Правила прокладки и строительства электрической сети. Внутренние электрические сети это
из чего состоит и как устроена
Источниками питания в системе внутреннего электроснабжения цехов и гражданских зданий являются ТП 6—10/0.4—0,23 кВ или вводно-распределительные устройства, к которым через коммутационную и (или) защитную аппаратуру присоединяются кабели, провода, запитывающие отдельное крупное электрооборудование или группы электроприемников через силовые шкафы, распределительные шипопроводы, щитки освещения, коммутационные ящики. Таким образом, основными элементами электрической сети являются провода, кабели, шинопроводы, распределительные устройства.
Внутренние электрические сети могут быть открытыми, проложенными по поверхностям стен, потолков и другим элементам зданий на изоляторах, в трубах, коробах, лотках, на тросах и т.д., и скрытыми, проложенными в стенах, полах, фундаментах, перекрытиях.
Прокладка электрических сетей производится изолированными и неизолированными проводниками. Изолированные проводники (провода и кабели) выполняют защищенными и незащищенными. Защищенные проводники поверх электрической изоляции имеют металлическую или неметаллическую оболочку, предохраняющую изоляцию от механических повреждений. Неизолированные проводники — это голые провода и шины.
Способы прокладки проводов
Открытая прокладка проводов с креплением на роликах, тросах наиболее проста и дешева, но она не обеспечивает достаточной надежности и защиты проводов от механических повреждений. Более совершенна прокладка проводов в лотках и коробах, выпускаемых в виде секций.
Лотком называется открытая конструкция, предназначенная для прокладки на ней проводов и кабелей.
Короб — закрытая полая конструкция прямоугольного или другого сечения — предназначена для прокладки в ней проводов и кабелей. Короб обеспечивает защиту от механических повреждений.
Провода могут прокладываться в защитных трубах (стальных, винипластовых, полиэтиленовых, резинобитумных), что обеспечивает надежную защиту их от механических повреждений. Предпочтительными представляются пластмассовые трубы как более дешевые. Металлические трубы следует использовать во взрывоопасных помещениях. Прокладка в трубах связана с неудобствами в эксплуатации при необходимости замены поврежденных проводов. Для прокладки в трубах по условиям протяжки не рекомендуется применять провода сечением более 120 мм2.
Одна из разновидностей подпольной прокладки проводов в трубахмодульная, выполняемая с выходом труб на колонки, к каждой из которых подключают группу электроприемников.
Способы прокладки кабелей и проводки
Для внутренних электрических сетей наряду с проводами применяют кабели. Кабели можно прокладывать по стенам, колоннам, по конструкциям (в лотках, коробах, на кронштейнах), в трубах, в кабельных каналах. По стенам и перекрытиям прокладку кабелей выполняют с помощью скоб. В специальных кабельных каналах сооружается канал из железобетона или кирпича, который перекрывается железобетонными плитами или стальными рифлеными листами. Если число кабелей невелико, для защиты от механических повреждений их либо прокладывают в трубах, либо прикрывают швеллерным или уголковым железом. Следует отметить, что при этом ухудшаются условия охлаждения. Кабелями в основном запитывают крупные электроприемники, распределительные щиты, силовые шкафы.
Значительное место при канализации электроэнергии внутри помещений и зданий занимают электропроводки.
Под электропроводкой понимаются сети постоянного и переменного токов напряжением до 1 кВ, выполняемые изолированными проводами и небронированными кабелями малых (до 16 мм2) сечений с относящимися к ним креплениями и поддерживающими конструкциями.
При выборе сечения проводов и кабелей следует учитывать, что провода и кабели по условиям механической прочности (конструктивное исполнение, способ прокладки и присоединения) должны быть с алюминиевыми жилами, начиная от сечения 2 мм2, с медными жилами — сечением от 0,35 мм2 (при многопроволочных жилах, присоединяемых пайкой) и 0,5 мм2 (при однопроволочных жилах, присоединяемых пайкой).
Для питания переносных и передвижных механизмов применяют шланговые многожильные гибкие провода или кабели с медными жилами и резиновой изоляцией, например, кабели марки КГ и др.
Что касается материала проводников, то исходя из требований экономии меди, ПУЭ рекомендуют во всех случаях применять провода и кабели с алюминиевыми жилами, за исключением производств со взрывоопасной средой класса B-I и В-Ia, где применение проводников с медными жилами является обязательным. Кроме того, медные проводники применяются для механизмов, работающих в условиях постоянных вибраций, сотрясений, а также для передвижных электроустановок.
Во внутрицеховых электрических сетях, наряду с проводами и кабелями, широко применяются шинопроводы.
Способы крепления шинопроводов
Открытые шинные магистрали прокладываются на изоляторах на высоте 10… 12 м по нижнему поясу ферм. Не рекомендуется их применять в мощных протяженных сетях, поскольку они имеют большую индуктивность по сравнению с комплектными шинопроводами, а следовательно, и большие потери напряжения.
Наибольшее применение находят комплектные шинопроводы (магистральные, распределительные, троллейные и осветительные), состоящие из отдельных секций и соединяемые между собой сваркой, болтовыми зажимами или штепсельными разъемами. Электрическая сеть из таких шинопроводов позволяет осуществлять ее скоростной монтаж.
Комплектные магистральные шинопроводы устанавливаются в основном на кронштейнах на высоте не менее 3,5 м от пола.
Ответвления от них выполняются кабелем или ответвительными секциями с глухим присоединением, рубильником или автоматом. Распределительный шинопровод может устанавливаться на стойках, кронштейнах или подвесах на высоте 2,2…2,5 м от пола. Для подвода питания к нему применяется вводная коробка с рубильником или коммутационный ящик с защитной аппаратурой или без нее. От распределительного шинопровода через его ответвительные коробки провода прокладывают к электроприемникам в пластмассовых трубах, металлорукавах, коробах, лотках и перфополосах.
Один из основных элементов внутренней электрической сети — распределительные устройства — должны располагаться как можно ближе к запитываемым от них приемникам.
Влияющие факторы на прокладку электрических сетей
В общем случае способ прокладки электрической сети, ее конструктивное исполнение в значительной степени определяется расположением электрооборудования на плане, наличием тех или иных соответствующих строительных конструкций зданий (помещений), условиями окружающей среды.
Условия окружающей среды зависят от температуры воздуха, влажности, наличия агрессивных газов или пыли, взрывоопасных и пожароопасных зон. В связи с этим помещения в соответствии с ПУЭ подразделяются на сухие, влажные, сырые, особо сырые, нормальные, жаркие, пыльные, с химически активной средой, пожароопасные и взрывоопасные.
Защита сети от влияния окружающей среды регламентируется ГОСТ 14254-80. Этот стандарт предусматривает шесть степеней защиты от прикосновения к токоведущим и движущимся частям и от попадания твердых предметов и восемь степеней защиты от проникновения воды. Степень защиты принято обозначать условными буквами IP (начальные буквы Inteational Protection) и двумя цифрами, обозначающими степени защиты оборудования от прикосновения к токоведущим и движущимся частям (первая цифра) и от прикосновения воды (вторая цифра).
Защита элементов сети обеспечивается их конструктивным исполнением, наличием защитной оболочки, уплотнения и т.д.
Особенности выполнения электрических сетей во взрывоопасных и пожароопасных зонах регламентированы ПУЭ.
pue8.ru
Классификация электрических сетей
Классификация электрических сетей может осуществляться:
По роду тока
По номинальному напряжению
Конфигурации схемы сети
По выполняемым функциям
По характеру потребителя
По конструктивному выполнению
По роду тока различают сети переменного и постоянного тока:
ЛЭП постоянного тока применяются для дальнего транспорта электрической энергии и связи электрических сетей с разными номинальными частотами или с различными подходами к регулированию при одной номинальной частоте (вставки линии постоянного тока или нулевой длины). В России ЛЭП постоянного тока почти не используется (Волгоград-Донбасс на 800 кВ, 376 км).
Для связи с другими странами применяют вставки из линий постоянного тока. За рубежом в разных странах существует несколько десятков ЛЭП постоянного тока, среди которых самой мощной является Итайпу-Сан Паулу (Бразилия) с номинальным напряжением 1200 кВ, длиной 783 км и пропускной способностью 6,3 млн кВт.
ЛЭП переменного трехфазного тока используется повсеместно. В России такая линия впервые была построена в 1922 г. (110кВ). Рост номинального напряжения ЛЭП напряжением переменного тока шел примерно с интервалом 15 лет. Первые экспериментальные участки ЛЭП-1150 кВ были построены в 1985 г.
Каждая сеть характеризуется номинальным напряжением. Различают номинальные напряжения ЛЭП, генераторов, трансформаторов и электроприемников.
Номинальное напряжение генераторов по условию компенсации потерь напряжения в сети принимают на 5% выше номинального сетевого напряжения. Номинальные напряжения обмоток трансформатора принимают равными номинальному напряжению сети или на 5% выше в зависимости от вида трансформатора и напряжения сети.
По величине номинального напряжения сети подразделяются:
на сети низкого напряжения (НН) – до 1000 кВ;
среднего напряжения (СН) – 3…35 кВ;
высокого напряжения (ВН) – 110…220 кВ;
сверхвысокого напряжения (СВН) – 330-750 кВ;
ультравысокого напряжения (УВН) – свыше 1000 кВ.
По конфигурации электрические сети различают:
1. Разомкнутые;
2. Разомкнутые резервированные;
3. Замкнутые.
Разомкнутыми называют такие сети, которые питаются от одного пункта и передают электрическую энергию к потребителю только в одного направлении. Разомкнутые сети бывают магистральными, радиальными и радиально-магистральными (разветвленными). В разомкнутых резервированных сетях при нарушении питания по одной из ЛЭП вручную или автоматически включается резервная перемычка, по которой восстанавливается электроснабжение отключенных потребителей. Замкнутыми называют сети, питающие потребителей по меньшей мере с двух сторон.
Виды схем: а- магистраль; б- линия с равномерно распределенной нагрузкой; в- радиальная схема; г- радиально-магистральная схема.
Магистралью называется линия с промежуточными отборами мощности вдоль линии. В предельном случае с увеличением числа нагрузок получается линия с равномерно распределенной нагрузкой, т.е. плотность нагрузки на единицу длины одинакова для любого участка. Радиальные линии исходят из одной точки сети.
Замкнутыми сетями называются сети, имеющие контуры (циклы), образованные ЛЭП и трансформаторами.
Н1
Примеры замкнутых электрических сетей:
а- сеть одного напряжения; б- сеть двух напряжений.
К замкнутым сетям относятся также сети, имеющие несколько источников питания. Одной из таких схем является так называемая линия с двухсторонним питанием.
Пример замкнутых электрических сетей, имеющих несколько источников питания:
По выполняемым функциям различают:
Системообразующие сети;
Питающие сети;
Распределительные сети.
Системообразующие сети напряжением 330-1150 кВ осуществляют функции формирования объединенных энергосистем, объединяя мощные электрические станции и обеспечивая их функционирование как единого объекта управления и одновременно обеспечивают передачу электрической энергии от мощных электрических станций. Эти сети осуществляют системные связи, т.е. связи очень большой длины между энергосистемами. Их режимом управляет диспетчер объединенного диспетчерского управления (ОДУ). В ОДУ входят несколько районных энергосистем – районных энергетических управлений (РЭУ).
Питающие сети предназначены для передачи электрической энергии от ПС системообразующей сети и частично от шин 110-220 кВ электрических станций к центрам питания (ЦП) распределительных сетей – районным ПС.
Питающие сети обычно замкнутые. Напряжение этих сетей ранее было 110-220 кВ. По мере роста нагрузок, мощности электрических станций и протяженности электрических сетей увеличивается напряжением сетей. В последнее время напряжение питающих сетей иногда бывает 330-500 кВ. Сети 110-220 кВ обычно административно подчиняются РЭУ. Их режимом управляет диспетчер РЭУ.
Распределительная сеть предназначена для передачи электрической энергии на небольшие расстояния от шин низшего “U” районных ПС к промышленным, городским, сельским потребителям. Такие распределительные сети обычно разомкнутые или работают в разомкнутом режиме.
Различают распределительные сети высокого (Uном>1кВ) и низкого (U<1кВ) напряжения.
По месту расположения и характеру потребителя различают сети:
Промышленные;
Городские;
Сельские;
Электрифицированных железных дорог;
Магистральных нефте- и газопроводов.
Ранее такие сети выполнялись с напряжением 35 кВ и меньше, а в настоящее время – до 110 и даже 220 кВ. Преимущественное распространение в распределительных сетях имеет напряжение 10 кВ, сети 6 кВ применяются реже. Напряжение 35 кВ широко используется для создания центров питания сетей 6,10 кВ в основном в сельской местности. Передача эл. энергии на напряжении 35 кВ непосредственно потребителям, т.е. трансформация 35/0,4 кВ используется реже.
Для электроснабжения больших промышленных предприятий и крупных городов осуществляется глубокий ввод высокого напряжения, т.е. сооружение подстанций с первичным напряжением 110-500 кВ вблизи центров нагрузок.
Сети внутреннего электроснабжения крупных городов – это сети 110 кВ, в отдельных случаях к ним относятся глубокие вводы 220/10 кВ.
Сети с/х назначения выполняют на напряжении 0,4-110 кВ.
По конструктивному выполнению различают сети:
Воздушные;
Кабельные;
Токопроводы промышленных предприятий;
Проводки внутри зданий и сооружений.
studfiles.net
Электрические сети: внешнее и внутреннее электроснабжение
Электрические сети: внешнее и внутреннее электроснабжение
Понятие электрических сетей, внешнего и внутреннего электроснабженияВ понятие электрической сети входит представление о комплексной инженерной системе, с входящим в её состав разнообразным электрооборудованием, функциональное предназначение которого заключается в передаче электрической энергии различным её потребителям. Электрические сети бывают разными по величине, составу и типу, но в любую из них входят линии электропередач, разнообразные распределительные устройства, а также электрические подстанции.
Проектированием и монтажом систем электроснабжения должны заниматься исключительно профессионалы, обладающие необходимыми знаниями, квалификацией и опытом в электротехнической сфере. Задача электросети состоит в том, что передавать, преобразовывать и распределять электроэнергию потребителям в зависимости от их потребностей и имеющихся у них в эксплуатации оборудования и приборов.
Пример проекта электроснабжения
Как уже говорилось, основное функциональное предназначение электросети состоит в организации электроснабжения, то есть передаче электричества на разные объекты. В этой связи наблюдается тесная связь термина электрические сети с внешним и внутренним электроснабжением, каждое из которых имеет свои особенности и специфику.
Особенности процесса внешнего и внутреннего электроснабжения
Говоря о внешнем электроснабжении, следует понимать, что речь идёт о комплексных технических сооружениях, задача которых заключается в обеспечении передачи электричества от энергосистемы к вводному устройству электросети потребителя. В свою очередь, под внутренним электроснабжением понимается аналогичный комплекс приспособлений, но уже находящихся внутри объекта или же на его территории. Создание обоих этих систем относится к числу трудоёмких и финансово затратных мероприятий, требующих тщательности, внимания и высокого профессионализма исполнителей. Главную роль в этом процессе играет проект электроснабжения, являющийся основой и отправной точкой к проведению электротехнических работ подобного характера.
Несмотря на наличие своей специфики и ряда особенностей, работы по организации внешнего и внутреннего электроснабжения должны на каждом своём этапе решать схожие задачи, к числу которых можно отнести следующие:
- тщательное изучение электрической системы любого объекта, определение её особенностей, слабых и сильных мест, реакцию на возникновение различных внештатных ситуаций;
- выполнение расчётов по нагрузкам и мощности, распределение потребителей электроэнергии по группам;
- определение наиболее оптимальных режимов работы электросети и выяснение уровня её максимальной загрузки;
- выбор оптимальных режимов работы электросети, в том числе и в экстремальных условиях, создание системы защиты от перегрузок, аварий и скачков напряжения;
- плановый ввод электрооборудования в эксплуатацию;
- надлежащее оформление финансовой сметы на организацию и проведение электромонтажных работ.
Ниже вы можете воспользоваться онлайн-калькулятором для рассчёта стоимости проектирования сетей электроснабжения:
Поделитесь ссылкой
Дата публикации: 11.07.2015
energy-systems.ru
26 Виды электрических сетей.
Электрическая сеть - совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии.
Классификация электрических сетей
Электрические сети принято классифицировать по назначению (области применения), масштабным признакам, и по роду тока.
Назначение, область применения
Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.)
Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
Масштабные признаки, размеры сети
Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
Региональные сети: сети масштаба региона (области, края). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
Районные сети, распределительные сети. Имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольщие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и маленькими потоками мощности (десятки и сотни киловатт).
Род тока
Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называется «фаза». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потребителей. Переменный ток передаётся к потребителю от распределительного щита или подстанции по двум проводам (т. н. «фаза» и «ноль»). Потенциал «нуля» совпадает с потенциалом земли, однако конструктивно «ноль» отличается от провода заземления.
Постоянный ток: большинство контактных сетей, некоторые сети автономного электроснабжения, а также ряд специальных сетей сверхвысокого напряжения, имеющих пока ограниченное распространение.
Наряду с указанной выше классификацией электрических сетей также существует разделение по напряжению в сети.
Регулирование напряжения в электрических сетях сложно осуществлять, изменяя:а) напряжение генераторов электростанций;б) коэффициент трансформации трансформаторов и автотрансформаторов;в) параметры питающей сети;г) величину реактивной мощности, протекающей по сети. Применением перечисленных способов обеспечивается централизованное регулирование напряжения, однако последние три из них могут быть применены и для местного регулирования.Рассмотрим, подробнее способы регулирования напряжения, применяемые в электрических сетях.Генераторы, работающие в блоках с повышающими трансформаторами, не имеют непосредственной связи с распределительными сетями генераторного напряжения, а нагрузка собственных нужд, как правило, питается через трансформаторы с регулированием напряжения под нагрузкой. На генераторах, работающих на шины генераторного напряжения с присоединенной к ним распределительной сетью, напряжение регулируется в меньших пределах, так как глубокое изменение напряжения оказалось бы неприемлемым для потребителей. При регулировании реактивной мощности на этих генераторах по заданному графику нагрузки системы уровень напряжения на шинах, необходимый для нормальной работы потребителей, достигается изменением коэффициента трансформации трансформаторов с РПН, связывающих генераторы с сетью ВН.
В тех случаях, когда трансформаторы связи генераторов с сетью ВН не имеют РПН, регулирование напряжения на шинах генераторного напряжения производится изменением возбуждения генераторов, с одновременным (автоматическим) изменением их реактивной мощности. Регулирование — встречное и осуществляется по суточному графику напряжения, задаваемому диспетчером электрических сетей.Регулирование напряжения в сетях изменением параметров сети.В некоторых пределах напряжение можно регулировать, изменяя сопротивление питающей сети. Регулирование напряжения в сетях изменением величины реактивной мощности в них. Эффективно регулировать напряжение путем изменения реактивной мощности в сети можно с помощью синхронных компенсаторов или батарей конденсаторов при включении их параллельно нагрузке.
studfiles.net
Электроснабжение внешнее и внутреннее. Энергопоставщики
Электроснабжение ( поставки электрической энергии, энергоснабжения ) — это комплекс технических средств и организационных мероприятий для обеспечения потребителя электроэнергией лицам электрической энергии потребителю с помощью технических средств передачи и распределения электрической энергии на основании договора .Электроснабжение принято разделять на внешнее и внутреннее .Под внешним электроснабжением понимают комплекс сооружений , обеспечивающих передачу электроэнергии от пункта присоединения энергосистемы пункту присоединения потребителя.Внутреннее электроснабжение — комплекс сетей и подстанций , расположенных на территории потребителя.Поставщик электрической энергии (или енергопостачальник ) обязан заключить со своими потребителями договоры, разработанные по Типовому договору о пользовании электрической энергией.
Единицей учета электроэнергии является 1 киловатт-час (кВт * ч). Ежемесячная оплата услуг по электроснабжению определяется умножением тарифа на количество потребленных кВт * час.Как правило, фактическое потребление электроэнергии рассчитывается по показаниям счетчика, снятие показаний которого ежемесячно осуществляет сам потребитель. Энергопоставщик имеет право контролировать правильность снятия показаний приборов а также самостоятельно снимать эти показания.
Надежность электроснабжения
Насчет надежности электроснабжения потребители электроэнергии делятся на три категории:
— Электропотребители I категории — перерыв электроснабжения которых может привести к опасности для жизни людей, значительные материальные потери, повреждения стоимостного оборудования, массовый брак продукции, сбой сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства. Из состава I категории выделяют особую группу потребителей, бесперебойная работа которых необходима для предупреждения угрозы жизни людей, взрывов и пожаров, повреждения драгоценных ме оборудования.
— Электропотребители II категории — перерыв электроснабжения которых приводит к массового недоотпуска продукции, массовым простоем рабочих, механизмов и промышленного транспорта, нарушению жизнедеятельности значительного количества городских и сельских жителей.
— Электропотребители III категории — все остальные потребители электроэнергии, которые не подпадают под определение I и II категорий.
Энергопоставщики — участники оптового рынка электрической энергии, которые покупают электрическую энергию на этом рынке с целью продажи ее потребителям.
Электрическая подстанция ( рус. подстанция электрическая , англ. electric substation , нем. elektrische Unterstation f, Unterwerk n, Unterzentrale f ) — электроустановка, предназначенная для преобразования и распределения электрической энергии. В зависимости от назначения могут быть трансформаторными (ТП) или преобразовательными (ЧП)
Понравилось это:
Нравится Загрузка...
Похожее
vetrodvig.ru
Электрическая сеть - это... Что такое Электрическая сеть?
Высоковольтная линия электропередачиЭлектрическая сеть — совокупность электроустановок предназначенных для передачи и распределения электроэнергии от электростанции к потребителю. ГОСТ 24291-90 даёт следующее определение электрической сети[1]:
Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии.
Классификация электрических сетей
Электрические сети принято классифицировать по назначению (области применения), масштабным признакам, и по роду тока.
- Назначение, область применения
- Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
- Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.)
- Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
- Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
- Масштабные признаки, размеры сети
- Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
- Региональные сети: сети масштаба региона (в России - уровня субъектов Федерации). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
- Районные сети, распределительные сети. Имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольшие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
- Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
- Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и маленькими потоками мощности (десятки и сотни киловатт).
- Род тока
- Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называются «фазой». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
- Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потребителей. Переменный ток передаётся к потребителю от распределительного щита или подстанции по двум проводам (т. н. «фаза» и «ноль»). Потенциал «нуля» совпадает с потенциалом земли, однако конструктивно «ноль» отличается от провода заземления.
- Постоянный ток: большинство контактных сетей, некоторые сети автономного электроснабжения, а также ряд специальных сетей сверхвысокого и ультравысокого напряжения, имеющих пока ограниченное распространение.
Принципы работы
Электрические сети осуществляют передачу, распределение и преобразование электроэнергии в соответствии с возможностями источников и требованиями потребителей.
Переменный ток
Большинство крупных источников электроэнергии — электростанции — построено с использованием генераторов переменного тока. Кроме того, амплитудное напряжение переменного тока может быть легко изменено при помощи трансформаторов, что позволяет повышать и понижать напряжение в широких пределах. Основные потребители электроэнергии также ориентированы на непосредственное использование переменного тока. Мировым стандартом генерации, передачи и преобразования электроэнергии является использование переменного трёхфазного тока. В России и европейских странах промышленная частота тока равна 50 герц, в США, Японии и ряде других стран — 60 герц.
Переменный однофазный ток используется многими бытовыми потребителями и получается из переменного трёхфазного тока путём объединения потребителей в группы по фазам. При этом каждой группе потребителей выделяется одна из трёх фаз, а второй провод («ноль»), используемый при передаче однофазного тока, является общим для всех групп и в своей начальной точке заземляется.
Классы напряжения
При передаче большой электрической мощности при низком напряжении возникают большие омические потери из-за больших значений протекающего тока. Формула δS = I²R описывает потерю мощности в зависимости от сопротивления линии и протекающего тока. Для снижения потерь уменьшают протекающий ток: при снижении тока в 2 раза омические потери снижаются в 4 раза. Согласно формуле полной электрической мощности S = I×U, для передачи такой же мощности при пониженном токе необходимо во столько же раз повысить напряжение. Таким образом, большие мощности целесообразно передавать при высоком напряжении. Однако строительство высоковольтных сетей сопряжено с рядом технических трудностей; кроме того, непосредственно потреблять электроэнергию с высоким напряжением крайне проблематично для конечных потребителей.
В связи с этим сети разбивают на участки с разным классом напряжения (уровнем напряжения). Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения: от 750 кВ и выше (1150 кВ, 1500 кВ) - Ультравысокий, 750 кВ, 500 кВ, 330 кВ - сверхвысокий, 220 кВ, 110 кВ - ВН, высокое напряжение, 35 кВ - СН-1, среднее первое напряжение, 20 кВ, 10 кВ, 6 кВ, 1 кВ - СН-2, среднее второе напряжение, 0,4 кВ, 220 В, 110 В и ниже - НН, низкое напряжение.
Преобразование напряжения
Как правило, генераторы источника и потребители работают с низким номинальным напряжением. Потери энергии в линиях обратно пропорциональны квадрату напряжения, поэтому для снижения потерь электроэнергию выгодно передавать на высоких напряжениях. Для этого на выходе от генератора его повышают, а на входе потребителя его понижают при помощи трансформаторов.
Структура сети
Электрическая сеть может иметь очень сложную структуру, обусловленную территориальным расположением потребителей, источников, требованиями надёжности и другими соображениями. В сети выделяют линии электропередачи, которые соединяют подстанции. Линии могут быть одинарными и двойными (двухцепными), иметь ответвления (отпайки). К подстанциям, как правило, подходит несколько линий. Внутри подстанции происходит преобразование напряжения и распределение потоков электроэнергии между подходящими линиями. Для соединения линий и оборудования внутри подстанций используются электрические коммутаторы (англ. Commutator (electric)) различных типов.
Для наглядного представления структуры сети используется специальное начертание схемы сети, однолинейная схема, представляющая три провода трёх фаз в виде одной линии. На схеме отображаются линии, секции и системы шин, коммутаторы, трансформаторы, устройства защиты.
Структура сети электроснабжения может динамически изменяться путём переключения коммутаторов. Это необходимо для отключения аварийных участков сети, для временного отключения участков при ремонте. Структура сети также может быть изменена для оптимизации электрического режима сети.
Основные компоненты сети
Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей . Это осуществляется при помощи линии электропередачи — специальных инженерных сооружений, состоящих из проводников электрического тока (провод — неизолированный проводник, или кабель — изолированный проводник), сооружений для размещения и прокладки (опоры, эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты (грозозащитные тросы, разрядники, заземление).
Примечания
- ↑ ГОСТ 19431-84 "Энергетика и электрификация. Термины и определения"
См. также
biograf.academic.ru
Электрические сети Википедия
Высоковольтная линия электропередачиЭлектрическая сеть — совокупность электроустановок, предназначенных для передачи и распределения электроэнергии от электростанции к потребителю.
Классификация электрических сетей
- Назначение, область применения
- Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
- Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.)
- Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
- Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
- Масштабные признаки, размеры сети
- Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
- Региональные сети: сети масштаба региона (в России — уровня субъектов Федерации). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
- Районные сети, распределительные сети: имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольшие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
- Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
- Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и малыми потоками мощности (десятки и сотни киловатт).
- Род тока
- Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называются «фазой». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
- Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потребителей. Переменный ток передаётся к потребителю от распределительного щита или подстанции по двум проводам (т.н. «фаза» и «ноль»). Потенциал «нуля» совпадает с потенциалом земли, однако конструктивно «ноль» отличается от провода заземления.
- Постоянный ток: большинство контактных сетей, некоторые сети автономного электроснабжения, а также ряд специальных сетей сверхвысокого и ультравысокого напряжения, имеющих пока ограниченное распространение.
Принципы работы
Переменный ток
Большинство крупных источников электроэнергии — электростанции — построено с использованием генераторов переменного тока. Кроме того, амплитудное напряжение переменного тока может быть легко изменено при помощи силовых трансформаторов, что позволяет повышать и понижать напряжение в широких пределах. Основные потребители электроэнергии также ориентированы на непосредственное использование переменного тока. Мировым стандартом генерации, передачи и преобразования электроэнергии является использование переменного трёхфазного тока. В России и европейских странах промышленная частота тока равна 50 герц, в США, Японии и ряде других стран — 60 герц.
Переменный однофазный ток используется многими бытовыми потребителями и получается из переменного трёхфазного тока путём объединения потребителей в группы по фазам. При этом каждой группе потребителей выделяется одна из трёх фаз, а второй провод («ноль»), используемый при передаче однофазного тока, является общим для всех групп и в своей начальной точке заземляется.
Классы напряжения
При передаче большой электрической мощности при низком напряжении возникают большие омические потери из-за больших значений протекающего тока. Формула δS = I²R описывает потерю мощности в зависимости от сопротивления линии и протекающего тока. Для снижения потерь уменьшают протекающий ток: при снижении тока в 2 раза омические потери снижаются в 4 раза. Согласно формуле полной электрической мощности S = I×U, для передачи такой же мощности при пониженном токе необходимо во столько же раз повысить напряжение. Таким образом, большие мощности целесообразно передавать при высоком напряжении. Однако строительство высоковольтных сетей сопряжено с рядом технических трудностей; кроме того, непосредственно потреблять электроэнергию с высоким напряжением крайне проблематично для конечных потребителей.
В связи с этим сети разбивают на участки с разным классом напряжения (уровнем напряжения). Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения[1]:
- от 750 кВ и выше (1150 кВ, 1500 кВ) — Ультравысокий,
- 750 кВ, 500 кВ, 400 кВ (европейский стандарт) — Сверхвысокий,
- 330 кВ (Европа), 220 кВ, 150 кВ (юг Украины), 110 кВ (Европа) — ВН, Высокое напряжение,
- 35 кВ, 33 кВ (Европа), 20 кВ (Европа, сельские сети) — СН-1, Среднее первое напряжение,
- 10 кВ (Европа, городские сети), 6 кВ, 3 кВ — СН-2, Среднее второе напряжение,
- 24 кВ, 22 кВ, 18 кВ, 15,75 кВ (наиболее распространённое), 13 кВ, (3 кВ) — напряжение на выводах генераторов
- 0,69 кВ (европейский промышленный), 0,4 кВ (400/230В — основной стандарт), 0,23 кВ (220/127 В), 110 В (старый европейский, США бытовой) и ниже — НН, низкое напряжение.
- для безопасной работы с электроинструментом, аппаратами и машинами существуют термины FELV, PELV и SELV (англ.)русск.. Регламентируются стандартами DIN/VDE 0100-410, BS 7671, BS EN 60335, IEC 61140 Protection against electric shock и IEC 60364-4-41 Low-voltage electrical installations; правилами «AS/NZS 3000 Wiring Rules» и т. д.
Уровень напряжения (иногда «диапазон напряжения» или «тарифный уровень напряжения», или «тарифный уровень (диапазон, класс) напряжения», или «класс напряжения») – это понятие, также используемое:
- в тарифном регулировании – при установлении тарифов на передачу электроэнергии
- в применении тарифов на передачу электроэнергии в расчётах за услуги по передаче электроэнергии
По «уровням напряжения» тарифы дифференцируются, то есть различаются по величине. Чем выше «уровень напряжения», тем ниже величина тарифа. Поэтому потребители стремятся подтвердить наиболее высокий «уровень напряжения».
Преобразование напряжения
Преобразование напряженияКак правило, генераторы источника и потребители работают с низким номинальным напряжением. Потери энергии в линиях обратно пропорциональны квадрату напряжения, поэтому для снижения потерь электроэнергию выгодно передавать на высоких напряжениях. Для этого на выходе от генератора его повышают, а на входе потребителя его понижают при помощи силовых трансформаторов.
Структура сети
Электрическая сеть может иметь очень сложную структуру, обусловленную территориальным расположением потребителей, источников, требованиями надёжности и другими соображениями. В сети выделяют линии электропередачи, которые соединяют подстанции. Линии могут быть одинарными и двойными (двухцепными), иметь ответвления (отпайки). К подстанциям, как правило, подходит несколько линий. Внутри подстанции происходит преобразование напряжения и распределение потоков электроэнергии между подходящими линиями. Для соединения линий и оборудования внутри подстанций используются электрические коммутаторы различных типов.
Для наглядного представления структуры сети используется специальное начертание схемы сети, однолинейная схема, представляющая три провода трёх фаз в виде одной линии. На схеме отображаются линии, секции и системы шин, коммутаторы, трансформаторы, устройства защиты.
Структура сети электроснабжения может динамически изменяться путём переключения коммутаторов. Это необходимо для отключения аварийных участков сети, для временного отключения участков при ремонте. Структура сети также может быть изменена для оптимизации электрического режима сети.
Основные компоненты сети
Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей. Это осуществляется при помощи линии электропередачи — специальных инженерных сооружений, состоящих из проводников электрического тока (провод — неизолированный проводник, или кабель — изолированный проводник), сооружений для размещения и прокладки (опоры, эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты (грозозащитные тросы, разрядники, заземление).
Примечания
Ссылки
wikiredia.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.