Виды конденсаторов и их применение сообщение. Использование конденсаторов. Виды и применение конденсаторов


Виды конденсаторов, их применение

Подобные элементы представляют собой детали, в состав которых входят два проводника с диэлектрическим слоем. В зависимости от параметров данных компонентов, проявляются различия в особенностях отдельных моделей. В этом обзоре мы рассмотрим виды конденсаторов и специфику применения каждого из них.

Что представляет собой конденсатор?

Состоящая из пары электродов часть цепи, предназначенная для аккумулирования и передачи тока другим типам устройств, называется конденсатором. Особенности конструкции заключаются в наличии обкладок с противоположными зарядами. Нормальное функционирование обеспечивается размещением между такими пластинами специального диэлектрика. Таким способом устраняется вероятность соприкосновения подобных элементов между собой.

Данные компоненты отлично справляются с функциями транспортировки сигналов и электроэнергии, выполнения их измерение, а также передачу.

Особенности применения конденсатора

У новичков часто возникает недопонимание, как правильно использовать конденсатор. Иногда появляется ложное мнение, что его вполне можно применить в качестве замены вместо блока питания или батареи.

Подобные элементы входят в состав модулей в схемах со статичными значениями, а также в сочетании с резисторами и транзисторами представляют собой вид платы в различных приборах.

Приоритетными остаются такие моменты:

  1. Выравнивание больших перепадов напряжения в устройствах переменного тока.
  2. Фильтрация возникающих НЧ и ВЧ помех.
  3. Оптимальное выравнивание пульсаций рабочего напряжения.

В зависимости от задач, которые необходимо выполнить, классифицируются функции и назначение конденсатора:

  • конструкции общего назначения, в которых имеются исключительно низковольтные составляющие. Они размещены на компактных платах – бытовые чайники, радио- и телевизионная техника;
  • способные формировать и подавать на панели приемки приборов импульсные модели;
  • высоковольтные образцы для цепей с постоянным током, поддерживающие системы технического и производственного назначения;
  • применяемые для установки в блоках управления и пультах пусковые модификации;
  • в оборудовании для военно-промышленного комплекса, телевизионной и спутниковой отрасли применяются помехоподавляющие элементы.

Входящие в состав платы детали различаются по такому параметру, как характеристика изменения емкости.

Способные оптимизировать на протяжении всего обозначенного эксплуатационного периода стабильные показатели емкости постоянные конденсаторы. Подходят для всех разновидностей устройств.

Применяемы для выполнения задач по изменению температурного режима, а также дополняющие работу варикапа и реостата переменные образцы.

Гибкие по своим возможностям переменные модели, используемые для увеличения пропускной способности систем.

Виды конденсаторов и их применение

Рассмотрим популярные и чаще всего применяемые образцы.

Металлобумажные и бумажные конденсаторы

В этом случае применяются фольгированные прокладки. Область применения – как высоковольтные цепи, так и приборы, работающие на низких частотах.

В них традиционную фольгу заменяет технология нанесения на диэлектрик порошка.

Металлический корпус используется по причине отсутствия необходимой металлической прочности.

Электролитические конденсаторы

В данном случае функции диэлектрика выполняет относительно тонкий слой металлического оксида. Он создается на обложке с положительными параметрами электрохимическим способом.

В виде сухого или жидкого электролита выполнена вторая обложка. Материалом создания электрода выбирается чаще всего тантал или алюминий. Профессионалы под термином «электролит» подразумевают конденсатор из алюминия с жидким электролитом.

Следует опасаться ситуаций с инверсией полярности. В подобных случаях происходит необратимая химическая реакция, которая заканчивается разрушением элемента, а выделяемый во внутренней части при этом газ может послужить причиной взрыва.

Танталовые конденсаторы

Сам электрод выполнен из металла, а Ta2O5 (пентаоксид тантала) образует диэлектрический слой. Особенности подобных элементов:

  • идеальные показатели компактности;
  • невосприимчивость к внешнему воздействию;
  • минимальные токи утечки в сравнении с аналогами.

Алюминиевые конденсаторы

Металл выполняет функции положительного электрода. Необходимо отметить такие свойства – большие показатели емкости и способность корректной работы только при малых частотах.

Обладает наиболее хорошим соотношением номинальной емкости к размерам, оптимальной индуктивностью, низкими характеристиками сопротивления и высокими показателями токов утечки.

Полимерные конденсаторы

Твердотельные модификации отличаются от аналогов наличием полимерных диэлектриков вместо привычной оксидной пленки. Таким способом устраняется опасность утечки тока и раздувания корпуса.

Следствие физических характеристик полимерных материалов – минимальный эквивалент сопротивления, стабильность в условиях холода и большое значение импульсного тока.

Во многих схемах именно таким элементам отдается предпочтение перед металлическими аналогами.

Пленочные конденсаторы

Используются пластиковые пленки – поликарбонатные МКС и КС, полипропиленовые MFP, MKP, и KP, а также полиэстер.

Главные особенности:

  • очень устойчивы на растяжение;
  • стабильная работа только при токах с большими параметрами;
  • незначительные параметры емкости;
  • мизерная утечка;
  • популярные варианты применения – RS-снабберы.

Керамические конденсаторы

Из оригинальных компонентов изготавливаются пластинчатые детали, обладающими целым рядом уникальных свойств.

В первую очередь следует отметить огромный спектр проницаемости. Такая особенность способствует созданию компактных образцов, обладающих достаточно высокой емкостью. В сравнении с аналогами допускается работа с любой поляризацией и небольшими утечками.

 

jelektro.ru

Виды конденсаторов и их применение сообщение. Использование конденсаторов

Применение конденсаторов в технике довольно обширно. Практически в каждой электрической или электронной схеме содержатся эти радиоэлементы. Трудно представить блок питания, в котором бы не было конденсаторов. Они наряду с резисторами и транзисторами являются основой радиотехники.

А что же такое конденсатор? Это простейший элемент, с двумя металлическими обкладками, разделенными диэлектрическим веществом. Принцип работы этих приборов основан на способности сохранения электрического заряда, т. е. заряжаться, а в нужный момент разряжаться.

В современной электронике применение конденсаторов весьма широкое и разностороннее. Разберем, в каких сферах техники, и с какой целью используются эти приборы:

  1. В телевизионной и радиотехнической аппаратуре - для реализации колебательных контуров, а также их блокировки и настройки. Также их используют для разделения цепей различной частоты, в выпрямительных фильтрах и т. д.
  2. В радиолокационных приборах - с целью формирования импульсов большой мощности.
  3. В телеграфии и телефонии - для разделения цепей постоянного и различной частоты, симметрирования кабелей, искрогашения контактов и прочее.
  4. В телемеханике и автоматике - с целью реализации принципа, разделения цепей пульсирующего и постоянного токов, искрогашения контактов, в тиратронных импульсных генераторах и т. д.
  5. В сфере счетных устройств - в специальных запоминающих устройствах.
  6. В электроизмерительной аппаратуре - для получения образцов емкости, создания переменных емкостей (лабораторные переменные емкостные приборы, магазины емкости), создания измерительных устройств на емкостной основе и т. д.
  7. В лазерных устройствах - для формирования мощных импульсов.

Применение конденсаторов в современном электроэнергетическом комплексе также довольно разнообразно:

  • для повышения коэффициента мощности, а также для промышленных установок;
  • для создания продольной компенсационной емкости дальних а также для регулировки напряжения распределительных сетей;
  • для отбора емкостной энергии от высоковольтных линий передач и для подключения к ним специальной защитной аппаратуры и приборов связи;
  • для защиты от перенапряжения сети;
  • для применения в мощных тока, в схемах импульсного напряжения;
  • для разрядной электрической сварки;
  • для запуска конденсаторных электродвигателей и для создания требуемого сдвига фаз дополнительных обмоток двигателей;
  • в осветительных приборах на основе люминесцентных ламп;
  • для гашения радиопомех, которые создаются электрическим оборудованием и электротранспортом.

Применение конденсаторов в неэлектротехнических областях промышленности и техники также весьма широко. Так, в сфере металлопромышленности эти компоненты обеспечивают бесперебойную работу высокочастотных установок для плавки и термообработки металлов. Применение конденсаторов в угольной и металлорудной добывающей промышленности позволило построить транспорт на конденсаторных электровозах. А в электровзрывных устройствах используется электрогидравлический эффект.

Подведя итог, скажем, что конденсаторов настолько широка, что она охватывает все сферы нашей жизни, нет такого направления, где бы ни использовались эти приборы.

В электротехнике и радиоэлектронике широкое распространение получили различные виды конденсаторов. Каждый из них представляет собой устройство с двумя полюсами, имеющее определенное или переменное значение емкости и очень малую проводимость. Самый простой вариант конденсатора включает в себя два электрода в виде пластин или обкладок, где накапливаются разряды с противоположным значением. Чтобы избежать замыкания, они разделяются между собой тонкими .

Стандартный выпускаемый конденсатор состоит из электродов в виде многослойного рулона лент, разделяемых диэлектриком. Конфигурация конденсатора, чаще всего, представляет собой параллелепипед или цилиндр.

Как работает конденсатор

В сравнении с обычной батареей, конденсатор имеет существенные отличия. У него совершенно другая максимальная емкость, а также скорость зарядки и разрядки.

При подключении к источнику питания в самом начале ток зарядки будет иметь максимальное значение. Однако, по мере того, как заряд накапливается, наблюдается постепенное уменьшение тока, который полностью пропадает при полном заряде. Напряжение во время зарядки, наоборот, увеличивается и по окончании процесса становится равным напряжению в источнике питания.

Обозначение конденсаторов на схеме.

В случае подключения нагрузки при отключенном источнике питания, конденсатор сам становится источником тока. В этот момент, между пластинами происходит образование цепи. Через нагрузку происходит движение отрицательно заряженных электронов к ионам, обладающим положительным зарядом. В данном случае, вступает в силу закон притяжения разноименных зарядов. При прохождении тока через нагрузку происходит постепенная потеря заряда и, в конечном итоге, разрядка конденсатора. Одновременно, снижается напряжение и ток. Процесс разрядки считается завершенным, когда напряжение на электродах будет равным нулю.

Время зарядки полностью зависит от величины , а время его разрядки находится в зависимости от величины подключаемой нагрузки.

Применение конденсаторов

Конденсаторы, так же как транзисторы и , нашли широкое применение для электронных и радиотехнических схем. В электрических цепях они играют роль емкостного сопротивления. Благодаря способности к быстрой разрядке и созданию импульсов, они применяются в конструкциях фотовспышек, лазерах и ускорителях электромагнитного типа.

Очень эффективны конденсаторы при переключении электродвигателя с 380 на 220 вольт. Во время переключения к третьему выводу, происходит сдвиг фазы на 90 гра

pjbuild.ru

Разновидности конденсаторов и их применение. Виды конденсаторов

Электролитический конденсатор – это конденсатор, где диэлектриком служит слой оксида металла на аноде, а катодом – электролит. В результате достигается очень большая ёмкость при сравнительно высоком рабочем напряжении. Что и обусловливает высокую популярность этого рода изделий.

История происхождения электролитических конденсаторов

Эффект электрохимического оксидирования некоторых металлов был открыт французским учёным Eugène Adrien Ducretet в 1875 году на примере тантала, ниобия, цинка, марганца, титана, кадмия, сурьмы, висмута, алюминия и некоторых других материалов. Суть сводилась к тому, что при включении в качестве анода (положительный полюс источника питания) на поверхности нарастал слой оксида, обладающий вентильными свойствами. Фактически образуется некое подобие диода Шоттки, и в некоторых работах оксиду алюминия приписывается проводимость n-типа.

Это означает, что место контакта обладает выпрямляющими свойствами. Теперь можно легко предположить дальнейшее, если вспомнить о качествах барьера Шоттки. Это прежде всего низкое падение напряжения при включении в прямом направлении. Но что значит низкое? Применительно к конденсаторам это будет значительная величина. Что касается обратного включения электролитических конденсаторов, то многие наслышаны про опасность таких экспериментов. Дело в том, что барьер Шоттки имеет высокие токи утечки, за счёт которых слой оксида начинает немедленно деградировать. Но в данном случае немалая роль отведена ещё и туннельному пробою. Протекающая химическая реакция сопровождается выделением газов, за счёт чего и происходит негативный эффект. Теоретики говорят, что указанное явление также ведёт к выделению тепла.

Годом изобретения электролитического конденсатора называют 1896, когда 14 января Карол Поллак подал в патентное бюро Франкфурта свою заявку. Итак, на аноде электролитического конденсатора наращивается слой оксида под действием положительного потенциала. Этот процесс называется формовкой и в условиях современного развития техники длится часами и даже сутками. По этой же причине в процессе работы рост или деградация оксидного слоя незаметны. Электролитические конденсаторы применяются в электрических цепях с частотой до 30 кГц, что означает время смены направления тока в десятки мкс. За этот промежуток ничего не произойдёт с оксидной плёнкой.

Какое-то время в отечественной практике промышленный выпуск электролитических конденсаторов не был экономически выгодным. Вплоть до того, что в научных журналах рассматривалось, как именно можно наладить процесс производства. К подобным заметкам относится статья Миткевича (Журнал Русского физико-химического общества, физика №34 за 1902 год). Рассматриваемый электролитический конденсатор состоял из плоского алюминиевого анода и двух железных катодов, расположенных по бокам. Конструкция помещалась в 6-8% раствор пищевой соды. Формовка велась постоянным напряжением (см. ниже по тексту) 100 В до остаточного тока 100 мА.

Первые серьёзные наработки отечественной принадлежности по конденсаторам с жидким электролитом относятся к 1931 году и созданы лабораторией П. А. Остроумова.

Способность вентильных металлов с оксидной плёнкой выпрямлять ток неодинакова. Наиболее ярко эти качества выражены у тантала. По-видимому, силу того, что пентаоксид тантала обладает проводимостью p-типа. В результате чего смена полярности приводит к образованию диода Шоттки, включённого в прямом направлении. Благодаря специфическому подбору электролита деградирующий рабочий слой диэлектрика удаётся восстанавливать. Прямо в процессе работы. На этом исторический экскурс можно завершить.

Производство электролитических конденсаторов

Металлы, оксиды которых обладают выпрямляющими свойствами, называли вентильными по аналогии с полупроводниковыми диодами. Не сложно догадаться, что окисление должно приводить к образованию материала с проводимостью n-типа. Это и является основным условием существования вентильного металла. Из всех перечисленных выше ярко выраженными позитивными свойствами обладают лишь два:

  1. Алюминий.
  2. Тантал.

Первый применяется во много раз чаще, благодаря относительной дешевизне и распространённости в Земной коре. Тантал используют только в крайних случаях. Наращивание оксидной плёнки может происходить несколькими путями:

  • Одной из методик является поддержание постоянного тока. В процессе роста толщины окисла его сопротивление растёт. Следовательно, в цепь последовательно с конденсатором на время формовки следует включить реостат. Процесс контролируется по падению напряжения на переходе Шоттки и при необходимости шунт подстраивается так, чтобы параметры оставались постоянными. Скорость формовки при этом на начальном этапе постоянна, затем следует точка перегиба со снижением параметра, и через определённый интервал дальнейший рост оксидной плёнки идёт столь медленно, что технологический цикл можно считать на этом завершённым. При первом перегибе анод часто начинает искрить. Соответственно, и напряжение, при котором это происходит, называют тем же образом. На второй точке искрение резко усиливается, и дальнейший процесс формовки нецелесообразен. А второй перегиб называют максимальным напряжением.
  • Вторая методика формовки оксидного слоя сводится к поддержанию на аноде постоянного напряжения. В этом случае ток будет убывать с течением времени по экспоненте. Напряжение обычно выбирают ниже напряжения искрения. Процесс идёт до некоторого остаточного прямого тока, ниже которого уровень уже не опускается. На этом процесс формовки оканчивается.

Большую роль в процессе формовки играет правильный подбор электролита. В промышленности это сводится к изучению взаимодействия агрессивных сред с алюминием:

Для тантала и ниобия все электролиты подпадают под классификацию первой группы. Величина ёмкости конденсатора определяется преимущественно напряжением, при котором окончена формовка. Аналогичным образом используют многоатомные спирты, в том числе глицерин и этиленгликоль, и многие соли. Не все процессы идут строго по схеме, описанной выше. Так например, при формовке алюминия в растворе серной кислоты по методу постоянного тока, на графике выделяют следующие участки:

  1. Несколько секунд наблюдается достаточно быстрый рост напряжения.
  2. Затем с той же скоростью наблюдается спад до уровня порядка 70% от достигнутого пика.
  3. За третью стадию нарастает толстый пористый с

220vguru.ru

Виды конденсаторов: достоинства и недостатки

Конденсатор является электронным прибором, который позволяет накапливать и затем отдавать электрический разряд. Основной характеристикой элемента является его емкость, определяющая зависимость заряда от напряжения.

Классификация конденсаторов

Различные технологии выпуска устройств позволяют производить разные виды приборов. К воздушным конденсаторам относят изделия, в которых диэлектриком является воздух. Достоинствами данного типа приспособлений являются простота изготовления. Они предназначаются для механического регулирования емкости и рассчитаны на механические постоянные воздействия. К недостаткам данного вида устройств относят нестабильность, слабую надежность, зависимость от влажности и температуры среды, большие габариты, относительно низкую электрическую прочность, которая ограничивается пробоем между платинами воздуха, а также невысокую емкость.

Существуют бумажные виды конденсаторов, в которых в качестве диэлектрика выступает пропитанная трансформаторным маслом бумага. Данные устройства обладают высокой надежностью и электрической прочностью. При высоком напряжении они имеют достаточно высокую емкость и низкую утечку тока.

Многие конденсаторы для силовых установок производят по бумажному принципу. Для этого складывают вместе две пластины, между которыми располагают бумагу. Затем устройство сворачивают в рулон и помещают в банку, которую заполняют трансформаторным маслом, и затем запаивают. К недостаткам приспособления можно отнести большой вес, высокую собственную индуктивность и сопротивление.

Электролитические виды конденсаторов имеют диэлектрик, представленный в форме оксидного слоя, возникающего на поверхности активного металла (чаще алюминия). Устройство производят путем помещения в электролит изготовленной из активного металла ленты, на поверхности которой образуется пленка из прочного окисла, позволяющая изолировать металл.

Основной особенностью электролитических видов конденсаторов является наличие полярности, при одном значении которой они держат расчетное напряжение, а при его изменении быстро разрушаются. Это происходит в результате химических процессов, возникающих между электролитом и металлом пластины. Оксидная пленка постепенно трескается и разрушается.

Однако при соблюдении правильной полярности микротрещины быстро затягиваются новым оксидом. К достоинствам данных устройств относят высокую емкость, к недостаткам – полярность, потерю свойств, быстрый износ, высокую внутреннюю индуктивность.

Виды конденсаторов и их применение

Существуют также устройства, в которых в качестве диэлектрика выступает слюда, их используют в различных электроустановках. Поскольку слюда способна самостоятельно накапливать энергию, данные виды конденсаторов обладают высокой емкостью и электрической прочностью. К недостаткам относят нестабильность параметров, нелинейность, высокую цену и зависимость емкости от силы тока.

Кроме этого применение нашли керамические виды конденсаторов, пленочные, тефлоновые, полипропиленовые и другие устройства.

fb.ru

Конденсаторы виды свойства применение. Использование конденсаторов

Конденсатор - это элемент электрической цепи, состоящий из проводящих электродов обкладок, разделённых диэлектриком и предназначенный для использования его ёмкости. Ёмкость конденсатора - есть отношение заряда конденсатора к разности потенциалов, которую заряд сообщает конденсатору.

В качестве диэлектрика в конденсаторах используются органические и неорганические материалы, в том числе оксидные плёнки некоторых металлов. При приложении к конденсатору постоянного напряжения происходит его заряд; при этом затрачивается определённая работа, выражаемая в джоулях.

Конденсаторы находят применение практически во всех областях электротехники.Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.

В вторичных источниках электропитания конденсаторы применяются для сглаживания пульсаций выпрямленного напряжения.

В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник.

Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для различных целей, например, для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов.

Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора. ИП влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).

Измерителя уровня жидкости. Непроводящая жидкость заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня.

Фазосдвигающего конденсатора. Такой конденсатор необходим для пуска, а в некоторых случаях и работы однофазных асинхронных двигателей. Также он может применяться для пуска и работы трёхфазных асинхронных двигателей при питании от однофазного напряжения.

Аккумуляторов электрической энергии. В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени.

В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Также существуют некоторые модели трамваев, в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.

Классификация конденсаторов.

Рисунок 1.

Условное обозначение на схемах.

Взависимости от назначения конденсаторы разделяются на две большие группы: общего и специального назначения.

Группа общего назначения включает в себя широко применяемые конденсаторы, используемые в большинстве видов и классов аппаратуры. Традиционно к ней относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования.

Все остальные конденсаторы являются специальными. К ним относятся: высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и др.

В зависимости от способа монтажа конденсаторы могут выполняться для печатного и навесного монтажа, а также в составе микромодулей и микросхем или для сопряжения с ними. Выводы конденсаторов для навесного монтажа могут быть жёсткие или мягкие, аксиальные или радиальные из проволоки круглого сечения или ленты, в виде лепестков, с кабельным вводом, в виде проходных шпилек, опорных винтов и т. п.

По характеру защиты от внешних воздействий конденсаторы выполняются: незащищёнными, защищёнными, неизолированными, изолированными, уплотнёнными и герметизированными.

Незащищённые конденсаторы допускают эксплуатацию в условиях повышенной влажности только в составе герметизированной аппаратуры. Защищённые конденсаторы допускают эксплуатацию в аппаратуре любого конструктивного исполнения. Неизолированные конденсаторы (с покрытием или без него) не допускают касаний своим корпусом шасси аппаратуры. Изолированные конденсаторы имеют достаточно хорошее изоляционное покрытие и допускают касания корпусом шасси аппаратуры. Уплотнённые конденсаторы имеют уплотнённую органическими материалами конструкцию корпуса. Герметизированные конденсаторы имеют герметичную конструкцию корпуса, который исключает возможность сообщения окружающей среды с его внутренним пространством. Герметизация производится с помощью керамических и металлических корпусов или стеклянных колб. По виду диэлектрика все конденсаторы можно разделить на группы: с органическим, неорганическим, газообразным и оксидным диэлектриком.

.

Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое. Как и резисторы, конденсатор бывают разных типов и емкостей. Выпускаются в разных корпусах, самые маленькие это ЧИП SMD конденсаторы, которые применяются например в сотовых телефонах.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). В электронике используются конденсаторы с разными емкостями, это пикофарады, нанофарады и микрофарады.

Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. Номинальное напряжение маркируют на корпусе конденсатора, при превышении этого

electriciastudio.ru

Виды конденсаторов и их применение в технике. Назначение и применение конденсаторов

Применение конденсаторов в технике довольно обширно. Практически в каждой электрической или электронной схеме содержатся эти радиоэлементы. Трудно представить блок питания, в котором бы не было конденсаторов. Они наряду с резисторами и транзисторами являются основой радиотехники.

А что же такое конденсатор? Это простейший элемент, с двумя металлическими обкладками, разделенными диэлектрическим веществом. Принцип работы этих приборов основан на способности сохранения электрического заряда, т. е. заряжаться, а в нужный момент разряжаться.

В современной электронике применение конденсаторов весьма широкое и разностороннее. Разберем, в каких сферах техники, и с какой целью используются эти приборы:

  1. В телевизионной и радиотехнической аппаратуре - для реализации колебательных контуров, а также их блокировки и настройки. Также их используют для разделения цепей различной частоты, в выпрямительных фильтрах и т. д.
  2. В радиолокационных приборах - с целью формирования импульсов большой мощности.
  3. В телеграфии и телефонии - для разделения цепей постоянного и различной частоты, симметрирования кабелей, искрогашения контактов и прочее.
  4. В телемеханике и автоматике - с целью реализации принципа, разделения цепей пульсирующего и постоянного токов, искрогашения контактов, в тиратронных импульсных генераторах и т. д.
  5. В сфере счетных устройств - в специальных запоминающих устройствах.
  6. В электроизмерительной аппаратуре - для получения образцов емкости, создания переменных емкостей (лабораторные переменные емкостные приборы, магазины емкости), создания измерительных устройств на емкостной основе и т. д.
  7. В лазерных устройствах - для формирования мощных импульсов.

Применение конденсаторов в современном электроэнергетическом комплексе также довольно разнообразно:

  • для повышения коэффициента мощ

electric-school.ru

Использование конденсаторов

Конденсатор - это элемент электрической цепи, состоящий из проводящих электродов обкладок, разделённых диэлектриком и предназначенный для использования его ёмкости. Ёмкость конденсатора - есть отношение заряда конденсатора к разности потенциалов, которую заряд сообщает конденсатору.

В качестве диэлектрика в конденсаторах используются органические и неорганические материалы, в том числе оксидные плёнки некоторых металлов. При приложении к конденсатору постоянного напряжения происходит его заряд; при этом затрачивается определённая работа, выражаемая в джоулях.

Конденсаторы находят применение практически во всех областях электротехники.Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.

В вторичных источниках электропитания конденсаторы применяются для сглаживания пульсаций выпрямленного напряжения.

В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник.

Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для различных целей, например, для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов.

Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора. ИП влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).

Измерителя уровня жидкости. Непроводящая жидкость заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня.

Фазосдвигающего конденсатора. Такой конденсатор необходим для пуска, а в некоторых случаях и работы однофазных асинхронных двигателей. Также он может применяться для пуска и работы трёхфазных асинхронных двигателей при питании от однофазного напряжения.

Аккумуляторов электрической энергии. В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени.

В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Также существуют некоторые модели трамваев, в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.

Классификация конденсаторов.

Рисунок 1.

Условное обозначение на схемах.

Взависимости от назначения конденсаторы разделяются на две большие группы: общего и специального назначения.

Группа общего назначения включает в себя широко применяемые конденсаторы, используемые в большинстве видов и классов аппаратуры. Традиционно к ней относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования.

Все остальные конденсаторы являются специальными. К ним относятся: высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и др.

В зависимости от способа монтажа конденсаторы могут выполняться для печатного и навесного монтажа, а также в составе микромодулей и микросхем или для сопряжения с ними. Выводы конденсаторов для навесного монтажа могут быть жёсткие или мягкие, аксиальные или радиальные из проволоки круглого сечения или ленты, в виде лепестков, с кабельным вводом, в виде проходных шпилек, опорных винтов и т. п.

По характеру защиты от внешних воздействий конденсаторы выполняются: незащищёнными, защищёнными, неизолированными, изолированными, уплотнёнными и герметизированными.

Незащищённые конденсаторы допускают эксплуатацию в условиях повышенной влажности только в составе герметизированной аппаратуры. Защищённые конденсаторы допускают эксплуатацию в аппаратуре любого конструктивного исполнения. Неизолированные конденсаторы (с покрытием или без него) не допускают касаний своим корпусом шасси аппаратуры. Изолированные конденсаторы имеют достаточно хорошее изоляционное покрытие и допускают касания корпусом шасси аппаратуры. Уплотнённые конденсаторы имеют уплотнённую органическими материалами конструкцию корпуса. Герметизированные конденсаторы имеют герметичную конструкцию корпуса, который исключает возможность сообщения окружающей среды с его внутренним пространством. Герметизация производится с помощью керамических и металлических корпусов или стеклянных колб. По виду диэлектрика все конденсаторы можно разделить на группы: с органическим, неорганическим, газообразным и оксидным диэлектриком.

studfiles.net


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.