Электронная проводимость металлов. Зависимость сопротивления от температуры. Зависимость сопротивления от температуры проводника
Зависимость сопротивления проводника от температуры — Мегаобучалка
Если пропустить ток от аккумулятора через стальную спираль, то амперметр покажет уменьшение силы тока. Это означает, что с сопротивлением температуры сопротивление проводника меняется.
Если при температуре, равной 0°С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:
(1)
Коэффициент называется температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры.
Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при повышении температура на 1 К.
Для всех металлов >0 и незначительно меняется с изменением температуры. У растворов электролитов сопротивление с ростом температуры не уменьшается, а увеличивается. Для них <0.
При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счет изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (1) подставить значения
и :
Так как мало меняется при изменении температуры, то можно считать, что удельное сопротивление проводника линейно зависит от температуры.
С приближением температуры к абсолютному нулю удельное сопротивление монокристаллов становится очень малым. Этот факт свидетельствует о том, что в идеальной кристаллической решетке металла электроны перемещаются под действием электрического поля, не взаимодействуя с ионами решетки. Электроны взаимодействуют лишь с ионами, не находящимися в узлах кристаллической решетки.
При повышении температуры возрастает число дефектов кристаллической решетки из-за тепловых колебаний ионов, – и это приводит к возрастанию удельного сопротивления кристалла.
Сверхпроводимость
В 1911 г. нидерландский ученый Камерлинг-Оннес обнаружил, что при понижении температуры ртути до 4,1 К ее удельное сопротивление скачком уменьшается до нуля. Явление уменьшения удельного сопротивления до нуля при температуре, отличной от абсолютного нуля, называется сверхпроводимостью. Материалы, обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками.
Прохождение тока в сверхпроводнике происходит без потерь энергии, поэтому однажды возбужденный в сверхпроводящем кольце электрический ток может существовать неограниченно долго без изменения.
Сверхпроводящие вещества уже используются в электромагнитах. Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя, т. к. очень сильное магнитное поле разрушает сверхпроводящее состояние. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя.
Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г.
В 1986 г. была открыта высокотемпературная сверхпроводимость керамик – соединений лантана, бария, меди и кислорода. Сверхпроводимость таких керамик сохраняется до температур около 100 К.
megaobuchalka.ru
18.Закон для участка цепи. Электрическое сопротивление проводников и его зависимость от температуры. Сверхпроводимость.
Немецкий физик Г. Ом (1787—1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на кон-
цах проводника:
I=U/R, (98.1)
где R — электрическое сопротивление проводника. Уравнение (98.1) выражает закон Ома для участка цепи (не содержащего источника э.д.с.): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Формула (98.1) позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Величина
G=1/R
называется электрической проводимостью
проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения 5:
R=l/S. (98.2)
где — коэффициент пропорциональности, характеризующий материал проводника. Он называется удельным электрическим сопротивлением. Единица удельного электрического сопротивления — ом-метр (Ом•м). Наименьшим удельным сопротивлением обладают серебро (1,6•10-8 Ом•м) и медь (1,7•10-8Ом•м). j=E. (98.5)
Выражение (98.5) — закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.
Опыт показывает, что в первом приближении изменение удельного сопротивления, а следовательно, и сопротивления, с температурой описывается линейным законом:
где и 0, R и R0 — соответственно удельные сопротивления и сопротивления проводника при t и 0 °С, — температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К-1. Значит, температурная зависимость сопротивления может быть представлена в виде
R=R0T,
гдеТ — термодинамическая температура. Качественная температурная зависимость сопротивления металла представлена на рис. 147 (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах Тк (0,14 — 20 К), называемых критическими, характерных для каждого ве-
щества, скачкообразно уменьшается до нуля (кривая 2), т.е. металл становится абсолютным проводником. Впервые это явление, называемое сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за низких их критических температур. Правда, в настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.
На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Применение же в качестве рабочего вещества термометра сопротивления полупроводников, приготовленных по специальной технологии,— термисторов — позволяет отмечать изменение температуры в миллионные доли кельвин и использовать термисторы для измерения температур в случае малых габаритов полупроводников.
studfiles.net
Электронная проводимость металлов. Зависимость сопротивления от температуры
Как вы знаете, электрический ток могут проводить и твердые, и жидкие, и газообразные тела. На практике, чаще всего применяются металлические проводники. Можно привести много примеров: линии электропередач, обеспечивающие передачу энергии от различных источников тока к потребителям.
Генераторы, электронагревательные приборы и так далее. Как мы уже говорили ранее, хорошими проводниками являются некоторые растворы. Наиболее распространенный пример — это батарейка, в которой используется электролит. Примеров использования батарей и аккумуляторов тоже достаточно: они используются в автомобилях, ноутбуках, мобильных телефонах, планшетах и так далее.
Напомним, что помимо проводников, существуют такие тела, как полупроводники и диэлектрики. Как вы знаете, диэлектрики используются для изоляции проводки или электроприборов. Полупроводники представляют довольно большой интерес, поскольку их проводимостью достаточно легко управлять, а это открывает большие возможности.
Со всем выше перечисленным мы познакомимся по окончании курса физики десятого класса, и начнем с проводимости металлов.
Мы уже много раз говорили, что электрический ток — это упорядоченное движение заряженных частиц, и всегда утверждали, что в металлах носителями свободных зарядов являются электроны. Дело в том, что за этим утверждением стоят многочисленные опыты разных ученых. Мы рассмотрим несколько таких опытов.
В 1901 году, Эдуард Рикке провел следующий эксперимент: он подключил к электрической цепи металлические цилиндры, плотно прилегающие друг к другу. В центре находился алюминиевый цилиндр, а по краям — медные.
В течение приблизительно одного года через эти цилиндры протекал электрический ток. После окончания эксперимента, все три цилиндра были исследованы на предмет изменения химического состава. Выяснилось, что никаких изменений не произошло, за исключением очень незначительной диффузии. Это послужило доказательством того, что ток в металлах обусловлен именно движением электронов. Если бы в движении участвовали какие-то другие частицы (например, ионы кристаллической решетки), то это, неизбежно привело бы к изменению химического состава.
Другой опыт, был проведен в 1912 году учеными Леонидом Мандельштамом и Николаем Папалекси. К катушке, которая могла вращаться вокруг своей оси, был подключен гальванометр при помощи скользящих контактов.
При резкой остановке катушки, гальванометр регистрировал кратковременные токи. Дело в том, что при резкой остановке заряженные частицы какое-то время могли двигаться по инерции относительно проводника (то есть проволоки катушки). Поскольку сила тока характеризуется зарядом, а инерция — массой частиц, переносимый при торможении заряд пропорционален отношению заряда частиц к их массе. Из этого эксперимента было определено это соотношение, которое совпало с найденным до этого из других опытов отношением модуля заряда электрона к его массе:
Таким образом, эксперимент Мандельштама и Папалекси еще раз подтвердил, что ток в металлах обусловлен движением электронов. Поэтому, проводимость металлов называют электронной проводимостью.
Вы уже знаете, что электроны в металлах двигаются с постоянной скоростью из-за того, что взаимодействуют с ионами кристаллической решетки. Это приводит к тому, что скорость движения электронов пропорциональна напряженности электрического поля:
В свою очередь, напряженность пропорциональна напряжению. Из чего мы можем заключить, что скорость электронов в проводнике пропорциональна напряжению на концах этого проводника:
Напомним, что не так давно мы выяснили, что скорость также пропорциональна и силе тока:
Из этого мы можем сделать вывод, что 𝐼 ~ 𝑈, а это подтверждает закон Ома.
Теперь, когда мы выяснили, что электрический ток в металлах действительно обусловлен движением электронов, следует обратить внимание на одно из следствий этого явления. Электроны взаимодействуют с ионами кристаллической решетки и, тем самым нагревают проводник. Но, чем больше проводник нагревается, тем более интенсивными становятся колебания частиц проводника и тем больше они мешают движению электронов. Следовательно, в металлах существует определенная зависимость их электрического сопротивления от температуры.
Экспериментально была установлена зависимость сопротивления от температуры:
В формуле мы видим коэффициент пропорциональности α, который называется температурным коэффициентом сопротивления. Мы можем немного преобразовать выражение, описывающее зависимость сопротивления от температуры, чтобы дать определение температурному коэффициенту сопротивления:
Итак, температурный коэффициент сопротивления численно равен относительному изменению сопротивления при нагревании на 1 оС. Под относительным изменением сопротивления понимается отношение изменения сопротивления к конечному сопротивлению. Поскольку мы выяснили, что у металлов сопротивление увеличивается с увеличением температуры, можно сделать вывод, что для всех металлов коэффициент α > 0.
Вспомним, что сопротивление проводника зависит от трех величин: удельное сопротивление материала, из которого сделан проводник, площадь поперечного сечения проводника и его длина:
Поскольку геометрические размеры проводника при нагревании меняются ничтожно мало, можно сделать вывод, что изменяется удельное сопротивление:
Из полученной формулы можно сделать вывод, что удельное сопротивление металлов линейно зависит от температуры.
Эта зависимость используется в так называемых термометрах сопротивления. Термометр сопротивления представляет собой проводник, зависимость сопротивления которого от температуры хорошо известна. Чаще всего используют платиновую проволоку. Измеряя ее сопротивление можно судить о температуре. Преимущество подобного термометра заключается в том, что он пригоден для измерения температур в значительно более широком диапазоне, чем это возможно, используя жидкостные термометры.
Возникает вопрос: а что будет происходить при очень низких температурах? Этим вопросом еще в 1911 году задался Хейке Камерлинг-Оннес. В качестве опыта, он поместил ртуть в жидкий гелий и наблюдал, как постепенно уменьшается удельное сопротивление с падением температуры. Однако, когда температура опустилась до четырех целых одной десятой кельвина, сопротивление резко упало до нуля. Такое явление получило название сверхпроводимости, а температура, при которой наступает это состояние, была названа критической температурой.
Явление сверхпроводимости возникает во многих металлах при достаточно низких температурах (около 25 К). Это явление можно объяснить тем, что при таких низких температурах беспорядочное движение электронов становится очень незначительным. Иными словами, они двигаются, не соударяясь с ионами кристаллической решетки, таким образом, не замедляя своего движения и не нагревая проводник. Конечно, это объяснение существенно упрощено, но оно дает общее представление о том, как возникает явление сверхпроводимости. Тот факт, что в состоянии сверхпроводимости проводники не нагреваются, открывает большие перспективы. Если найти способ создать явление сверхпроводимости при обычных (комнатных) температурах, то можно было бы передавать электроэнергию по проводам без всяких потерь.
Сверхпроводимость используется для создания электромагнитов, которые могут создавать магнитное поле в течение длительного времени без всяких потерь энергии. Также, сверхпроводящие магниты используются в ускорителях элементарных частиц (таких как Большой Адронный Коллайдер). В 1986 году удалось создать некоторые соединения, переходящие в состояние сверхпроводимости при температурах около 100 К. На сегодняшний день, нет известных соединений, в которых бы наблюдалась сверхпроводимость при температуре выше 138 К (при нормальном давлении).
Рассмотрим еще один интереснейший эффект явления сверхпроводимости, который получил название эффекта Мейснера. Поместим два керамических цилиндра в специальную емкость и зафиксируем их.
При температуре 93 К эти цилиндры становятся сверхпроводящими. Для охлаждения можно использовать жидкий азот. Если теперь поднести к цилиндрам достаточно сильный магнит, то он зависнет над ними. Как вы знаете из курса физики девятого класса, при изменении магнитного потока через контур, возникает индукционный ток. В обычных условиях, этот ток был бы незначительным и кратковременным. Однако, в состоянии сверхпроводимости, сопротивление равно нулю, поэтому, ток продолжает течь по цилиндрам. Этот ток создает магнитное поле, которое и вызывает силы отталкивания между цилиндрами и магнитом. Если же теперь мы поместим над цилиндрами магнит в виде колесика и раскрутим его, то он будет продолжать крутиться до тех пор, пока цилиндры находятся в состоянии сверхпроводимости. Заметим, что магнит крутится, не касаясь цилиндров и не нагреваясь, то есть никаких потерь энергии не происходит. Тем не менее, нет возможности получить сколь угодно большой ток в сверхпроводниках, поскольку определенное критическое значение силы тока разрушает состояние сверхпроводимости. Однако, конструкции, основанные на подобном принципе, могли бы существенно усовершенствовать электродвигатели и генераторы, значительно упростить устройства для аккумулирования энергии и многое другое. Поэтому, сегодня получение сверхпроводимости при комнатных температурах является одной из очень важных задач в физике.
videouroki.net
Зависимость сопротивления проводника от температуры.
⇐ ПредыдущаяСтр 6 из 15Следующая ⇒Если пропустить ток от аккумулятора через стальную спираль, то амперметр покажет уменьшение силы тока. Это означает, что с сопротивлением температуры сопротивление проводника меняется.
Если при температуре, равной 0°С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:
(1)
Коэффициент называется температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры.
Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при повышении температура на 1 К.
Для всех металлов >0 и незначительно меняется с изменением температуры. У растворов электролитов сопротивление с ростом температуры не уменьшается, а увеличивается. Для них <0.
При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счет изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (1) подставить значения
и :
Так как мало меняется при изменении температуры, то можно считать, что удельное сопротивление проводника линейно зависит от температуры.
С приближением температуры к абсолютному нулю удельное сопротивление монокристаллов становится очень малым. Этот факт свидетельствует о том, что в идеальной кристаллической решетке металла электроны перемещаются под действием электрического поля, не взаимодействуя с ионами решетки. Электроны взаимодействуют лишь с ионами, не находящимися в узлах кристаллической решетки.
При повышении температуры возрастает число дефектов кристаллической решетки из-за тепловых колебаний ионов, – и это приводит к возрастанию удельного сопротивления кристалла.
Сверхпроводимость
В 1911 г. нидерландский ученый Камерлинг-Оннес обнаружил, что при понижении температуры ртути до 4,1 К ее удельное сопротивление скачком уменьшается до нуля. Явление уменьшения удельного сопротивления до нуля при температуре, отличной от абсолютного нуля, называется сверхпроводимостью. Материалы, обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками.
Прохождение тока в сверхпроводнике происходит без потерь энергии, поэтому однажды возбужденный в сверхпроводящем кольце электрический ток может существовать неограниченно долго без изменения.
Сверхпроводящие вещества уже используются в электромагнитах. Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя, т. к. очень сильное магнитное поле разрушает сверхпроводящее состояние. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя.
Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г.
В 1986 г. была открыта высокотемпературная сверхпроводимость керамик – соединений лантана, бария, меди и кислорода. Сверхпроводимость таких керамик сохраняется до температур около 100 К.
©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
arhivinfo.ru
Зависимость сопротивления проводника от температуры.
⇐ ПредыдущаяСтр 5 из 13Следующая ⇒Каждое вещество имеет свое удельное сопротивление. Причем сопротивление будет зависеть от температуры проводника. Убедимся в этом, проведя следующий опыт:
Пропустим ток через стальную спираль. В цепи со спиралью подключим последовательно амперметр. Он покажет некоторое значение. Теперь будем нагревать спираль в пламени газовой горелки. Значение силы тока, которое покажет амперметр, уменьшится. То есть, сила тока будет зависеть от температуры проводника.
Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании его на 1 Кельвин.
Для всех металлов температурный коэффициент больше нуля. При изменениях температуры он будет незначительно меняться. Поэтому, если изменение температуры невелико, то температурный коэффициент можно считать постоянным, и равным среднему значению из этого интервала температур.
Растворы электролитов с ростом температуры сопротивление уменьшается. То есть для них температурный коэффициент будет меньше нуля.
Сопротивление проводника зависит от удельного сопротивления проводника и от размеров проводника. Так как размеры проводника при нагревании меняются незначительно, то основной составляющей изменения сопротивления проводника является удельное сопротивление.
Когда мы повышаем температуру, то увеличивается амплитуда колебаний ионов в узлах кристаллической решетки. Следовательно, свободные электроны будут чаще с ними сталкиваться. При столкновении они будет терять направленность своего движения. Следовательно, сила тока будет уменьшаться.
Зависимость сопротивления проводника R от температуры:
При нагревании размеры проводника меняются мало, а в основном меняется удельное сопротивление.Удельное сопротивление проводника зависит от температуры:
где ро - удельное сопротивление при 0 градусов, t - температура, - температурный коэффициент сопротивления
(т.е. относительное изменение удельного сопротивления проводника при нагревании его на один градус)
Вопрос
Билет 6.
Вопрос. Закон сохранения импульса. Реактивное движение. К.Э. Циолковский - основоположник теории космических полетов. История развития космонавтики.
Закон сохранения импульса.
Силы, возникающие в результате взаимодействия тела, принадлежащего системе с телом, не принадлежащим ей, называются внешними силами.
Силы, возникающие в результате взаимодействия тел, принадлежащих системе, называются внутренними силами.
Импульс системы тел могут изменить только внешние силы.
Закон сохранения импульса формулируется так: если сумма внешних сил равна нулю, то импульс системы сохраняется.
Импульс также сохраняется в изолированной системе, потому что в этой системе на тела вообще не действуют внешние силы.
Реактивное движение.
Под реактивным движением понимают движение тела, возникающее при отделении некоторой части с определенной скоростью относительно него. При этом возникает реактивная сила.
Например, можно надуть детский резиновый шарик и отпустить его. Шарик стремительно полетит. Реактивная сила будет действовать до тех пор, пока продолжается истечение воздуха.
В настоящее время получили широкое распространение реактивные двигатели. Ими оснащены не только ракеты, но и большая часть современных самолетов.
Любой реактивный двигатель должен иметь, по крайней мере, две составные части:
· Камера сгорания — в нем происходит освобождение химической энергии топлива и её преобразование в тепловую энергию газов.
· Реактивное сопло — в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем самым создавая реактивную тягу.
Основным техническим параметром, характеризующим реактивный двигатель, является тяга — усилие, которое развивает двигатель в направлении движения аппарата.
К. Э. Циолковский — основоположник теории космических полетов. Научное доказательство возможности использования ракеты для полетов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы было дано впервые русским ученым и изобретателем Константином Эдуардовичем Циолковским (1857—1935). В его труде «Исследование мировых пространств реактивными приборами», опубликованном в 1903 г., была выведена формула, устанавливающая связь между скоростью ракеты, скоростью истечения газов, массой ракеты и массой горючего. Циолковский теоретически обосновал возможность создания ракеты, способной разогнаться до скорости 8 км/с и улететь в космическое пространство. В качестве горючего для такой ракеты он предлагал использовать жидкий водород, а в качестве окислителя — жидкий кислород. Конструкция жидкостной ракеты, по К. Э. Циолковскому, представлена на рисунке 62. В 1929 г. К. Э. Циолковский разработал идею создания «космических ракетных поездов». Теоретические работы К. Э. Циолковского более чем на полвека опередили уровень развития техники. Эти работы послужили основой для создания современной теоретической и практической космонавтики.
Успехи СССР в освоении космического пространства. Идеи К. Э. Циолковского о создании «космических ракетных поездов» — многоступенчатых ракет — были осуществлены советскими учеными и техниками под руководством выдающегося советского ученого, академика Сергея Павловича Королева (1907—1966).
Первый в мире искусственный спутник Земли был с помощью ракеты запущен в Советском Союзе 4 октября 1957 г.
12 апреля 1961 г. гражданин Советского Союза Юрий Алексеевич Гагарин(1934—1968) на космическом корабле «Восток» совершил первый в мире полет в космическом пространстве.
Советские космические ракеты доставили на Землю образцы грунта с поверхности Луны, осуществили мягкую посадку автоматических межпланетных станций на поверхность Венеры и Марса, вывели на околоземную орбиту долговременные орбитальные станции.
Полеты космических кораблей с космонавтами на борту, автоматических межпланетных станций и искусственных спутников Земли используются как для научных исследований в околоземном и межпланетном пространстве, так и для решения практических задач народного хозяйства.
С помощью спутников и автоматических межпланетных станций изучены состав и строение атмосферы Земли на больших высотах, химический состав и физические свойства атмосферы Венеры и Марса, получены изображения поверхности Луны, Венеры и Марса.
Спутники связи «Молния» через наземные станции «Орбита» осуществляют трансляцию телевизионных программ и телефонную связь на любых расстояниях в пределах нашей страны.
Метеорологические спутники «Метеор» используются для исследования процессов, происходящих в земной атмосфере, и составления прогнозов погоды.
Специальные спутники помогают морским судам и самолетам определять свои координаты. Исследования поверхности материков и океанов, выполняемые космонавтами при полетах на орбитальных станциях, позволяют оценить и уточнить природные ресурсы в различных районах земного шара.
2 вопрос. Электрический ток в вакууме. Термоэлектронная эмиссия. Применение вакуумных приборов.
Вакуум - среда, которая содержит газ при давлении значительно ниже атмосферного.
Для создания тока в вакууме необходим специальный источник заряженных частиц. Действие такого источника обычно основано на термоэлектронной эмиссии.
Термоэлектронная эмиссия - явление вырывания электронов из металла при высокой температуре.
Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.
При подключении электродов к источнику тока между ними возникает электрическое поле.
Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами – вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.
Вопрос
Билет 7.
Читайте также:
lektsia.com
Зависимость сопротивления проводника от температуры.
Каждое вещество имеет свое удельное сопротивление. Причем сопротивление будет зависеть от температуры проводника. Убедимся в этом, проведя следующий опыт:
Пропустим ток через стальную спираль. В цепи со спиралью подключим последовательно амперметр. Он покажет некоторое значение. Теперь будем нагревать спираль в пламени газовой горелки. Значение силы тока, которое покажет амперметр, уменьшится. То есть, сила тока будет зависеть от температуры проводника.
Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании его на 1 Кельвин.
Для всех металлов температурный коэффициент больше нуля. При изменениях температуры он будет незначительно меняться. Поэтому, если изменение температуры невелико, то температурный коэффициент можно считать постоянным, и равным среднему значению из этого интервала температур.
Растворы электролитов с ростом температуры сопротивление уменьшается. То есть для них температурный коэффициент будет меньше нуля.
Сопротивление проводника зависит от удельного сопротивления проводника и от размеров проводника. Так как размеры проводника при нагревании меняются незначительно, то основной составляющей изменения сопротивления проводника является удельное сопротивление.
Когда мы повышаем температуру, то увеличивается амплитуда колебаний ионов в узлах кристаллической решетки. Следовательно, свободные электроны будут чаще с ними сталкиваться. При столкновении они будет терять направленность своего движения. Следовательно, сила тока будет уменьшаться.
Зависимость сопротивления проводника R от температуры:
При нагревании размеры проводника меняются мало, а в основном меняется удельное сопротивление.Удельное сопротивление проводника зависит от температуры:
где ро - удельное сопротивление при 0 градусов, t - температура, - температурный коэффициент сопротивления
(т.е. относительное изменение удельного сопротивления проводника при нагревании его на один градус)
Вопрос
Билет 6.
Вопрос. Закон сохранения импульса. Реактивное движение. К.Э. Циолковский - основоположник теории космических полетов. История развития космонавтики.
Закон сохранения импульса.
Силы, возникающие в результате взаимодействия тела, принадлежащего системе с телом, не принадлежащим ей, называются внешними силами.
Силы, возникающие в результате взаимодействия тел, принадлежащих системе, называются внутренними силами.
Импульс системы тел могут изменить только внешние силы.
Закон сохранения импульса формулируется так: если сумма внешних сил равна нулю, то импульс системы сохраняется.
Импульс также сохраняется в изолированной системе, потому что в этой системе на тела вообще не действуют внешние силы.
Реактивное движение.
Под реактивным движением понимают движение тела, возникающее при отделении некоторой части с определенной скоростью относительно него. При этом возникает реактивная сила.
Например, можно надуть детский резиновый шарик и отпустить его. Шарик стремительно полетит. Реактивная сила будет действовать до тех пор, пока продолжается истечение воздуха.
В настоящее время получили широкое распространение реактивные двигатели. Ими оснащены не только ракеты, но и большая часть современных самолетов.
Любой реактивный двигатель должен иметь, по крайней мере, две составные части:
· Камера сгорания — в нем происходит освобождение химической энергии топлива и её преобразование в тепловую энергию газов.
· Реактивное сопло — в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем самым создавая реактивную тягу.
Основным техническим параметром, характеризующим реактивный двигатель, является тяга — усилие, которое развивает двигатель в направлении движения аппарата.
К. Э. Циолковский — основоположник теории космических полетов. Научное доказательство возможности использования ракеты для полетов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы было дано впервые русским ученым и изобретателем Константином Эдуардовичем Циолковским (1857—1935). В его труде «Исследование мировых пространств реактивными приборами», опубликованном в 1903 г., была выведена формула, устанавливающая связь между скоростью ракеты, скоростью истечения газов, массой ракеты и массой горючего. Циолковский теоретически обосновал возможность создания ракеты, способной разогнаться до скорости 8 км/с и улететь в космическое пространство. В качестве горючего для такой ракеты он предлагал использовать жидкий водород, а в качестве окислителя — жидкий кислород. Конструкция жидкостной ракеты, по К. Э. Циолковскому, представлена на рисунке 62. В 1929 г. К. Э. Циолковский разработал идею создания «космических ракетных поездов». Теоретические работы К. Э. Циолковского более чем на полвека опередили уровень развития техники. Эти работы послужили основой для создания современной теоретической и практической космонавтики.
Успехи СССР в освоении космического пространства. Идеи К. Э. Циолковского о создании «космических ракетных поездов» — многоступенчатых ракет — были осуществлены советскими учеными и техниками под руководством выдающегося советского ученого, академика Сергея Павловича Королева (1907—1966).
Первый в мире искусственный спутник Земли был с помощью ракеты запущен в Советском Союзе 4 октября 1957 г.
12 апреля 1961 г. гражданин Советского Союза Юрий Алексеевич Гагарин(1934—1968) на космическом корабле «Восток» совершил первый в мире полет в космическом пространстве.
Советские космические ракеты доставили на Землю образцы грунта с поверхности Луны, осуществили мягкую посадку автоматических межпланетных станций на поверхность Венеры и Марса, вывели на околоземную орбиту долговременные орбитальные станции.
Полеты космических кораблей с космонавтами на борту, автоматических межпланетных станций и искусственных спутников Земли используются как для научных исследований в околоземном и межпланетном пространстве, так и для решения практических задач народного хозяйства.
С помощью спутников и автоматических межпланетных станций изучены состав и строение атмосферы Земли на больших высотах, химический состав и физические свойства атмосферы Венеры и Марса, получены изображения поверхности Луны, Венеры и Марса.
Спутники связи «Молния» через наземные станции «Орбита» осуществляют трансляцию телевизионных программ и телефонную связь на любых расстояниях в пределах нашей страны.
Метеорологические спутники «Метеор» используются для исследования процессов, происходящих в земной атмосфере, и составления прогнозов погоды.
Специальные спутники помогают морским судам и самолетам определять свои координаты. Исследования поверхности материков и океанов, выполняемые космонавтами при полетах на орбитальных станциях, позволяют оценить и уточнить природные ресурсы в различных районах земного шара.
2 вопрос. Электрический ток в вакууме. Термоэлектронная эмиссия. Применение вакуумных приборов.
Вакуум - среда, которая содержит газ при давлении значительно ниже атмосферного.
Для создания тока в вакууме необходим специальный источник заряженных частиц. Действие такого источника обычно основано на термоэлектронной эмиссии.
Термоэлектронная эмиссия - явление вырывания электронов из металла при высокой температуре.
Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.
При подключении электродов к источнику тока между ними возникает электрическое поле.
Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами – вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.
Вопрос
Билет 7.
Читайте также:
lektsia.info
Зависимость сопротивления проводника от температуры
§3. Зависимость сопротивления проводника от температуры. СверхпроводникиС увеличением температуры сопротивление проводника возрастает по линейному закону
где R0 - сопротивление при t=0ᶹ С; R- сопротивление при температуре t, α - термический коэффициент сопротивления, показывает как меняется сопротивление проводника при изменении температуры на 1 градус. Для чистых металлов при не очень низких температурах , т.е. можно записать
При определенных температурах (0,14-20 К), называемых «критическими» сопротивление проводника резко уменьшается до 0 и металл переходит в сверхпроводящее состояние. Впервые в 1911 г. Это обнаружил Камерлинг-Оннес для ртути. В 1987 г. разработаны керамики, переходящие в сверхпроводящее состояние при температурах превышающих 100 К, так называемые высокотемпературные сверхпроводники - ВТСП.
§4 Элементарная классическая теория электропроводности металловНосителями тока в металлах являются свободные электроны, т.е. электроны слабо связанные с ионами кристаллической решетки металла. Наличие свободных электронов объясняется тем, что при образовании кристаллической решетки металла при сближении изолированных атомов валентные электроны, слабо связанные с атомными ядрами, отрываются от атома металла, становятся "свободными", обобществленными, принадлежащими не отдельному атому, а всему веществу, и могут перемещаться по всему объему. В классической электронной теории эти электроны рассматриваются как электронный газ, обладающий свойствами одноатомного идеального газа.
Электроны проводимости в отсутствии электрического поля внутри металла хаотически двигаются и сталкиваются с ионами кристаллической решетки металла. Тепловое движение электронов, являясь хаотическим, не может, привести к возникновению тока. Средняя скорость теплового движения электронов
при Т = 300 К.
2. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Выразим силу и плотность тока через скорость v упорядоченного движения электронов в проводнике.
За время dt через поперечное сечение S проводника пройдет N электронов
, ;
следовательно, даже при очень больших плотностях тока средняя скорость упорядоченного движения электронов , обуславливавшего электрический ток, значительно меньше их скорости теплового движения .
- Электрический ток в цепи устанавливается за время , где L-
- Средняя длина свободного пробега электронов λ по порядку величины должна быть равна периоду кристаллической решетки металла λ 10-10 м.
- С ростов температуры увеличивается амплитуда колебаний ионов кристаллической решетки и электрон чаше сталкивается с колеблющимися ионами, поэтому его длина свободного пробега уменьшается, а сопротивление металла растет,
1. (1)
т.к. ~ , n и λ f(T) ρ ~ ,
т.е. из классической теории электропроводности следует, что удельное сопротивление пропорционально корню квадратному из температуры, а из опыта следует, что оно линейно зависит от температуры, ρ ~ Т
2. Дает неправильное значение молярной теплоемкости металлов. Согласно закону Дюлонга и Пти Сμ = 3R, а по классической теории С = 9 / 2R=Сμ ионной решетки = 3R + Сμдноатомного электронного газа = 3/2R.
3. Средняя длина свободного пробега электронов из формулы (1) при подстановке экспериментального значения ρ и теоретического значения дает 10 -8, что на два порядка больше средней длины пробега принимаемой в теории (10-10).
§5. Работа и мощность тока. Закон Джоуля -Ленца
Т.к. заряд переносится в проводнике под действием электростатического поля, то его работа равна
МОЩНОСТЬ - работа, совершаемая в единицу времени
[Р]=Вт (Ватт).
Если ток проходит по неподвижному проводнику, то вся работа тока идет на нагревание металлического проводника, и по закону сохранения энергии
- Закон Джоуля-Ленца.
УДЕЛЬНОЙ МОЩНОСТЬЮ тока называется количество теплоты, выделенное в единице объема, проводника за единицу времени.
- Закон Джоуля-Ленца в дифференциальной форме.
§5 Правила Кирхгофа для разветвленных цепей
Любая точка разветвленной цепи, в которой сходится не менее трех проводников, с током называется УЗЛОМ. При этом ток, входящий в узел, считается положительным, а выходящий - отрицательный,
ПЕРВОЕ ПРАВИЛО КИРХГОФА: алгебраическая сумма токов, сходящихся в узле, равна нулю.
Первое правило Кирхгофа вытекает из закона сохранения заряда (заряд, вошедший в узел, равен вышедшему заряду).
ВТОРОЕ ПРАВИЛО КИРХГОФА: в либом замкнутом контуре произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС. встречающихся в контуре.
При расчете сложных цепей пстоянного тока с применением правил Кирхгофа необходимо:
- Выбрать произвольное направление токов на всех участках цепи; действительное направление токов определится при решении задачи; если искомый ток получился положительным, то направление выбрано правильно, если отрицательным, то его истинное направление противоположно выбранному.
- Выбрать направление обхода контура. Произведение положительно, если ток на данном участке совпадает с направлением обхода, и наоборот. ЭДС положительны, если они создают ток направленный в сторону обхода контура, против - отрицательны.
- Записывается первое правило для N -1 узла.
- Записать второе правило Кирхгофа для замкнутых контуров, которые могут быть выделены в цепи. Каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержащийся в предыдущих контурах.
www.birmaga.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.