Физиотерапевтическое применение ультразвука. Включить ультразвук


Ультразвук. Применение и работа. Свойства и развитие. Особенности

Ультразвук представляет волны продольного вида, которые имеют частоту колебаний более 20 КГц. Это больше частоты колебаний, воспринимаемых человеческим слуховым аппаратом. Человек же может воспринимать частоты, находящиеся в пределах 16-20 КГц, они называются звуковыми. Ультразвуковые волны выглядят как череда сгущений и разряжений вещества или среды. Благодаря их свойствам они находят широкое применение во многих областях.

Что это?

В ультразвуковой диапазон попадают частоты, начиная от 20 тысяч и до нескольких миллиардов герц. Это колебания высокой частоты, которые находятся за областью слышимости ухом человека. Однако ультразвуковые волны вполне воспринимают некоторые виды животных. Это дельфины, киты, крысы и другие млекопитающие.

По физическим свойствам ультразвуковые волны являются упругими, поэтому они не имеют отличий от звуковых. В результате разница между звуковыми и ультразвуковыми колебаниями весьма условна, ведь она зависит от субъективного восприятия слуха человека и равняется верхнему уровню слышимого звука. Но наличие более высоких частот, а значит и небольшой длины волны, придает ультразвуковым колебаниям определенные особенности:

  1. Ультразвуковые частоты имеют разную скорость перемещения через различные вещества, благодаря чему можно с высокой точностью определять свойство протекающих процессов, удельную тепловую емкость газов, а также характеристики твердого тела.
  2. Волны значительной интенсивности обладают определенными эффектами, которые подчиняются нелинейной акустике.
  3. При движении ультразвуковых волн со значительной мощностью в жидкостной среде возникает явление акустической кавитации. Данное явление очень важно, ведь в результате создается поле пузырьков, которые образуются из субмикроскопических частиц газа или пара в водной или иной среде. Они пульсируют с некоторой частотой и захлопываются с огромным локальным давлением. Это создает сферические ударные волны, что ведет к появлению акустических микроскопических потоков. Благодаря использованию этого явления ученые научились очищать загрязненные детали, а также создавать торпеды, которые движутся в воде быстрее скорости звука.
  4. Ультразвук может быть сфокусирован и сконцентрирован, что позволяет создавать звуковые рисунки. Это свойство с успехом применяется в голографии и звуковом видении.
  5. Ультразвуковая волна вполне может выступать в качестве дифракционной решетки.
Свойства

Ультразвуковые волны по своим свойствам схожи со звуковыми волнами, однако у них есть и специфические особенности:

  1. Малая длина волны. Даже для низкой границы длина равняется менее нескольких сантиметров. Такой небольшой размер длины приводит к лучевому характеру перемещения ультразвуковых колебаний. Непосредственно рядом с излучателем волна идет в виде пучка, которая приближается к параметрам излучателя. Однако, оказываясь в условиях неоднородной среды, пучок перемещается как луч света. Он также может отражаться, рассеиваться, преломляться.
  2. Малый период колебаний, благодаря чему появляется возможность использования ультразвуковых колебаний в виде импульсов.
  3. Ультразвукнельзя услышать и он не создает раздражающего эффекта.
  4. При воздействии ультразвуковых колебаний на определенные среды можно добиться получения специфических эффектов. К примеру, можно создать локальный нагрев, дегазацию, обеззаразить среду, кавитацию и многие иные эффекты.
Принцип действия

Для создания ультразвуковых колебаний используются различные устройства:

  1. Механические, где в качества источника выступает энергия жидкости или газа.
  2. Электромеханические, где ультразвуковая энергия создается из электрической.

В качестве механических излучателей могут выступать свистки и сирены, работающие с помощью воздуха или жидкости. Они удобны и просты, однако у них есть свои минусы. Так коэффициент полезного действия у них находится в пределах 10-20 процентов. Они создают обширный спектр частот с нестабильной амплитудой и частотой. Это ведет к тому, что такие устройства невозможно использовать в условиях, когда требуется точность. Чаще всего их применяют в качестве средств сигнализации.

Электромеханические устройства используют принцип пьезоэлектрического эффекта. Его особенность в том, что при образовании электрозарядов на гранях кристалла происходит его сжимание и растягивание. В результате создаются колебания с частотой, зависящей от периода смены потенциала на поверхностях кристалла.

Кроме преобразователей, которые базируются на пьезоэлектрическом эффекте, могут применяться и магнитострикционные преобразователи. Они используются для создания мощного ультразвукового пучка. Сердечник, который выполнен из магнитострикционного материала, размещенный в проводящей обмотке, изменяет собственную длину согласно форме электрического сигнала, поступающего на обмотку.

Применение

Ультразвук находит широкое применение в самых разнообразных областях.

Чаще всего его используют в следующих направлениях:

  1. Получение данных о конкретном веществе.
  2. Обработка и передача сигналов.
  3. Воздействие на вещество.

Так при помощи ультразвуковых волн изучают:

  1. Молекулярные процессы в различных структурах.
  2. Определение концентрации веществ в растворах.
  3. Определение, состава, прочностных характеристик материалов и так далее.

В ультразвуковой обработке часто используется метод кавитации:

  1. Металлизация.
  2. Ультразвуковая очистка.
  3. Дегазация жидкостей.
  4. Диспергирование.
  5. Получение аэрозолей.
  6. Ультразвуковая стерилизация.
  7. Уничтожения микроорганизмов.
  8. Интенсификация электрохимических процессов.

Воздействием ультразвуковых волн в промышленности производят следующие технологические операции:

  1. Коагуляция.
  2. Горение в ультразвуковой среде.
  3. Сушка.
  4. Сварка.

В медицине ультразвуковые волны используются в терапии и диагностике. В диагностике задействуют локационные методы с применением импульсного излучения. К ним относятся ультразвуковая кардиография, эхоэнцефалография и ряд иных методов. В терапии ультразвуковые волны применяются в качестве методов, основанных на тепловом и механическом воздействии на ткани. К примеру, довольно часто во время операций используют ультразвуковой скальпель.

Также ультразвуковыми колебаниями проводится:

  1. Микромассаж структур ткани при помощи вибрации.
  2. Стимуляция регенерации клеток, а также межклеточного обмена.
  3. Увеличение проницаемости оболочек тканей.

Ультразвук может действовать на ткани угнетением, стимулированием или разрушением. Все это зависит от применяемой дозы ультразвуковых колебаний и их мощности. Однако не на все области тела человека разрешается использовать такие волны. Так с определенной осторожностью воздействуют на сердечную мышцу и ряд эндокринных органов. На мозг, шейные позвонки, мошонку и ряд иных органов воздействие вовсе не используется.

Ультразвуковые колебания применяются в случаях, когда невозможно использовать рентген в:

  • Травматологии используется метод эхографии, который с легкостью обнаруживает внутреннее кровотечение.
  • Акушерстве волны применяются для оценки развития плода, а также его параметров.
  • Кардиологии они позволяют обследовать сердечнососудистую систему.
Ультразвук в будущем

На текущий момент ультразвук широко применяется в различных областях, но в будущем он найдет еще большее применение. Уже сегодня планируется создание фантастических для сегодняшнего дня устройств.

  1. В медицинских целях разрабатывается технология ультразвуковой акустической голограммы. Данная технология предполагает расположение микрочастиц в пространстве для создания необходимого изображения.
  2. Ученые работают над созданием технологии бесконтактных устройств, которые должны будут заменить сенсорные приборы. К примеру, уже сегодня созданы игровые устройства, которые распознают перемещения человека без непосредственного контакта. Прорабатываются технологии, которые предполагают создание невидимых кнопок, которые вполне можно ощутить руками и управлять ими. Развитие подобных технологий позволит создать бесконтактные смартфоны или планшеты. К тому же данная технология расширит возможности виртуальной реальности.
  3. При помощи ультразвуковых волн уже сегодня можно заставить левитировать небольшие объекты. В будущем могут появиться машины, которые будут за счет волн парить над землей и в отсутствии трения перемещаться с огромной скоростью.
  4. Ученые предполагают, что в будущем ультразвукпозволит научить слепых людей видеть. Такая уверенность базируется на том, что летучие мыши распознают объекты с помощью отраженных ультразвуковых волн. Уже создан шлем, который преобразует отражаемые волны в слышимый звук.
  5. Уже сегодня люди предполагают добывать полезные ископаемые в космосе, ведь там есть все. Так астрономы нашли алмазную планету, на которой полно драгоценных камней. Но как добывать такие твердые материалы в космосе? Именно ультразвуковые колебания должны будут помочь в бурении плотных материалов. Такие процессы вполне возможны даже в отсутствии атмосферы. Такие технологии бурения позволят собирать образцы, проводить исследования и добывать полезные ископаемые там, где это сегодня считается невозможным.
Похожие темы:

 

electrosam.ru

Ультразвук!!! можно ли разрушить стену с помощью электрического тока и ультразвука?

Едва ли. Инфразвуком можно, а ултра.. . Сомневаюсь. А электрический ток тут причем? Стены ток не проводят.

ИНФРА звуком неуч правда мощность должна быть 500-- 600 децибел

Иван! ну по какой теории, как может стена стать дряблой? Идея разрушения с помощю звуковой волны ( любой, хоть инфра или ультра) в том что бы настроить излучатель в резонанс с разрушаемым предметом ( тогда мощность излучения может быть значительно ниже, хотя можно разрушить и без попадания в резонанс-но со значительным увеличением мощнос ти) стена имеет резонанс конечно в области инфразвука. Электроток конечно не поможет. Не принимай все что в кино увидишь за чистую монеты.

touch.otvet.mail.ru

это что? Ультразвук в медицине. Лечение ультразвуком

Несмотря на то что исследования ультразвуковых волн начались более ста лет назад, только последние полвека они стали широко использоваться в различных областях человеческой деятельности. Это связано с активным развитием как квантового и нелинейного разделов акустики, так и квантовой электроники и физики твердого тела. Сегодня ультразвук – это не просто обозначение высокочастотной области акустических волн, а целое научное направление в современной физике и биологии, с которым связаны промышленные, информационные и измерительные технологии, а также диагностические, хирургические и лечебные методы современной медицины.

Что это?

Все звуковые волны можно подразделить на слышимые человеком — это частоты от 16 до 18 тыс. Гц, и те, которые находятся вне диапазона людского восприятия — инфра- и ультразвук. Под инфразвуком понимаются волны аналогичные звуковым, но с частотами, ниже воспринимаемых человеческим ухом. Верхней границей инфразвуковой области считается 16 Гц, а нижней - 0,001 Гц.

Ультразвук – это тоже звуковые волны, но только их частота выше, чем может воспринять слуховой аппарат человека. Как правило, под ними понимают частоты от 20 до 106 кГц. Верхняя их граница зависит от среды, в которых эти волны распространяются. Так, в газовой среде предел составляет 106 кГц, а в твердых телах и жидкостях он достигает отметки в 1010 кГц. В шуме дождя, ветра или водопада, грозовых разрядах и в шуршании перекатываемой морской волной гальки есть ультразвуковые компоненты. Именно благодаря способности воспринимать и анализировать волны ультразвукового диапазона киты и дельфины, летучие мыши и ночные насекомые ориентируются в пространстве.

Немного истории

Первые исследования ультразвука (УЗ) были проведены еще в начале XIX века французским ученым Ф. Саваром (F. Savart), стремившимся выяснить верхний частотный предел слышимости человеческого слухового аппарата. В дальнейшем изучением ультразвуковых волн занимались такие известные ученые, как немец В. Вин, англичанин Ф. Гальтон, русский П. Лебедев с группой учеников.

В 1916 году физик из Франции П. Ланжевен, в сотрудничестве с русским ученым-эмигрантом Константином Шиловским, смог использовать кварц для приема и излучения ультразвука для морских измерений и обнаружения подводных объектов, что позволило исследователям создать первый гидролокатор, состоявший из излучателя и приемника ультразвука. В 1925 году американец В. Пирс создал прибор, называемый сегодня интерферометром Пирса, измеряющий с большой точностью скорости и поглощение ультразвука в жидких и газовых средах. В 1928 году советский ученый С. Соколов первым стал использовать ультразвуковые волны для обнаружения различных дефектов в твердых, в том числе и металлических, телах.

В послевоенные 50-60-е годы, на основе теоретических разработок коллектива советских ученых, возглавляемых Л. Д. Розенбергом, начинается широкое применение УЗ в различных промышленных и технологических областях. В это же время, благодаря работам английских и американских ученых, а также исследованиям советских исследователей, таких как Р. В. Хохлова, В. А. Красильникова и многих других, быстро развивается такая научная дисциплина, как нелинейная акустика.

Примерно тогда же предпринимаются первые попытки американцев использовать ультразвук в медицине.

Советский ученый Соколов еще в конце сороковых годов прошлого века разработал теоретическое описание прибора, предназначенного для визуализации непрозрачных объектов - «ультразвукового» микроскопа. Основываясь на этих работах, в середине 70-х годов специалисты из Стэндфордского университета создали прототип сканирующего акустического микроскопа.

Особенности

Имея общую природу, волны слышимого диапазона, равно как и ультразвуковые, подчиняются физическим законам. Но у ультразвука есть ряд особенностей, позволяющих широко его использовать в различных областях науки, медицины и техники:

1. Малая длина волны. Для наиболее низкого ультразвукового диапазона она не превышает нескольких сантиметров, обуславливая лучевой характер распространения сигнала. При этом волна фокусируется и распространяется линейными пучками.

2. Незначительный период колебаний, благодаря чему ультразвук можно излучать импульсно.

3. В различных средах ультразвуковые колебания с длиной волны, не превышающей 10 мм, обладают свойствами, аналогичными световым лучам, что позволяет фокусировать колебания, формировать направленное излучение, то есть не только посылать в нужном направлении энергию, но и сосредотачивать ее в необходимом объеме.

4. При малой амплитуде существует возможность получения высоких значений энергии колебаний, что позволяет создавать высокоэнергетические ультразвуковые поля и пучки без использования крупногабаритной аппаратуры.

5. Под воздействием ультразвука на среду возникает множество специфических физических, биологических, химических и медицинских эффектов, таких как:

  • диспергирование;
  • кавитация;
  • дегазация;
  • локальный нагрев;
  • дезинфекция и мн. др.

Виды

Все ультразвуковые частоты подразделяются на три вида:

  • УНЧ – низкие, с диапазоном от 20 до 100 кГц;
  • УСЧ – среднечастотные - от 0,1 до 10 МГц;
  • УЗВЧ – высокочастотные - от 10 до 1000 МГц.

Сегодня практическое использование ультразвука – это прежде всего применение волн малой интенсивности для измерений, контроля и исследований внутренней структуры различных материалов и изделий. Высокочастотные используются для активного воздействия на различные вещества, что позволяет изменять их свойства и структуру. Диагностика и лечение ультразвуком многих заболеваний (при помощи различных частот) является отдельным и активно развивающимся направлением современной медицины.

Где применяется?

В последние десятилетия ультразвуком интересуются не только научные теоретики, но и практики, все более активно внедряющие его в различные виды человеческой деятельности. Сегодня ультразвуковые установки используются для:

Получение информации о веществах и материалах

Мероприятия

Частота в кГц

от

до

Исследование состава и свойств веществ

твердые тела

10

106

жидкости

103

105

газы

10

103

Контроль размеров и уровней

10

103

Гидролокация

1

100

Дефектоскопия

100

105

Медицинская диагностика

103

105

Воздействия

на вещества

Пайка и металлизация

10

100

Сварка

10

100

Пластическое деформирование

10

100

Механическая обработка

10

100

Эмульгирование

10

104

Кристаллизация

10

100

Распыление

10-100

103-104

Коагуляция аэрозолей

1

100

Диспергирование

10

100

Очистка

10

100

Химические процессы

10

100

Воздействие на горение

1

100

Хирургия

10 до 100

103 до 104

Терапия

103

104

Обработка и управление сигналами

Акустоэлектронные преобразователи

103

107

Фильтры

10

105

Линии задержки

103

107

Акустооптические устройства

100

105

В современном мире ультразвук — это важный технологический инструмент в таких промышленных отраслях, как:

  • металлургическая;
  • химическая;
  • сельскохозяйственная;
  • текстильная;
  • пищевая;
  • фармакологическая;
  • машино- и приборостроительная;
  • нефтехимическая, перерабатывающая и другие.

Кроме этого, все более широко используется ультразвук в медицине. Вот об этом мы и поговорим в следующем разделе.

Использование в медицине

В современной практической медицине существует три основных направления использования ультразвука различных частот:

1. Диагностическое.

2. Терапевтическое.

3. Хирургическое.

Рассмотрим более подробно каждое из этих трех направлений.

Диагностика

Одним из наиболее современных и информативных методов медицинской диагностики является ультразвуковой. Его несомненные достоинства - это: минимальное воздействие на человеческие ткани и высокая информативность.

Как уже говорилось, ультразвук — это звуковые волны, распространяющиеся в однородной среде прямолинейно и с постоянной скоростью. Если на их пути находятся области с различными акустическими плотностями, то часть колебаний отражается, а другая часть преломляется, продолжая при этом свое прямолинейное движение. Таким образом, чем больше разница в плотности пограничных сред, тем больше ультразвуковых колебаний отражается. Современные методы ультразвукового исследования можно подразделить на локационные и просвечивающие.

Ультразвуковая локация

В процессе такого исследования регистрируются отраженные от границ сред с различными акустическими плотностями импульсы. При помощи перемещаемого датчика можно установить размер, расположение и форму исследуемого объекта.

Просвечивание

Этот метод основан на том, что различные ткани человеческого организма по-разному поглощают ультразвук. Во время исследования какого-либо внутреннего органа в него направляют волну с определенной интенсивностью, после чего специальным датчиком регистрируют прошедший сигнал с обратной стороны. Картина сканируемого объекта воспроизводится на основе изменения интенсивности сигнала на «входе» и «выходе». Полученная информация обрабатывается и преобразуется компьютером в виде эхограммы (кривой) или сонограммы – двухмерного изображения.

Допплер-метод

Это наиболее активно развивающийся метод диагностики, в котором используются как импульсный, так и непрерывный ультразвук. Допплерография широко применяется в акушерстве, кардиологии и онкологии, так как позволяет отслеживать даже самые незначительные изменения в капиллярах и небольших кровеносных сосудах.

Области применения диагностики

Сегодня ультразвуковые методы визуализации и измерений наиболее широко применяются в таких областях медицины, как:

  • акушерство;
  • офтальмология;
  • кардиология;
  • неврология новорожденных и младенцев;
  • исследование внутренних органов:

- ультразвук почек;

- печени;

- желчного пузыря и протоков;

- женской репродуктивной системы;

  • диагностика наружных и приповерхностных органов (щитовидной и молочных желез).

Использование в терапии

Основное лечебное воздействие ультразвука обусловлено его способностью проникать в человеческие ткани, разогревать и прогревать их, осуществлять микромассаж отдельных участков. УЗ может быть использован как для непосредственного, так и для косвенного воздействия на очаг боли. Кроме того, при определенных условиях эти волны оказывают бактерицидное, противовоспалительное, обезболивающее и спазмолитическое действие. Используемый в терапевтических целях ультразвук условно подразделяют на колебания высокой и низкой интенсивности. Именно волны низкой интенсивности наиболее широко применяется для стимуляции физиологических реакций или незначительного, не повреждающего нагрева. Лечение ультразвуком дало положительные результаты при таких заболеваниях, как:

  • артрозы;
  • артриты;
  • миалгии;
  • спондилиты;
  • невралгии;
  • варикозные и трофические язвы;
  • болезнь Бехтерева;
  • облитерирующие эндартерииты.

Проводятся исследования, во время которых используется ультразвук для лечения болезни Меньера, эмфиземы легких, язв двенадцатиперстной кишки и желудка, бронхиальной астмы, отосклероза.

Ультразвуковая хирургия

Современная хирургия, использующая ультразвуковые волны, подразделяется на два направления:

- избирательно разрушающая участки ткани особыми управляемыми ультразвуковыми волнами высокой интенсивности с частотами от 106 до 107 Гц;

- использующая хирургический инструмент с наложением ультразвуковых колебаний от 20 до 75 кГц.

Примером избирательной УЗ-хирургии может послужить дробление камней ультразвуком в почках. В процессе такой неинвазивной операции ультразвуковая волна воздействует на камень через кожу, то есть снаружи человеческого тела. К сожалению, подобный хирургический метод имеет ряд ограничений. Нельзя использовать дробление ультразвуком в следующих случаях:

- беременным женщинам на любом сроке;

- если диаметр камней более двух сантиметров;

- при любых инфекционных заболеваниях;

- при наличии болезней, нарушающих нормальную свертываемость крови;

- в случае тяжелых поражений костной ткани.

Несмотря на то что удаление ультразвуком почечных камней проводится без операционных разрезов, оно довольно болезненное и выполняется под общей или местной анестезией.

Хирургические ультразвуковые инструменты используются не только для менее болезненного рассечения костных и мягких тканей, но и для уменьшения кровопотерь. Обратим свой взор в сторону стоматологии. Ультразвук камни зубные удаляет менее болезненно, да и все остальные манипуляции врача переносятся гораздо легче. Кроме того, в травматологической и ортопедической практике ультразвук используется для восстановления целостности сломанных костей. Во время таких операций пространство между костными отломками заполняют специальным составом, состоящим из костной стружки и особой жидкой пластмассы, а затем воздействуют ультразвуком, благодаря чему все компоненты крепко соединяются. Те, кто перенес хирургические вмешательства, в ходе которых использовался ультразвук, отзывы оставляют разные - как положительные, так и отрицательные. Однако следует отметить, что довольных пациентов все же больше!

fb.ru

Физиотерапевтическое применение ультразвука - physiotherapy.ru

Применение ультразвука существенно обогатило арсенал физиотерапевтических методов. Использование ультразвука позволило не только успешно бороться с некоторыми болезнями, но и повышать жизнеспособность и сопротивляемость здорового организма неблагоприятным внешним условиям.

Применение ультразвука, как, впрочем, и других лечебных воздействий, требует дозировки. При слишком низких интенсивностях и коротком времени воздействия ультразвук может оказаться неэффективным, а интенсивное и длительное воздействие может обусловить весьма существенные и не обязательно желательные изменения в организме.

Терапевтический ультразвук может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей (0,125—3,0 Вт/см2 SATA) — неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях (>5Вт/см2) основная цель — вызвать управляемое избирательное разрушение в тканях.

Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе — ультразвуковую хирургию.

ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ УЛЬТРАЗВУКОВОЙ ТЕРАПИИ

НАГРЕВ

Высокий коэффициент поглощения ультразвука в тканях с большими молекулами обусловливает заметное нагревание коллагено-содержащих тканей, на которые чаще всего и воздействуют ультразвуком при физиотератевтических процедурах.

- Увеличение растяжимости коллагеносодержащих тканей

Основной фактор, который часто препятствует восстановлению мягкой ткани после ее повреждения, — это контрактура, возникающая в результате повреждения и ограничивающая нормальное движение. Слабое прогревание ткани может повысить ее эластичность. Рубцовая ткань также может стать более эластичной под воздействием ультразвука.

- Повышение подвижности суставов

Амплитуда движений суставов в случае контрактуры может быть увеличена путем их нагрева. Для нагрева сустава, окруженного значительным слоем мягких тканей, ультразвуковой способ наиболее предпочтителен, поскольку ультразвук лучше других форм диатермической энергии проникает в мышечную ткань.

- Болеутоляющее действие

Многие пациенты отмечают ослабление болей при тепловом воздействии на пораженные области. Обезболивающий эффект может быть как кратковременным, так и продолжительным. При некоторых заболеваниях применение ультразвука для уменьшения болей дает наилучшие результаты. Например, было обнаружено, что ультразвук ослабляет фантомные боли после ампутации конечностей, а также боли, вызванные образованием рубцов и невром. Механизмы болеутоляющего действия пока неясны; возможно, в них вносят вклад и нетепловые эффекты.

- Изменения кровотока

При локальном нагреве ткани часто отмечаются сосудистые реакции, проявляющиеся даже на некотором расстоянии от места воздействия. Кровоток в мышечной ткани увеличивается в 2-3 раза при ультразвуковом прогревании до температуры 40-45° С. Отмечается также, что при нагреве ультразвуком или электромагнитным излучением наблюдаются сходные эффекты. Эти изменения сохраняются около получаса после окончания процедуры. Местное расширение сосудов увеличивает поступление кислорода в ткань и, следовательно, улучшает условия, в которых находятся клетки. Возможно, именно этим объясняется терапевтический эффект, а также нередко наблюдаемое усиление воспалительной реакции.

- Уменьшение мышечного спазма

Прогревание может уменьшить мышечный спазм. По-видимому, это обусловлено седативным (успокаивающим) действием повышения температуры на периферические нервные окончания. Ультразвук также может быть использован для этой цели.

Степень физиологической реакции на прогревание зависит от большого числа факторов, включающих достигаемую температуру, время прогревания, размер прогреваемой области и скорость увеличения температуры. Ультразвук позволяет быстро нагреть строго определенную область. К анатомическим структурам, которые избирательно нагреваются ультразвуком, относятся богатые коллагеном поверхностные слои кости, надкостница, суставные мениски, синовиальная жидкость, суставные сумки, соединительные ткани, внутримышечные рубцы, мышечные волокна, оболочки сухожилий и главные нервные стволы.

В ряде случаев ультразвук может быть более эффективной формой диатермии, чем коротковолновые излучения, парафиновые аппликации и инфракрасное излучение.

НЕТЕПЛОВЫЕ ЭФФЕКТЫ

Если принимать во внимание только физиологические эффекты, то эти механизмы можно разделить на два класса: периодические и непериодические.

Периодические эффекты возникают из самой колебательной природы звукового поля и могут рассматриваться в качестве своего рода микромассажа, способствующего, например, рассасыванию спаек, образующихся в мягких тканях при их повреждениях.

По-видимому, главным непериодическим эффектом, приводящим к лечебному действию ультразвука, являются акустические течения. Они могут быть вызваны устойчивыми осциллирующими полостями или радиационными силами как внутри, так и вне клеток. Акустические течения могут влиять на среду около мембран, изменяя градиенты концентраций, воздействуя тем самым на диффузию ионов и молекул через мембраны.

ФИЗИОТЕРАПЕВТИЧЕСКОЕ ПРИМЕНЕНИЕ УЛЬТРАЗВУКА

Ультразвук широко используется в физиотерапевтической практике. Первоначально он считался одним из способов теплового воздействия, конкурируя с грелками, микроволновым и радиочастотным излучением. Основной областью использования ультразвуковой терапии было лечение повреждений мягких тканей, хотя ультразвук применялся и для лечения суставов и костей.

Выяснение механизмов воздействия ультразвука стимулировало попытки физиотерапевтов изменить режимы воздействия так, чтобы лучше использовать предполагаемые достоинства нетепловых механизмов. При этом использовались малые интенсивности ультразвука и импульсные режимы работы. Из-за недостатка научно обоснованных, контролируемых клинических экспериментов при подборе режимов ультразвукового воздействия главенствовал эмпирический подход и практически каждая клиника использовала для этого свой «рецепт». Однако по мере того как физиотерапевты овладевали знаниями в области ультразвука, режимы лечения становились более обоснованными. Было бы неправильным слишком критично относиться к тому, как физиотерапевты выбирают параметры ультразвукового воздействия, поскольку необходимая им информация не всегда доступна. До сих пор неизвестно, какие интенсивности ультразвука наиболее эффективны в терапии.

ОБОРУДОВАНИЕ И МЕТОДИКИ

Серийно выпускается большое разнообразие ультразвуковых медицинских приборов http://physiotherapy.ru/specialist/equipment/190.html . Как правило, они имеют малый вес и достаточно портативны. Многие из приборов используют ультразвук средней по пространству интенсивности до 3 Вт/см2 и работают в частотном диапазоне 0,75—5 МГц. Используются либо непрерывный, либо импульсный режимы. Импульсные режимы выбираются главным образом в том случае, когда хотят использовать нетепловые эффекты. Более точно режимы подбираются эмпирически. Выбор несущей частоты определяется глубиной расположения объекта воздействия: более высокие частоты используются для воздействия на поверхностные области. Серийные генераторы обычно имеют две или три фиксированные рабочие частоты, часто с взаимозаменяемыми преобразователями, и дают возможность плавно или дискретно менять интенсивность. Большинство приборов обладают возможностью работать в одно- или двухимпульсных режимах. Наиболее часто используемые режимы 2 мс : 2 мс (сигнал : пауза) или 2 мс : 8 мс. Импульсные режимы обычно характеризуются либо отношением длительности сигнала к длительности паузы, либо коэффициентом заполнения - отношением длительности сигнала к периоду следования импульсов, выраженным в процентах. В любом случае для полного описания импульсного режима необходимо приводить длительность импульса. Все приборы обычно снабжены таймером, чтобы задавать длительность процедуры.

Существует несколько способов введения ультразвуковой энергии в обрабатываемую область. Наиболее распространенный способ - контактный, когда преобразователь прикладывается непосредственно к коже. В этом случае передача акустической энергии осуществляется через тонкий слой контактного вещества, акустический импеданс которого близок к импедансу кожи.

При лечении частей тела неудобных конфигураций, например колен или локтей, облучение можно проводить при погружении тела в ванну с водой.

Обычно в качестве контактных веществ используются легко стерилизуемые жидкости с подходящим акустическим импедансом, такие как минеральное или парафиновое масла. Используются и различные гели, мази. Их удобно использовать, поскольку в обычном состоянии они достаточно вязки, но под действием ультразвука разжижаются. Во время процедуры преобразователь может удерживаться в одном положении (режим стационарного излучателя) или непрерывно перемещаться над обрабатываемой областью (режим лабильный). При любой возможности необходимо избегать режима стационарного излучателя, поскольку возможно образование стоячих волн и «горячих точек», которые могут привести к локальным повреждениям.

Ультразвук в физиотерапии применяется главным образом при лечении повреждений мягких тканей, для ускорения заживления ран, для рассасывания отеков, для размягчения рубцов и во многих других случаях. Он применяется также при костных патологиях и нарушениях кровообращения.

Повреждения мягких тканей

Одно из наиболее распространенных применений ультразвука в физиотерапии — это ускорение регенерации тканей и заживления ран. Наибольшая скорость заживления наблюдается при облучении импульсным ультразвуком интенсивностью 0,5 Вт/см2 SATP в режиме 2 мс : 8 мс (сигнал : пауза), но и непревывное облучение интенсивностью 0,1 Вт/см2 приводит к хорошим результатам. Облучение в импульсном режиме 1 мс : 79 мс интенсивностью 8 Вт/см2 приводит к увеличению пораженного участка. Все три испытываемых режима имеют одну и ту же среднюю по времени интенсивность. Облучение ультразвуком интенсивностью 0,5 Вт/см2 в импульсном режиме 2 мс : 8 мс приводит к более быстрому заживлению раны, чем при интенсивности 0,25; 1,5; 2 или 4 Вт/см2 в том же режиме.

Известно, что ультразвук терапевтических интенсивностей может вызывать изменения в лизосомальных мембранах, тем самым ускоряя прохождение этой фазы.

Вторая фаза в регенерации ран — пролиферация или фаза разрастания. Клетки мигрируют в область поражения и начинают делиться. Образуется гранулированная ткань и фибробласты начинают синтезировать коллаген. Интенсивность заживления начинает увеличиваться, и специальные клетки, миофибробласты, заставляют рану стягиваться.

Третья фаза — восстановление. Эластичность нормальной соединительной ткани обусловлена упорядоченной структурой коллагеновой сетки, позволяющей ткани напрягаться и расслабляться без особых деформаций. В рубцовой ткани волокна часто располагаются нерегулярно и запутанно, что не позволяет ей растягиваться без разрывов. Это ведет к уменьшению растяжимости и эластичности рубца по сравнению с нормальной окружающей тканью. Есть доказательства, что рубцовая ткань, формировавшаяся при воздействии ультразвука, прочнее и эластичнее по сравнению с «нормальной» рубцовой тканью. Это показывает, что ультразвук влияет на расположение новообразующего коллагена и помогает процессу восстановления.

С некоторым успехом ультразвук используется для размягчения и увеличения эластичности рубцов и контрактур. Несмотря на достаточную универсальность этого эффекта, механизм воздействия в этом случае неясен; возможно, он связан с комбинацией умеренного нагрева и явления, описанного ранее в этой главе.

Считается, что ультразвук может быть полезен при рассасывании отеков, вызванных повреждениями мягких тканей. Механизм, ответственный за рассасывание опухоли, остался невыясненным. Возможно, он обусловлен увеличением кровотока или местными изменениями в тканях под действием акустических микропотоков.

Костные повреждения

Восстановление повреждений мягких и костных тканей имеет много общего. Оба процесса включают в себя воспалительную, пролиферационную и восстановительную фазы. Было обнаружено, что ультразвуковое облучение во время воспалительной и ранней пролиферационной фаз ускоряет и улучшает выздоровление. Костная мозоль содержала больше костной ткани и меньше хрящей. Однако облучение в поздней пролиферационной фазе приводило к негативным явлениям — усиливался рост хрящей и задерживалось образование костной массы. Обнаружено также, что облучение ультразвуком интенсивностью 0,5 Вт/см2 SATP длительностью 5 мин в импульсном режиме 2 мс : 8 мс более эффективно на частоте 1,5 МГц, чем на частоте 3 МГц. Это позволяет предположить нетепловой механизм воздействия, хотя природа его точно не установлена.

Хирургия

Существуют две основные области применения ультразвука в хирургии. В первой из них используется способность сильно фокусированного пучка ультразвука вызывать локальные разрушения в тканях, а во второй - механические колебания ультразвуковой частоты накладываются на хирургические инструменты типа лезвий, пил, металлических наконечников и др.

Стоматология- воспалительные процессы;

Лечение рака Нет сомнений, что ультразвук достаточной интенсивности может нагреть любую локализованную область ткани до используемых в гипертермии температур (больше 42° С). С технической точки зрения преимущество ультразвука перед электромагнитным нагревом состоит в том, что выделение энергии в среде может быть лучше локализовано, при необходимости используя фокусировку.

Аппаратура для УЗ-терапии http://physiotherapy.ru/specialist/equipment/1.html  http://physiotherapy.ru/specialist/equipment/2.html 

 http://physiotherapy.ru/specialist/equipment/26.html

www.physiotherapy.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.