем хранить переменный ток в батареях. Как уже упоминалось, переменный ток периодически меняет направление, поэтому для сохранения переменного тока клемма батареи должна менять полярность с той же скоростью, что невозможно.Подключение источника переменного тока к батарее для сохранения переменного тока означает, что батарея заряжается только в положительном полупериоде, а затем разряжается в течение отрицательного полупериода. Это означает, что напряжение или средний ток в полном цикле будут равны нулю, что означает нулевую возможность хранить переменный ток в батарее.

Возвращаясь к исходному вопросу, автомобильный аккумулятор — это переменный или постоянный ток?

Автомобильный аккумулятор, как и любые другие аккумуляторы, работает от постоянного тока. Для нормальной работы большинства автомобильных компонентов требуется заряд постоянного тока.Ограничение состоит в том, что батареи в конечном итоге полностью разряжаются без оставшегося заряда. По этой причине в автомобилях также есть генераторы переменного тока, которые служат небольшими генераторами, способными преобразовывать механическую энергию в электрическую. И, если быть точным, нельзя хранить и постоянный ток, поскольку электричество в его истинном виде не может храниться в каких-либо значительных количествах. Таким образом, постоянный ток преобразуется в химическую энергию, которую можно хранить в автомобильном аккумуляторе.

Генератор в автомобиле переменного или постоянного тока?

Генератор вырабатывает трехфазный переменный ток, но выходной переменный ток, поступающий от генератора переменного тока, немедленно преобразуется в постоянный.Раньше автомобили использовали генераторы постоянного тока, а не генераторы переменного тока, чтобы обеспечить электроэнергию. Но пришло время, когда среднее энергопотребление автомобилей выросло по мере того, как они становились все более сложными и имели больше электроники. Таким образом, генераторы постоянного тока были в конечном итоге заменены столь необходимыми генераторами переменного тока, которые более эффективны при зарядке самых разных оборотов. Генераторы также обеспечивают высокую мощность при низких оборотах за счет увеличения возбуждения в обмотках возбуждения, чего нельзя сказать о генераторах постоянного тока.

Генератор выдает переменный ток (AC) и не часто используется в электронике, поэтому выход переменного тока генератора должен быть преобразован в пригодный для использования постоянный ток. Это сделано, поскольку генераторы оснащены мостовым выпрямителем, в котором используются 4 диода, преобразующие переменный ток в постоянный. Затем электрический ток преобразуется в постоянный ток, а затем отправляется на аккумулятор автомобиля для хранения. Электрическая система автомобиля — сложный предмет, который нелегко понять, но одно ясно и просто: все его батареи работают от постоянного тока.

Автомобильный аккумулятор на 12 В переменного или постоянного тока?

В большинстве автомобильных приложений также используется постоянный ток. Аккумулятор обеспечивает питание двигателя от запуска, освещения до системы зажигания. В большинстве шоссейных легковых автомобилей номинально используются системы на 12 В, в то время как в тяжелых грузовиках, таких как грузовики с сельскохозяйственной техникой или тягачи с дизельными двигателями, используются системы на 24 В. 6 В использовалось в некоторых старых автомобилях, и в какой-то момент также рассматривалась электрическая система на 42 В, но она оказалась малоэффективной.Металлический каркас автомобилей часто соединяется с одним полюсом батареи и используется в качестве обратного проводника в цепи для экономии веса и проводов. Отрицательный полюс часто является соединением заземления шасси, но положительный полюс также может использоваться в некоторых морских или колесных транспортных средствах.

Где используется постоянный ток?

DC чаще всего вырабатывается такими источниками питания, как батареи, термопары и солнечные элементы. Электропитание постоянного тока обычно используется в приложениях с низким напряжением, например, при зарядке аккумуляторов, в автомобилях и самолетах, а также в других приложениях с низким напряжением и током.

Что лучше: переменный или постоянный ток?

Чтобы лучше понять, какой из видов электричества лучше, лучше всего перечислить их плюсы и минусы. Давайте сначала обсудим тип электричества переменного тока. Во-первых, переменный ток эффективен при передаче энергии. Как обсуждалось ранее, высокое напряжение используется для стабильной подачи электроэнергии, что также означает, что через линию электропередачи проходит более низкий ток, что приводит к меньшим потерям мощности.

Во-вторых, переменный ток хорош тем, что он дает возможность производить электроэнергию. После его изобретения был также создан генератор переменного тока, что привело к изобретению гидроэлектрических генераторов переменного тока, которые используются до сих пор. И по сравнению с механическим генератором постоянного тока это проще. AC также не нуждается в коммутаторах и щетках, которые используются машинами постоянного тока для выработки электроэнергии, поэтому потребление энергии также является одним из его преимуществ. Первый асинхронный двигатель переменного тока был запатентован в конце 1800-х годов компанией Tesla и использовался вместе с переменным током. Это нововведение было внедрено на заводах в Соединенных Штатах.Этот вклад в инженерное дело до сих пор используется для питания бытовых приборов, таких как компрессоры, кондиционеры, электрические вентиляторы и мусороуборочные машины. Также предпочтительнее использовать, чем DC.

AC также обеспечивает лучшее освещение. В настоящее время становятся популярными более компактные люминесцентные лампы, работающие под высоким напряжением, по сравнению с лампами накаливания или лампами, разработанными Томасом Эдисоном, которые работают как на переменном, так и на постоянном токе. В более практичных люминесцентных лампах используются газы, такие как пары ртути и аргон, с высоким напряжением, что позволяет получать ультрафиолетовый спектр.

Переменный ток также более доступен, чем постоянный, и считается менее дорогим. Эти два факта о переменном токе делают его более практичным и предпочтительным, чем постоянный ток.

Другая сторона истории заключается в том, что кондиционер стоит дорого, если его использовать в автомобилях. Автомобили Tesla Model S предоставили своим потенциальным покупателям возможность преобразовывать переменный ток в постоянный во время зарядки. Они предлагают большую скорость зарядки, но ограниченную, не говоря уже о том, что автовладельцы должны платить за это дополнительно 1500 долларов.Другой недостаток переменного тока состоит в том, что, поскольку для подачи фиксированной мощности требуется высокое напряжение, также требуется усиленная изоляция. Это, в свою очередь, увеличивает сложность обращения. Работать с переменным током опаснее, чем с постоянным.

Также в игру вступают проблемы с генератором переменного тока. Переменный ток требует, чтобы электроны бегали вперед и назад для простого преобразования переменного тока в различные напряжения. Это вызывает увеличение и уменьшение магнитных полей, и для этого требуется большая мощность.Неправильный вид электроэнергии генерируется генераторами переменного тока, и именно поэтому при использовании в подводных кабелях. Некоторые пользователи предпочитают другие методы передачи постоянного тока, а не переменного тока, поскольку переменным током необходимо поднимать подстанции каждые 400 миль, что критики считают непрактичным.

Электропитание переменного тока также склонно к нагреванию и искрению, что может привести к возгоранию и поражению электрическим током, поскольку генераторы переменного тока должны вырабатывать большие токи. Генераторы переменного тока также менее долговечны, чем генератор постоянного тока, за исключением потерь мощности, которые теряются при запуске генератора переменного тока и срабатывают каждый раз, когда он трансформируется, и вплоть до окончательной передачи из переменного тока в постоянный. Передача по линиям в электронных устройствах может быть опасной, особенно когда пользователи мобильных телефонов склонны использовать зарядные устройства некачественного производства при использовании телефона. Нагрев неисправного зарядного устройства может привести к взрыву и более опасным ситуациям.

AC power также нуждается в инверторах для преобразования электричества от батарей в переменный ток при использовании в системах электроснабжения для дома. Это дополнительные расходы, которые могут стоить довольно дорого. Помимо этой проблемы, отходы также связаны с преобразованной энергией, которая, по оценкам, составляет от 5% до 15%.Большинство приборов, предназначенных для работы от переменного тока, являются расточительными с точки зрения энергопотребления.

Несмотря на недостатки, переменный ток (AC) по-прежнему широко используется в большинстве приложений, потому что его аналог постоянного тока (DC), несмотря на свои преимущества, также имеет некоторые недостатки, и у одного есть то, что не может предложить другой тип питания. В настоящее время переменный ток в основном используется для распределения электроэнергии, поскольку он имеет преимущества перед постоянным током, когда речь идет о передаче и преобразовании.Но факт остается фактом: у DC есть свои преимущества, когда речь идет о специальных приложениях. Каждый раз, когда передача энергии переменного тока не может быть практически использована на большие расстояния, мощность постоянного тока становится вариантом. Примером такого применения являются подводные высоковольтные линии передачи постоянного тока, в которых электричество, произведенное в форме переменного тока, преобразуется в постоянный ток на коммутационной / оконечной станции, а затем передается по подводной кабельной сети после повторного преобразования в переменный ток. на другой конечной станции, прежде чем добраться до клиентов.

Однако большим недостатком этих высоковольтных передач является более высокая стоимость коммутационных станций и строительства оконечных станций. Детали также требуют дорогостоящего обслуживания с ограниченной перегрузочной способностью. У переменного и постоянного тока есть свои собственные применения, и трудно выбрать, что лучше. Более безопасно сказать, что у них обоих есть свои собственные применения.

Заключение

Многое нужно узнать об электронике в вашей машине, но самое главное — не запутаться.Просто и понятно — все батареи постоянного тока, что не исключает автомобильных аккумуляторов. Также важно регулярно чистить и проверять эти автомобильные аккумуляторы.

Основы автомобильной электрической системы

Сегодняшние автомобили состоят из ряда систем, работающих вместе в гармонии. Было бы невозможно удалить одну из этих систем (например, топливную) и оставить машину, которая едет. Таким образом, хотя вы не всегда можете сказать, что электрическая система автомобиля является «самой важной», она все же достаточно близка, особенно когда технология движется в сторону гибридного и электрического будущего. Вот краткий обзор компонентов электрической системы и взгляд на то, как обычные автомобили с газовым двигателем используют электроэнергию.

Это Электрический

«Электричество» относится к потоку электронов через цепь, в которой один конец является положительным, а другой — отрицательным. На самом деле каждый объект имеет электрический заряд, но большинство из них настолько малы, что их невозможно обнаружить. Чтобы привести в действие нечто вроде двигателя, мы разработали искусственные химические элементы с высоким электрическим потенциалом: батареи.Аккумуляторы, в свою очередь, обеспечивают питание систем запуска, зарядки и безопасности, фонарей, АБС, компьютеров, датчиков, климат-контроля и бортовых аксессуаров. Вероятно, это первое, о чем вы думаете, когда слышите об электричестве в автомобильных приложениях, но батареи — далеко не единственные в работе системы.

AC / DC

Существует два типа электричества: переменный ток (AC) и постоянный ток (DC). Когда батареи разряжаются, они излучают постоянный ток постоянного тока в одном направлении, подавая электричество через положительный вывод на отрицательный.Большинство автомобильных компонентов требуют, чтобы этот заряд постоянного тока работал должным образом, но он ограничен, потому что аккумуляторы в конечном итоге полностью разряжаются, не давая оставшейся мощности.

Для решения этой проблемы в автомобилях также есть генераторы переменного тока. Генераторы на самом деле представляют собой небольшие генераторы, способные преобразовывать механическую энергию в электрическую. Приводимые ремнем двигателя, генераторы переменного тока используют небольшой сигнал от аккумуляторной батареи для возбуждения тока возбуждения, который вращает ротор внутри набора статоров. Поскольку эта энергия управляется полярностью магнитных полей, возникающий в результате ток меняет направление при вращении ротора, производя ток в противоположных или переменных направлениях (отсюда и переменный ток). Генераторы вырабатывают значительно более высокие токи, чем изначально подаются от батареи, поэтому они используются для подзарядки самой батареи и питания других электрических компонентов.

Правила

Однако для работы большинства компонентов требуется постоянный ток. Решением является набор диодов, которые служат своего рода электрическим обратным клапаном для тока, выходящего из генератора. Диоды позволяют току течь только в одном направлении, поэтому, когда переменный ток идет с одной стороны, только постоянный ток выходит с другой.

Другой серьезной проблемой в электрической системе автомобиля является то, что не все компоненты выдерживают одинаковую силу тока или силу тока. Следовательно, система должна включать регуляторы напряжения и предохранители для уменьшения расхода и защиты компонентов, которые не могут выдерживать силу тока, подаваемую генератором переменного тока. Предохранители защищают электрические цепи при установке перед нагрузкой (компонентом). Если скачок напряжения вызывает слишком большую силу тока, направляемую к фарам, предохранитель, рассчитанный на «перегорание» 15 ампер, сработает, не позволяя току продолжать нагревать саму фару.

Электрическая система — сложная, но важная часть того, что заставляет ваш автомобиль заводиться, работать, заряжаться и выполнять небольшие, но важные вещи, такие как запирание дверей. И хотя напряжение в автомобильных системах намного ниже, чем, скажем, в домашних условиях, все же важно заручиться руководством профессионала при диагностике или начале ремонта, поскольку многие компоненты чрезвычайно чувствительны и могут быть легко повреждены без надлежащей подготовки и знаний.

Ознакомьтесь со всеми продуктами для электрических систем , доступными на NAPA Online, или доверьтесь одному из наших 17 000 пунктов обслуживания NAPA AutoCare для текущего обслуживания и ремонта.Чтобы получить дополнительную информацию об электрической системе автомобиля, поговорите со знающим экспертом в местном магазине NAPA AUTO PARTS.

Фотография любезно предоставлена ​​Блэром Лампе.

Автомобильный аккумулятор — источник питания постоянного или переменного тока?

Поскольку автомобильные, морские и промышленные батареи обычно используются для питания нагрузок как переменного, так и постоянного тока, многие люди действительно задаются вопросом, является ли простой автомобильный или морской аккумулятор источником питания переменного или постоянного тока?

На этот раз ответ очень прост.

AC vs.DC

Аббревиатуры AC и DC обозначают:

— переменный ток: переменный ток

— DC: постоянный ток

Наиболее распространенными напряжениями постоянного тока являются 5 В (USB) и 12 В (батареи), а наиболее распространенными напряжениями переменного тока являются 120 и 230 В.

Основное различие между ними заключается в том, что переменный ток (AC) меняет свое направление 50 или 60 раз в секунду (питание от сети), в то время как постоянный ток не меняет своего направления.

Автомобильные аккумуляторы имеют как положительную клемму («+»), так и отрицательную клемму («-»), что означает, что батареи являются источниками постоянного тока (DC). — да, это так просто.

Поскольку большинство автомобильных или лодочных электрических систем представляют собой электрические системы на 12 В, силовые инверторы преобразуют электричество 12 В в 5 В (USB) и 120 вольт (или 230 вольт) благодаря современной электронике, основанной на высокоскоростных преобразователях переменного / постоянного тока, которые обладают высокой эффективностью. не менее 80-90%.

Большинство силовых инверторов мощностью 500–1000 Вт используют входное напряжение 12 В, хотя есть даже более мощные устройства, которые принимают напряжение 12 В — для уменьшения потерь энергии в проводах из-за высоких токов, более высоких напряжений (24 В, 36 В, 48 В, иногда даже больше), требуя последовательного подключения нескольких батарей.


Long Story Short: Часто самые сложные вопросы имеют очень простые ответы.

В этом случае автомобильные аккумуляторы являются постоянным током, и они могут питать нагрузки переменного тока благодаря силовым инверторам с, предпочтительно, чисто синусоидальным выходным напряжением 120 В.

При определении размеров аккумуляторной батареи для вашего силового инвертора обязательно учитывайте ваши собственные потребности и требования, а также примите во внимание рекомендации производителя инвертора.

Автомобильный аккумулятор переменного или постоянного тока? Пошаговое руководство

Все мы хорошо осведомлены о том факте, что каждое механическое и электрическое устройство работает на электричестве, которое подается от определенного источника; обычно мы называем это аккумулятором.При этом автомобилю, который работает на нескольких видах топлива, включая бензин, СПГ, дизельное топливо и т. Д., Также требуется аккумулятор для различных целей.

Теперь вы, должно быть, задаетесь вопросом, для чего нужен автомобильный аккумулятор, когда он работает на топливе. Основное назначение автомобильного аккумулятора — запуск двигателя. После зажигания автомобиля вращение двигателя приводит в действие генератор переменного тока, заставляя электрический ток поступать в аккумулятор, где он сохраняется в виде химической энергии.

Автомобильный аккумулятор не только запускает двигатель, но и выполняет различные задачи, в том числе включает свет; как внутри, так и снаружи автомобиля, ходовые вуферы, GPS-навигация, DVD и фары.Получается, что аккумулятор — очень важная деталь любого автомобиля.

В этой конкретной статье мы встретимся с утверждением, что автомобильный аккумулятор переменного или постоянного тока. Есть два типа батарей, которые используются для разных электрических целей в зависимости от требований.

Итак, сначала давайте посмотрим, в чем разница между ними.

Аккумулятор переменного тока:

Существуют источники электричества, вырабатывающие переменные по своей природе напряжения и токи, то есть они могут циклически менять направление. Вы, должно быть, узнали о генерации электричества генератором либо как полярность переключения напряжения, либо как направление переключения тока, назад и вперед. Этот вид электричества называется переменным током или AC.

Переменный ток имеет преимущество перед постоянным током, поскольку напряжение переменного тока может быть легко преобразовано в более высокий или более низкий уровень напряжения после выполнения определенных действий, но этого трудно достичь с помощью постоянного тока. По этой причине в большинстве домов, зданий и офисов в качестве источника электроэнергии используется переменный ток.

Батарея постоянного тока:

Постоянный или постоянный ток — это электричество, протекающее в постоянном направлении или обладающее напряжением постоянной полярности, отрицательной или положительной. Постоянный ток — это вид электричества, производимого батареей, с помощью которого ток проходит от положительной клеммы к отрицательной.

Фактом, который делает ранг постоянного тока более высоким, чем переменного тока, является накопление тока. Постоянный ток легко хранить, особенно в небольших объемах. Иногда вам нужно хранить электричество для дальнейшего использования, поэтому постоянный ток в этом отношении лучше.

Теперь, чтобы ответить на вопрос, является ли автомобильный аккумулятор переменным или постоянным током, вот ответ на него.

Какой автомобильный аккумулятор?

К настоящему времени вы полностью осознаете разницу между батареями переменного и постоянного тока, так что теперь давайте перейдем к собственно обсуждению того, является ли автомобильный аккумулятор переменным или постоянным током. Итак, в автомобилях мы используем аккумулятор постоянного тока, потому что ток в аккумуляторе постоянного тока течет в одном направлении, что вполне подходит для автомехаников.

Вот почему в автомобиле используется аккумулятор постоянного тока.В автомобильном аккумуляторе процесс протекает с химической реакцией. Эти батареи используют свинцово-кислотные. Для электродов используют свинец, а для электролитов — серную кислоту и дистиллированную воду.

Видите ли, в батарее есть две пластины, которые погружены в электролит. Электролит в свою очередь инициирует реакцию между двумя пластинами. В результате этого происходит химическая реакция с образованием электронов. Эти электроны перемещаются между двумя пластинами и в результате производят электричество.

Как вы уже знаете, переменный ток меняет свое направление несколько раз в секунду, что называется частотой, поэтому он не может работать в автомобильных батареях, поскольку нет возможности инвертировать электроды. В таком случае действителен только постоянный ток, и он работает лучше всего.

Автомобильные аккумуляторы заряжаются генератором переменного тока во время работы. Бывает, что оставляешь фары включенными на всю ночь, а утром приходится нести разряженный аккумулятор.Таким образом, это указывает на то, что автомобильный аккумулятор не может работать дольше без зарядки. Он заряжается бок о бок во время бега.

На этой ноте я хотел бы завершить свое обсуждение, сказав, что

Оформить заказ Полные обзоры о погодных батареях

Часто задаваемые вопросы :

1. Автомобильный аккумулятор на 12 В переменного или постоянного тока?

Автомобильные аккумуляторы состоят из шести ячеек, каждая из которых вырабатывает 2,1 В постоянного тока. Суммарный ток, производимый батареями, равен 12.Постоянный ток 6 В, который затем подается в различные части автомобиля, в котором они будут работать.

2. Сколько вольт нужно автомобильному аккумулятору для запуска?

Автомобильному аккумулятору для запуска требуется 12,6 В. Это означает, что он должен быть полностью заряжен при запуске. Автомобильный аккумулятор заряжается во время работы, и в это время его напряжение составляет 13 В или 14 В, но когда вы его выключаете, оно возвращается к 12,6 В, то есть полностью заряженному аккумулятору.

3. Сколько ампер в 12-вольтовом автомобильном аккумуляторе?

Емкость полностью заряженного аккумулятора составляет 48 Ач, что означает, что полностью заряженный аккумулятор может обеспечить один ампер в течение 48 часов и два ампера в течение 24 часов.

4. Какое напряжение слишком низкое для автомобильного аккумулятора?

Автомобильный аккумулятор работает от 12,6 В, но напряжение ниже 12,2 В считается очень низким напряжением для правильной работы. Это не только мешает нормальной работе автомобиля, но и сокращает срок службы аккумулятора.

5. Может ли DC убить вас?

Постоянный ток может вызвать сотрясение, но сила тока должна быть сравнительно большей, чтобы почувствовать сотрясение, чем переменный ток.Если ток, который проходит по нашему телу, превышает 25-35 мА, это может быть опасно для вас.

Подводя итоги:

В заключение всего обсуждения можно сказать, что автомобильный аккумулятор питает постоянный ток по нескольким причинам, указанным выше. Здесь важно отметить, что ток, используемый в различных устройствах, зависит от требований и использования этих устройств; Как и в случае с автомобильным аккумулятором, химическая реакция инициирует производство электричества, при этом переменный ток не может быть произведен, потому что он меняет полярность.

Теперь я надеюсь, что вы получили ответ на свой вопрос, является ли автомобильный аккумулятор переменным или постоянным током.

Прочтите наше недавнее руководство для покупателей и блог:

Автомобильный аккумулятор переменного или постоянного тока? Узнайте, как это работает и преимущества

Автор Цукаса Азума

Последнее обновление 4 февраля 2021 г.

0 комментариев

Электронная схема может работать как от переменного, так и от постоянного тока. Итак, автолюбителям может быть интересно узнать , является ли автомобильный аккумулятор AC или DC .Давайте выясним, что означают переменный и постоянный ток, как работает автомобильный аккумулятор, и о преимуществах устройств постоянного тока?

Автомобильный аккумулятор переменного или постоянного тока?

Фактически автомобильный аккумулятор или любой другой аккумулятор вырабатывает постоянное напряжение. Это требует дополнительных цепей, если вы хотите сделать его переменным током. Например, аккумулятор постоянного тока может производить переменный ток, если он соединен с преобразователем переменного тока.

Автомобильный аккумулятор всегда вырабатывает постоянное напряжение. (Источник фото: drive2)

Что такое переменный и постоянный ток?

DC (постоянный ток) — это поток электронов в одном направлении.Томас Эдисон использовал постоянный ток для первых изобретенных им систем передачи электроэнергии. Батареи, использующие постоянный ток, питают небольшие электронные приборы и гаджеты, такие как ноутбук, радио, микроволновая печь и другие.

Альтернативно, переменный ток (переменный ток) — это поток электронов, при котором они непрерывно меняют направление. Ток использовался в системе передачи энергии, изобретенной Никола Тесла.

Фактически нет батарей переменного тока. Есть некоторые батареи постоянного тока, которые используют преобразователи для генерации переменного тока. Переменный ток течет в двух направлениях и может переносить электроны на большие расстояния без потери энергии. Использование преобразователя переменного тока на батарее постоянного тока позволяет лучше контролировать источник энергии с дополнительными преимуществами резервирования энергии в портативном батарейном блоке. Электросеть, которая подает питание на электрические розетки в вашем доме, — одно из мест, где можно использовать батареи постоянного тока с преобразователями переменного тока.

УЗНАТЬ БОЛЬШЕ

Как работает автомобильный аккумулятор?

Вы уже знаете ответ на вопрос, какой у вас автомобильный аккумулятор переменного тока или постоянного тока .Но как работает эта батарея C?

Герметичные свинцово-кислотные аккумуляторные батареи используются в большинстве автомобилей, в то время как некоторые современные автомобили могут иметь литий-ионные аккумуляторы. Эти свинцово-кислотные батареи состоят из 6 ячеек и выдают 12 вольт (точнее, 12,6 В). Их вместимость варьируется в зависимости от размера и потребляемой мощности автомобилей. Например, в небольших транспортных средствах используются батареи от 65 до 80 Ач, а во внедорожниках — от 100 до 120 Ач.

В споре о том, ли автомобильный аккумулятор переменного тока или постоянного тока, всегда помните, что постоянный ток преобладает в низковольтных энергосистемах и электронных приборах.

Полная разрядка аккумулятора приведет к его выходу из строя. (Источник фото: thedrive)

>> Покупайте подержанный автомобиль у надежных японских продавцов здесь <<

Генератор постоянно подзаряжает аккумулятор во время движения автомобиля. Ремень приводит в движение генератор переменного тока, включая несколько вспомогательных устройств, включая два шкива — один на генераторе, а другой на двигателе.

Автомобильные аккумуляторы могут генерировать большой ток постоянного тока на короткое время. С годами они теряют свою эффективность. Но полная разрядка может их испортить. Можно просто убить аккумулятор, полностью разрядив его.

Преимущества батарей постоянного тока

Во всех транспортных средствах используются аккумуляторные батареи постоянного тока, включая электромобили, которые являются отличным изобретением для снижения потенциальной экологической катастрофы за счет снижения выбросов углерода.

Батареи

постоянного тока могут передавать больше энергии с меньшими электрическими потерями на большие расстояния. Это означает, что они обеспечивают более высокий КПД при более низкой стоимости.

Однако они изнашиваются в течение определенного периода времени — это нормально. Заменять аккумулятор один или два раза в течение всего срока службы автомобиля — это нормально. Если вы не хотите менять его больше, выберите один из лучших автомобильных аккумуляторов от известного бренда.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *