20.01.2025

Закон ома напряжение: Электрическое сопротивление. Закон Ома для участка цепи (Гребенюк Ю.В.)

Закон Ома. Онлайн расчёт для постоянного и переменного тока.



Онлайн расчёт электрических величин напряжения, тока и мощности для участка цепи,
полной цепи, цепи
с резистивными, ёмкостными и индуктивными элементами.
Теория и практика для начинающих.





Начнём с терминологии.
Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одной области
электрической цепи в другую.
Силой электрического тока (I) является величина, которая численно равна количеству заряда Δq, протекающего через заданное поперечное
сечение проводника S за единицу времени Δt: I = Δq/Δt.
Напряжение электрического тока между точками A и B электрической цепи — физическая величина, значение которой равно работе эффективного
электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.
Омическое (активное) сопротивление — это сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии
постоянного тока.

Теперь можно переходить к закону Ома.

Закон Ома был установлен экспериментальным путём в 1826 году немецким физиком Георгом Омом и назван в его честь.

По большому счёту, Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях,
определяющих зависимость между электрическими величинами, такими как: напряжение, сопротивление и сила тока исключительно
для проводников, обладающих постоянным сопротивлением.
При расчёте напряжений и токов в нелинейных цепях, к примеру, таких, которые содержат полупроводниковые или электровакуумные приборы,
этот закон в простейшем виде уже использоваться не может.

Тем не менее, закон Ома был и остаётся основным законом электротехники, устанавливающим связь силы
электрического тока с сопротивлением и напряжением.


Формулировка закона Ома для участка цепи может быть представлена так: сила тока в проводнике прямо
пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника

и записана в следующем виде:
I=U/R,

Закон Ома для участка цепигде

I – сила тока в проводнике, измеряемая в амперах [А];

U – электрическое напряжение (разность потенциалов), измеря- емая в вольтах [В];

R – электрическое сопротивление проводника, измеряемое в омах [Ом]
.

Производные от этой формулы приобретают такой же незамысловатый вид:
R=U/I и U=R×I.

Зная любые два из трёх приведённых параметров можно произвести и расчёт величины мощности,
рассеиваемой на резисторе
.
Мощность является функцией протекающего тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам,
также являющимся производными от основной формулы закона Ома:
P(Вт) = U(В)×I(А) = I2(А)×R(Ом) =
U2(В)/R(Ом)

Формулы, описывающие закон Ома, настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной
крупной статьи на страницах уважающего себя сайта.

Не заслуживают, так не заслуживают. Деревянные счёты Вам в помощь, уважаемые дамы и рыцари!

Считайте, учитывайте размерность, не стирайте из памяти, что:

Единицы измерения напряжения: 1В=1000мВ=1000000мкВ;

Единицы измерения силы тока:1А=1000мА=1000000мкА;

Единицы измерения сопротивления:1Ом=0.001кОм=0.000001МОм;

Единицы измерения мощности:1Вт=1000мВт=100000мкВт
.

Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатую таблицу, позволяющую в онлайн
режиме проверить расчёты, связанные со знанием формул закона Ома.

ТАБЛИЦА ДЛЯ ПРОВЕРКИ РЕЗУЛЬТАТОВ РАСЧЁТОВ ЗАКОНА ОМА.

Вводить в таблицу нужно только два имеющихся у Вас параметра, остальные посчитает таблица.



Все наши расчёты проводились при условии, что значение внешнего сопротивления
R значительно превышает внутреннее
сопротивление источника напряжения rвнутр.

Если это условие не соблюдается, то под величиной R следует
принять сумму внешнего и внутреннего сопротивлений:
R = Rвнешн + rвнутр
,
после чего закон приобретает солидное название — закон Ома для полной цепи:
I=U/(R+r) .

Для многозвенных цепей возникает необходимость преобразования её к эквивалентному виду:
Закон Ома для сложной цепи

Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов
определяются исходя из формулы:
1/Rll = 1/R4+1/R5.

А онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких проводников можно найти на странице
ссылка на страницу.

Теперь, что касается закона Ома для переменного тока.

Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше,
остаётся в силе.


Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока — под значением U следует
понимать действующее (эффективное) значение амплитуды переменного сигнала
.

А что такое действующее значение и как оно связано с амплитудой сигнала переменного тока?

Приведём диаграммы для нескольких различных форм сигнала.

Закон Ома для переменного тока

Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2),
сигнала треугольной формы, сигнала пилообразной формы.

Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов — это максимальное значение, которого достигает
амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.

Рассчитываем действующее значение напряжение интересующей нас формы:

Для синуса U = Uд = Uа/√2;

для треугольника и пилы U = Uд = Uа/√3;

для меандра U = Uд = Uа.

С этим разобрались!

Теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости
в цепи переменного тока
.

В общем случае смотреться это будет так:

Закон Ома для переменного тока

А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z,
состоящее из активного, ёмкостного и индуктивного сопротивлений
.

Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих
трёх элементов обойтись не удаётся, и формула приобретает вид:
Закон Ома для переменного тока


Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице
ссылка на страницу и знаем, что величины эти зависят от частоты, протекающего через них тока
и описываются формулами:
XC = 1/(2πƒС) ,   XL = 2πƒL .

Нарисуем таблицу для расчёта полного сопротивления цепи для переменного тока.


Количество вводимых элементов должно быть не менее одного, при наличии
индуктивного или емкостного элемента — необходимо указать значение частоты
f !


КАЛЬКУЛЯТОР ДЛЯ ОНЛАЙН РАСЧЁТА ПОЛНОГО СОПРОТИВЛЕНИЯ ЦЕПИ.

Теперь давайте рассмотрим практический пример применения закона Ома в цепях переменного тока и рассчитаем
простенький бестрансформаторный источник питания.


Закон Ома для переменного тока

Токозадающими цепями в данной схеме являются элементы R1 и С1.

Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.

Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.

Зададимся током через стабилитрон с некоторым запасом — 200мА.

С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в — 12в = 208в.

Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА: Z = 208в/200мА = 1,04кОм.

Резистор R1 является токоограничивающим и выбирается в пределах 10-100 Ом в зависимости от максимального тока
нагрузки.

Зададимся номиналами R1 — 30 Ом, С1 — 1 Мкф, частотой сети f — 50 Гц и подставим всё это хозяйство в таблицу.

Получили полное сопротивление цепи, равное 3,183кОм. Многовато будет — надо увеличивать ёмкость С1.

Поигрались туда-сюда, нашли нужное значение ёмкости — 3,18 Мкф, при котором Z = 1,04кОм.

Всё — закон Ома выполнил свою функцию, расчёт закончен, всем спать полчаса!

 

Закон Ома для электрической цепи

Закон Ома для электрической цепиЭлектрический ток, как и любое другое физическое явление подчиняется определенным законам. Так, в 1826 году, Георг Ом вывел эмпирический закон, который способен объяснить зависимость силы тока, напряжения, а также особенностей проводника в электроцепи. В дальнейшем вносились определенные изменения, сам закон Ома для электрической цепи модифицировался, и на данный момент ученые его интерпретируют в четырех вариантах, которые мы и рассмотрим.

В ходе практических исследований, на их базе, ученый смог определить зависимость силы тока и напряжения от специфики проводника, по которому протекает ток. Если быть точнее, то каждый материал имеет определенное сопротивление и на определенном участке цепи, сила тока вычисляется отношением напряжения и сопротивления.

I = U/ R,

где I – сила тока, U – напряжение, R – сопротивление проводника.

Фактически, этот закон аналогичен прохождению воды по трубам: чем больше диаметр трубы и напор, тем больше ее выльется в конечной точке.

Закон Ома для замкнутой цепи

Подобная интерпретация подразумевает наличие источника питания, а также проводника, по которому протекает ток. В этом случае, помимо сопротивления на отдельно взятом участке следует учитывать и то, которое возникает в ИП. Учитывая эти факторы, можно сказать, что сила тока будет равна отношению электродвижущей силы к сумме сопротивлений.

I = E/ Rвн+r,

где Е – ЭДС, Rвн – внешнее сопротивление, а r соответственно внутреннее.

Закон Ома для замкнутой цепи можно объяснить доступным языком. Электродвижущая сила по определению должна полноценно обеспечивать постоянную разницу потенциалов, и эта сила может иметь неприродное происхождение: химическое, если в качестве источника используется батарейка или механическая, в случае подключения к электрической цепи генератора. При подключении медной проволоки с идентичным сечением к батарейке и аккумулятору. Эффект должен быть таким, что по этому проводнику, в котором сопротивление практически отсутствует, должен пойти ток с величиной, стремящейся к бесконечности. Однако этого не происходит и разница в показателях будет существенной, а во втором случае, проволока и вовсе может перегореть. Именно поэтому в расчет берется внутреннее сопротивление источника питания, чтобы описать подобное явление.

Закон ома для неоднородного участка цепи

Перед тем, как записать формулу для подобной интерпретации закона, следует разобраться в таких понятиях, как линейные и нелинейные участки цепи.

Если сопротивление никаким образом не зависит от тока и подаваемого напряжения, то с ростом второго параметра, первый будет прямо пропорционально возрастать и наоборот, то есть зависимость можно описать прямой линией. Подобная зависимость относится к линейным участкам цепи и сопротивление имеет аналогичное название.

Однако вышеизложенный вариант считается идеальным и его можно смоделировать лишь в идеальных условиях, что фактически невозможно, ведь, как минимум, окружающая среда вносит свои коррективы. В этом случае, рост напряжения не будет прямо пропорциональным силе тока и на графике зависимость будет изображаться в виде кривой.кривая

На рисунке изображено два графика, первый из которых описывает линейную зависимость, а второй нелинейную.

Чтобы отчетливо понимать разницу между этими понятиями, рассмотрим принцип работы обычной электрической лампы накаливания. При прохождении тока по нити, температура в значительной степени повышается, что приводит к заметному росту сопротивления. Соответственно, при возрастании напряжения, сила тока будет увеличиваться медленнее, то есть не линейно.

Примечание: в некоторых ситуациях, некоторыми внешними факторами пренебрегают по причине того, что они очень незначительны и в числовом эквиваленте никоим образом не могут повлиять на общую картину. Это значит, что нелинейная зависимость на графике фактически совпадает с линейной.

Учитывая вышесказанное, можно установить следующую зависимость:

I = U/ R = (f1 – f2) + E/ R,

Где f1 и f2 – потенциалы (соответственно f1 – f2 называется разницей потенциалов), E – ЭДС неоднородного участка цепи, а R – суммарное сопротивление на этом же участке.

Нужно упомянуть и о том, что электродвижущая сила не всегда в этом случае будет иметь положительное значение. Если направление тока источника будет аналогичным с направлением в электрической сети, протонов будет больше, чем электронов (положительных и отрицательных частиц), то в этом случае величина E будет иметь значение со знаком «+», в иной ситуации, этот параметр будет со знаком «-».

Закон Ома для переменного тока

Если в электроцепи имеется емкость или инертность, то этот факт следует однозначно учитывать при расчётах силы тока. Они имеют собственные показатели сопротивления, что приводит к ситуации, которая будет иметь переменный характер. В случае Закона Ома для переменного тока формула записывается следующим образом:

I = U/ Z, где

I – сила тока, U – напряжение, а Z – суммарное значение сопротивления на всех участках электрической цепи (этот параметр именуется еще, как импеданс).

Как говорилось изначально, закон Ома считается эмпирическим. Это обозначает то, что он может не всегда работать и выполнять вычисления на его основе не представляется возможным. Подобная ситуация может сложиться в нескольких случаях:

  • в ситуации, когда электросеть имеет высокую частоту и электромагнитное поле может сильно изменяться за короткие промежутки времени;
  • при наличии проводников, которые обладают свойствами сверхпроводимости, расположенных в условиях низких температурных показателей;
  • при перегреве проводника под воздействием проходящего по нему тока, отношение напряжения и сопротивления может носить переменный, неоднородный характер;
  • если проводник (диэлектрик) находится под высоким напряжением;
  • светодиодных лампах;
  • в полупроводниках и аналогичных устройствах.

На основе этого закона, можно произвести вывод некоторых формул математическим путем. С их помощью можно производить разнообразные расчеты.

Снимок2

Поделиться ссылкой:

Похожее

Есть ли отличия закона Ома для цепей переменного и постоянного напряжения?

Закон Ома является одним из основных законов электротехники. Он довольно прост и применяется при расчете практически любых электрических цепей. Но данный закон имеет некоторые особенности работы в цепях переменного и постоянного тока при наличии в цепи реактивных элементов. Эти особенности нужно помнить всегда.

Закон Ома для цепи постоянного тока

Классическая схема закона Ома выглядит так:

Закон Ома для постоянного тока с наличием только активного сопротивления

А звучит и того проще – ток, протекающей на участке цепи, будет равен отношению напряжения цепи к ее сопротивлению, что выражается формулой:

Закон Ома для цепи постоянного тока

Но ведь мы знаем, что помимо активного сопротивления R, существует и реактивные сопротивления индуктивности ХL и емкости XC. А ведь согласитесь, что электрические схемы с чисто активным сопротивлением встречаются крайне редко. Давайте рассмотрим схему, в которой последовательно включена катушка индуктивности L, конденсатор С и резистор R:

Закон Ома для постоянного тока с наличием активного и реактивного сопротивления

Помимо чисто активного сопротивления R, индуктивность L и емкость С имеют и реактивные сопротивления  ХL и XC, которые выражены формулами:

Реактивное сопротивление индуктивности и емкости

Где ω это циклическая частота сети, равная ω = 2πf. f – частота сети в Гц.

Для постоянного тока частота равна нулю (f = 0), соответственно реактивное сопротивление индуктивности станет равным нулю (формула (1)), а емкости – бесконечности (2), что приведет к разрыву электрической цепи. Отсюда можно сделать вывод, что реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для цепи переменного тока

Если рассматривать классическую электрическую цепь и на переменном токе, то она практически ничем не будет отличаться от постоянного тока, только источником напряжения (вместо постоянного — переменное):

Закон Ома для переменного тока с наличием только активного сопротивления

Соответственно и формула для такого контура останется прежней:

Закон Ома для цепи постоянного тока

Но если мы усложним схему и добавим к ней реактивных элементов:

Закон Ома для переменного тока с наличием активного и реактивного сопротивления

Ситуация изменится кардинально. Теперь f у нас не равна нулю, что сигнализирует о том, что помимо активного, в цепь вводится и реактивное сопротивление, которое также может влиять на величину тока, протекаемого в контуре и приводить к резонансу. Теперь полное сопротивление контура (обозначается как Z) и оно не равно активному Z ≠ R. Формула примет следующий вид:

Полное сопротивление цепи переменного тока

Соответственно немного изменится и формула для закона Ома:

Закон Ома для цепи переменного тока

Почему это важно?

Знание этих нюансов позволит избежать серьезных проблем, которые могут возникнуть при неправильном подходе к решению некоторых электротехнических задач. Например, в контур переменного напряжения подключена катушка индуктивности со следующими параметрами: fном = 50 Гц, Uном = 220 В, R = 0,01 Ома, L = 0,03 Гн. Ток, протекающий через данную катушку будет равен:

Закон Ома для цепи переменного тока

Где:

Формула полного сопротивления катушки индуктивности

В случае, если подать на эту же катушку постоянное напряжение с таким же значением, получим:

Подача вместо переменного напряжения постоянное

Мы видим, что ток катушки возрастает в разы, что приводит к выходу из строя элементов контура.

Три закона Ома

Недавно мы выпустили переиздание книги Фрэнка Вильчека (Frank Wilczek) «Тонкая физика. Масса, эфир и объединение всемирных сил» в мягком переплете. Автор, лауреат Нобелевской премии по физике, излагает современные взгляды на нашу невероятную Вселенную и прогнозирует новый золотой век фундаментальной физической науки. ХХ2 уже публиковали один отрывок из этой замечательной книги, теперь публикуют новый — о том, почему эквивалентные равенства могут поведать нам о разных явлениях.

Из третьей главы. Второй закон Ома

Второй закон Эйнштейна, m = E/c2, поднимает вопрос о том, может ли масса быть понята более глубоко — как энергия. Можем ли мы создать, как выразился Уилер, «массу без массы»?

Когда я ещё только собирался начать преподавать в Принстоне, мой друг и наставник Сэм Трейман позвал меня в свой кабинет. Он хотел поделиться со мной своей мудростью. Сэм вытащил из ящика стола потрёпанное руководство в мягкой обложке и сказал мне: «Во время Второй мировой войны ВМС приходилось в спешке обучать новобранцев налаживанию и использованию радиосвязи. Многие из этих новобранцев прибывали прямо с ферм, так что быстро ввести их в курс дела было очень трудно. С помощью той великолепной книги командованию военно-морского флота это удалось. Это шедевр педагогики. Особенно первая глава. Взгляни».

Он вручил мне книгу, открытую на первой главе. Она называлась «Три закона Ома». Я был знаком с одним законом Ома, известным соотношением V = IR, который связывает напряжение (V), силу тока (I) и сопротивление (R) в электрической цепи.

Это оказалось первым законом Ома.

Мне было очень интересно узнать, каковы два других закона Ома. Перевернув несколько хрупких пожелтевших страниц, я обнаружил второй закон Ома: I = V/R. Я предположил, что третий закон Ома формулируется как R = I/V, и оказался прав.

Открывать новые законы легко

Тем, кто знаком с элементарной алгеброй, так очевидно, что эти три закона эквивалентны друг другу, что данная история воспринимается как шутка. Однако в ней заключён глубокий смысл. (Кроме того, в ней есть и неглубокий смысл, который, как мне кажется, Сэм хотел до меня донести. При обучении начинающих вы должны несколько раз сказать одно и то же, но по-разному. Соотношения, которые бесспорны для профессионала, могут не быть таковыми для новичка. Студенты не будут возражать против объяснения очевидного. Очень немногие люди обижаются, когда вы позволяете им почувствовать себя умными.)

Глубокий смысл содержит заявление великого физика-теоретика Поля Дирака. Когда его спросили, как он открывает новые законы природы, Дирак ответил: «Я играю с уравнениями». Суть в том, что различные способы написания одного и того же уравнения могут говорить о совершенно разных вещах, даже если они являются логически эквивалентными.

Второй закон Эйнштейна

Второй закон Эйнштейна формулируется следующим образом:

m = E/c2.

Первый закон Эйнштейна — это, разумеется, E = mc2. Здорово, что первый закон предполагает возможность получения большого количества энергии из небольшого количества массы. Он наводит на мысль о ядерных реакторах и ядерных бомбах.

Второй закон Эйнштейна предполагает нечто совершенно иное.

Он предполагает возможность объяснения того, как масса возникает из энергии.

На самом деле этот закон неправильно называть «вторым».

В оригинальной работе Эйнштейна 1905 года вы не найдёте уравнения E = mc2. Вы встретите уравнение m = E/c2. (Поэтому, возможно, нам следует назвать его нулевым законом Эйнштейна.)

На самом деле в качестве названия этой статьи используется вопрос: «Зависит ли инерция тела от содержащейся в нем энергии?»

Другими словами, может ли некоторое количество массы тела возникать из энергии содержащегося в нем вещества? С самого начала Эйнштейн размышлял о концептуальных основах физики, а не о возможности создания бомб или реакторов.

Понятие энергии играет гораздо более важную роль в современной физике, чем понятие массы. Это проявляется во многих отношениях. Сохраняется именно энергия, а не масса. Именно энергия фигурирует в таких фундаментальных уравнениях, как уравнение Больцмана для статистической механики, уравнения Шрёдингера для квантовой механики и уравнение Эйнштейна для гравитации. Масса в более техническом смысле проявляется в качестве метки для неприводимых представлений группы Пуанкаре.

(Я даже не буду пытаться объяснить, что означает предыдущее утверждение, к счастью, суть заключается в самом факте утверждения.)

Таким образом, вопрос Эйнштейна бросает вызов. Если мы сможем объяснить массу в терминах энергии, мы улучшим наше описание мира. В этом случае в нашем рецепте нам потребуется меньшее количество ингредиентов. Второй закон Эйнштейна позволяет дать хороший ответ на вопрос, который мы задали ранее. Откуда берётся масса? Может быть, из энергии. На самом деле, как мы увидим далее, в основном так и есть.

Источник: https://22century.ru/popular-science-publications/tonkaya-fizika-massa-efir-i-obedinenie-vsemirnyh-sil?

Закон

Ома — утверждение, формула, решенные примеры, проверка, часто задаваемые вопросы

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1 — 3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar

            • RS Aggarwal
              • RS Aggarwal Решения класса 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma Class 8
              • Решения RD Sharma Class 9
              • Решения RD Sharma Class 10
              • Решения RD Sharma Class 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • 9000 Pro Числа Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убыток
              • Полиномиальные уравнения
              • Разделение фракций
            • Microology
        • FORMULAS
          • Математические формулы
          • Алгебраные формулы
          • Тригонометрические формулы
          • Геометрические формулы
        • КАЛЬКУЛЯТОРЫ
          • Математические калькуляторы
          • 0003000

          • 000
          • 000 Калькуляторы по химии
          • 000
          • 000
          • 000 Образцы документов для класса 6
          • Образцы документов CBSE для класса 7
          • Образцы документов CBSE для класса 8
          • Образцы документов CBSE для класса 9
          • Образцы документов CBSE для класса 10
          • Образцы документов CBSE для класса 1 1
          • Образцы документов CBSE для класса 12
        • Вопросники предыдущего года CBSE
          • Вопросники предыдущего года CBSE, класс 10
          • Вопросники предыдущего года CBSE, класс 12
        • HC Verma Solutions
          • HC Verma Solutions Класс 11 Физика
          • Решения HC Verma Физика класса 12
        • Решения Лакмира Сингха
          • Решения Лакмира Сингха класса 9
          • Решения Лахмира Сингха класса 10
          • Решения Лакмира Сингха класса 8
        • 9000 Класс

        9000BSE 9000 Примечания3 2 6 Примечания CBSE

      • Примечания CBSE класса 7
      • Примечания

      • Примечания CBSE класса 8
      • Примечания CBSE класса 9
      • Примечания CBSE класса 10
      • Примечания CBSE класса 11
      • Примечания 12 CBSE
    • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
    • CBSE Примечания к редакции класса 10
    • CBSE Примечания к редакции класса 11
    • Примечания к редакции класса 12 CBSE
  • Дополнительные вопросы CBSE
    • Дополнительные вопросы по математике класса 8 CBSE
    • Дополнительные вопросы по науке 8 класса CBSE
    • Дополнительные вопросы по математике класса 9 CBSE
    • Дополнительные вопросы по математике класса 9 CBSE Вопросы
    • CBSE Class 10 Дополнительные вопросы по математике
    • CBSE Class 10 Science Extra questions
  • CBSE Class
    • Class 3
    • Class 4
    • Class 5
    • Class 6
    • Class 7
    • Class 8 Класс 9
    • Класс 10
    • Класс 11
    • Класс 12
  • Учебные решения
  • Решения NCERT
    • Решения NCERT для класса 11
      • Решения NCERT для класса 11 по физике
      • Решения NCERT для класса 11 Химия
      • Решения NCERT для биологии класса 11
      • Решение NCERT s Для класса 11 по математике
      • NCERT Solutions Class 11 Accountancy
      • NCERT Solutions Class 11 Business Studies
      • NCERT Solutions Class 11 Economics
      • NCERT Solutions Class 11 Statistics
      • NCERT Solutions Class 11 Commerce
    • NCERT Solutions for Class 12
      • Решения NCERT для физики класса 12
      • Решения NCERT для химии класса 12
      • Решения NCERT для биологии класса 12
      • Решения NCERT для математики класса 12
      • Решения NCERT, класс 12, бухгалтерский учет
      • Решения NCERT, класс 12, бизнес-исследования
      • NCERT Solutions Class 12 Economics
      • NCERT Solutions Class 12 Accountancy Part 1
      • NCERT Solutions Class 12 Accountancy Part 2
      • NCERT Solutions Class 12 Micro-Economics
      • NCERT Solutions Class 12 Commerce
      • NCERT Solutions Class 12 Macro-Economics
    • NCERT Solut Ионы Для класса 4
      • Решения NCERT для математики класса 4
      • Решения NCERT для класса 4 EVS
    • Решения NCERT для класса 5
      • Решения NCERT для математики класса 5
      • Решения NCERT для класса 5 EVS
    • Решения NCERT для класса 6
      • Решения NCERT для математики класса 6
      • Решения NCERT для науки класса 6
      • Решения NCERT для класса 6 по социальным наукам
      • Решения NCERT для класса 6 Английский язык
    • Решения NCERT для класса 7
      • Решения NCERT для математики класса 7
      • Решения NCERT для науки класса 7
      • Решения NCERT для социальных наук класса 7
      • Решения NCERT для класса 7 Английский язык
    • Решения NCERT для класса 8
      • Решения NCERT для математики класса 8
      • Решения NCERT для науки 8 класса
      • Решения NCERT для социальных наук 8 класса ce
      • Решения NCERT для класса 8 Английский
    • Решения NCERT для класса 9
      • Решения NCERT для класса 9 по социальным наукам
    • Решения NCERT для математики класса 9
      • Решения NCERT для математики класса 9 Глава 1
      • Решения NCERT для математики класса 9, глава 2
      • Решения NCERT

      • для математики класса 9, глава 3
      • Решения NCERT для математики класса 9, глава 4
      • Решения NCERT для математики класса 9, глава 5
      • Решения NCERT

      • для математики класса 9, глава 6
      • Решения NCERT для математики класса 9, глава 7
      • Решения NCERT

      • для математики класса 9, глава 8
      • Решения NCERT для математики класса 9, глава 9
      • Решения NCERT для математики класса 9, глава 10
      • Решения NCERT

      • для математики класса 9, глава 11
      • Решения

      • NCERT для математики класса 9 Глава 12
      • Решения NCERT

      • для математики класса 9 Глава 13
      • NCER Решения T для математики класса 9 Глава 14
      • Решения NCERT для математики класса 9 Глава 15
    • Решения NCERT для науки класса 9
      • Решения NCERT для науки класса 9 Глава 1
      • Решения NCERT для науки класса 9 Глава 2
      • Решения NCERT для науки класса 9 Глава 3
      • Решения NCERT для науки класса 9 Глава 4
      • Решения NCERT для науки класса 9 Глава 5
      • Решения NCERT для науки класса 9 Глава 6
      • Решения NCERT для науки класса 9 Глава 7
      • Решения NCERT для науки класса 9 Глава 8
      • Решения NCERT для науки класса 9 Глава 9
      • Решения NCERT для науки класса 9 Глава 10
      • Решения NCERT для науки класса 9 Глава 12
      • Решения NCERT для науки класса 9 Глава 11
      • Решения NCERT для науки класса 9 Глава 13
      • Решения NCERT

      • для науки класса 9 Глава 14
      • Решения NCERT для класса 9 по науке Глава 15
    • Решения NCERT для класса 10
      • Решения NCERT для класса 10 по социальным наукам
    • Решения NCERT для математики класса 10
      • Решения NCERT для класса 10 по математике Глава 1
      • Решения NCERT для математики класса 10, глава 2
      • Решения NCERT для математики класса 10, глава 3
      • Решения NCERT для математики класса 10, глава 4
      • Решения NCERT для математики класса 10, глава 5
      • Решения NCERT для математики класса 10, глава 6
      • Решения NCERT для математики класса 10, глава 7
      • Решения NCERT для математики класса 10, глава 8
      • Решения NCERT для математики класса 10, глава 9
      • Решения NCERT для математики класса 10, глава 10
      • Решения NCERT для математики класса 10 Глава 11
      • Решения NCERT для математики класса 10 Глава 12
      • Решения NCERT для математики класса 10 Глава ter 13
      • Решения NCERT для математики класса 10, глава 14
      • Решения NCERT для математики класса 10, глава 15
    • Решения NCERT для науки класса 10
      • Решения NCERT для класса 10, наука, глава 1
      • Решения NCERT для класса 10 Наука, глава 2
      • Решения NCERT для класса 10, глава 3
      • Решения NCERT для класса 10, глава 4
      • Решения NCERT для класса 10, глава 5
      • Решения NCERT для класса 10, глава 6
      • Решения NCERT для класса 10 Наука, глава 7
      • Решения NCERT для класса 10, глава 8,
      • Решения NCERT для класса 10, глава 9
      • Решения NCERT для класса 10, глава 10
      • Решения NCERT для класса 10, глава 11
      • Решения NCERT для класса 10 Наука Глава 12
      • Решения NCERT для класса 10 Наука Глава 13
      • NCERT S Решения для класса 10 по науке Глава 14
      • Решения NCERT для класса 10 по науке Глава 15
      • Решения NCERT для класса 10 по науке Глава 16
    • Программа NCERT
    • NCERT
  • Commerce
    • Class 11 Commerce Syllabus
      • Учебный план класса 11
      • Учебный план бизнес-класса 11 класса
      • Учебный план экономического факультета 11
    • Учебный план по коммерции класса 12
      • Учебный план класса 12
      • Учебный план по бизнесу 12 класса
      • Учебный план
      • Класс 12 Образцы документов для торговли
        • Образцы документов для предприятий класса 11
        • Образцы документов для коммерческих предприятий класса 12
      • TS Grewal Solutions
        • TS Grewal Solutions Class 12 Accountancy
        • TS Grewal Solutions Class 11 Accountancy
      • Отчет о движении денежных средств 9 0004

      • Что такое предпринимательство
      • Защита прав потребителей
      • Что такое основные средства
      • Что такое баланс
      • Что такое фискальный дефицит
      • Что такое акции
      • Разница между продажами и маркетингом

      9100003

    • ICC
    • Образцы документов ICSE
    • Вопросы ICSE
    • ML Aggarwal Solutions
      • ML Aggarwal Solutions Class 10 Maths
      • ML Aggarwal Solutions Class 9 Maths
      • ML Aggarwal Solutions Class 8 Maths
      • ML Aggarwal Solutions Class 7 Maths Решения Математика класса 6
    • Решения Селины
      • Решения Селины для класса 8
      • Решения Селины для класса 10
      • Решение Селины для класса 9
    • Решения Фрэнка
      • Решения Фрэнка для математики класса 10
      • Франк Решения для математики 9 класса

      9000 4

    • ICSE Class
      • ICSE Class 6
      • ICSE Class 7
      • ICSE Class 8
      • ICSE Class 9
      • ICSE Class 10
      • ISC Class 11
      • ISC Class 12
  • 900 IAS
      900 Экзамен по IAS
    • Экзамен по государственной службе
    • Программа UPSC
    • Бесплатная подготовка к IAS
    • Текущие события
    • Список статей IAS
    • Мок-тест IAS 2019
      • Мок-тест IAS 2019 1
      • Мок-тест IAS4

      2

    • Комиссия по государственным услугам
      • Экзамен KPSC KAS
      • Экзамен UPPSC PCS
      • Экзамен MPSC
      • Экзамен RPSC RAS ​​
      • TNPSC Group 1
      • APPSC Group 1
      • Экзамен BPSC
      • Экзамен WPSC
      • Экзамен GPSC
    • Вопросник UPSC 2019
      • Ответный ключ UPSC 2019
    • 900 10 Коучинг IAS
      • Коучинг IAS Бангалор
      • Коучинг IAS Дели
      • Коучинг IAS Ченнаи
      • Коучинг IAS Хайдарабад
      • Коучинг IAS Мумбаи
  • JEE4
  • 9000 JEE 9000 JEE 9000 Advanced

  • Образец статьи JEE
  • Вопросник JEE
  • Биномиальная теорема
  • Статьи JEE
  • Квадратное уравнение
  • NEET
    • Программа BYJU NEET
    • NEET 2020
    • NEET Eligibility
    • NEET Eligibility
    • NEET Eligibility 2020 Подготовка
    • NEET Syllabus
    • Support
      • Разрешение жалоб
      • Служба поддержки
      • Центр поддержки
  • Государственные советы
    • GSEB
      • GSEB Syllabus
      • GSEB Образец

        003 GSEB Books

    • MSBSHSE
      • MSBSHSE Syllabus
      • MSBSHSE Учебники
      • MSBSHSE Образцы статей
      • MSBSHSE Вопросники
    • AP Board
    • AP Board
    • AP Board
        9000

      • AP 2 Year Syllabus
    • MP Board
  • .Калькулятор закона

    Ом

    Укажите любые 2 значения и нажмите «Рассчитать», чтобы получить другие значения в уравнениях закона Ома V = I × R и P = V × I.

    Связано: счетчик резисторов

    Закон Ома

    Закон

    Ома гласит, что ток через проводник между двумя точками прямо пропорционален напряжению. Это верно для многих материалов в широком диапазоне напряжений и токов, а сопротивление и проводимость электронных компонентов, изготовленных из этих материалов, остаются постоянными.Закон Ома верен для цепей, которые содержат только резистивные элементы (без конденсаторов или катушек индуктивности), независимо от того, является ли управляющее напряжение или ток постоянным (DC) или изменяющимся во времени (AC). Его можно выразить с помощью ряда уравнений, обычно всех трех вместе, как показано ниже.

    Где:

    В — напряжение в вольтах
    R — сопротивление в Ом
    Я ток в амперах

    Электроэнергетика

    Мощность — это скорость, с которой электрическая энергия передается по электрической цепи в единицу времени, обычно выражается в ваттах в Международной системе единиц (СИ).Электроэнергия обычно вырабатывается электрическими генераторами и поставляется предприятиям и домам через электроэнергетику, но также может поступать от электрических батарей или других источников.

    В резистивных цепях закон Джоуля можно объединить с законом Ома для получения альтернативных выражений для количества рассеиваемой мощности, как показано ниже.

    Где:

    P — мощность в ваттах

    Колесо формулы закона Ома

    Ниже приведено колесо формул для соотношений по закону Ома между P, I, V и R.По сути, это то, что делает калькулятор, и это просто представление алгебраической манипуляции с уравнениями выше. Чтобы использовать колесо, выберите переменную для поиска в середине колеса, а затем используйте соотношение для двух известных переменных в поперечном сечении круга.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *