Зависимость электрического сопротивления от сечения, длины и материала проводника
Сопротивление различных проводников зависит от материала, из которого они изготовлены.
Можно проверить это практически на следующем опыте.
Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника
Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.
Из этого следует, что сопротивление медного проводника меньше, чем стального, а сопротивление стального проводника меньше, чем никелинового.
Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.
Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.
Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм2 при температуре +20 С°.
Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.
Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм2/м, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,0175 Ом.
Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.
Удельные сопротивления материалов, наиболее часто применяемых в электротехнике
Материал | Удельное сопротивление, Ом*мм2/м |
Серебро | 0,016 |
Медь | 0,0175 |
Алюминий | 0,0295 |
Железо | 0,09-0,11 |
Сталь | 0,125-0,146 |
Свинец | 0,218-0,222 |
Константан | 0,4-0,51 |
Манганин | 0,4-0,52 |
Никелин | 0,43 |
Вольфрам | 0,503 |
Нихром | 1,02-1,12 |
Фехраль | 1,2 |
Уголь | 10-60 |
Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).
Разберем теперь, как влияют размеры проводника, т. е. длина и поперечное сечение, на величину его сопротивления.
Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина. Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2). Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.
Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника
Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.
Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..
Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.
Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.
Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.
Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.
Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой
Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:
электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения..
Математически эта зависимость выражается следующей формулой:
где R—сопротивление проводника в Ом;
ρ — удельное сопротивление материала в Ом*мм2/м;
l — длина проводника в м;
S—площадь поперечного сечения проводника в мм2.
Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле
где π—постоянная величина, равная 3,14;
d—диаметр проводника.
Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.
Так, например, длина проводника определяется по формуле:
Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:
Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:
Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти материал, обладающий таким удельным сопротивлением.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
от чего зависит сопротивление проводника, формулы для расчета
Одним из физических свойств вещества является способность проводить электрический ток. Электропроводимость (сопротивление проводника) зависит от некоторых факторов: длины электрической цепи, особенностей строения, наличия свободных электронов, температуры, тока, напряжения, материала и площади поперечного сечения.
Физический смысл сопротивления
Протекание электрического тока через проводник приводит к направленному движению свободных электронов. Наличие свободных электронов зависит от самого вещества и берется из таблицы Д. И. Менделеева , а именно из электронной конфигурации элемента. Электроны начинают ударяться о кристаллическую решетку элемента и передают энергию последней. В этом случае возникает тепловой эффект при действии тока на проводник.
При этом взаимодействии они замедляются, но затем под действием электрического поля, которое их ускоряет, начинают двигаться с той же скоростью. Электроны сталкиваются огромное количество раз. Этот процесс и называется сопротивлением проводника.
Следовательно, электрическим сопротивлением проводника считается физическая величина, характеризующая отношение напряжения к силе тока.
Что такое электрическое сопротивление: величина, указывающая на свойство физического тела преобразовывать энергию электрическую в тепловую, благодаря взаимодействию энергии электронов с кристаллической решеткой вещества. По характеру проводимости различаются:
- Проводники (способны проводить электрический ток, так как присутствуют свободные электроны).
- Полупроводники (могут проводить электрический ток, но при определенных условиях).
- Диэлектрики или изоляторы (обладают огромным сопротивлением, отсутствуют свободные электроны, что делает их неспособными проводить ток).
Обозначается эта характеристика буквой R и измеряется в Омах (Ом). Применение этих групп веществ является очень значимым для разработки электрических принципиальных схем приборов.
Для полного понимания зависимости R от чего-либо нужно обратить особое внимание на расчет этой величины.
Расчет электрической проводимости
Для расчета R проводника применяется закон Ома, который гласит: сила тока (I) прямо пропорциональна напряжению (U) и обратно пропорциональна сопротивлению.
Формула нахождения характеристики проводимости материала R (следствие из закона Ома для участка цепи): R = U / I.
Для полного участка цепи эта формула принимает следующий вид: R = (U / I) — Rвн, где Rвн — внутреннее R источника питания.
Зависимость проводимости материала
Способность проводника к пропусканию электрического тока зависит от многих факторов: напряжения, тока, длины, площади поперечного сечения и материала проводника, а также от температуры окружающей среды.
В электротехнике для произведения расчетов и изготовления резисторов учитывается и геометрическая составляющая проводника.
От чего зависит сопротивление: от длины проводника — l, удельного сопротивления — p и от площади сечения (с радиусом r) — S = Пи * r * r.
Формула R проводника: R = p * l / S.
Из формулы видно, от чего зависит удельное сопротивление проводника: R, l, S. Нет необходимости его таким способом рассчитывать, потому что есть способ намного лучше. Удельное сопротивление можно найти в соответствующих справочниках для каждого типа проводника (p — это физическая величина равная R материала длиною в 1 метр и площадью сечения равной 1 м².
Однако этой формулы мало для точного расчета резистора, поэтому используют зависимость от температуры.
Влияние температуры окружающей среды
Доказано, что каждое вещество обладает удельным сопротивлением, зависящим от температуры.
Для демонстрации это можно произвести следующий опыт. Возьмите спираль из нихрома или любого проводника (обозначена на схеме в виде резистора), источник питания и обычный амперметр (его можно заменить на лампу накаливания). Соберите цепь согласно схеме 1.
Схема 1 — Электрическая цепь для проведения опыта
Необходимо запитать потребитель и внимательно следить за показаниями амперметра. Далее следует нагревать R, не отключая, и показания амперметра начнут падать при росте температуры. Прослеживается зависимость по закону Ома для участка цепи: I = U / R. В данном случае внутренним сопротивлением источника питания можно пренебречь: это не отразится на демонстрации зависимости R от температуры. Отсюда следует, что зависимость R от температуры присутствует.
Физический смысл роста значения R обусловлен влиянием температуры на амплитуду колебаний (увеличение) ионов в кристаллической решетке. В результате этого электроны чаще сталкиваются и это вызывает рост R.
Согласно формуле: R = p * l / S, находим показатель, который зависит от температуры (S и l — не зависят от температуры). Остается p проводника. Исходя из это получается формула зависимости от температуры: (R — Ro) / R = a * t, где Ro при температуре 0 градусов по Цельсию, t — температура окружающей среды и a — коэффициент пропорциональности (температурный коэффициент).
Для металлов «a» всегда больше нуля, а для растворов электролитов температурный коэффициент меньше 0.
Формула нахождения p, применяемая при расчетах: p = (1 + a * t) * po, где ро — удельное значение сопротивления, взятое из справочника для конкретного проводника. В этом случае температурный коэффициент можно считать постоянным. Зависимость мощности (P) от R вытекает из формулы мощности: P = U * I = U * U / R = I * I * R. Удельное значение сопротивления еще зависит и от деформаций материала, при котором нарушается кристаллическая решетка.
Деформация и удельное сопротивление
При обработке металла в холодной среде при некотором давлении происходит пластическая деформация. При этом кристаллическая решетка искажается и растет R течения электронов. В этом случае удельное сопротивление также увеличивается. Этот процесс является обратимым и называется рекристаллическим отжигом, благодаря которому часть дефектов уменьшается.
При действии на металл сил растяжения и сжатия последний подвергается деформациям, которые называются упругими. Удельное сопротивление уменьшается при сжатии, так как происходит уменьшение амплитуды тепловых колебаний. Направленным заряженным частицам становится легче двигаться. При растяжении удельное сопротивление увеличивается из-за роста амплитуды тепловых колебаний.
Еще одним фактором, влияющим на проводимость, является вид тока, проходящего по проводнику.
Цепи переменного тока
Сопротивление в сетях с переменным током ведет себя несколько иначе, ведь закон Ома применим только для схем с постоянным напряжением. Следовательно, расчеты следует производить иначе.
Полное сопротивление обозначается буквой Z и состоит из алгебраической суммы активного, емкостного и индуктивного сопротивлений.
При подключении активного R в цепь переменного тока под воздействием разницы потенциалов начинает течь ток синусоидального вида. В этом случае формула выглядит: Iм = Uм / R, где Iм и Uм — амплитудные значения силы тока и напряжения. Формула сопротивления принимает следующий вид: Iм = Uм / ((1 + a * t) * po * l / 2 * Пи * r * r).
Емкостное сопротивление (Xc) обусловлено наличием в схемах конденсаторов. Необходимо отметить, что через конденсаторы проходит переменный ток и, следовательно, он выступает в роли проводника с емкостью.
Вычисляется Xc следующим образом: Xc = 1 / (w * C), где w — угловая частота и C — емкость конденсатора или группы конденсаторов. Угловая частота определяется следующим образом:
- Измеряется частота переменного тока (как правило, 50 Гц).
- Умножается на 6,283.
Индуктивное сопротивление (Xl) — подразумевает наличие индуктивности в схеме (дроссель, реле, контур, трансформатор и так далее). Рассчитывается следующим образом: Xl = wL, где L — индуктивность и w — угловая частота. Для расчета индуктивности необходимо воспользоваться специализированными онлайн-калькуляторами или справочником по физике. Итак, все величины рассчитаны по формулам и остается всего лишь записать Z: Z * Z = R * R + (Xc — Xl) * (Xc — Xl).
Для определения окончательного значения необходимо извлечь квадратный корень из выражения: R * R + (Xc — Xl) * (Xc — Xl). Из формул следует, что частота переменного тока играет большую роль, например, в схеме одного и того же исполнения при повышении частоты увеличивается и ее Z. Необходимо добавить, что в цепях с переменным напряжением Z зависит от таких показателей:
- Длины проводника.
- Площади сечения — S.
- Температуры.
- Типа материала.
- Емкости.
- Индуктивности.
- Частоты.
Следовательно и закон Ома для участка цепи имеет совершенно другой вид: I = U / Z. Меняется и закон для полной цепи.
Измерение электрической проводимости
Расчеты сопротивлений требуют определенного количества времени, поэтому для измерений их величин применяются специальные электроизмерительные приборы, которые называются омметрами. Измерительный прибор состоит из стрелочного индикатора, к которому последовательно включен источник питания.
Измеряют R все комбинированные приборы, такие как тестеры и мультиметры. Обособленные приборы для измерения только этой характеристики применяются крайне редко (мегаомметр для проверки изоляции силового кабеля).
Прибор применяется для прозвонки электрических цепей на предмет повреждения и исправности радиодеталей, а также для прозвонки изоляции кабелей.
При измерении R необходимо полностью обесточить участок цепи во избежание выхода прибора из строя. Для это необходимо предпринять следующие меры предосторожности:
- Вытянуть вилку из сети.
- Включить прибор, при этом произойдет разрядка конденсаторов.
- Приступить к измерению или прозвонке.
- Установить переключатель в режим измерения сопротивления.
- Закоротить щупы прибора, чтобы удостовериться в его работоспособности (покажет очень малое сопротивление).
- Измерить необходимый участок.
В дорогих мультиметрах есть функция прозвонки цепи, дублируемая звуковым сигналом, благодаря чему нет необходимости смотреть на табло прибора.
Таким образом, электрическое сопротивление играет важную роль в электротехнике. Оно зависит в постоянных цепях от температуры, силы тока, длины, типа материала и площади поперечного сечения проводника. В цепях переменного тока эта зависимость дополняется такими величинами, как частота, емкость и индуктивность. Благодаря этой зависимости существует возможность изменять характеристики электричества: напряжение и силу тока. Для измерений величины сопротивления применяются омметры, которые используются также и при выявлении неполадок проводки, прозвонки различных цепей и радиодеталей.
Зависимость сопротивления от размеров. Большая энциклопедия нефти и газа
Презентация на тему «Расчет сопротивления проводников» по физике в формате powerpoint. Цель данной презентации для школьников 8 класса — научить учащихся измерять сопротивления проводников, устанавливать зависимость сопротивления проводника от его длины, площади поперечного сечения и вещества, из которого он изготовлен. Автор презентации: Нахушева Марита Мухамедовна, учитель физики.
Фрагменты из презентации
Наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры. Д.И.Менделеев
Методы измерения сопротивления проводников
- Авомметр.
- Метод вольтметра и амперметра
Задание 1. Зависимость сопротивления проводника от длины.
Собираем схему 3, нихромовую проволоку (клеммы 1, 2) подключить к источнику тока и амперметру. Меняя длину проводника наблюдать изменение силы тока.
Вывод 1.
- При уменьшении длины нихромовой проволоки сила тока увеличивается, при увеличении длины сила тока уменьшается.
- Следовательно: при L ↓ ~ I ~ R↓ R ~ L
Задание 2. Зависимость сопротивления проводника от площадь сечения.
Собираем схему 3, сперва одну нихромовую проволоку (клеммы 1, 2) подключить к источнику тока и амперметру, затем две нихромовые проволоки (клеммы 1-3, 2-4) подключить к источнику тока и амперметру. Наблюдать изменение силы тока.
Вывод 2.
- При уменьшении площади сечения нихромовой проволоки сила тока уменьшается, при увеличении площади сечения сила тока увеличивается.
- Следовательно: при S ↓ ~ I ↓ ~ R R ~ 1/S
Задание 3. Зависимость сопротивления проводника от рода вещества.
Собираем схему 3, сперва нихромовую проволоку (клеммы 1, 2) подключить к источнику тока и амперметру, затем стальную проволоку (клеммы 5, 6) подключить к источнику тока и амперметру. Наблюдать изменение силы тока.
Вывод 3.
- Сила тока при подключении нихромовой проволоки больше, чем при подключении стальной (железной) проволоки.
- По таблице сравниваем удельные сопротивления этих веществ.
- Следовательно: если I ~ R↓ ~ ρ↓ R ~ ρ
Выводы
- Сопротивление зависит от длины проводника, чем больше длина проводника тем больше его сопротивление.
- Сопротивление проводника зависит от площади поперечного сечения: чем меньше площадь сечения проводника, тем больше сопротивление.
- Сопротивление проводника зависит от рода вещества (материала), из которого он изготовлен.
- Зависимость сопротивления от геометрических размеров проводника (длины и площади поперечного сечения) и вещества, из которого он изготовлен, впервые установил Георг Ом.
- Это выражение позволяет вычислять длину проводника, поперечное сечение и удельное сопротивление проводника.
Последовательное соединение
При последовательном соединении трех проводников, сопротивление увеличивается, так как длина проводника увеличивается (R ~ L, L ~ R ).
Параллельное соединение
При параллельном соединении площадь сечения проводника увеличивается, сопротивление будет уменьшаться (при S ↓ ~ R).
Задача
- Задача. Определите сопротивление телеграфного провода между Южно-Сахалинском и Томари, если расстояние между городами 180 км, а провода сделаны из железной проволоки площадью поперечного сечения 12 мм2
- Задача. Рассчитайте сопротивление медного контактного провода, подвешенного для питания трамвайного двигателя, если длина провода равна 5 км, а площадь поперечного сечения — 0,65 см2 .
- Задача. Какой длины надо взять медную проволоку площадью поперечного сечения 0,5 мм2 , чтобы сопротивление ее было равно 34 Ом?
- Задача. Вычислите, каким сопротивлением обладает нихромовый проводник длиной 5 м и площадью поперечного сечения 0,75 мм2 .
Cтраница 1
Зависимость электрического сопротивления проводников от их геометрических размеров состоит в том, что по мере увеличения длины проводника и уменьшения площади поперечного сечения сопротивление возрастает.
Термочувствительные преобразователи основаны на зависимости электрического сопротивления проводника (или полупроводника) от температуры.
В термометрах сопротивления используется зависимость электрического сопротивления проводников от температуры. Стандартизованы платиновый и медный термометры сопротивления.
Термочувствительные преобразователи основаны на зависимости электрического сопротивления проводника (или полупроводника), от температуры.
Их действие основано на зависимости электрического сопротивления проводников от температуры. Графики зависимости сопротивления их от температуры показаны на рис. 2.16. Практически — это прямые линии. Значение ТКЭС меди выше, чем платины, поэтому ТСМ чувствительнее к изменению температуры, этим и объясняется большая крутизна графика. Однако верхний температурный предел измерения для ТСМ равен 200 С, а для ТСП — плюс 1100 С. Нижние пределы соответственно равны минус 200 и минус 260 С.
Принцип действия преобразователей основан на зависимости электрического сопротивления проводников или пвлупроводни-ков от температуры.
Принцип действия преобразователей основан на зависимости электрического сопротивления проводников или полупроводников от температуры.
Технические характеристики показывающих манометрических термометров. |
Действие этих термометров основано на использовании зависимости электрического сопротивления проводника (тонкой проволоки) от температуры. Термометр сопротивления состоит из обмотки, изготовленной из тонкой проволоки на специальном каркасе, выполненном из изоляционного материала. Чувствительный элемент заключен в защитную гильзу.
Датчики из термосопротивлений основаны на использовании зависимости электрического сопротивления проводников от температуры. Существуют два способа использования термосопротивлений в виде датчиков. При первом способе температура термосопротивления определяется температурой окружающей среды, гак как ток, протекающий по термосопротивле — Нить нию, выбирается достаточно малым, чтобы выделяемое им тепло не влияло на температуру термосопротивления. Этот способ применяется в датчиках температуры.
Датчики из термосопротивлений основаны на использовании зависимости электрического сопротивления проводников от темпе ратуры. Существуют два способа использования термосопротивлений ь виде датчиков. При первом способе температура термосопротивления определяется температурой окружающей среды, гак как ток, протекающий по термосопротивлению, выбирается достаточно малым, чтобы выделяемое им тепло не влияло на температуру термосопротивления. Этот способ применяется в датчиках температуры.
Тензочув-ствительные (проволочные) преобразователи основаны на зависимости электрического сопротивления проводника от вызываемого в нем механического напряжения.
Тензо-чувствительные (проволочные) преобразователи основаны на зависимости электрического сопротивления проводника от вызываемого в нем механического напряжения.
Для существования в проводнике постоянного тока, то есть, движения электронов с постоянной скоростью необходимо, чтобы непрерывно действовала внешняя сила ($F$), равная:
где $q_e$ — заряд электрона. Следовательно, электроны в проводнике движутся с трением. Или иначе говорят, что проводники имеют электросопротивление (R). Электросопротивление для различных проводников различно и может зависеть от материала, из которого изготовлен проводник и от его геометрических размеров.
Для измерения сопротивления можно использовать закон Ома. Для этого измеряют напряжение на концах проводника и силу тока, который течет через проводник, используют закон Ома для однородного проводника, вычисляют сопротивление:
Зависимость сопротивления от геометрических размеров и материала проводника
Если провести ряд экспериментов по измерению сопротивления однородного проводника постоянного сечения, но разной длины ($l$), то получится, что его электросопротивление длине ($R\sim l$).
Следующие эксперименты проводим для однородного проводника, одного и того же материала, одной длины, но разного сечения, то получаем, что сопротивление обратно пропорционально площади сечения ($R\sim \frac{1}{S}$).
И третий опыт, по исследованию электросопротивления проводников проводят с проводниками из разных материалов, с одинаковой длиной и сечением. Результат: сопротивление зависит и от материала проводника. Все полученные результаты выражает следующая формула, для вычисления сопротивления:
где $\rho $ — удельное сопротивление материала.
Сопротивлением участка цепи между сечениями 1 и 2 ($R_{12}$) называют интеграл:
Для однородного (с точки зрения удельного сопротивления) цилиндрического проводника ($\rho =const,S=const\ $) сопротивление вычисляется по формуле (3).
Основной единицей измерения сопротивления в СИ является Ом. $1Ом=\frac{1В}{1А}.$
Удельное сопротивление
Удельное сопротивление материала равно сопротивлению из какого то конкретного вещества, высотой 1 м и с площадью поперечного сечения $1 м^2$.{-3}\frac{1}{K}$.
Температурный коэффициент сопротивления данного вещества определен как:
$\alpha $ дает относительное приращение сопротивления при увеличении температуры на один градус. То есть исходя из (6) мы получаем, нелинейную зависимость удельного сопротивления от температуры, однако $\alpha $ изменяется с ростом (падением) температуры не так сильно, и эту нелинейность в большинстве случаев не учитывают. Для металлов $\alpha >0,\ $для $\alpha
Зависимость удельного сопротивления от температуры объясняется, зависимостью средней длинны свободного пробега носителя заряда от температуры. Это свойство используют в разного рода измерительных приборах и автоматических устройствах.
Удельная электропроводность вещества
Величина обратная удельному сопротивлению называется удельной электропроводностью ($\sigma $):
В системе СИ основная единица измерения электропроводности 1 $\frac{сименс}{м}$ ($\frac{См}{м}$). Величина $\sigma $ характеризует способность вещества проводить электрический ток. Электропроводимость зависит от химической природы вещества и условий (например, температуры) при которых это вещество находится. Если мы видели из уравнения (4), что $\rho \sim t$, то, следовательно $\sigma \sim \frac{1}{t}.\ $Надо отметить, что при низких температурах данные зависимости нарушаются. Наблюдается явление сверхпроводимости. При $T\to 0,\ $ у абсолютно чистого металла с идеально правильной кристаллической решеткой при абсолютном нуле удельная сопротивление должно быть равно нулю, соответственно, удельная проводимость бесконечна.
Пример 1
Задание: Вычислите сопротивление проводника (R), если на одном конце его поддерживается температура $t_1$, на другом $t_2$. Градиент температуры вдоль оси проводника постоянный. Сопротивление этого проводника при температуре равной 00С равно $R_0$.
Исходя из постоянства градиента температуры вдоль оси проводника, запишем, что:
\[\frac{dt}{dx}=k\ \left(1.1\right),\]
где $k=const.$ Следовательно, можно найти закон изменения температуры при движении вдоль проводника, то есть t(x).4}.$
От чего зависит сопротивление
☰
Сила тока в проводнике прямо пропорциональна напряжению на нем. Это значит, что с увеличением напряжения увеличивается и сила тока. Однако при одинаковом напряжении, но использовании разных проводников сила тока различна. Можно сказать по-другому. Если увеличивать напряжение, то хотя сила тока и будет увеличиваться, но везде по-разному, в зависимости от свойств проводника.
Зависимость силы тока от напряжения для данного конкретного проводника представляет собой сопротивление этого проводника. Оно обозначается R и находится по формуле R = U/I. То есть сопротивление определяется как отношение напряжения к силе тока. Чем больше сила тока в проводнике при данном напряжении, тем меньше его сопротивление. Чем больше напряжение при данной силе тока, тем больше сопротивление проводника.
Формулу можно переписать по отношению к силе тока: I = U/R (закон Ома). В таком случае нагляднее, что чем больше сопротивление, тем меньше сила тока.
Можно сказать, что сопротивление как бы мешает напряжению создавать большую силу тока.
Само сопротивление является характеристикой проводника. Оно не зависит от поданного на него напряжения. Если будет подано большое напряжение, то изменится сила тока, но не изменится отношение U/I, т. е. не изменится сопротивление.
От чего же зависит сопротивление проводника? Оно зависти от
- длины проводника,
- площади его поперечного сечения,
- вещества, из которого изготовлен проводник,
- температуры.
Чтобы связать вещество и его сопротивление, вводится такое понятие как удельное сопротивление вещества. Оно показывает, какое будет сопротивление в данном веществе, если проводник из него будет иметь длину 1 м и площадь поперечного сечения 1 м2. Проводники такой длины и толщины, изготовленные из разных веществ, будут иметь разные сопротивления. Это связано с тем, что у каждого металла (чаще всего именно они являются проводниками) своя кристаллическая решетка, свое количество свободных электронов.
Чем меньше удельное сопротивление вещества, тем лучшим проводником электрического тока оно является. Маленьким удельным сопротивлением обладают, например, серебро, медь, алюминий; куда большее у железа, вольфрама; очень большое у различных сплавов.
Чем длиннее проводник, тем большее сопротивление он имеет. Это становится понятно, если принять во внимание, что движению электронов в металлах мешают ионы, составляющие кристаллическую решетку. Чем их больше, т. е. чем длиннее проводник, тем больше у электрона шанс замедлить свой путь.
Однако увеличение площади поперечного сечения делает как бы дорогу шире. Электронам легче течь и не сталкиваться с узлами кристаллической решетки. Поэтому чем толще проводник, тем его сопротивление меньше.
Таким образом, сопротивление прямо пропорционально зависит от удельного сопротивления (ρ) и длины (l) проводника и обратно пропорционально зависит от площади (S) его поперечного сечения. Получаем формулу сопротивления:
R = ρl/S
В этой формуле на первый взгляд не отражается зависимость сопротивления проводника от его температуры. Однако удельное сопротивление вещества меряется при определенной температуре (обычно 20 °C). Поэтому температура учитывается. Для вычислений удельные сопротивления берут из специальных таблиц.
Для металлических проводников чем больше температура, тем сопротивление больше. Это связано с тем, что при повышении температуры ионы решетки начинают сильнее колебаться и больше мешать движению электронов. Однако в электролитах (растворах, где заряд несут ионы, а не электроны) с повышением температуры сопротивление уменьшается. Здесь это связано с тем, что чем выше температура, тем больше происходит диссоциация на ионы, и они быстрее двигаются в растворе.
Изучение зависимости электрического сопротивления проводника от его длины
Практический модуль представляет собой лабораторную работу по теме «Электрическое сопротивление. Зависимость электрического сопротивления проводника от его длины, площади поперечного сечения и материала» основной школы. Помимо интерактивной модели «Изучение зависимости электрического сопротивления проводника от его длины» в модуль входят 2 задания для закрепления знаний. Модуль относится к III уровню интерактивности
Категория пользователей
Обучаемый, Преподаватель
Дисциплины
Физика
/ Сопротивление проводника. Единицы сопротивления
/ Удельное сопротивление
Уровень образования
Профессионально-техническая подготовка, повышение квалификации
Статус
Завершенный вариант (готовый, окончательный)
Тип ИР сферы образования
информационный модуль
Издатель
ООО «Физикон»
Физикон
Россия, 141700, г. Долгопрудный, Московской обл., оф. 406, д. 7, ул. Первомайская,
Тел. — +7-495-408-7772, +7-495-408-7772
Сайт —
http://www.physicon.ru
Правообладатель
Федеральное агентство по образованию
Федеральное агентство по образованию
Внимание! Для воспроизведения модуля необходимо установить на компьютере проигрыватель ресурсов.
Характеристики информационного ресурса
Тип используемых данных:
text/plain, text/html
Объем цифрового ИР
868 870 байт
Проигрыватель
Категория модифицируемости компьютерного ИР
Признак платности
бесплатный
Наличие ограничений по использованию
нет ограничений
Рубрикация
Ступени образования
Основное общее образование
Целевое назначение
Учебное
Тип ресурса
Открытая образовательная модульная мультимедийная система (ОМС)
Классы общеобразовательной школы
8, 9, 10
Уровень образовательного стандарта
Федеральный
Характер обучения
Базовое
Зависимость сопротивления проводника от материала и размеров
Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.
Сопротивление обозначается латинскими буквами R или r.
За единицу электрического сопротивления принят Ом.
Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.
Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита ρ. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.
Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника:
где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм 2 .
Еще одной причиной, влияющей на сопротивление проводников, являетсятемпература.
Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов.
ЭДС источника тока. Закон Ома для полной цепи с ЭДС.
При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.
Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника(ЭДС):
Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).
Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.
Сопротивление r неоднородного участка можно рассматривать как внутреннее сопротивление источника тока.
63. Соединение проводников.
Проводники в электрических цепях могут соединяться последовательно и параллельно.
При последовательном соединении проводников сила тока во всех проводниках одинакова:
По закону Ома, напряжения U1 и U2 на проводниках равны
Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:
U = U1 + U2 = I(R1 + R2) = IR, |
где R – электрическое сопротивление всей цепи. Отсюда следует:
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.
Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.
Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.
видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.
Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.
Сопротивление тела человека
· Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм [5] . Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых меняется во времени, в третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.
· Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц.
Презентация к уроку физики в 8 классе по новой программе в Украине
Просмотр содержимого документа
«Зависимость сопротивления проводника от материала и геометрических размеров проводника»
Одесская специализированная общеобразовательная школа І-ІІІ ступеней № 40, Одесского городского совета, Одесской области
Расчет сопротивления проводника. Удельное сопротивление вещества
Учитель физики высшей категории
Яковлев Юрий Яковлевич
Электрическое сопротивление — это физическая величина, характеризующая свойство проводника противодействовать прохождению электрического тока.
От чего зависит сопротивление проводника?
Сопротивление проводника зависит от
Площади поперечного сечения проводника
Сопротивление проводника прямо пропорционально его длине
Сопротивление проводника обратно пропорционально площади его поперечного сечения
Сопротивление проводника зависит от вещества, из которого этот проводник изготовлен.
S — площадь поперечного сечения
ρ — удельное сопротивление вещества
Удельное сопротивление вещества — это физическая величина, характеризующая электрические свойства данного вещества и численно равная сопротивлению изготовленного из него проводника длиной 1 м и площадью поперечного сечения 1 .
Единица удельного сопротивления в СИ– Ом∙метр
Реостат — это устройство с переменным сопротивлением, предназначенное для регулирования силы тока в электрической цепи.
Двухконтактный ползунковый реостат
2 – керамический цилиндр
5 – металлический стержень
Рычажный (секционный) реостат
1. Вычислить сопротивление алюминиевой проволоки длиной 80 см и площадью поперечного сечения 0,4 мм2 .
2. В осветительной сети здания использовали 100 м медного провода, сопротивление которого 850 мОм . Какая площадь поперечного сечения этой проволоки?
3. Нихромовая спираль для электроплитки должна иметь электрическое сопротивление 48 Ом . Какой длины должна быть нихромовая проволока, площадью сечения
0,2 мм2 , чтобы изготовить такую спираль?
4. В лабораторных работах используются медные соединительные провода, площадь сечения которых равна 2 мм2 . Сила тока в них достигает 2 А . Какое напряжение на таком проводе, если его длина равна 10 см
1. Как доказать, что сопротивление проводника прямо пропорционально его длине?
2. Как зависит сопротивление проводника от площади его поперечного сечения?
3. По какой формуле
вычисляют сопротивление проводника?
4. Что такое удельное сопротивление вещества?
5. Что такое реостат?
6. Какие виды реостатов вы знаете? Чем они отличаются друг от друга?
Расчет сопротивления проводника. Удельное сопротивление
1. Расчет сопротивления проводника. Удельное сопротивление
Горбунова В.А учитель физики
МБОУ Черемуховская СОШ
Новошешминского района
2013 год
Задачи урока:
обучения: установить зависимость сопротивления
проводника от его длины, площади поперечного сечения
и вещества, из которого он изготовлен.
воспитания: воспитание мировоззренческих понятий;
познаваемость окружающего мира; этики работы в
парах.
развития: развивать элементы творческого поиска на
основе приема обобщения знаний, умение
анализировать, наблюдать, собирать электрические
цепи, чертить схемы, развивать навыки практической
работы, интерес к предмету путём выполнения разных
заданий.
измерять.
Наука начинается с тех пор, как начинают
Точная наука немыслима без меры.
Д.И.Менделеев
Цель урока: получить соотношение между сопротивлением
проводника, его длиной, площадью поперечного сечения и
удельным сопротивлением.
Оборудование: источник тока, амперметр, вольтметр, линейка,
ключ, исследуемые проводники, соединительные провода,
компьютер, проектор.
4. Определение силы тока:
Сила тока – физическая величина,
равная отношению заряда,
прошедшего через поперечное
сечение проводника, ко времени его
прохождения.
5. Андре-Мари Ампер
(1775 — 1836)
французский физик и математик
Условное обозначение
в электрической схеме
Правила
подключения:
Снимите показания с
приборов
I=1,4 A
I=3 A
9. Напряжение
Электрическое напряжение – физическая величина,
характеризующая электрическое поле.
A
U
q
Алессандро Вольта –
Итальянский физик и химик.
10. Напряжение
Прибор для измерения
электрического напряжения вольтметр
На схемах вольтметр изображают
кружком с буквой V внутри.
11. Напряжение
В
цепь вольтметр, в отличие от
амперметра, включается параллельно.
сопротивление
К=П
И
электричество А=Е
С=К
«Когда я первый раз прочел
теорию Ома, она мне показалась
молнией, вдруг осветившей
комнату, погруженную во мрак»
Дж. Генри
Золотая медаль Лондонского Королевского общества –
награда Георга Ома
17. Применяя закон Ома для участка цепи, заполните таблицу. Заполни таблицу
I
0,2 А
U
4 В
R
4
8
20
А
В
Ом
0,22 А
6,6 В
55
Ом
I, А
6
Какой из проводников имеет наибольшее
сопротивление?
А
4
В
2
Какой из проводников имеет наименьшее
сопротивление?
С
0
2
4
6
8
10
U, В
19. Опытным путем Георг Ом установил, от каких факторов зависит сопротивление проводника
20. Зависимость сопротивления проводника от его длины
S1=S2=S
никелин
l
R
2l
2R
Таким образом, сопротивление проводника зависит
прямопропорционально от его длины:
R~l
21. Зависимость сопротивления проводника от площади его поперечного сечения
l1=l2=l
никелин
S
2S
R
R/2
Таким образом, сопротивление проводника зависит
обратнопропорционально от площади его поперечного
сечения:
R ~ 1/S
22. Зависимость сопротивления проводника от рода материала
l, S, никелин
R1
l, S, нихром
≠
R2
Очевидно, что сопротивление проводника зависит от рода
вещества, из которого изготовлен проводник
23. Выводы
Сопротивление зависит от длины
проводника, чем больше длина
проводника тем больше его
сопротивление.
Сопротивление проводника зависит от
площади поперечного сечения: чем
меньше площадь сечения проводника,
тем больше сопротивление.
Сопротивление проводника зависит от
рода вещества (материала), из которого
он изготовлен.
Зависимость сопротивления от
геометрических размеров проводника
(длины и площади поперечного
сечения) и вещества, из которого он
изготовлен, впервые установил Георг
Ом.
R
L
S
;
Это выражение позволяет вычислять длину проводника,
поперечное сечение и удельное сопротивление
проводника.
RS
;
L
L
RS
;
S
L
R
.
25. Удельное сопротивление проводника, ρ —
Удельное сопротивление
проводника, ρ это физическая величина, показывающая, каково сопротивление
проводника из данного вещества длиной 1 м и площадью
поперечного сечения 1м2
l
R ,
S
RS
RS l,
l
Ом мм 2
м
Свинец, Pb: ρ=0,21 Ом·мм2/м – это значит, что
сопротивление свинцового проводника длиной
1 м и площадью поперечного сечения 1 мм2 равно 0,21
Ом.
Стр. 106, пример 1.
Прочитай и запиши в тетрадь
решение задачи, приведенной
на странице 106.
28. Решение задач
1. Сколько метров никелиновой проволоки сечением
0,1 мм2 потребуется для изготовления реостата с
сопротивлением 180 Ом?
l-?
ρ=0,4 Ом·мм2/м
S=0,1 мм2
R=180 Ом
l
R , RS l ,
S
l
RS
Ом мм 2 м
l
м
2
Ом мм
180 0,1
l
45 ( м)
0,4
При устройстве молниеотвода
использовали железный провод
сечением 50 мм2 и длиной 25 м.
Определите его сопротивление.
Ответ: 0,05 Ом
30. Задача
Задача. Определите сопротивление телеграфного провода между
Южно-Сахалинском и Томари, если расстояние между городами 180
км, а провода сделаны из железной проволоки площадью поперечного
сечения 12 мм2
Задача. Рассчитайте сопротивление медного контактного провода,
подвешенного для питания трамвайного двигателя, если длина
провода равна 5 км, а площадь поперечного сечения — 0,65 см2 .
Задача. Какой длины надо взять медную проволоку площадью
поперечного сечения 0,5 мм2 , чтобы сопротивление ее было равно 34
Ом?
Задача. Вычислите, каким сопротивлением обладает нихромовый
проводник длиной 5 м и площадью поперечного сечения 0,75 мм2 .
Электрическое сопротивление
R, [R]=1 Ом , 1 Ом = 1В/1А;
L
R=ρ __
S
ρ – удельное
сопротивление
______
Ом
мм2
[ρ] =
м
32. Выводы
Сопротивление зависит от длины
проводника, чем больше длина
проводника тем больше его
сопротивление.
Сопротивление проводника зависит от
площади поперечного сечения: чем
меньше площадь сечения проводника,
тем больше сопротивление.
Сопротивление проводника зависит от
рода вещества (материала), из которого
он изготовлен.
33. Домашнее задание
§45, 46, упражнение 20, № 2 (а), 4.
Сопротивление | электроника | Britannica
Узнайте, как сопротивление влияет на поток электронов в электрической цепи
В каждой электрической цепи есть некоторое сопротивление потоку электрического тока, даже в материалах, которые являются хорошими проводниками.
Encyclopædia Britannica, Inc. Посмотреть все видео по этой статье
Сопротивление , в электричестве, свойство электрической цепи или части цепи, которая преобразует электрическую энергию в тепловую энергию в противодействии электрическому току.Сопротивление включает столкновения заряженных частиц с током с неподвижными частицами, составляющими структуру проводников. Сопротивление часто считается локализованным в таких устройствах, как лампы, нагреватели и резисторы, в которых оно преобладает, хотя оно характерно для каждой части цепи, включая соединительные провода и линии электропередачи.
Рассеяние электрической энергии в виде тепла, даже если оно небольшое, влияет на величину электродвижущей силы или управляющего напряжения, необходимого для создания заданного тока в цепи.Фактически, электродвижущая сила В, (измеренная в вольтах) в цепи, деленная на ток I (амперы), протекающий через эту цепь, количественно определяет величину электрического сопротивления R. Точнее, R = В / I. Таким образом, если 12-вольтовая батарея постоянно пропускает двухамперный ток по длине провода, этот провод имеет сопротивление шесть вольт на ампер или шесть Ом. Ом — это общепринятая единица электрического сопротивления, эквивалентная одному вольту на ампер и обозначаемая заглавной греческой буквой омега (Ом).Сопротивление провода прямо пропорционально его длине и обратно пропорционально его площади поперечного сечения. Сопротивление также зависит от материала проводника. См. Удельное сопротивление .
Сопротивление проводника или элемента схемы обычно увеличивается с повышением температуры. При охлаждении до крайне низких температур некоторые проводники имеют нулевое сопротивление. В этих веществах, называемых сверхпроводниками, продолжают течь токи после снятия приложенной электродвижущей силы.
Величина, обратная сопротивлению, 1/ R, , называется проводимостью и выражается в единицах обратного сопротивления, называемых mho.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Сопротивление проводников
- Изучив этот раздел, вы должны уметь:
- • Рассчитайте размеры проводника.
- • Опишите влияние длины и площади поперечного сечения на сопротивление проводника.
Как размеры проводника влияют на его сопротивление
Проводник — это любой материал, позволяющий протекать через него электрическому току. Способность любого проводника в электрической цепи пропускать ток оценивается по его электрическому СОПРОТИВЛЕНИЮ. Сопротивление — это способность противодействовать прохождению электрического тока. Напряжение — это электрическая сила, которая заставляет ток течь через проводник, но чем больше значение сопротивления любого проводника, тем меньше тока будет протекать при любом конкретном значении приложенного напряжения.Сопротивление проводника в основном зависит от трех факторов:
Рис. 1.3.1 Расчет размеров проводника
1. ДЛИНА проводника.
2. ПЛОЩАДЬ ПОПЕРЕЧНЯ кондуктора.
3. МАТЕРИАЛ, из которого изготовлен проводник.
Поскольку сопротивление больше в более длинных проводниках, чем в более коротких, то:
СОПРОТИВЛЕНИЕ (R) ПРОПОРЦИОНАЛЬНО ДЛЯ ДЛИНЫ (L)
и записывается как R ∝ L (∝ означает пропорционально…)
Следовательно, чем длиннее проводник, тем больше сопротивление и, следовательно, меньше ток.
Также, поскольку сопротивление меньше в проводниках с большой площадью поперечного сечения:
СОПРОТИВЛЕНИЕ (R) ОБРАТНО ПРОПОРЦИОНАЛЬНО ПОПЕРЕЧНОЙ ПЛОЩАДИ (A)
, который записывается как R ∝ 1 / A (или R ∝ A -1 ).
Чем больше площадь поперечного сечения, тем больше тока может протекать по проводнику, поэтому тем ниже значение сопротивления проводника.
Круглые проводники
Если проводник имеет круглое поперечное сечение, площадь круга можно определить по формуле:
π r 2 Где π = 3,142, а r — радиус окружности.
Если поперечное сечение проводника квадратное или прямоугольное, площадь поперечного сечения проводника все же можно определить, просто умножив ширину на высоту. Большинство проводников, используемых в кабелях и т. Д.конечно, круглые в поперечном сечении.
Материал, из которого сделан проводник, также влияет на его сопротивление, величина которого зависит от СОПРОТИВЛЕНИЯ материала, описанного в Модуле 1.4 резисторов и схем.
Сопротивление проводника
Хотя можно использовать провод любого размера или значения сопротивления, слово «проводник» обычно относится к материалам, которые обладают низким сопротивлением току, а слово «изолятор» описывает материалы, которые обладают высоким сопротивлением току. .Между проводниками и изоляторами нет четкой разделительной линии; при определенных условиях все типы материалов проводят ток. Материалы, обеспечивающие сопротивление току на полпути между лучшими проводниками и самыми плохими проводниками (изоляторами), иногда называют «полупроводниками» и находят наибольшее применение в области транзисторов.
Лучшие проводники — это материалы, в основном металлы, которые обладают большим количеством свободных электронов; И наоборот, изоляторы — это материалы с небольшим количеством свободных электронов.Лучшие проводники — серебро, медь, золото и алюминий; но некоторые неметаллы, такие как углерод и вода, могут использоваться в качестве проводников. Такие материалы, как резина, стекло, керамика и пластмассы, являются настолько плохими проводниками, что их обычно используют в качестве изоляторов. Ток в некоторых из этих материалов настолько мал, что обычно считается нулевым. Единица измерения сопротивления называется ом. Символ ома — греческая буква омега (Ω). В математических формулах заглавная буква «R» обозначает сопротивление.Сопротивление проводника и приложенное к нему напряжение определяют количество ампер тока, протекающего по проводнику. Таким образом, сопротивление 1 Ом ограничивает ток до 1 ампера в проводнике, к которому приложено напряжение 1 вольт.
Факторы, влияющие на сопротивление
- Сопротивление металлического проводника зависит от типа материала проводника. Было указано, что некоторые металлы обычно используются в качестве проводников из-за большого количества свободных электронов на их внешних орбитах.Медь обычно считается лучшим доступным материалом для проводников, поскольку медная проволока определенного диаметра обеспечивает меньшее сопротивление току, чем алюминиевая проволока того же диаметра. Однако алюминий намного легче меди, и по этой причине, а также по соображениям стоимости, алюминий часто используется, когда важен весовой коэффициент.
- Сопротивление металлического проводника прямо пропорционально его длине. Чем больше длина провода данного сечения, тем больше сопротивление.На рисунке 12-41 показаны два проводника разной длины. Если электрическое давление 1 вольт приложено к двум концам проводника длиной 1 фут, а сопротивление движению свободных электронов предполагается равным 1 Ом, ток ограничивается 1 ампер. Если провод того же размера удвоить в длину, те же электроны, приведенные в движение под действием приложенного 1 вольта, теперь обнаруживают удвоенное сопротивление; следовательно, ток уменьшается вдвое. Рисунок 12-41. Сопротивление зависит от длины проводника.
- Сопротивление металлического проводника обратно пропорционально площади поперечного сечения. Эта область может быть треугольной или даже квадратной, но обычно круглой. Если площадь поперечного сечения проводника увеличивается вдвое, сопротивление току уменьшается вдвое. Это верно из-за увеличенной площади, в которой электрон может перемещаться без столкновения или захвата атомом. Таким образом, сопротивление изменяется обратно пропорционально площади поперечного сечения проводника.
- Четвертым важным фактором, влияющим на сопротивление проводника, является температура.Хотя некоторые вещества, такие как углерод, демонстрируют снижение сопротивления при повышении температуры окружающей среды, большинство материалов, используемых в качестве проводников, увеличивают сопротивление при повышении температуры. Сопротивление некоторых сплавов, таких как константан и манганин ™, очень мало изменяется при изменении температуры. Величина увеличения сопротивления 1-омного образца проводника на один градус повышения температуры выше 0 ° по Цельсию (C), принятого стандарта, называется температурным коэффициентом сопротивления.Для каждого металла это разные значения. Например, для меди это значение составляет примерно 0,00427 Ом. Таким образом, медный провод, имеющий сопротивление 50 Ом при температуре 0 ° C, имеет увеличение сопротивления на 50 × 0,00427 или 0,214 Ом на каждый градус повышения температуры выше 0 ° C. Температурный коэффициент сопротивления необходимо учитывать там, где наблюдается заметное изменение температуры проводника во время работы. Доступны графики с указанием температурных коэффициентов сопротивления для различных материалов.На Рис. 12-42 показана таблица «удельного сопротивления» некоторых распространенных электрических проводников.
Рисунок 12-42. Таблица удельного сопротивления.
Сопротивление материала определяется четырьмя свойствами: материалом, длиной, площадью и температурой. Первые три свойства связаны следующим уравнением при T = 20 ° C (комнатная температура):
Сопротивление и связь с размером провода
Круглые проводники (провода / кабели)
Поскольку известно, что Сопротивление проводника прямо пропорционально его длине, и если нам дано сопротивление единичной длины провода, мы можем легко вычислить сопротивление любой длины провода из того же материала, имеющего тот же диаметр.Кроме того, поскольку известно, что сопротивление проводника обратно пропорционально его площади поперечного сечения, и если нам дано сопротивление отрезка провода с единичной площадью поперечного сечения, мы можем вычислить сопротивление такой же длины. из проволоки из того же материала любой площади сечения. Следовательно, если мы знаем сопротивление данного проводника, мы можем рассчитать сопротивление для любого проводника из того же материала при той же температуре. Из отношения:
Также можно записать:
Если у нас есть проводник длиной 1 метр (м) с площадью поперечного сечения 1 (миллиметр) мм 2 и сопротивлением 0 .017 Ом, каково сопротивление 50 м провода из того же материала, но с площадью поперечного сечения 0,25 мм 2 ?
В то время как единицы СИ обычно используются при анализе электрических цепей, электрические проводники в Северной Америке все еще производятся с использованием стопы в качестве единицы длины и мил (одна тысячная дюйма) в качестве единицы диаметра. Прежде чем использовать уравнение R = (ρ × l) ⁄A для расчета сопротивления проводника данного американского калибра проводов (AWG), площадь поперечного сечения в квадратных метрах должна быть определена с использованием коэффициента преобразования 1 mil = 0. .0254 мм. Самая удобная единица длины проволоки — стопа. Используя эти стандарты, единицей измерения является милфут. Таким образом, проволока имеет единичный размер, если она имеет диаметр 1 мил и длину 1 фут.
В случае использования медных проводников мы избавляемся от утомительных вычислений с помощью таблицы, показанной на Рисунке 12-43. Обратите внимание, что размеры поперечного сечения, перечисленные в таблице, таковы, что каждое уменьшение на один номер датчика равняется 25-процентному увеличению площади поперечного сечения.Из-за этого уменьшение трех калибровочных чисел означает увеличение площади поперечного сечения примерно на 2: 1. Аналогичным образом, изменение десяти калибровочных номеров проводов представляет собой изменение площади поперечного сечения 10: 1 — кроме того, при удвоении площади поперечного сечения проводника сопротивление уменьшается вдвое. Уменьшение на три сечения проводов снижает сопротивление проводника заданной длины вдвое.
Рисунок 12-43. Таблица преобразования при использовании медных жил.
Прямоугольные проводники (шины)
Для вычисления площади поперечного сечения проводника в квадратных милях длина одной стороны в милах возводится в квадрат.В случае прямоугольного проводника длина одной стороны умножается на длину другой. Например, обычная прямоугольная шина (большой, специальный проводник) имеет толщину 3⁄8 дюйма и ширину 4 дюйма. Толщина 3⁄8 дюйма может быть выражена как 0,375 дюйма. Поскольку 1000 мил равняется 1 дюйму, ширину в дюймах можно преобразовать в 4000 мил. Площадь поперечного сечения прямоугольного проводника находится путем преобразования 0,375 в мил (375 мил × 4000 мил = 1 500 000 квадратных мил).
Бортовой механик рекомендует
Факторов, влияющих на сопротивление — Инженеры-преподаватели.com
- Сопротивление металлического проводника зависит от типа материала проводника. Было указано, что некоторые металлы обычно используются в качестве проводников из-за большого количества свободных электронов на их внешних орбитах. Медь обычно считается лучшим доступным материалом для проводников, поскольку медная проволока определенного диаметра обеспечивает меньшее сопротивление току, чем алюминиевая проволока того же диаметра. Однако алюминий намного легче меди, и по этой причине, а также по соображениям стоимости алюминий часто используется, когда важен весовой коэффициент.
- Сопротивление металлического проводника прямо пропорционально его длине. Чем больше длина провода данного сечения, тем больше сопротивление. На рисунке 40 показаны двухпроводные жилы разной длины. Если напряжение электрического давления приложено к двум концам проводника длиной 1 фут и сопротивление движению свободных электронов предполагается равным 1 Ом, ток ограничивается 1 ампер. Если провод того же размера удвоить в длину, те же электроны, приведенные в движение под действием приложенного 1 вольта, теперь обнаруживают удвоенное сопротивление; следовательно, текущий поток будет уменьшен вдвое.
- Сопротивление металлического проводника обратно пропорционально площади поперечного сечения. Эта область может быть треугольной или даже квадратной, но обычно круглой. Если площадь поперечного сечения проводника увеличена вдвое, сопротивление току уменьшится вдвое. Это верно из-за увеличенной площади, в которой электрон может перемещаться без столкновения или захвата атомом. Таким образом, сопротивление изменяется обратно пропорционально площади поперечного сечения проводника.
- Четвертым важным фактором, влияющим на сопротивление проводника, является температура.Хотя некоторые вещества, такие как углерод, демонстрируют снижение сопротивления при повышении температуры окружающей среды, большинство материалов, используемых в качестве проводников, увеличивают сопротивление при повышении температуры. Сопротивление некоторых сплавов, таких как константан и манганин ™, очень мало изменяется при изменении температуры. Величина увеличения сопротивления 1-омного образца проводника на один градус повышения температуры выше 0 ° по Цельсию (C), принятого стандарта, называется температурным коэффициентом сопротивления.Для каждого металла это разные значения; например, для меди это значение составляет примерно 0,00427 Ом. Таким образом, медный провод, имеющий сопротивление 50 Ом при температуре 0 ° C, будет иметь увеличение сопротивления на 50 × 0,00427 или 0,214 Ом на каждый градус повышения температуры выше 0 ° C. Температурный коэффициент сопротивления необходимо учитывать там, где наблюдается заметное изменение температуры проводника во время работы. Доступны графики с указанием температурных коэффициентов сопротивления для различных материалов.На рисунке 41 показана таблица «удельного сопротивления» некоторых распространенных электрических проводников.
Рисунок 40. Сопротивление зависит от длины проводника. Рисунок 41. Таблица удельных сопротивлений.
Сопротивление материала определяется четырьмя свойствами: материалом, длиной, площадью и температурой. Первые три свойства связаны следующим уравнением при T = 20 ° C (комнатная температура):
9.3 Сопротивление и сопротивление — University Physics Volume 2
Learning Objectives
К концу этого раздела вы сможете :
- Различия между сопротивлением и удельным сопротивлением
- Определите термин проводимость
- Опишите электрический компонент, известный как резистор
- Укажите взаимосвязь между сопротивлением резистора и его длиной, площадью поперечного сечения и удельным сопротивлением
- Укажите взаимосвязь между удельным сопротивлением и температурой
Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В, , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток. Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление .Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.
Удельное сопротивление
Когда к проводнику прикладывается напряжение, создается электрическое поле E → E →, и заряды в проводнике ощущают силу, создаваемую электрическим полем. Полученная плотность тока J → J → зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, включая металлы при данной температуре, плотность тока приблизительно пропорциональна электрическому полю.В этих случаях плотность тока можно смоделировать как
где σσ — удельная электропроводность. Электропроводность аналогична теплопроводности и является мерой способности материала проводить или передавать электричество. Проводники имеют более высокую электропроводность, чем изоляторы. Поскольку удельная электропроводность σ = J / Eσ = J / E, единицы равны
.
σ = [Дж] [Э] = А / м2В / м = АВ · м. σ = [Дж] [Э] = А / м2В / м = АВ · м.
Здесь мы определяем единицу, называемую ом с греческим символом омега в верхнем регистре, ΩΩ.Устройство названо в честь Георга Симона Ома, о котором мы поговорим позже в этой главе. ΩΩ используется, чтобы избежать путаницы с числом 0. Один Ом равен одному вольту на ампер: 1Ω = 1V / A1Ω = 1V / A. Таким образом, единицы электропроводности равны (Ом · м) -1 (Ом · м) -1.
Электропроводность — это внутреннее свойство материала. Другим внутренним свойством материала является удельное сопротивление или удельное электрическое сопротивление. Удельное сопротивление материала — это мера того, насколько сильно материал противостоит прохождению электрического тока.Символом удельного сопротивления является строчная греческая буква ро, ρρ, а удельное сопротивление является обратной величиной удельной электропроводности:
.
Единицей измерения удельного сопротивления в системе СИ является ом-метр (Ом · м) (Ом · м). Мы можем определить удельное сопротивление через электрическое поле и плотность тока,
Чем больше удельное сопротивление, тем большее поле необходимо для создания заданной плотности тока. Чем ниже удельное сопротивление, тем больше плотность тока, создаваемого данным электрическим полем. Хорошие проводники обладают высокой проводимостью и низким удельным сопротивлением.Хорошие изоляторы обладают низкой проводимостью и высоким удельным сопротивлением. В таблице 9.1 приведены значения удельного сопротивления и проводимости для различных материалов.
Материал | Электропроводность, σσ (Ом · м) −1 (Ом · м) −1 | Удельное сопротивление, ρρ (Ом · м) (Ом · м) | Температура Коэффициент, αα (° C) -1 (° C) -1 |
---|---|---|---|
Проводники | |||
Серебро | 6.29 × 1076,29 × 107 | 1,59 × 10–81,59 × 10–8 | 0,0038 |
Медь | 5,95 × 1075,95 × 107 | 1,68 × 10–81,68 × 10–8 | 0,0039 |
Золото | 4,10 × 1074,10 × 107 | 2,44 × 10–82,44 × 10–8 | 0,0034 |
Алюминий | 3,77 × 1073,77 × 107 | 2,65 × 10–82,65 × 10–8 | 0,0039 |
Вольфрам | 1,79 × 1071,79 × 107 | 5.60 × 10–85,60 × 10–8 | 0,0045 |
Утюг | 1,03 × 1071,03 × 107 | 9,71 × 10–89,71 × 10–8 | 0,0065 |
Платина | 0,94 × 1070,94 × 107 | 10,60 × 10-810,60 × 10-8 | 0,0039 |
Сталь | 0,50 × 1070,50 × 107 | 20,00 × 10-820,00 × 10-8 | |
Свинец | 0,45 × 1070,45 × 107 | 22,00 × 10-822,00 × 10-8 | |
Манганин (сплав Cu, Mn, Ni) | 0.21 × 1070,21 × 107 | 48,20 × 10-848,20 × 10-8 | 0,000002 |
Константан (сплав Cu, Ni) | 0,20 × 1070,20 × 107 | 49,00 × 10–849,00 × 10–8 | 0,00003 |
Меркурий | 0,10 × 1070,10 × 107 | 98,00 × 10-898,00 × 10-8 | 0,0009 |
Нихром (сплав Ni, Fe, Cr) | 0,10 × 1070,10 × 107 | 100,00 × 10-8 100,00 × 10-8 | 0,0004 |
Полупроводники [1] | |||
Углерод (чистый) | 2.86 × 1042,86 × 104 | 3,50 × 10–53,50 × 10–5 | -0,0005 |
Углерод | (2,86–1,67) × 10–6 (2,86–1,67) × 10–6 | (3,5-60) × 10-5 (3,5-60) × 10-5 | -0,0005 |
Германий (чистый) | 600 × 10−3600 × 10−3 | -0,048 | |
Германий | (1-600) × 10-3 (1-600) × 10-3 | -0,050 | |
Кремний (чистый) | 2300 | −0.075 | |
Кремний | 0,1−23000,1−2300 | -0,07 | |
Изоляторы | |||
Янтарь | 2,00 × 10–152,00 × 10–15 | 5 × 10145 × 1014 | |
Стекло | 10−9−10−1410−9−10−14 | 109−1014109−1014 | |
Люцит | <10-13 <10-13 | > 1013> 1013 | |
Слюда | 10-11-10-1510-11-10-15 | 1011−10151011−1015 | |
Кварц (плавленый) | 1.33 × 10–181,33 × 10–18 | 75 × 101675 × 1016 | |
Резина (твердая) | 10−13−10−1610−13−10−16 | 1013−10161013−1016 | |
сера | 10-15 10-15 | 10151015 | |
Тефлон TM | <10-13 <10-13 | > 1013> 1013 | |
Дерево | 10-8-10-1110-8-10-11 | 108−1011108−1011 |
Таблица 9.1 Удельное сопротивление и проводимость различных материалов при 20 ° C [1] Значения сильно зависят от количества и типов примесей.
Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют разную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться.Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике. Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.
Проверьте свое понимание 9,5
Медные провода обычно используются для удлинителей и домашней электропроводки по нескольким причинам. Медь имеет самый высокий рейтинг электропроводности и, следовательно, самый низкий рейтинг удельного сопротивления среди всех недрагоценных металлов.Также важна прочность на разрыв, где прочность на разрыв является мерой силы, необходимой для того, чтобы подтянуть объект к точке, где он сломается. Прочность материала на разрыв — это максимальное значение растягивающего напряжения, которое он может выдержать перед разрушением. Медь имеет высокий предел прочности на разрыв, 2 × 108 Нм22 × 108 Нм2. Третья важная характеристика — пластичность. Пластичность — это мера способности материала вытягиваться в проволоку и мера гибкости материала, а медь обладает высокой пластичностью.Подводя итог, можно сказать, что проводник является подходящим кандидатом для изготовления проволоки, по крайней мере, с тремя важными характеристиками: низким удельным сопротивлением, высокой прочностью на разрыв и высокой пластичностью. Какие еще материалы используются для электромонтажа и в чем преимущества и недостатки?
Температурная зависимость удельного сопротивления
Вернувшись к Таблице 9.1, вы увидите столбец «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры. В некоторых материалах, таких как медь, удельное сопротивление увеличивается с повышением температуры.Фактически, в большинстве проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает повышенные колебания атомов в структуре решетки металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры. Во многих материалах зависимость является приблизительно линейной и может быть смоделирована с помощью линейного уравнения:
ρ≈ρ0 [1 + α (T − T0)], ρ≈ρ0 [1 + α (T − T0)],
9,7
, где ρρ — удельное сопротивление материала при температуре T , αα — температурный коэффициент материала, а ρ0ρ0 — удельное сопротивление при T0T0, обычно принимаемое как T0 = 20.00 ° CT0 = 20,00 ° C.
Отметим также, что температурный коэффициент αα отрицателен для полупроводников, перечисленных в Таблице 9.1, что означает, что их удельное сопротивление уменьшается с увеличением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения ρρ с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.
Сопротивление
Теперь рассмотрим сопротивление провода или компонента.Сопротивление — это мера того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.
Для расчета сопротивления рассмотрим участок токопроводящего провода с площадью поперечного сечения A , длиной L и удельным сопротивлением ρ.ρ. Батарея подключается к проводнику, обеспечивая на нем разность потенциалов ΔVΔV (Рисунок 9.13). Разность потенциалов создает электрическое поле, которое пропорционально плотности тока, согласно E → = ρJ → E → = ρJ →.
Рис. 9.13 Потенциал, обеспечиваемый батареей, прикладывается к сегменту проводника с площадью поперечного сечения A и длиной L .
Величина электрического поля на участке проводника равна напряжению, деленному на длину, E = V / LE = V / L, а величина плотности тока равна току, деленному на поперечную площадь сечения, J = I / A.J = I / A. Используя эту информацию и вспоминая, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:
E = ρJVL = ρIAV = (ρLA) I.E = ρJVL = ρIAV = (ρLA) I.
Сопротивление
Отношение напряжения к току определяется как сопротивление R :
Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, деленную на площадь:
R≡VI = ρLA.R≡VI = ρLA.
9,9
Единицей измерения сопротивления является ом, ОмΩ. Для данного напряжения, чем выше сопротивление, тем ниже ток.
Резисторы
Обычным компонентом электронных схем является резистор. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения. На рисунке 9.14 показаны символы, используемые для резистора в принципиальных схемах цепи. Два широко используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC).Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.
Рисунок 9.14 Символы резистора, используемого в принципиальных схемах. (а) символ ANSI; (b) символ IEC.
Зависимость сопротивления от материала и формы
Резистор можно смоделировать как цилиндр с площадью поперечного сечения A и длиной L , изготовленный из материала с удельным сопротивлением ρρ (Рисунок 9.15). Сопротивление резистора R = ρLAR = ρLA.
Рисунок 9.15. Модель резистора в виде однородного цилиндра длиной L и площадью поперечного сечения A . Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения A , тем меньше его сопротивление.
Наиболее распространенным материалом для изготовления резистора является углерод. Углеродная дорожка намотана на керамический сердечник, к нему прикреплены два медных провода.Второй тип резистора — это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным. Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке 9.16.
Рисунок 9.16 Многие резисторы имеют вид, показанный на рисунке выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора.Третий цвет — множитель. Четвертый цвет обозначает допуск резистора. Показанный резистор имеет сопротивление 20 × 105 Ом ± 10% 20 × 105 Ом ± 10%.
Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 1012 Ом 10 12 Ом или более. Сопротивление сухого человека может составлять 105 Ом 105 Ом, в то время как сопротивление человеческого сердца составляет около 103 Ом 103 Ом. Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10-5 Ом10-5 Ом, а сверхпроводники вообще не имеют сопротивления при низких температурах.Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.
Пример 9,5
Плотность тока, сопротивление и электрическое поле для токоведущего провода
Рассчитайте плотность тока, сопротивление и электрическое поле медного провода длиной 5 м и диаметром 2,053 мм (калибр 12), по которому проходит ток I = 10 мА I = 10 мА.
Стратегия
Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая равна A = 3.31 мм2, A = 3,31 мм2, а определение плотности тока J = IAJ = IA. Сопротивление можно найти, используя длину провода L = 5,00 м L = 5,00 м, площадь и удельное сопротивление меди ρ = 1,68 × 10–8 Ом · мρ = 1,68 × 10–8 Ом · м, где R = ρLAR = ρLA. Удельное сопротивление и плотность тока можно использовать для определения электрического поля.
Решение
Сначала рассчитываем плотность тока:
J = IA = 10 · 10−3A3,31 · 10−6м2 = 3,02 · 103Am2. J = IA = 10 · 10−3A3,31 · 10−6м2 = 3,02 · 103Am2.
Сопротивление провода
R = ρLA = (1,68 × 10-8 Ом · м) 5.00 м3,31 × 10–6 м2 = 0,025 Ом. R = ρLA = (1,68 × 10–8 Ом · м) 5,00 м3,31 × 10–6 м2 = 0,025 Ом.
Наконец, мы можем найти электрическое поле:
E = ρJ = 1,68 × 10–8 Ом · м (3,02 × 103Am2) = 5,07 × 10–5Vm. E = ρJ = 1,68 × 10–8 Ом · м (3,02 × 103Am2) = 5,07 × 10–5Vm.
Значение
Исходя из этих результатов, неудивительно, что медь используется для проводов, проводящих ток, потому что сопротивление довольно мало. Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.
Сопротивление объекта также зависит от температуры, поскольку R0R0 прямо пропорционально ρ.ρ. Для цилиндра мы знаем, что R = ρLAR = ρLA, поэтому, если L и A не сильно изменяются с температурой, R имеет ту же температурную зависимость, что и ρ.ρ. (Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на ρ.) ρ.) Таким образом,
R = R0 (1 + αΔT) R = R0 (1 + αΔT)
9,10
— это температурная зависимость сопротивления объекта, где R0R0 — исходное сопротивление (обычно принимаемое равным 20,00 ° C) 20,00 ° C), а R — сопротивление после изменения температуры ΔT.ΔT. Цветовой код показывает сопротивление резистора при температуре T = 20,00 ° CT = 20,00 ° C.
Многие термометры основаны на влиянии температуры на сопротивление (рисунок 9.17). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры.Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.
Рис. 9.17 Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.
Пример 9,6
Расчет сопротивления
Хотя следует соблюдать осторожность при применении ρ = ρ0 (1 + αΔT) ρ = ρ0 (1 + αΔT) и R = R0 (1 + αΔT) R = R0 (1 + αΔT) для температурных изменений более 100 ° C 100 ° C , для вольфрама уравнения достаточно хорошо работают при очень больших изменениях температуры.Вольфрамовая нить накала при 20 ° C20 ° C имеет сопротивление 0,350 Ом 0,350 Ом. Каким будет сопротивление при повышении температуры до 2850 ° C 2850 ° C?
Стратегия
Это прямое применение R = R0 (1 + αΔT) R = R0 (1 + αΔT), поскольку исходное сопротивление нити накала задается как R0 = 0,350ΩR0 = 0,350Ω, а изменение температуры составляет ΔT = 2830 ° CΔT. = 2830 ° С.
Решение
Сопротивление более горячей нити накала R получается путем ввода известных значений в приведенное выше уравнение:
R = R0 (1 + αΔT) = (0.350 Ом) [1+ (4,5 × 10−3 ° C) (2830 ° C)] = 4,8 Ом.R = R0 (1 + αΔT) = (0,350 Ом) [1+ (4,5 × 10−3 ° C) ( 2830 ° C)] = 4,8 Ом.
Значение
Обратите внимание, что сопротивление изменяется более чем в 10 раз, когда нить накала нагревается до высокой температуры, а ток через нить зависит от сопротивления нити и приложенного напряжения. Если нить накаливания используется в лампе накаливания, начальный ток через нить накала при первом включении лампы будет выше, чем ток после того, как нить накала достигнет рабочей температуры.
Проверьте свое понимание 9,6
Тензодатчик — это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги. Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?
Пример 9.7
Сопротивление коаксиального кабеля
Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов.Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения. Коаксиальные кабели состоят из внутреннего проводника с радиусом riri, окруженного вторым внешним концентрическим проводником с радиусом roro (рисунок 9.18). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки.Определите сопротивление коаксиального кабеля длиной L .
Рисунок 9.18 Коаксиальные кабели состоят из двух концентрических жил, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.
Стратегия
Мы не можем напрямую использовать уравнение R = ρLAR = ρLA. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем.
Решение
Сначала мы находим выражение для dR , а затем интегрируем от riri до roro,
dR = ρAdr = ρ2πrLdr, R = ∫rirodR = ∫riroρ2πrLdr = ρ2πL∫riro1rdr = ρ2πLlnrori.dR = ρAdr = ρ2πrLdr, R = ∫rirodR = ∫riroρ2πrLdr = ρ2πL∫riro1rdr = ρ2πLlnrori.
Значение
Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника. Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.
Проверьте свое понимание 9,7
Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиуса двух проводников.Если вы разрабатываете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?
Часть 1: Зависимость от длины Прогноз: • Каким образом
Транскрибирует текст изображения: Часть 1: Зависимость от длины Прогноз: • Как изменится сопротивление провода при увеличении длины? • Какое соотношение между сопротивлением и длиной (например, линейное, степенное, обратное или экспоненциальное) вы ожидаете?
3 фактора, влияющие на сопротивление Цель: изучить зависимость сопротивления резистора от длины и площади поперечного сечения и рассчитать удельное сопротивление нержавеющей стали и нихрома.Теория: сопротивление электрического проводника зависит от нескольких факторов, включая длину провода L и его площадь поперечного сечения A (рис. 1). Площадь поперечного сечения, в свою очередь, зависит от диаметра проволоки, называемого калибром проволоки. Рис. 1 Иллюстрация провода, показывающая площадь поперечного сечения A и длину L. Другим фактором, влияющим на сопротивление провода, является удельное сопротивление p металла. Удельное сопротивление — это свойство, которое определяется свойствами материала конкретного металла, из которого состоит проволока.Удельное сопротивление металла также зависит от температуры металла.
Прогнозы Сопротивление — это свойство материала препятствовать прохождению тока при приложении напряжения к его клемме. Это свойство зависит от следующих факторов. Длина токопроводящего материала. Площадь поперечного сечения проводника. Тип материала и температура R = rho x 1 / A. Здесь rho — удельное сопротивление, и оно постоянно для данного материала. По мере увеличения длины сопротивление увеличивается. Сопротивление обратно пропорционально площади поперечного сечения.Сопротивление обратно пропорционально площади поперечного сечения. Сопротивление зависит от температуры как R = RO (1 + АЛЬФА x дельта Т). RO — начальная температура, а альфа — скорость изменения температуры.
Часть 1: Зависимость от длины Прогноз: • Как изменится сопротивление провода при увеличении длины? • Какое соотношение между сопротивлением и длиной (например, линейное, степенное, обратное или экспоненциальное) вы ожидаете?
Предыдущий вопрос Следующий вопрос
Список факторов, влияющих на сопротивление
Сопротивление — это свойство материала, ограничивающее поток электронов.На сопротивление влияют четыре фактора: температура, длина провода, площадь поперечного сечения провода и природа материала.
Когда в проводящем материале есть ток, свободные электроны движутся через материал и иногда сталкиваются с атомами. Эти столкновения заставляют электроны терять часть своей энергии, и, таким образом, их движение ограничивается. Это ограничение различается и определяется типом материала. Свойство материала, ограничивающее поток электронов, называется сопротивлением.
Когда через какой-либо материал, обладающий сопротивлением, проходит ток, в результате столкновений свободных электронов и атомов выделяется тепло. Следовательно, провод, который обычно имеет очень маленькое сопротивление, нагревается, когда через него проходит достаточный ток.
См. Также: Типы электрического заряда
Что такое единица измерения сопротивления?
Сопротивление R выражается в омах и обозначается греческой буквой омега (Ом).
«Сопротивление один Ом (1 Ом) существует, если в материале присутствует ток в один ампер (1 А), когда на материал подается один вольт (1 В).”
Что такое проводимость?
Сопротивление обратно пропорционально проводимости, обозначенной буквой G. Это мера легкости установления тока. Формула:
G = 1 / R
Единицей измерения проводимости является Siemens, сокращенно S.Foe, например, проводимость резистора 22 кОм составляет G = 1/22 кОм = 45,5 мкс. Иногда устаревшая единица mho все еще используется для измерения проводимости.
См. Также: закон Кулона
Список факторов, влияющих на сопротивление
Сопротивление уменьшается с повышением температуры.Термистор — это резистор, зависящий от температуры, и его сопротивление уменьшается с повышением температуры. Термистор используется в цепи, которая определяет изменение температуры. Есть четыре фактора, от которых зависит сопротивление.
- Длина (L)
- площадь поперечного сечения (А)
- вид материала
- характер материала
Сопротивление провода зависит как от площади поперечного сечения и длины провода, так и от материала провода.Толстые провода имеют меньшее сопротивление, чем тонкие. Более длинные провода имеют большее сопротивление, чем короткие. Медная проволока имеет меньшее сопротивление тонкой стальной проволоки того же размера. Электрическое сопротивление также зависит от температуры. При определенной температуре и для конкретного вещества.
Как длина провода влияет на сопротивление?
Сопротивление провода R прямо пропорционально длине провода:
R α L… .. (1)
Это означает, что если мы удвоим длину провода, его сопротивление также увеличится вдвое, а если его длина уменьшится вдвое, его сопротивление станет наполовину.
Связь сопротивления с площадью:
Сопротивление R провода обратно пропорционально площади поперечного сечения A провода как:
R α 1 / A …… (2)
Это означает, что толстая проволока будет иметь меньшее сопротивление, чем тонкая. После объединения уравнений (1) и (2) получаем;
R α L / A
R = ρL / A…. (3)
Где ρ — коэффициент пропорциональности, известный как удельное сопротивление. Его значение зависит от типа проводника i.Медь, железо, олово и серебро будут иметь разные значения ρ. Из уравнения (3) имеем:
ρ = R A /L….(4)
Если L = 1 м, A = 1 м², то ρ = R. Таким образом, уравнение (4) дает определение.
См. Также: Разница между напряжением и током
Что такое удельное сопротивление?
Сопротивление куба вещества длиной один метр равно его удельному сопротивлению. Единица измерения ρ — ом-метр (Ом · м). Ниже приведена таблица некоторых металлов с удельным сопротивлением:
.
Удельное сопротивление металла (10-8 Ом)
- серебро 1.7
- Медь 1,69
- Алюминий 2,75
- Вольфрам 5,25
- Платина 10,6
- Утюг 9,8
- Нихром 100
- Графит 3500
Что такое проводники?
Материал или объект, который проводит тепло, электричество, свет или звук, называется проводником. Металлические провода являются хорошими проводниками электричества и обладают меньшим сопротивлением току.Почему металлы проводят электричество?… Металлы, такие как серебро и медь, имеют избыток свободных электронов, которые не удерживаются прочно с каким-либо конкретным атомом металла. Эти свободные электроны беспорядочно перемещаются во всех направлениях внутри металлов. Когда мы прикладываем внешнее поле, эти электроны могут легко двигаться в определенном направлении.
Это движение свободных электронов в определенном направлении под действием внешнего поля вызывает протекание тока в металлических проводах.
Как сопротивление увеличивается с температурой?
Проводники имеют низкое сопротивление.Сопротивление проводников увеличивается с повышением температуры. Это связано с увеличением количества столкновений электронов с собой и с атомами металлов. Золото, серебро, медь, алюминий и другие металлы — хорошие примеры проводников. Земля также является очень хорошим и большим проводником.
Что такое изоляторы?
Материал, который с трудом передает энергию, например электрический ток или тепло, называется изоляторами. почему изоляторы не проводят электричество ?.Все материалы содержат электроны. Однако электроны в изоляторах, таких как резина, не могут двигаться. Они прочно связаны внутри атомов. Следовательно, ток не может течь через изолятор, потому что они не являются свободными электронами для протекания тока. Изоляторы имеют очень большое значение сопротивления. Стекло, дерево, пластик, мех, шелк и т. Д.
Сочетания сопротивлений в электрической цепи
Возможны две комбинации сопротивления в электрических цепях:
Комбинация серий
Параллельная комбинация
- Комбинация серии
:
В последовательных комбинациях резисторы подключаются встык, и электрический ток проходит через цепь одним путем.Это означает, что ток, проходящий через каждый резистор, одинаков.
Ток одинаков во всех точках последовательной цепи. Ток через каждый резистор в последовательной цепи такой же, как ток через все резисторы, включенные последовательно с ним. На приведенном выше рисунке три резистора подключены последовательно к источнику постоянного напряжения.
В любой точке этой цепи ток в этой точке должен быть равен току из этой точки. Также обратите внимание, что ток на каждом резисторе должен равняться току на каждом резисторе, потому что нет места, где часть тока может ответвиться и уйти в другое место.
Следовательно, ток в каждой секции цепи такой же, как ток во всех других секциях. У него есть только один путь, идущий от положительной (+) стороны источника к отрицательной (_) стороне.
Общее последовательное сопротивление:
Общее последовательное сопротивление последовательной цепи равно сумме сопротивлений каждого отдельного последовательного резистора. Когда резисторы подключаются последовательно, значения резисторов складываются, потому что каждый резистор оказывает сопротивление току прямо пропорционально его сопротивлению.Чем больше количество резисторов, подключенных последовательно, тем больше сопротивление току. Чем больше сопротивление току, тем выше сопротивление. Таким образом, каждый раз, когда резистор добавляется последовательно, общее сопротивление увеличивается.
См. Также: Виды электрического заряда
Формула полного сопротивления в последовательном соединении:
Для любого количества отдельных резисторов, соединенных последовательно, общее сопротивление является суммой каждого из отдельных значений.
Rt = R1 + R2 + R3 + R4 + ……….. + Rn
Где Rt — полное сопротивление, а Rn — последний резистор в последовательной цепочке. Например, если есть 3 последовательно подключенных резистора. Формула общего сопротивления будет
.
Rt = R1 + R2 + R3
Если имеется шесть последовательно соединенных резисторов (n = 6), формула общего сопротивления будет:
Rt = R1 + R2 + R3 + R4 + R5 + R6
2: Параллельная комбинация:
Когда два или более резистора по отдельности подключены между одними и теми же двумя отдельными точками, они параллельны друг другу.Параллельная цепь обеспечивает более одного пути для тока.
Каждый текущий путь называется ветвью . Параллельная цепь — это еще одна цепь, имеющая более одного ответвления. Три резистора подключены параллельно, как показано на рисунке выше. Когда резисторы соединены параллельно, ток имеет более одного пути. Количество путей тока равно количеству параллельных ветвей.
Формула для полного параллельного сопротивления:
Поскольку Vs — это напряжение на каждом из параллельных резисторов на приведенном выше рисунке, по закону Ома I = Vs / R :
Vs / Rt = Vs / R1 + Vs / R2 + Vs / R3 …….(1)
Член Vs может быть исключен из правой части уравнения и отменен с помощью Vs в левой части, оставив только члены сопротивления.
1 / Rt = 1 / R1 + 1 / R2 + 1 / R3 …… (2)
Напомним, что величина, обратная сопротивлению (1 / R), называется проводимостью , что соответствует , обозначенному буквой G. Единица проводимости — Сименс (ы). Уравнение (2) может быть выражено в терминах проводимости как:
Gt = G1 + G2 + G2
Решите относительно Rt в уравнении (2), взяв обратную величину, полученную при обращении обеих частей уравнения.