26.05.2024

Энергия определение в физике: Ошибка: 404 Материал не найден

Содержание

Энергия как физическая величина. Виды энергии. Физика, 7 класс: уроки, тесты, задания.






















1.

Кинетическая энергия велосипедиста


Сложность:
лёгкое

2


2.

Определение, свойства, единицы измерения энергии


Сложность:
лёгкое

2


3.

Словесные определения формул


Сложность:
лёгкое

1


4.

Единицы величин


Сложность:
лёгкое

2


5.

Формулы (выражение переменных)


Сложность:
лёгкое

1


6.

Превращение одного вида энергии в другой


Сложность:
лёгкое

1


7.

Кинетическая энергия метеорита


Сложность:
среднее

4


8.

Изменение кинетической энергии


Сложность:
среднее

4


9.

Потенциальная энергия, определение совершённой работы


Сложность:
среднее

3


10.

Изменение потенциальной энергии


Сложность:
среднее

3


11.

Потенциальная энергия камня


Сложность:
среднее

4


12.

Механическая энергия


Сложность:
среднее

1


13.

Неизвестная высота


Сложность:
среднее

2


14.

Потенциальная энергия тела относительно земли или крыши


Сложность:
среднее

3


15.

Изменение кинетической энергии (скорости)


Сложность:
среднее

4


16.

Неизвестная скорость


Сложность:
среднее

3


17.

Превращение одной энергии в другую


Сложность:
среднее

4


18.

Неизвестная высота дирижабля


Сложность:
сложное

4


19.

Потенциальная энергия коробок относительно пола


Сложность:
сложное

5


20.

Сравнение энергий


Сложность:
сложное

3

Понятие энергии в физике.

Энергетические системы

Понятие Энергия (от греч.

ενεργός — деятельный) — общая количественная мера движения и взаимодействия всех видов материи .

Энергия не возникает из ничего и никуда не исчезает, она может только переходить из одного вида в
другой (закон сохранения энергии ). Понятие энергии связывает все явления природы в одно целое, является
общей характеристикой состояния физических тел и физических полей .
Вследствие существования закона сохранения энергии понятия «энергия» связывает все явления природы .
В физике понятие энергия обычно обозначается латинской буквой Е.
В системе СИ энергия измеряется в джоулях . Кроме этих основных единиц измерения на практике используется
очень много других удобных при конкретном использовании единиц. В атомной и ядерной физики а также в физике элементарных частиц понятие энергию измеряют электрон-вольтами , в химии калориями , в физике твердого тела градусами Кельвина , в оптике обращенными сантиметрами , в квантовой химии в самосогласованного .

Виды энергии.Энергетические системы

Согласно различных форм движения материи, различают несколько типов энергии: механическая , электромагнитная , химическая , ядерная ,тепловая , гравитационная и др. Это деление достаточно условно. Так химическая энергия состоит из кинетической энергии движения электронов , их взаимодействия и взаимодействия с атомами .
Кроме того,по понятию различают энергию внутреннюю и энергию в поле внешних сил. Внутренняя энергия равна сумме кинетической энергии движения молекул и потенциальной энергии взаимодействия молекул между собой. Внутренняя энергия изолированной системы является постоянной.
В ризномантнитних физических процессах различные виды энергии могут превращаться друг в другой. Например, ядерная энергия в атомных электростанциях превращается сначала во внутреннюю тепловую энергию пара , вращающего турбины (механическая энергия), что в свою очередь индуцируют электрический ток в генераторах (электрическая энергия), который используется для освещения (энергия электромагнитного поля ) и т. д .
Энергия системы однозначно зависит от параметров, характеризующих ее состояние. В случае непрерывного среды вводят понятие плотности.

История развития понятие энергии

Понятие энергии состояло в физике на протяжении многих веков. Его понимание все время менялось. Впервые термин энергия в современном физическом смысле применил в 1808 году Томас Янг. К тому употреблялся термин «жизненная сила» (лат. vis viva), который еще в 17-м веке ввел в обращение Лейбниц , определив его как произведение массы на квадрат скорости .
В 1829 году Кориолиса впервые применил термин кинетическая энергия в современном смысле, а срок потенциальная энергия был введен Уильямом Рэнкин в 1853 году. К тому времени получены в исследованиях в различных областях науки данные начали складываться в общую картину. Благодаря опытам Джоуля , Майера , Гельмгольца прояснилось вопросы преобразования механической энергии в тепловую. В одной из первых работ «О сохранении силы» (1847) Гельмгольц, следуя идее единства природы, математически обосновал закон сохранения энергии
и положение о том, что живой организм является физико-химическим средой, в которой указанный закон точно выполняется. Гельмгольц сформулировал «принцип сохранения силы» и невозможность Perpetuum Mobile . Эти открытия позволили сформулировать первый закон термодинамики или понятие сохранения энергии . Понятие энергии стало центральным в понимании физических процессов. Вскоре естественным образом в понятие энергии вписалась термодинамика химических реакций и теория электрических и электромагнитных явлений.
С построением теории относительности к понятию энергии добалося новое понимание. Если раньше
потенциальная энергия определялась с точностью до произвольной постоянной, то теория Эйнштейна установила
связь энергии с массой .

Квантовая механика обогатила понятие энергии квантованием — для определенных физических систем энергия
может принимать лишь дискретные значения. Кроме того принцип неопределенности установил границы точности
измерения энергии и ее взаимосвязь с тем . Теорема Нетер продемонстрировала, что закон сохранения энергии
следует из принципа однородности времени, по которому физические процессы в одинаковых системах протекают
одинаково, даже если они начинаются в разные моменты времени.

Теория относительности.Энергетические системы

Энергия тела зависит от системы отсчета , т.е. неодинакова для разных наблюдателей . Если тело движется со
скоростью v относительно какого наблюдателя, то для другого наблюдателя, движущегося с той же скоростью, оно
покажется неподвижным. Соответственно, для первого  кинетическая энергия тела будет равна
(исходя из законов классической механики) т v2/2′ где m — масса тела, а для другого — нулю.
Эта зависимость энергии от системы отсчета сохраняется также в теории относительности . Для определения преобразований, происходящих с энергией при переходе от одной инерциальной системы отсчета к другой используется сложная математическая конструкция — тензор энергии-импульса .
Энергия тела зависит от скорости уже не так как в ньютоновской физике, а иначе:
квантовая механика
Тогда, как в классической физике понятие энергия любой системы меняется непервно и может принимать произвольных значений, Квантовая теория утверждает, что энергия микрочастиц, привязанных силой взаимодействия с другими микрочастицами в ограниченных областей пространства, может приобретать только определенных дискретных значений.
Так, атомы излучают энергию в виде дискретных порций — световых квантов , или фотонов .
Оператором энергии в квантовой механике является гамильтониан . В стационарных состояниях квантовых систем энергия может иметь только те значения, которые соответствуют собственным значением гамильтониана. Для локализованных состояний энергия может иметь только определенные дискретные.

Понравилось это:

Нравится Загрузка…

Похожее

Энергия | Физика

Термин «энергия» был введен в 1807 г. английским ученым Т. Юнгом. В переводе с греческого это слово означает «действие, деятельность».

Современная наука немыслима без этого понятия. Оно присутствует во всех разделах физики. Это и электрическая энергия, магнитная энергия, атомная энергия и т. д.

Энергия, изучаемая в механике, называется механической. Именно с нее мы и начнем знакомство с этим важнейшим понятием.

Механическая энергия обозначается буквой Е и измеряется в тех же единицах, что и работа, т. е. в джоулях (Дж).

Поскольку в механике изучают движение тел и их взаимодействие друг с другом, то принято различать два вида механической энергии — энергию, обусловленную движением тел, и энергию, обусловленную их взаимодействием. Первая из них обозначается Eк и называется кинетической энергией, вторая обозначается Eп и называется потенциальной энергией.

Для расчета и той и другой энергии существует общее правило. Чтобы определить энергию, которой обладает тело, надо найти работу, необходимую для перевода этого тела из нулевого состояния в данное (нулевое состояние — это то, в котором соответствующая энергия тела считается равной нулю). Чем больше эта работа, тем большей энергией обладает тело в данном состоянии.

Воспользуемся этим правилом для расчета каждой из энергий.

1. Кинетическая энергия. Найдем кинетическую энергию тела массой т, движущегося со скоростью, равной и. Кинетическая энергия — это энергия, обусловленная движением. Поэтому нулевым состоянием для нее является то, в котором тело покоится. Найдя работу, необходимую для сообщения телу данной скорости, мы найдем и его кинетическую энергию.

Воспользовавшись определением работы (A = Fs), вторым законом Ньютона (F = ma), а также формулами (2.1) и (4.2), получаем (рис. 25)

Последнее из написанных здесь выражений и является кинетической энергий тела:

Итак, кинетическая энергия тела равна половине произведения массы тела на квадрат его скорости.

2. Потенциальная энергия. Найдем потенциальную энергию тела, взаимодействующего с Землей. Нулевым будем считать положение тела на поверхности Земли. Тогда потенциальная энергия тела, находящегося на некоторой высоте h, будет равна работе, необходимой для перемещения этого тела с поверхности Земли на заданную высоту. При равномерном подъеме, когда прикладываемая к телу сила совпадает по величине с силой тяжести (рис. 26), эта работа может быть найдена следующим образом:

A = Fs = Fтh = mgh.

Это и есть потенциальная энергия тела на высоте h:

   Eп = mgh.         (14.2)

Итак, потенциальная энергия тела, взаимодействующего с Землей, равна произведению массы этого тела, ускорению свободного падения и высоты, на которой находится тело.

За нулевое положение тела при расчете его потенциальной энергии необязательно выбирать то, которое расположено на поверхности Земли. Это может быть и уровень пола в помещении, и поверхность стола и т. д. Нулевое положение, от которого отсчитывается высота тела h, выбирают произвольно, руководствуясь обычно лишь соображениями удобства и простоты.

По формуле (14.2) находится потенциальная энергия тела, взаимодействующего с Землей. Потенциальная энергия других взаимодействий находится по другим формулам.

От энергии, которой обладает тело, зависит работа, которую оно может совершить. Чем больше энергия тела, тем большая работа будет совершена при переходе тела из данного состояния в нулевое. Проиллюстрируем это простыми опытами.

Возьмем составной желоб, имеющий наклонную и горизонтальную части, и поместим на его сгибе алюминиевый цилиндр (рис. 27). Пуская по наклонной части желоба шарики разной массы с одинаковой высоты и шарики одинаковой массы с разных высот, можно заметить, что, чем большей потенциальной энергией наверху желоба и кинетической энергией внизу обладал шарик, тем на большее расстояние он передвинет металлический цилиндр.

1. Чем обусловлена кинетическая энергия? 2. Чему равна кинетическая энергия тела? 3. Чем обусловлена потенциальная энергия? 4. Чему равна потенциальная энергия тела, взаимодействующего с Землей? 5. Как называется единица энергии? 6. В каком случае кинетическая энергия тела равна нулю? 7. Какой энергией — кинетической, потенциальной или обеими вместе — обладает летящий в небе самолет? 8. Какой энергией обладает вода, удерживаемая плотиной, и какой энергией обладает вода, падающая с плотины? 9. Как изменяются потенциальная и кинетическая энергии мяча, брошенного вертикально вверх, в процессе его полета?

Потенциальная энергия: определение, виды, формулы



Определение потенциальной энергии


Энергия, говоря простым языком, это возможность что-либо сделать, возможность совершить работу. То есть, если какое-либо тело может совершить какую-либо работу, то про это тело можно сказать, что оно обладает энергией. По сути, энергия — это мера различных форм движения и взаимодействия материи, а её изменение происходит при совершении некоторой работы. Таким образом, совершённая работа всегда равна изменению какой-либо энергии. А значит, рассматривая вопрос о совершённой телом работе, мы неизбежно приходим к изменению какого-либо вида энергии. Вспомним также и тот факт, что работа совершается только в том случае, когда тело под действием некоторой силы движется, и при этом сама работа определяется как скалярное произведение вектора этой силы и вектора перемещения, то есть А = F*s*cosa, где а — угол между вектором силы и вектором перемещения. Это нам пригодится в дальнейшем для вывода формул различных видов энергии.


Энергию, связанную с взаимодействием тел, называют ПОТЕНЦИАЛЬНОЙ ЭНЕРГИЕЙ. Иначе говоря, если тело за счёт взаимодействия с другим телом может совершить некоторую работу, то оно будет обладать потенциальной энергией, и при совершении работы будет происходить изменение этой энергии. Обозначают механическую потенциальную энергию чаще всего — Еп.

Виды потенциальной энергии


Существуют различные виды потенциальной энергии. К примеру, любое тело на Земле находится в гравитационном взаимодействии с Землёй, а значит обладает потенциальной энергией гравитационного взаимодействия. И ещё пример — витки растянутой или сжатой пружины находятся в упругом взаимодействии друг с другом, а значит сжатая или растянутая пружина будет обладать потенциальной энергией упругого взаимодействия.


Далее мы рассмотрим только виды механической потенциальной энергии и формулы, по которым их можно рассчитать. Но в дальнейшем вы узнаете и о других видах потенциальной энергии — к примеру, о потенциальной энергии электрического взаимодействия заряженных тел, о потенциальной энергии взаимодействия электрона с атомным ядром.


Знакомьтесь: наш мир. Физика всего на свете.


Книга адресована школьникам старших классов, студентам, преподавателям и учителям физики, а также всем тем, кто хочет понять, что происходит в мире вокруг нас, и воспитать в себе научный взгляд на все многообразие явлений природы. Каждый раздел книги представляет собой, по сути, набор физических задач, решая которые читатель укрепит свое понимание физических законов и научится применять их в практически интересных случаях.

Купить

Формулы потенциальной энергии


Перед тем как приступить к выводу формул потенциальной энергии, ещё раз вспомним, что совершённая телом или над телом работа равна изменению его энергии. При этом, если само тело совершает работу, то его энергия уменьшается, а если над телом совершают работу, то его энергия увеличивается. К примеру, если спортсмен поднимает штангу, то он сообщает ей потенциальную энергию гравитационного взаимодействия, а если он отпускает штангу и она падает, то потенциальная энергия гравитационного взаимодействия штанги с Землёй уменьшается. Также, если вы открываете дверь, растягивая пружину, то вы сообщаете пружине потенциальную энергию упругого взаимодействия, но если потом дверь закрывается, благодаря сжатию пружины в начальное состояние, то и энергия упругой деформации пружины уменьшается до нуля.


А) Чтобы вывести формулу потенциальной энергии гравитационного взаимодействия, рассмотрим, какую работу совершает тело, двигаясь под действием силы тяжести:


А = F*s = mg*s = mg*(h1
— h2) = mgh1
— mgh2
= Eп1
— Еп2, то есть, мы получили, что потенциальная энергия гравитационного взаимодействия тела с Землёй может быть вычислена по формуле: Еп = mgh.


Здесь важно отметить, что поверхность Земли принимается за начало отсчёта высоты, то есть для тела, находящегося на поверхности Земли Еп = 0, для тела, поднятого над Землёй Еп > 0, а для тела, находящегося в яме глубиной h, Еп < 0.


Отметим также и то, что в формуле работы отсутсвовал cosa. Это не случайно. Ведь если тело движется по сложной траектории, то, какой бы сложной она ни была, её можно разбить на множество вертикальных и горизонтальных участков. Но на горизонтальных участках работа силы тяжести будет равна нулю, так как угол между силой тяжести и перемещением будет прямым, а значит работа будет совершаться только на вертикальных участках траектории, для которых cosa = 1 или cosa = −1.


Тогда можно сделать ещё один важный вывод — работа силы тяжести не зависит от формы траектории, а только от расположения начальной и конечной точки. А это не случайность — это свойство любых сил, сообщающих телам потенциальную энергию. Такие силы называют потенциальными и сила тяжести — одна из них. К потенциальным силам относится и сила упругости.


Б) Чтобы вывести формулу потенциальной энергии упругой деформации, рассмотрим, какую работу нужно совершить, чтобы растянуть пружину, изменив её длину на х (х = l — l0):


А = –Fупр(ср.)*s,


Во-первых, знак минус в формуле стоит потому, что угол между силой упругости и перемещением свободного конца пружины равен 180 градусов и cosa = −1.


Во-вторых, возникающая при растяжении пружины сила упругости является переменной силой, в отличие от силы тяжести, поэтому в формуле работы стоит средняя сила упругости. При этом величина силы упругости, в соответствии с законом Гука, прямо пропорциональна изменению длины пружины, а значит её среднее значение можно определить так:


Fупр(ср. ) = (Fупр(нач.) + Fупр(конеч.))/2


И так как Fупр(нач.) = 0, а Fупр(конеч.) = kх, то:


А = —kх*s/2


Но s = x, поэтому: А = —kx2/2 = 0 — kх2/2 = Еп1 — Еп2.


В итоге, мы получили формулу потенциальной энергии упругой деформации: Еп = kx2/2.


Что еще почитать?

Методические советы учителям


1) Обязательно обратите внимание учащихся на связь энергии и работы.


2) Не давайте учащимся формулы потенциальной энергии без вывода.


3) Обратите внимание учащихся на то, что оба вида потенциальной энергии зависят от выбора начальной точки, то есть от системы координат.


4) При выводе формул потенциальной энергии обязательно поясните учащимся почему отсутствует cosa в формуле работы.


5) Отметьте, что и работа силы тяжести, и работа силы упругости не зависят от формы траектории и, следовательно равны нулю на замкнутой траектории — это общее и важное свойство всех потенциальных сил.

#ADVERTISING_INSERT#

Энергия: потенциальная и кинетическая энергия

 

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

Энергия в физике

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Кинетическая и потенциальная энергия

В механике изучают движение и взаимодействие тел друг с другом. Поэтому принято различать два вида механической энергии: энергию, обусловленную движением тел, или кинетическую энергию, и энергию, обусловленную взаимодействием тел, или потенциальную энергию.

В физике существует общее правило, связывающее энергию и работу. Чтобы найти энергию тела, надо найти работу, которая необходима для перевода тела в данное состояние из нулевого, то есть такого, при котором его энергия равна нулю.

Потенциальная энергия

В физике потенциальной энергией называют энергию, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела. То есть, если тело поднято над землей, то оно обладает возможностью падая, произвести какую-либо работу.

И возможная величина этой работы будет равна потенциальной энергии тела на высоте h.  Для потенциальной энергии формула определяется по следующей схеме:

A=Fs=Fт*h=mgh,     или      Eп=mgh,

где Eп потенциальная энергия тела,
m масса тела,
h — высота тела над поверхностью земли,
g ускорение свободного падения. 2) / 2 ,

где Eк кинетическая энергия тела,
m масса тела,
v скорость тела.

Из формулы видно, что чем больше масса и скорость тела, тем выше его кинетическая энергия. 

Каждое тело обладает либо кинетической, либо потенциальной энергией, либо и той, и другой сразу, как, например, летящий самолет.

Формула энергии в физике всегда показывает, какую работу совершает или может совершить тело. Соответственно, единицы измерения энергии такие же, как и работы джоуль (1 Дж).

Нужна помощь в учебе?

Предыдущая тема: Коэффициент полезного действия механизмов: расчет, формула + примеры
Следующая тема:&nbsp&nbsp&nbspПревращение энергии: закон сохранения энергии

Что такое энергия Текст научной статьи по специальности «Физика»

ЧТО ТАКОЕ ЭНЕРГИЯ

Вышинский В.А.

Институт кибернетики им. ВМ.Глушкова НАН Украины,

Киев

WHAT IS ENERGY

Vyshinskiy V.

V.M.Glushkov Institute of cybernetics of National academy of Science of Ukraine

Kiev

АННОТАЦИЯ

Энергия в познании окружающего мира является ключевым понятием, которое далеко неоднозначно трактуется в современных исследованиях. В статье это свойство материи рассматривается, как мера ее движения, т.е. ее скалярная характеристика. Предлагается способ исследования энергии путем математического анализа функции движения материального объекта, аргументами которой выступают не меры пространства и времени, а величины материальной субстанции. Приводятся примеры использования этого способа для анализа энергии движения материальной субстанции в фотоне (кинетическая энергия), и ее консервации (потенциальная энергия), расположенной в массе тела.

ABSTRACT

Energy in the knowledge of the world is a key concept, which is far, from ambiguously interpreted in modern research. In the article, this property of matter is considered as, a measure of its motion, i.e. its scalar characteristic. A method is proposed for studying energy by mathematical analysis of the motion function of a material object, the arguments of which are not measures of space and time, but the magnitude of material substance. Examples of using this method to analyze the energy of motion of a material substance in a photon (kinetic energy), and when it is preserved (potential energy) located in the body mass, are given.

Ключевые слова: энергия, величины материальной субстанции, потенциальная энергия, кинетическая энергия, неопределенный интеграл

Keywords: energy, values of material substance, potential energy, kinetic energy, indefinite integral

1. Введение

Человеческое любопытство всегда интересовалось причиной, непрерывного изменения окружающей среды, которая приобретает новые формы под внешним воздействием, а также в силу внутренней способности превращаться из одного вида в иной. Не будем прослеживать историю познания этого явления, а отметим лишь то, что в первой половине семнадцатого века Готфрид Лейбниц это свойство материи назвал «живой силой» и предложил ему математический образ

E=mv2,

где E — «живая сила», v — скорость перемещения m — массы тела. Это уже потом вначале девятнадцатого века Томас Юнг эту «силу» обозначил энергией. Способность материального мира перестраивать свою структуру под воздействием энергии, и только с ее помощью, просматривается на каждом шагу. Наверное, Г. Лейбниц, ассоциируя перераспределение материальной природы с работой, т.е. с деятельностью человека, и отнес его к «живой силе». До сих пор, несмотря на усилия человечества в познании природы, понимание энергии тесно связывают с работой, выполнение которой присваивают не только человеку, но и искусственно созданному механизму, а то и природному явлению. Такое «свободное» обращение с понятием энергии, как видом различной работы, позволило приблизить научное познание к бытовым рас-

суждениям, тем самым, затрудняя глубоко вникнуть в его сущность. Ведь весьма часто различные проявления энергии требуют сравнительного анализа, который удобно выполнять, введя их в единую измерительную систему. В частности, для анализа энергетических затрат на физический и умственный труд (их сравнение) нужны единые единицы измерения энергии, которых не способна сегодня предоставить наука. Иными словами, для оценки количества энергии в рассматриваемом случае, не оказалось таких же удобных возможностей, как это имеет место в определении веса тела, скорости поступательного и скорости вращательного движения и это не единственный пробел в современной физике, связанный с познанием энергии. Уже давно в науке под энергией понимают скалярную величину движения материи, однако в чем сущность ее модели, как физической, так и математической, адекватной природе установить не удалось. В данном случае речь идет о модели, которая не просто утверждала бы, по Эйнштейну, что энергию можно превратить в массу, а последнюю в энергию, а была показана самая сущность такого превращения, конечно, если в природе оно возможно. Более того, в появлении вещества из материи, первостепенную роль играет ее энергия, и в этом случае, нужна модель, поясняющая это явление природы. В настоящей статье попытаемся, в какой-то мере, «пролить свет» на затронутые выше вопросы.

2. Современные подходы в изучении энергии

Эффективность познания, прежде всего, зависит от метода исследований, базирующегося на мировоззрении, т.е. на системе понятий, поясняющих существование окружающего мира. Материалистическое мировоззрение для этого использует систему понятий-постулатов [1], которые отражают законы природы и не зависят от субъекта-исследователя. Если же указанные понятия не удовлетворяют этим требованиям и, «мягко» говоря, необоснованно надуманные, отражая субъективные пожелания, то ожидать адекватных природе результатов от такого познания не приходится. Например, один из постулатов, в специальной теории относительности, фиксирует скорость света, превышение которой ни одному движению в природе, согласно Эйнштейну, не «позволено». В тоже время такое утверждение противоречит, полученным задолго до этого, результатам исследований Лапласа [2], согласно которым скорость распространения гравитации на семь десятичных порядков превышает скорость света.

Однако наш «знаменитый физик» и в дальнейшем продолжает игнорировать эту неудобную для него информацию, и при разработке общей теории относительности вводит постулат, в котором присваивает скорости распространения гравитационного потенциала скорость света. Выдача Эйнштейном в своих теориях желаемого за действительное, неоднократно, подтверждалась внушительной статистикой эксперимента. Так, в первом десятилетии двадцать первого столетия, пучок нейтрино был направлен из ЦЕРНа в подземную лабораторию Италии Гран-Сассо, которая находится на расстоянии 732 км. Оказалось, что скорость нейтрино больше скорости света, и этот опыт повторялся 15 тыс. раз [3]. Не менее убедительными являются эксперименты американского астронома Тома Ван Фландерна, который в статье «Скорость гравитации. О чем говорят эксперименты» проанализировал последствия гравитационной аберрации для нашей Земли, и оценил, при этом, что скорость гравитации должна быть в 2 1010 раз больше скорости света [4].

И после этих убедительных экспериментов современная физика продолжает находиться в плену, как специальной, так и общей теории относительности. Особенно пелена ложного понимания природы проявляется вокруг ловли гравитационных волн, идея о существовании которых сгенерирована Эйнштейном. Однако к этим волнам, как уникальному «явлению» природы, в том виде, в котором сегодня широкую публику «балует» реклама, возникают профессиональные и очень неприятные для физики вопросы, которые можно было бы разрешить в открытой дискуссии на страницах академических научных журналов. Однако допуск к этим журналам, для этих целей закрыт уже на протяжении ста лет [5].

В свое время, упоминаемый нами Том Ван Фландерн, утверждал, что, когда экспериментальные данные несовместимы с основными научными теориями, ученые, ведущие массовые исследова-

ния, отказываются признавать это, чтобы не подставить под угрозу их финансирование. И добавим к этому еще и то, что на современном этапе существования рыночной экономики, источник финансирования тоже не заинтересован в новых исследованиях, и, особенно, тех, которые носят фундаментальный характер. Ведь внедрение их, как правило, не дает быстрый практический эффект, а это уже сулит потере получаемой прибыли, которая исходит из старой, и давно проверенной технологии. Отмеченная выше особенность рыночной экономики явно прослеживается в компьютеростроении, когда в современную вычислительную машину закладывается информационная технология, используемая еще в пятидесятые годы прошлого столетия, т. е. сегодня в компьютерах весь процесс обработки информации сводится к действиям над числами. В тоже время, не представляет большого труда, реализации в аппаратуре более совершенных, и эффективных, машинных информационных технологий, оптимально согласующимся с микроэлектронной элементной базой и потребностям пользователя [6]. Как оказалось, этот пример характеризует то, что заказчик не заинтересован в поддержке более совершенных технологий, и он этим отношением старается их еще и тормозить, а то и направить по ложному пути, особенно в фундаментальной науке физике [5]. Что касается гравитационных волн то, в силу специфики используемых «знаний» в этом случае, подобный пример не так будет нагляден, как это имеет место с Computer science. Более подробно и доказательно отсутствие в природе гравитационных волн по Эйнштейну требует отдельной публикации.

Итак, рассмотрим широко известный вид энергии, с которым сегодня сталкивается наша цивилизация, и на которую, как уже отмечалось ранее, обратил внимание Г. Лейбниц, назвав ее «живой силой», т.е. работой. Под углом феноменологического метода познания природы, а современные исследования в физике ведутся именно с этих позиций, энергия проявляется как «нечто», перемещающееся в пространстве и во времени в вещественных образованиях газообразного, жидкого и твердого агрегатного состояния. По мере освоения новых видов энергии было замечено, что это «нечто» (энергия) может находиться также и в колебательном движении материи. Например, когда вещество в виде электрического поля, преобразуется в магнитное свое существование, и, затем, уже из него снова возвращается в электрическое поле. В этом случае имеет место обычное электромагнитное колебание вещества. Известно, что не составляет особого труда преобразовать энергию, находящуюся в отмеченном колебательном состоянии, в энергию поступательного движения вещества, которую уже, затем, традиционно использовать в качестве работы по Лейбницу. У многих исследователей, в этом случае складывается представление, что энергия ни от чего независима, т. е. она является некоторой субстанцией, которая в природе может находиться либо вместо материи,

либо рядом с ней, и тогда, независимо от материальных образований, ее можно видоизменять, либо транспортировать из одного места пространства в иное. Отдавая приоритет энергии, и наделяя ее субстанцией, исследователь в своем мировоззрении погружается в философский энергетизм — идеалистическое понимание мира, которое, как правило, приводит его к результатам неадекватным природе.

Тот вид энергии, который расположен в электромагнитном колебании вещества, человек обнаружил своими органами чувств, и отнес его к теплу. Конечно, не сразу тепловые ощущения связывали с электрическим и магнитным полем, а присвоили им статус особой субстанции, которую обозначили теплородом и флогистоном. Если теплород представлялся как некоторая невесомая жидкость, перемещающаяся в веществе, то флогистон такое же «нечто» невесомое, которое, ничем не проявляя себя, находится в одном из трех агрегатных состояниях вещества, и только при определенных условиях дает о себе знать, обдавая вещественное окружение теплом. Однако изучение поведения тепловой энергии в технических установках с позиций и теплорода, и флогистона не позволяло более правдиво прогнозировать (рассчитывать) их технические параметры. И тогда появилась молекулярно-кинетическая модель тепла, которая в паре с математическим аппаратом статистической механики уже стала удовлетворять этим требованиям конструкторов тепловых машин.

Несмотря на это, в современной физике имеются суждения, что молекулярно-кинетическая модель далека от материальной действительности [7]. Действительно, возникает большое сомнение в том, что тепло в веществе представляет собой движение мельчайших атомов, молекул и ионов. Ведь по утверждениям тех же сторонников молекулярно-кинетической теории теплоты атомы и молекулы электрически нейтральны, из чего следует, что под действием сил напряженности электрического поля они не могут двигаться. Аналогичный вывод можно сделать и в отношении магнитных силовых линий. Что касается ионов, то в них, положительные либо отрицательные электрические заряды, в случае, их притяжения самоуничтожаются, излучая при этом фотоны. Это явление «самоуничтожения» появляется в механическом трении, ударах, при которых возникают электрические заряды обеих знаков. Взаимодействуя друг с другом, они вызывают появление фотонов, регистрируемых нами в виде искр. А вот при переносе тепла искры, почему-то, не наблюдаются. Таким образом, электрические и магнитные взаимодействия на уровне атомов, молекул и ионов не приводят их к движению, тем самым молекулярно-кинетическая теория не находит своего экспериментального подтверждения. На основании этого вывода рассуждения об абсолютных упругих ударах молекул и атомов, возникающих при известной молекулярно-кинетической модели теплоты, лишены всякого смысла, тем более, к их «физике», тоже, возникают неожиданные и «неприятные» вопросы, требующие отдельных исследований.

Кроме, приведенной выше модели, имеются рассуждения о тепловом движении за счет «поглощения и излучения» «квантов» «энергии». Знакомясь с таким способом объяснения тепловых процессов в веществе, невольно приходится задаваться вопросом: «А каким способом квант электромагнитного излучения (фотон) может излучаться или поглощаться атомом либо молекулой?» То объяснение, которое для данного случая приводится в современной физике — генерирование фотона за счет перехода электрона с одной орбиты на другую, по крайней мере, является не серьезным. Дело в том, что излучение фотона совершается по закону [1], и о том, как этот закон проявляется в данном случае, современная физика не рассматривает. Аналогично, непонятно как поглощается атомом фотон -квант энергии. Известно, что фотон в пространстве движется с огромной скоростью, и тогда в атоме, молекуле должны быть созданы условия, при которых осуществляется его поглощение. Более того, необходимо выполнить преобразование фотона в другой вид энергии, ведь если этого не произойдет, то он просто остановится, т.е. бесследно исчезнет и воспользоваться его энергией уже не будет возможности. Ведь, фотон представляет собой явление природы, которое существует только в своем движении. Знакомясь с приведенной выше моделью теплоты, можно сделать вывод, что ее автор рассматривает энергию (теплоту), как некоторую субстанцию независимую от материи, т.е. он безнадежно погружен в идеологию энергетизма.

Традиционно сторонники молекулярно-кине-тической теории теплоты в ее адекватности природе апеллируют к опыту Штерна и броуновскому движению. В [7] авторы подробно анализируют этот опыт Штерна и показывают, что «нет ни одного экспериментального подтверждения, в котором бы наблюдалось движение молекул в веществе среди других его молекул, как это следует из моле-кулярно-кинетической теории». Что касается броуновского движения, то в настоящей статье при изучении потенциальной энергии будет показана его природа, которая никак не связанна с современной моделью теплоты.

Итак, подытоживая анализ различных подходов к познанию энергии в виде работы, или в виде тепла, еще раз подчеркнем, что на современном этапе имеет место жонглирование понятием энергии, как с чем-то осязаемым, конкретным, которое можно поместить в закрытое пространство и транспортировать в нужное для пользователя место. Именно в этом и проявляется отношение к пониманию энергии, как к некоторой субстанции, независимой от материи, тем самым, ставя исследователя в ряд сторонников известного лженаучного направления в мировоззрении — энергетизма. Особенно этот отрыв от материальной действительности проявляется в современной астрофизике, когда, так называемое «расширение Вселенной» специалисты в этой науке относят к действию «темной» материи, никак не связывая ее существование с материальным источником.

В следующем разделе представим новую модель понимания энергии, которая сегодня наиболее адекватна природе.

3. Энергия является мерой движения материи

Более точного и адекватного природе понимания энергии, чем идентификация ее с мерой движения материи, трудно себе представить. Поскольку материя неразрывно связана с движением, а мир бесконечен во времени и пространстве, то и энергетическое проявление его тоже бесконечно. Распределение материи, согласно четвертому постулату [1] на бесконечной последовательности объемов, расположено так, что каждый «материальный объем» есть составной частью большего объема и одновременно состоит из аналогичных объемов меньшей размерности.

В то же время согласно тринадцатому постулату на такой последовательности — пятой оси существования материи (первые три — измерение трехмерного пространства, а четвертая ось времени) природой «предусмотрено» место — координата, в которой количественный рост материи «порождает» качественные изменения — возникают в ней новые свойства. То есть, такое новое образование представляет не «арифметическую» сумму свойств материальных систем, составляющих ее, а ему уже присущи появившиеся принципиально новые качества, т.е. эмерджентные. Именно в эту координату пятой оси природа «поместила» вакуум.

Более подробно поясним, о чем идет речь. Для этого рассмотрим в трехмерном пространстве совокупность сгустков, накопление материальной субстанции в которых приводит к отмеченному выше скачку в появлении нового материального качества. Поскольку это новое качество в природе возникает при превышении определенного количества материи в конкретном (фиксированном) объеме трехмерного пространства, то и количество материальной субстанции в сгустках и занимаемый ими объем находятся на одинаковом пределе, т. е. превышение этого предела, как уже отмечалось, приводит материю в вакууме к новому качеству.

Рассматриваемая совокупность материальной субстанции в нем дискретна и однородна, и поскольку объем и материальное наполнение сгустков одинаковые, то и координаты их расположения на своих осях распределения материи по объемам будут одинаковы, которые, в конечном итоге, совпадают с координатой расположения вакуума на совокупности осей распределения материи, занимаемых ею объемов. Отмеченное выше, увеличение количества материальной субстанции в сгустках такого вакуума приводит в нем к качественному переходу материи — в вещественное ее существование. Более подробно это явление рассмотрим на примере.

В [8,9,10] предложена новая модель вакуума, которая представляет собой однородную среду сгустков материальной субстанции одинаковых по количеству материи, объемам занимаемых ими в пространстве, а также по форме их движения. Указанные сгустки расположены в узлах трехмерной

решетки по материальным плоскостям, названных пластинами вакуума, в которых они связаны между собой в единое целое. Дело в том, что каждый сгусток вне пластины находится во вращательном движении, которое останавливается за счет взаимодействия его с другими такими же сгустками, когда они оказывается в вакууме. Такое связанное его состояние в пластине имеет ограниченное время, после чего сгусток поворачивается в пространстве, покидая ее, и начинает участвовать в формировании с другими сгустками новую такую же «соседнюю» пластину. Затем, после короткой задержки в ней сгусток вакуума ориентируется уже на формирование следующей новой пластины. И так этот процесс продолжается до тех пор, пока ориентация сгустка в формировании новой пластины не возвратится в исходное положение. В каждой такой пластине, в момент ее существования, система материальных сгустков, за счет взаимодействия их друг с другом, останавливается в своем вращении и в следствие этому находится в упругом состоянии. Это упругое состояние сгустков в пластине вакуума в определенных условиях приводит его в колебательное (волновое) состояние, которое более подробно будет рассмотрено несколько позже.

Обратим внимание на необычное свойство рассматриваемой пластины-плоскости, состоящее в том, что, несмотря на материальность ее содержимого, определить толщину пластины не представляется возможным, в силу недостаточной разрешающей способности любых вещественных приборов. Еще раз подчеркнем, вещественных измерительных приборов. Кроме того, зафиксировать процесс переориентации (движение спутниковой части сгустка) на формирование и вхождение ее в новую пластину, тоже для вещественных приборов не является достижимым. Именно эта не разрешающая способность вещественных приборов не позволяет зарегистрировать местоположение сгустка материальной субстанции вакуума и его переориентацию в пространстве, т.е. «увидеть» ее движение. Иными словами, вакуум естественными и искусственными вещественными приборами не видим.

А теперь исследуем ситуацию, когда в месторасположении любого сгустка материальной субстанции в вакууме появляется еще один такой сгусток. В этом случае происходит в нем удвоение материальной субстанции, что приводит в этом месте вакуума к количественному накоплению материальной субстанции, т.е. создаются условия для перехода состояния материи в новое качество, напомним, появившегося — эмерджентного. Это явление в природе следует идентифицировать, как изменение однородности вакуума, которое и нарушит устойчивость упругого состояния совокупности сгустков материальной субстанции в том месте его пластины, где произошло ее удвоение. Отмеченное нарушение устойчивости приводит к вращению спутниковой части сгустка, тем самым, воздействуя на его соседние сгустки, изменяя их форму объема, который они занимают в пространстве вакуума. Напомним, изменение формы объема занимаемой

сгустком проявляется в его пластине возникновением силовых линий напряженности электрического и магнитного полей [8]. Поскольку эта форма меняется согласно вращению спутниковой части сгустка, то и изменение силовых линий подчиня-теся этому вращательному движению. При этом, сдвиг изменений между напряженностью электрического и магнитного поля равен 900, а направления их силовых линий располагается в двух взаимно перпендикулярных осях декартовой прямоугольной системы координат помещенной в центр сгустка.

Одновременно с этим, та часть материальной субстанции, которая оказалась избыточной в исследуемом месте вакуума во время поворота спутниковой части сгустка, покинет его пределы, переместившись в соседний сгусток, который расположен вдоль отрицательного направления силовой линии электрического поля, генерируемого тем же исходным сгустком. Что касается того места вакуума, из которого эта избыточная часть переместилась, то оно возвращается в исходное положение, т.е. в нем остается один сгусток материальной субстанции в не избыточном состоянии, и, естественно, он не видим вещественными приборами. Таким образом, в рассматриваемом пространстве вакуума произойдет повторение ситуации совмещение — увеличение материальной субстанции, но только уже в другом соседнем сгустке. Процесс нарушения упругого состояния вакуума произойдет и здесь, который сопровождается теми же материальными изменениями, что перед этим происходили в предшествующем сгустке. Рассматриваемое явление в природе продвигается вдоль луча, совпадающего с отрицательным действием силы (силовой линии по Фара-дею) напряженности электрического поля, генерируемого исходным сгустком материальной субстанции, которое названо в [8] волновым состоянием вакуума, и идентифицированного нами с фотоном.

Приведенная выше модель показывает появление в природе фотона, который «рождается» совмещением всего лишь двух сгустков материальной субстанции в одном месте вакуума. Тот же процесс появления фотона будет иметь место, если совместить три, и более сгустков материальной субстанции. «Рассасывание» нагромождения их последовательно. Вначале переместится один из них в соседний, как это было показано выше, а, затем, очередь дойдет к следующему сгустку, который одновременно с основным (не избыточным) сгустком, во время своего поворота вокруг собственного центра, продвинется на место расположения соседнего сгустка (по лучу фотона). Одновременно с этим явлением из соседнего сгустка самый первый избыточный сгусток переместится дальше в место следующего сгустка вакуума — по тому же лучу. И так будет продолжаться до тех пор, пока в самом первом сгустке луча исчезнет избыточность материальной субстанции. Полученная цепочка процесса «разгрузки» избыточной материальной субстанции в конкретном сгустке тоже является фотоном,

только в нем электромагнитные колебания в вакууме генерируются не одним сгустком материальной субстанции, а целой их цепочкой. Понятно, что в этом случае количество движения материи будет больше, нежели в том фотоне, который появился в результате воздействия одной избыточной материальной субстанции. Из приведенной модели вытекает то, что скорость распространения фотона в пространстве вакуума определяется скоростью перемещения избыточной части материи от одного сгустка в соседний сгусток пластины вакуума, и она равна скорости распространения света.

Исследования показали [8], что для фотона природой отведено отдельное место в вакууме, представляющее двумерное пространство, и «проникнуть» в него еще одному такому фотону, который находится в ином своем таком же пространстве, не представляется возможным. Вот почему фотоны, прилетающие от далеких звезд, на Земле оказываются неискаженными, т.е. в их пространстве не было помех (других фотонов) для искажения. В современной физике два фотона, которые располагаются в одном пространстве, называются когерентными.

Следует также заметить, что приведенная модель «рождения» фотона, содержит самый важный механизм природы — закон, в результате действия которого возникает вещественная форма материи из вакуума. В [1] этот закон обозначен Первым Началом Вещества, гносеологические корни которого ведут к известному эффекту Черенкова-Вави-лова. Дело в том, что благодаря этому Началу появляется первая (начальная) элементарная частица вещества, из которой формируются шесть таких же элементарных его частиц. По нашим оценкам для формирования темной материи, а также элементов Таблицы Менделеева достаточно всего лишь девять элементарных частиц вещества, куда включаются фотон и шесть указанных выше его «производных».

Итак, мы рассмотрели материальную модель движения вещества, названного фотоном. Теперь попытаемся определить, соответствующую ей математическую модель, т.е. функцию, которая позволит на основании мощного аппарата математики, провести дальнейшие исследования этой формы движения, включая и энергетическое ее содержание. Вначале исследуем математическую модель движения фотона, рожденного от избыточности материи одним сгустком в одном сгустке материальной субстанции вакуума. В процессе движения такого фотона возникает в пластине вакуума генерация силовых линий электрического, и магнитного поля. Скорости изменения их в математике соответствуют тригонометрическим функциям синуса и косинуса [8].

УЕ = Бта, Ум = -Со8а.

Исходя из того, что эти функции отражают одно и тоже явление в вакууме, то скорость УЕ —

изменения напряженности силовой линии электрического поля, и скорость Ум изменения такой же силовой линии уже магнитного поля одинаковы, и варьируют в одних и тех же пределах. Только проявляются они вдоль разных координат Декартовой прямоугольной системы координат сгустка материальной субстанции. Скорость УЕ — вдоль оси ординат, а скорость Ум — вдоль оси аппликат. Тогда функции движения материи, в виде количества движения, в рассматриваемом случае примут вид

/ V) = ЕтУЕ

(1).

Значения этих функций не превышают для электрического поля абсолютной величины максимального, либо минимального значения напряженности его силовой линии Е , а для магнитного

поля (М т) абсолютной величины напряженности силовых линий в полюсах Норд и Зюйд.

В процессе движения рассматриваемого фотона, кроме изменения значений силовых линий Фарадея имеет место и поступательное движение сгустков материальной субстанции. В математике для этого случая имеется функция /(V) = тУ, которая соответствует количеству поступательного движения массы тела m и его скорости V. Тогда, в математической модели движения фотона поступательная часть имеет вид

/ (с) = Же

(2),

именно она есть единственным абстрактным аналогом естественной скалярной характеристики движения материи, не следует. Поскольку такое утверждение граничит с искомой окончательной истиной, которую можно достичь только на пределе бесконечной последовательности моделей познаваемой материальной среды. А это, в свою очередь, противоречит нашему постулату-закону [1] о познаваемости природы. И все же попытаемся на нашем этапе познания приравнять предполагаемую скалярную характеристику движения материи энергию с интегралом математической функции, которая описывает это движение. Приступая к анализу этой функции в аппарате интегрального исчисления, обратим внимание на то, что в ней в качестве переменных выступают не меры пространства и времени, т.е. нематериальные аргументы, а скорости изменений в материи, сопровождающих это движение. Из этого следует, что рассматриваемая функция представляет собой не абстрактное феноменологическое описание физического процесса (движения материи), а отображает его сущность внутреннего состояния материальной системы [11].

Выражение (3) состоит из двух частей, первая из которых представляет функцию, зависящую от скорости вращения материальной субстанции, а вторая от скорости ее поступательного движения. ЕтУЕ + МтУм + Же (3).

В настоящей работе предметом исследований выступает энергия, которую, как уже отмечалось, принято связывать со скалярной характеристикой движения материи. Однако, исходя из «способности» тепловой энергии, передаваться к менее нагретому телу, у исследователя может сложиться представление, что тепло (энергия) векторная величина, и ее вектором служит направление, куда в среде оно передается. Такая оценка энергии является не верной, поскольку направление указанного вектора не является внутренним ее свойством, а определяется только средой, в которую помещен источник тепла. Исходя из этого, при анализе функции (3) следует искать аналогичную ей скалярную характеристику. Известно, что при интегрировании функции мы получаем скалярную величину, но утверждать, что

У_ЕтУ2Е 2

+ —

МУ

м

2

Же2 _ + — + С (4),

где С — общая постоянная интегрирования для всех составляющих функции (3). + с (7).

3 2 2

Этот интеграл является математической моделью энергии фотона, полученного в пространстве вакуума путем удвоения материальной субстанции в конкретном его месте. Первое его слагаемое определяет энергию вращения сгустка вокруг своего центра во время движения фотона, а второе — поступательное движение такого сгустка, но уже по его лучу. По существу, эти составляющие отражают вращательное и поступательное движение сгустка материальной субстанции вакуума, т.е. преобразование энергии материи, находящейся в сгустках вакуума в вещественное их представление, именуемое фотоном.

Рассмотренное выше удвоение материальной избыточности в сгустке вакуума, приводит к появлению в природе энергетически самого слабого фотона. В нем, как уже отмечалось, энергия генерируется избыточностью всего лишь одним сгустком, путем его вращения и поступательного движения. Если в вакууме генерируется фотон, как совмещение в одном его месте большего количества сгустков материальной субстанции, то тогда и энергетическая составляющая его будет большей. Следует обратить внимание на то, что энергетическое содержимое фотона не зависит от частоты электромагнитных колебаний в сгустке материальной субстанции — она в нем постоянная и соответствует тому виду вакуума, в котором происходит излучение фотона.

По имеющимся предположениям в природе могут существовать и другие аналогичные ваку-умы, в которых материальное содержимое сгустков большее либо меньшее, и тогда частота электромагнитных колебаний в сгустке такого вакуума будет отличаться, от такой же частоты варианта вакуума, рассматриваемого в настоящей работе. Причем, указанные вакуумы могут в мировом пространстве соприкасаться друг с другом, вызывая тем самым явления, с помощью которых можно объяснить многие «темные пятна» в понимании природы, например, генерация энергии звезд и планет. Исследование модели поведения таких вакуумов требует отдельного рассмотрения.

Теперь попытаемся сопоставить оценку энергетической составляющей фотона представленного настоящей моделью с той моделью, которая сегодня доминирует в науке. Первое, на что следует обратить внимание, это то, что согласно предложенной М.Планком формулы, чем выше частота электромагнитных колебаний в фотоне, тем большее его энергетическое содержимое. Эксперименты со светом, а именно фотонами видимого спектра, показывают «немного» иной результат. Так согласно известному испытанному эксперименту со спектром белого пучка фотонов температура его составляющих повышается, от ультрафиолетового диапазона его составляющих, в сторону инфракрасного. Это означает, что энергия фотонов этого спектра, следует за показателем термометра, т.е. с ростом длины волны фотона увеличивается и его энергия.

Кроме того, практика исследования мирового пространства с помощью облучения электромагнитными колебаниями показала, что инфракрасный диапазон этих облучений более мощный он позволяет «проникнуть» в такие «туманности», которые не являются «прозрачными» для облучения лучами из ультрафиолетового диапазона. А фотоны, которые приходят к нам от очень далеких звезд «склонны» к увеличению их длины волны, что привело к ложному утверждению, опирающемуся на эффект Доплера. В результате был сделан ложный вывод, что Вселенная расширяется. Как уже отмечалось, в предлагаемой настоящей работе модели фотона частота электромагнитных колебаний не влияет на его энергетическое содержание, поскольку она не варьируема со стороны вещественного представления материи и является константой вакуума. А вот количество сгустков материальной субстанции, участвующих в генерации фотона в вакууме существенно изменяет его энергетическое содержание. Судя по всему, современное понимание разложение белого пучка света его инфракрасная сторона отражает фотоны, в луче которых большее количество генерирующих его сгустков материальной субстанции вакуума, а ультрафиолетовая, наоборот, ее фотоны порождаются меньшим количеством таких сгустков. Исходя из этого, можно предположить, что общепринятое (условное) понимание частоты фотона (его периода колебаний) следует связывать с длиной последовательности сгустков материальной субстанции, порождающих его. Иными словами, согласно современной физике, чем меньшее количество сгустков в последовательности его луча, тем меньше его частота, и, наоборот, рост количества этих сгустков в генерации фотона приводит к уменьшению рассматриваемой частоты. Исходя из этого, современное понимание длины волны фотона требует уточнения, которое будет рассмотрено в отдельной работе.

4. Потенциальная энергия

В истории познания теплоты, как уже упоминалось, использовался термин флогистон, в котором исследователи видели нечто невесомое и ничем не проявляемое свойство, и которое дает о себе знать в определенных условиях, обдавая вещественное окружение теплом. Находящаяся в таком виде тепловая энергия (тепловое движение), как бы законсервирована и в этом скрытом виде может быть транспортирована, не растрачивая свое внутреннее энергетическое содержимое. Сегодня рассмотренное выше ее состояние идентифицируют с потенциальной энергией, которая в природе сосредоточена в вакууме.

Это утверждение поддерживается нашими исследованиями, которые показывают, что фотон -вещественная частица, порождающая элементарные частицы вещества, насыщается своей энергией, именно, из вакуума, где она находится как в законсервированном виде, так и не законсервированном — в свободном движении материи. Если законсервированное движение (энергия) вакуума обладает «свойствами флогистона», и оно невидимое, то так

называемое свободное движение в нем, по идее, может быть нами зарегистрировано. Однако исследования [12] показали, что это не так — указанное движение вакуума вещественными приборами в силу их недостаточной разрешающей способности не может быть опознано, и поэтому вакуум, как уже утверждалось, для нас является невидимым.

Обратим внимание еще и на то, что законсервированная часть внутреннего движения вакуума остановлена упругим его состоянием, и «освобождение» его может быть достигнуто снятием равновесия между силами, создающими эту упругость. Оказалось, что «снятие» этой упругости, т.е. расконсервирование указанной энергии вакуума можно достичь путем нарушения его однородности, которая, как рассматривалось ранее, достигается путем совмещения двух и более сгустков материальной субстанции в одном его месте пространства вакуума. Именно таким способом природа порождает из вакуума вещество. Иными словами, вещество из вакуума появляется путем «освобождения» в нем законсервированного движения. По существу, таким способом происходит превращение потенциальной энергии, содержащейся в «спокойном» вакууме, в кинетическую энергию, что было рассмотрено в предыдущем разделе.

В природе имеется множество примеров консервации кинетической энергии в виде потенциальной. Однако в настоящей работе рассмотрим те из

них, которые характеризуют истоки появления вещества из вакуума, и которые, прежде всего, относятся к фундаментальным аспектам познания. Уже упоминалось, что основное начало возникновения вещества в природе основано на небольшом количестве элементарных частиц вещества, в том числе и формирующих массу вещества. В [12] показано, что в случае нахождения двух фотонов в одной пластине вакуума на очень малом расстоянии, может произойти ситуация, когда электромагнитный колебательный процесс в них обрывается, и таким образом возникают частицы, разлетающиеся в противоположные стороны от места их обрыва. Если эти частицы гравитационного поля «рождаются» на определенном расстоянии друг от друга, то они притягиваются между собой, тем самым, останавливая свое поступательное движение, и формируют гравитационный диполь. Условное изображение этого диполя представлено на Рис.1.

На этом Рис.1 изображен фронтальный разрез пластины вакуума в прямоугольной Декартовой координатной системе ее сгустков, в которой ось абсцисс обозначена буквой X, а ось аппликат буквой 2. Условность изображения рассматриваемой пластины обусловливается еще и тем, что ее

Ъ

В

‘//////////Л

\/ //////// //

А

/ / / /

Уа

Толщина пластины

X

Рис. 1 Фронтальный разрез пластины вакуума, в котором располагается гравитационный диполь

толщина не может быть измерена никакими вещественными приборами, в силу недостаточной их разрешающей способности. На Рис. 1 представлено, также, в том же разрезе, расположение двух сгустков материальной субстанции вакуума, которые во время прохождения двух соседних фотонов, после

взаимодействия друг с другом, оставили их в рассматриваемой пластине. Напомним, движение этих фотонов имеет направление вдоль оси ординат той же системы координат, т.е. перпендикулярно плоскости Рис.1, а взаимодействие сгустков (их притяжение) поддерживается теми половинами силовых

линии магнитного поля, которые притягивают к себе другие сгустки в пластине. Так, рассматриваемая часть силовой линии сгустка А направлена в сторону отрицательных значений оси аппликат 2, а сгустка В — в сторону ее положительных значений.

Стрелками У л и Уз обозначены направление движения этих сгустков, в результате их обрыва во время электромагнитного колебания исходных фотонов.

Взаимодействие двух рассматриваемых сгустков материальной субстанции вакуума имеет место в двух направлениях. Одно из них состоит в отдалении их друг от друга в противоположных направлениях вдоль оси абсцисс, и второе направлено на притяжение между собой, как уже отмечалось, той частью силовых линий магнитного поля, которые работают на притяжение к себе, т.е. вдоль оси аппликат внутри пластины. Рассматриваемое взаимодействие приводит сгустки к неподвижному состоянию друг по отношению к другу, тем самым, сформировав пару, названную в [12] гравитационным диполем. Понятно, что притяжению сгустков, которое может закончиться совмещением в пространстве вакуума, препятствует их удаление друг от друга вдоль оси. В результате, как показано на Рис. 1, они смещены друг по отношении к другу, и каждый из них в сторону действия своей силы, которая пытается придать сгустку поступательное движение.

Указанное смещение не перекрывает их силы притяжения друг к другу, и они несколько выступают от того совместного пространства, где они уравновешиваются. Таким образом, часть силовой

линии сгустка У л выходит за пределы диполя по

одну его сторону, а сгустка У з — по другую. Именно эти части силовых линий магнитного поля, действуя на притяжение себе подобных, и образуют силовые линии гравитационного поля. Поскольку основная часть силовых линий магнитного поля задействована на притяжение сгустков материальной субстанции, то, лишь, небольшая их часть отдана природой для гравитации. Вот почему гравитационное поле существенно слабее и магнитного, и электрического поля.

Таким образом, в рассмотренном покоящемся диполе законсервировано движение двух сгустков, а значит — в нем и присутствует потенциальная их энергия. Стоит продвинуться диполю в одном из направлений вдоль оси абсцисс, как сгустки сместятся между собой, освобождая ту их часть, которая до этого работала на притяжение. Таким образом, материальная часть сгустков, обеспечивающая увеличение напряженности гравитационного диполя, увеличится, и диполь сильнее будет притягивать к себе соседние сгустки. Поскольку рассматриваемые диполи являются строительным материалом массы тела, в том числе, и суден, находящихся в порту, то движение на малых расстояниях друг от друга вызовет дополнительное гравитационное вза-

имодействие, что чревато их сближению с последующим разрушением. Вот почему в порту находится большим судам на малом расстоянии воспрещено.

Второй пример, когда происходит расконсервирование движения материи, сосредоточенной в гравитационном диполе, относится к инерции тела. Если продвинуть рассматриваемый диполь по той же абсциссе, то вызванное, при этом, смещение сгустков в нем ослабит взаимное притяжение. (у)=-т

(8),

где, как уже отмечалось, Ш — содержемое сгустка материальной субстанции вакуума, которое обладает свойством гравитационного притяжения, что позволяет его идентифицировать с гравитационной массой, V — скорость движения сгустка в результате обрыва электромагнитных колебаний фотона.

В настоящей статье в качестве математического образа энергии используется неопределенный интеграл функции движения, т.е. для наших функций (8) будут интегралы

ЖУ 2

/ад 2 /ад

2

+ С + С

(9),

где Сг и С2 — константы интегрирования. Поскольку энергии движущихся сгустков, входящих в гравитационный диполь, скалярные величины, а их математические образы, как интегралы тоже скалярные, то общая энергия Еа диполя равна обычной арифметической сумме

Еа = Wv2 + С

(10),

где С — обобщенная константа интегрирова-

ния.

Функция (10) имеет небольшую схожесть с известной формулой Эйнштейна эквивалентности энергии и массы тела, которая ему послужила для

и

сомнительного предположения о возможности в природе преобразования энергии в массу и наоборот массы в энергию. Отличие этой функции от эйнштейновской заключается в том, что она имеет очень простой вывод, более того в ней в качестве сомножителя выступает не квадрат скорости света, а квадрат скорости движения сгустка материальной субстанции, которую он приобретает во время обрыва электромагнитного колебания в фотоне. Кроме того, в этой функции имеется еще и слагаемое, представляющее собой константу интегрирования, физический смысл которой, сводится к тому, что в природе гравитационный диполь не изолирован от влияния внешних физических полей, вызывающих в нем дополнительные составляющие потенциальной энергии и сосредоточенной в отдельной добавке, т.е. в константе С.

Во втором разделе настоящей статьи упоминалось о том, что броуновское движение является составной частью механизма распространения тепла в природе. Пользуясь приведенной выше моделью потенциальной энергии «помещенной» природой в вакуум покажем, что источник броуновского движения не имеет никакого отношение к тепловой форме существования энергии. Для доказательства этого рассмотрим два гравитационных диполя взаимодействующие между собой силовыми линиями гравитации, которые приближают их друг к другу. Любое такое приближение, рассматриваемых диполей ослабляет силовые линии, которые находятся между ними, что влияет на сами диполи, ослабляя их притяжение сгустков материальной субстанции, из которых они состоят. В результате эти сгустки, сдерживаемые в диполе силами притяжения, начинают двигаться в противоположные стороны, и тем самым, удаляясь друг от друга, что, незамедлительно усиливает их взаимное притяжение, но только уже в несколько другом пространственном их расположении. Дальнейшее притягивание друг к другу поворачивает ось, связывающую их между собой, т.е. эти диполи начинают двигаться вдоль окружности. Этот эффект движения по окружности в увеличенном масштабе мы наблюдаем в космической системе Земля-Луна. Такая же ситуация складывается и в уменьшенном размере, когда вещественные сгустки в виде различных соединений элементов химической Таблицы Менделеева находятся во взвешенном состоянии в жидкости. Их взаимодействие подобно Земля-Луна заставляет двигаться по окружности друг относительно друга. Однако, поскольку в рассматриваемой жидкости таких частичек много, то по пути их проворачивания друг вокруг друга они встречаю себе подобных из соседней такой же пары, что при определенных расстояниях от них, вызывает обрыв прежнего движения и переход к вращательному движению уже новой пары. Этот механизм и является Броуновским движением.

5. Выводы

Что такое энергия? Понимание ее сути имеет большое значение в познании материального окружающего мира. Отведение ей роли чего-то, что су-

ществует вне материи, является уводом исследований в сторону получения результатов не адекватных природе. В статье уже отмечалось, что, как не ущербно, но современная физика стоит, именно, на этих позициях. Не хотелось прибегать к ее критике в понимании энергии, но академическая наука, уж больно, последовательно чтит идеи непреклонных авторитетов, которые на окружающий мир смотрят сквозь «очки» энергетизма. Особенно в этом выделяются идеи, почитаемые современной физикой Стивена Хокинга. В настоящей статье получило дальнейшее свое развитие понимание энергии, как скалярной характеристики движения материи, предложены математические модели в виде функций для кинетической и потенциальной энергии, в которых в качестве переменных выступают не нематериальные меры времени и пространства, а переменные, характеризующие процессы изменения в самой материи, несущей интересующую нас энергию. Это позволило вывести исследовательский процесс из описательного (феноменологического) метода, к познанию, через модели (функции), зависящие от изменений в самой субстанции. Иными словами, приблизиться в исследовательском процессе к познаваемой истине. Такой подход в исследованиях позволил существенно подкорректировать наши познания в так называемой «эквивалентности массы и энергии тела» с помощью функции отличной от знаменитой формулы Эйнштейна, приведенной в выражении (10). Кроме того, рассматриваемый метод познания предложил совершенно новую математическую модель (функцию), описывающую движения фотона. Это позволило с помощью математического аппарата ее проанализировать и прийти к неожиданно новым результатам, согласно которым энергетический объем, находящийся в этой (фотонной) форме движения материи, не зависит от частоты электромагнитных колебаний, которые помещены в него. Этот результат в познании материального мира имеет далеко идущие перспективы в переосмысливании явлений в природе, что естественным образом отразится на появлении принципиально новых технологий.

Литература

1. Vyshinskiy V.A. SYSTEM OF POSTULATES — BASIS OF SCINTIFIC COGNITION OF NATURE / V.A. Vyshinskiy // Sciences of Europe, — 2017, — Vol 1, — №15 (15) P.70-74

2. P.S. Laplact. Mecanique Celeste, 4, Livrex, Paris, 1805

3. Адель Калиниченко, Быстрее света, The New Times, http://www.ras.ru/di-gest/showdnews.aspx?id=bd98d6ef-e3d4-486f-9cd3-81d363ff2d0a&print=1

4. Топтунова Л.М. Скорость света, https://astrogalaxy.ru/907.html

5. Вышинский В.А. Кризис современной теоретической физики / В.А. Вышинский // Вимiрювальна та обчислювальна техшка в техно-лопчних процесах, — 2017. — №3. — С. 39-50

6. Вышинский В.А. Об одном решении фундаментальной проблемы современного развития вычислительной техники/ В.А. Вышинский // УСиМ , — 2003 . — №4. — С. 81-91

7. Брусин С.Д., Брусин Л.Д. Молекулярно-кинетическая теория не имеет экспериментального подтверждения, http ://www. econf. rae.ru/article/5293

8. Вышинский В.А. Электрические и магнитные силовые линии Фарадея. Электромагнитная волна / В.А. Вышинский // Единый всероссийский вестник, — 2016, — №7, -С. 62-68

9. Вышинский В.А. Модель, наиболее адекватно отражающая естественный вакуум / В.А. Вышинский // Единый всероссийский вестник, — 2016, — Часть 1, — №6. — С. 45-52

10. Вышинский В.А. Личный сайт vva.kiev/ua

11. Vyshinskiy V.A. ORIGNS OF PHENOMENOLOGY IN PHYSICS / V.A. Vyshinskiy // Sciences of Europe, — 2018, — Vol 1, — №34 (34) P. 30-37

12. Вышинский В.А. Элементарные частицы вещества / В.А. Вышинский // Единый всероссийский вестник, — 2016, — №8. — С. 21-29

АНАЛ1З ОСНОВНИХ П1ДХОД1В ТА ЕТАП1В ЩОДО ЗАБЕЗПЕЧЕННЯ ВЛАСТИВОСТ1 ФУНКЦIОНАЛЬНОÏ СТ1ЙКОСТ1 1НФОРМАЦ1ЙНИХ СИСТЕМ ЩДПРИСМСТВА

Собчук В.В.

кандидат фiзико-математичних наук, доцент, доцент кафедри диференцiальних рiвнянь i математично’1 фiзики факультету Шформацшних систем, фiзики та математики, Схiдноeвропейський

нацюнальний ymiверситет iM. Лес Укратки, Луцьк, Укра’та;

Барабаш О.В.

доктор технiчних наук, професор, завiдувач кафедри вищо’1 математики, Державний }miверситет

телекомункацт, Кшв, Укра’та;

MycieHKO А. П.

доктор техтчних наук, доцент кафедри вищо’1 математики, Державний утверситет телеко-

муткацш, Кшв, Укра’та.

Лаптев О.А.

кандидат техтчних наук, доцент кафедри ситем тформацшного та юбернетичного захисту, Державний }miверситет телекомунжацш, Кшв, Укра’та.

ANALYSIS OF THE MAIN APPROACHES AND STAGES FOR PROVIDING THE PROPERTIES OF THE FUNCTIONAL STABILITY OF THE INFORMATION SYSTEMS OF THE ENTERPRISE

Sobchuk V.

Candidate of Physical And Mathematical Sciences, Associate Professor, Assistant Professor of The Department of Differential Equations And Mathematical Physics of the Faculty of Information Systems, Physics and Mathematics, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine;

Barabash O.

Doctor of Technical Sciences, Professor, Head of the Department of Higher Mathematics, State University

of Telecommunications, Kyiv, Ukraine;

Musienko A.

Doctor of Technical Sciences, Associate Professorof the Department of Higher Mathematics, State University of Telecommunications, Kyiv, Ukraine.

Laptev A.

Ph.D., Senior Researcher, Associate Professor of the Department of Information and Cybersecurity Systems, State University of Telecommunications,

Kyiv, Ukraine

АНОТАЦ1Я

В робот проводиться анатз основних mдходiв щодо забезпечення функцюнально1 сгшкосп шформацшних систем шдприемства. Функцюнальна стшшсть — це властивють системи збертати упродовж за-даного часу виконання сво1х основних функцш в умовах впливу потоков ввдмов, несправностей, збо1в. ABSTRACT

The paper analyzes basic approaches to ensure the functional stability of enterprise information systems. Functional stability is the property of the system to store for a specified time the performance of its basic functions in the conditions of influence of flows of failures, faults, failures.

Ключовi слова: функцюнальна стшшсть, шформацшна система шдприемства, збо1, ввдмови. Keywords: functional stability, enterprise information system, failures, failures.

Аналiз функцюнування шформацшних систем щдприемств показав, що вiдомi властивосп склад-них техшчних систем, так як стшшсть, надшшсть,

живучють, ввдмовостшшсть характеризують функцюнування шформацшних систем при ди вщмов i збо1в, не дозволяють повною мiрою описати про-цеси функцюнування в умовах значних руйнувань,

Энергия — Физика

Маркиза Эмили дю Шатле в книге «Учебник физики»  объединила идею Лейбница с практическими наблюдениями Виллема Гравезанда.

В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия живая сила. Гаспар-Гюстав Кориолис раскрыл связь между работой и кинетической энергией в 1829 году. Уильям Томсон (будущий лорд Кельвин) впервые использовал термин «кинетическая энергия» не позже 1851 года, а в 1853 году Уильям Ренкин впервые ввёл понятие «потенциальная энергия».

Несколько лет велись споры, является ли энергия субстанцией (теплород) или только физической величиной.

Развитие паровых двигателей требовало от инженеров разработать понятия и формулы, которые позволили бы им описать механический и термический КПД своих систем. Инженеры (Сади Карно), физики (Джеймс Джоуль, Эмиль Клапейрон и Герман Гельмгольц), математики — все развивали идею, что способность совершать определённые действия, называемая работой, была как-то связана с энергией системы. В 1850-х годах, профессор натурфилософии из Глазго Уильям Томсон и инженер Уильям Ренкин начали работу по замене устаревшего языка механики с такими понятиями как «кинетическая и фактическая (actual) энергии». Уильям Томсон соединил знания об энергии в законы термодинамики, что способствовало стремительному развитию химии. Рудольф Клаузиус, Джозайя Гиббс и Вальтер Нернст объяснили многие химические процессы, используя законы термодинамики. Развитие термодинамики было продолжено Клаузиусом, который ввёл и математически сформулировал понятие энтропии, и Джозефом Стефаном, который ввёл закон излучения абсолютно чёрного тела. В 1853 году Уильям Ренкин ввёл понятие «потенциальная энергия». В 1881 году Уильям Томсон заявил перед слушателями:

Особенности преобразования тепла и работы были показаны в первых двух законах термодинамики. Наука об энергии разделилась на множество различных областей, таких как биологическая термодинамика и термоэкономика. Параллельно развивались связанные понятия, такие как энтропия, мера потери полезной энергии, мощность, поток энергии за единицу времени, и так далее. В последние два века использование слова энергия в ненаучном смысле широко распространилось в популярной литературе. В течение следующих тридцати лет эта новая наука имела несколько названий, например, «динамическая теория тепла»  и «энергетика» . В 1920-х годах общепринятым стало название «термодинамика» — наука о преобразовании энергии.

В 1918 году было доказано, что закон сохранения энергии есть математическое следствие трансляционной симметрии времени, величины сопряжённой энергии. То есть энергия сохраняется, потому что законы физики не отличают разные моменты времени .

Определение энергии и примеры

Энергия определяется как способность физической системы выполнять работу. Однако важно помнить, что наличие энергии не означает, что она обязательно доступна для работы.

Формы энергии

Энергия существует в нескольких формах, таких как тепло, кинетическая или механическая энергия, свет, потенциальная энергия и электрическая энергия.

  • Heat — Тепло или тепловая энергия — это энергия движения атомов или молекул.Это можно рассматривать как энергию, относящуюся к температуре.
  • Кинетическая энергия — Кинетическая энергия — это энергия движения. Качающийся маятник обладает кинетической энергией.
  • Потенциальная энергия — это энергия, обусловленная положением объекта. Например, мяч, лежащий на столе, обладает потенциальной энергией по отношению к полу, потому что на него действует сила тяжести.
  • Механическая энергия — Механическая энергия — это сумма кинетической и потенциальной энергии тела.
  • Свет — Фотоны — это форма энергии.
  • Электрическая энергия — это энергия движения заряженных частиц, таких как протоны, электроны или ионы.
  • Магнитная энергия — Эта форма энергии возникает из магнитного поля.
  • Химическая энергия — Химическая энергия выделяется или поглощается в результате химических реакций. Он образуется в результате разрыва или образования химических связей между атомами и молекулами.
  • Ядерная энергия — Это энергия взаимодействия с протонами и нейтронами атома.Обычно это относится к сильной силе. Примерами являются энергия, выделяемая при делении и синтезе.

Другие формы энергии могут включать геотермальную энергию и классификацию энергии как возобновляемой или невозобновляемой.

Между формами энергии может быть совпадение, и объект неизменно обладает более чем одним типом одновременно. Например, качающийся маятник имеет как кинетическую, так и потенциальную энергию, тепловую энергию и (в зависимости от его состава) может иметь электрическую и магнитную энергию.

Закон сохранения энергии

Согласно закону сохранения энергии, полная энергия системы остается постоянной, хотя энергия может переходить в другую форму. Например, два сталкивающихся бильярдных шара могут остановиться, в результате чего полученная энергия станет звуковой и, возможно, немного тепла в точке столкновения. Когда шары находятся в движении, они обладают кинетической энергией. Независимо от того, находятся ли они в движении или неподвижны, они также обладают потенциальной энергией, потому что находятся на столе над землей.

Энергия не может быть создана или уничтожена, но она может изменять форму и также связана с массой. Теория эквивалентности массы и энергии утверждает, что покоящийся объект в системе отсчета обладает энергией покоя. Если к объекту подводится дополнительная энергия, это фактически увеличивает массу этого объекта. Например, если вы нагреете стальной подшипник (добавив тепловую энергию), вы очень незначительно увеличите его массу.

единиц энергии

Единица измерения энергии в системе СИ — джоуль (Дж) или ньютон-метр (Н * м).Джоуль также является единицей работы в системе СИ.

Энергия


2

Динамические фотонные штрих-коды записывают передачу энергии через биоинтерфейс

30 октября 2020 г. — Команда недавно разработала биореактивные динамические штрих-коды, представляющие концепцию резонансной передачи энергии на интерфейсе . ..


Новая концепция может сделать батареи более экологически чистыми

Сен.30, 2019 — Новая концепция алюминиевой батареи имеет вдвое большую удельную энергию, чем предыдущие версии, изготовлена ​​из большого количества материалов и может привести к снижению производственных затрат и снижению воздействия на окружающую среду. Идея …


Цели в области возобновляемых источников энергии могут подорвать устойчивая деятельность

28 октября 2020 г. — Цели возобновляемой энергии (ВИЭ) могут быть слишком грубым инструментом для обеспечения устойчивого будущего, согласно новому …


Бриллианты сияют в решениях для хранения энергии

Апр.21 января 2020 г. — Исследователи предложили конструкцию новой углеродной наноструктуры из алмазных нанонитей, которую однажды можно будет использовать для хранения механической энергии, носимых технологий и биомедицинских …


Новые высокопроизводительные диоды и транзисторы

8 октября 2019 г. — Современные компьютерные процессоры все чаще выходят за рамки своих возможностей из-за своих физических свойств. Новые материалы могут быть решением. Физики исследовали, если и как это…


Бактерии могут стать источником электроэнергии в будущем

26 марта 2019 г. — В последние годы исследователи пытались уловить электрический ток, который бактерии генерируют в ходе собственного метаболизма. Пока, однако, передача тока от бактерий к …


Исследователи создают более прочное волокно

22 февраля 2019 г. — Исследователи разработали волокно, которое сочетает в себе эластичность резины с прочностью металла, в результате чего получается более прочный материал, который можно использовать в мягкой робототехнике, упаковке…


Наноуглеродная антенна заставляет редкоземельный элемент сиять в 5 раз ярче

21 января 2020 г. — Многослойная антенна из наноуглерода заставляет редкоземельный элемент светиться в 5 раз ярче, чем предыдущие конструкции, с применением в молекулярном светоизлучающем . ..


Магия металла может помочь найти хорошее применение избытку углекислого газа

30 мая 2018 г. — Исследователь обнаружил в металле разновидность магии, которая может быть именно тем, что доктор прописал для планеты Земля.Он говорит, что цветной металл, известный как висмут, может помочь уменьшить рост углекислого газа …


Встречающиеся молекулы и античастицы

13 декабря 2019 г. — Новое теоретическое исследование взаимодействия позитронов с простыми тетраэдрическими и октаэдрическими молекулами согласуется с экспериментальной работой и может иметь полезные последствия для ПЭТ-сканирования …


Работа, энергия и сила

Кинетическая энергия — это энергия движения.Объект, который движется — будь то вертикальное или горизонтальное движение — обладает кинетической энергией. Есть много форм кинетической энергии — колебательная (энергия, обусловленная колебательным движением), вращательная (энергия, обусловленная вращательным движением) и поступательная (энергия, обусловленная движением из одного места в другое). Чтобы не усложнять задачу, мы сосредоточимся на поступательной кинетической энергии. Количество поступательной кинетической энергии (далее фраза кинетическая энергия будет относиться к поступательной кинетической энергии), которую имеет объект, зависит от двух переменных: массы (m) объекта и скорости (v) объекта.Следующее уравнение используется для представления кинетической энергии (KE) объекта.

KE = 0,5 • м • v 2

где м = масса объекта

v = скорость объекта

Это уравнение показывает, что кинетическая энергия объекта прямо пропорциональна квадрату его скорости. Это означает, что при двукратном увеличении скорости кинетическая энергия увеличится в четыре раза.При трехкратном увеличении скорости кинетическая энергия увеличится в девять раз. А при четырехкратном увеличении скорости кинетическая энергия увеличится в шестнадцать раз. Кинетическая энергия зависит от квадрата скорости. Как часто говорят, уравнение — это не просто рецепт решения алгебраических задач, но и руководство к размышлениям о взаимосвязи между величинами.

Кинетическая энергия — скалярная величина; у него нет направления. В отличие от скорости, ускорения, силы и количества движения, кинетическая энергия объекта полностью описывается только величиной.2.

1 Джоуль = 1 кг • м 2 / с 2

Мы хотели бы предложить …

Как скорость автомобиля (и, следовательно, его кинетическая энергия) влияет на расстояние, которое потребуется для его торможения до остановки? Взаимодействуйте, исследуйте и узнавайте ответ на этот вопрос с помощью нашей интерактивной программы «Тормозное расстояние». Вы можете найти его в разделе Physics Interactives на нашем сайте.Интерактивная система «Тормозное расстояние» позволяет учащемуся исследовать влияние скорости на тормозной путь игрушечной машины.

Проверьте свое понимание

Используйте свое понимание кинетической энергии, чтобы ответить на следующие вопросы. Затем нажмите кнопку, чтобы просмотреть ответы.

1. Определите кинетическую энергию автомобиля американских горок массой 625 кг, движущегося со скоростью 18.3 м / с.

2. Если бы американские горки в описанной выше задаче двигались с удвоенной скоростью, какова была бы его новая кинетическая энергия?

3. Мисси Дьюотер, бывшая ныряльщица с платформы цирка братьев Ринглинг, имела кинетическую энергию 12 000 Дж незадолго до того, как попала в ведро с водой. Если масса Мисси 40 кг, то какова ее скорость?

4.Компактный автомобиль массой 900 кг, движущийся со скоростью 60 миль / час, имеет около 320 000 Джоулей кинетической энергии. Оцените его новую кинетическую энергию, если он движется со скоростью 30 миль / час. (ПОДСКАЗКА: используйте уравнение кинетической энергии как «руководство к размышлению».)

Механическая энергия

В предыдущей части Урока 1 было сказано, что работа выполняется над объектом всякий раз, когда на него действует сила, заставляющая его смещаться.Работа включает в себя силу, действующую на объект, вызывающую смещение. Во всех случаях, когда выполняется работа, есть объект, который обеспечивает силу для выполнения работы. Если книгу World Civilization поднять на верхнюю полку шкафчика ученика, тогда ученик предоставит силы для работы с книгой. Если плуг перемещается по полю, то какое-либо сельскохозяйственное оборудование (обычно трактор или лошадь) дает силу для работы на плуге. Если питчер разворачивается и ускоряет бейсбольный мяч по направлению к своей тарелке, то питчер предоставляет силу для выполнения работы с бейсбольным мячом.Если автомобиль с американскими горками перемещается с уровня земли на вершину первого падения американских горок, то цепь, приводимая в движение двигателем, обеспечивает силу, необходимую для работы с автомобилем. Если штанга перемещается с уровня земли на высоту над головой штангиста, то штангист прикладывает силу для работы со штангой. Во всех случаях объект, обладающий некоторой формой энергии, обеспечивает силу для выполнения работы. В описанных здесь случаях объекты, выполняющие работу (ученик, трактор, кувшин, двигатель / цепь), обладают химической потенциальной энергией , хранящейся в пище или топливе, которая превращается в работу.В процессе выполнения работы объект, выполняющий работу, обменивается энергией с объектом, над которым выполняется работа. Когда над объектом выполняется работа, этот объект получает энергию. Энергия, приобретаемая объектами, над которыми выполняется работа, известна как механическая энергия .

Механическая энергия — это энергия, которой обладает объект в результате его движения или положения. Механическая энергия может быть кинетической (энергия движения) или потенциальной энергией (запасенная энергия положения).Объекты обладают механической энергией, если они находятся в движении и / или если они находятся в некотором положении относительно положения с нулевой потенциальной энергией (например, кирпич, удерживаемый в вертикальном положении над землей или положение с нулевой высотой). Движущийся автомобиль обладает механической энергией за счет своего движения (кинетическая энергия). Движущийся бейсбольный мяч обладает механической энергией благодаря своей высокой скорости (кинетическая энергия) и вертикальному положению над землей (потенциальная энергия гравитации). Книга Мировой цивилизации, покоящаяся на верхней полке шкафчика, обладает механической энергией из-за своего вертикального положения над землей (потенциальная энергия гравитации).Штанга, поднятая высоко над головой штангиста, обладает механической энергией благодаря своему вертикальному положению над землей (потенциальная энергия гравитации). Натянутый лук обладает механической энергией из-за своего растянутого положения (упругая потенциальная энергия).

Механическая энергия как способность выполнять работу

Объект, обладающий механической энергией, способен совершать работу. Фактически, механическая энергия часто определяется как способность выполнять работу. Любой объект, обладающий механической энергией — будь то в форме потенциальной или кинетической энергии — способен выполнять работу. То есть его механическая энергия позволяет этому объекту приложить силу к другому объекту, чтобы вызвать его смещение.

Можно привести множество примеров того, как объект с механической энергией может использовать эту энергию, чтобы применить силу, чтобы вызвать смещение другого объекта. Классический пример — это огромный шар, разрушающий машину для сноса строений.Мяч для разрушения представляет собой массивный объект, который отклоняется назад в высокое положение и позволяет качаться вперед в строительную конструкцию или другой объект, чтобы разрушить его. При столкновении с конструкцией разрушающий шар прикладывает к нему силу, чтобы вызвать смещение стены конструкции. На приведенной ниже диаграмме показан процесс, с помощью которого механическая энергия разрушающего шара может быть использована для выполнения работы.

Молоток — это инструмент, использующий механическую энергию для выполнения работы. Механическая энергия молотка дает ему возможность приложить силу к гвоздю, чтобы вызвать его смещение. Поскольку молоток обладает механической энергией (в форме кинетической энергии), он способен воздействовать на гвоздь. Механическая энергия — это способность выполнять работу.

Другой пример, показывающий, как механическая энергия — это способность объекта выполнять работу, можно увидеть в любой вечер в вашем местном боулинг-клубе. Механическая энергия шара для боулинга дает ему возможность приложить силу к кегле, чтобы заставить его сместиться.Поскольку массивный шар обладает механической энергией (в форме кинетической энергии), он может работать со штифтом. Механическая энергия — это способность выполнять работу.

Дротик — еще один пример того, как механическая энергия одного объекта может воздействовать на другой объект. Когда дротик заряжен и пружины сжаты, он обладает механической энергией. Механическая энергия сжатых пружин дает им возможность прикладывать силу к дротику, чтобы вызвать его смещение. Поскольку пружины обладают механической энергией (в виде упругой потенциальной энергии), они способны работать над дротиком. Механическая энергия — это способность выполнять работу.

Обычная сцена в некоторых частях сельской местности — это «ветряная электростанция». Высокоскоростной ветер используется для работы с лопастями турбины на так называемой ветряной электростанции. Механическая энергия движущегося воздуха дает частицам воздуха возможность прикладывать силу и вызывать смещение лопастей.Когда лопасти вращаются, их энергия впоследствии преобразуется в электрическую энергию (немеханическую форму энергии) и подается в дома и промышленные предприятия для работы электрических приборов. Поскольку движущийся ветер обладает механической энергией (в форме кинетической энергии), он может работать с лопастями. Еще раз, механическая энергия — это способность совершать работу.

Общая механическая энергия

Как уже упоминалось, механическая энергия объекта может быть результатом его движения (т. е.е., кинетическая энергия) и / или результат накопленной энергии положения (т. е. потенциальная энергия). Общее количество механической энергии — это просто сумма потенциальной энергии и кинетической энергии. Эта сумма просто называется полной механической энергией (сокращенно TME).

TME = PE + KE

Как обсуждалось ранее, в нашем курсе обсуждаются две формы потенциальной энергии — гравитационная потенциальная энергия и упругая потенциальная энергия. Учитывая этот факт, приведенное выше уравнение можно переписать:

TME = PE grav + PE пружина + KE

На диаграмме ниже изображено движение Ли Бена Фардеста (уважаемого американского прыгуна с трамплина), когда он спускается с холма и делает один из своих рекордных прыжков.

Полная механическая энергия Ли Бена Фардеста представляет собой сумму потенциальной и кинетической энергии. Сумма двух форм энергии составляет 50 000 Джоулей. Также обратите внимание, что общая механическая энергия Ли Бена Фардеста является постоянной величиной на протяжении всего его движения. Существуют условия, при которых общая механическая энергия будет постоянной величиной, и условия, при которых она будет изменяться. Это тема Урока 2 — отношения работы и энергии.На данный момент просто запомните, что полная механическая энергия — это энергия, которой обладает объект из-за его движения или накопленной энергии в позиции . Общее количество механической энергии — это просто сумма этих двух форм энергии. И, наконец, объект с механической энергией может работать с другим объектом.

Работа и энергия

Концепции работы и энергии тесно связаны с концепцией силы, потому что приложенная сила может работать с объектом и вызывать изменение энергии. Энергия определяется как способность выполнять работу.

Работа

Понятие работы в физике определяется гораздо более узко, чем обычное использование этого слова. Работа выполняется с объектом, когда приложенная сила перемещает его на расстояние. На нашем повседневном языке работа связана с затратами мышечных усилий, но на языке физики это , а не . Человек, держащий тяжелый предмет, не выполняет никакой физической работы, потому что сила не перемещает предмет на расстояние.Согласно физическому определению работа выполняется, пока тяжелый объект поднимается, но не когда объект неподвижен. Другой пример отсутствия работы — это масса на конце струны, вращающаяся по горизонтальной окружности на поверхности без трения. Центростремительная сила направлена ​​к центру круга и, следовательно, не перемещает объект на расстояние; то есть сила направлена ​​не в направлении движения объекта. (Однако была проделана работа, чтобы привести массу в движение.) Математически работа равна Вт = F · x, где F — приложенная сила, а x — пройденное расстояние, то есть смещение. Работа — это скаляр. Единицей измерения работы в системе СИ является джоуль (Дж), который представляет собой ньютон-метр или кг м / с 2 .

Если работа выполняется с помощью переменной силы, приведенное выше уравнение использовать нельзя. На рисунке показан график зависимости силы от смещения для объекта, на который действуют три различных последовательных силы. Сила увеличивается в сегменте I, постоянна в сегменте II и уменьшается в сегменте III.Работа, выполняемая над объектом каждой силой, представляет собой область между кривой и осью x . Общая проделанная работа — это общая площадь между кривой и осью x . Например, в этом случае работа, выполняемая тремя последовательными силами, показана на рисунке 1.

Рисунок 1

Действующая сила изменяется в зависимости от положения.

В этом примере общая выполненная работа равна (1/2) (15) (3) + (15) (2) + (1/2) (15) (2) = 22,5 + 30 + 15; работа = 67.5 Дж. Для постепенно изменяющейся силы работа выражается в интегральной форме: Вт = ∫ F · d x.

Кинетическая энергия

Кинетическая энергия — это энергия движущегося объекта. Выражение для кинетической энергии может быть получено из определения работы и кинематических отношений. Рассмотрим силу, приложенную параллельно поверхности, которая перемещает объект с постоянным ускорением.

Исходя из определения работы, второго закона движения Ньютона и кинематики, W = Fx = max и v f 2 = v o 2 + 2 ax , или a = ( v f 2 v o 2 ) / 2 x .Подставьте последнее выражение для ускорения в выражение для работы, чтобы получить W = м ( v f 2 v o 2 ) или W (1/2) мв f 2 — (1/2) мв o 2 . Правая часть последнего уравнения дает определение кинетической энергии: К . E . = (1/2) mv 2 Кинетическая энергия — это скалярная величина с теми же единицами, что и работа, джоулями (Дж). Например, масса 2 кг, движущаяся со скоростью 3 м / с, имеет кинетическую энергию 9 Дж.

Приведенный выше вывод показывает, что чистая работа равна изменению кинетической энергии. Это соотношение называется теоремой работы-энергии: W net = K . E . f K . E . o , где K . E . f — конечная кинетическая энергия и K . E . o — исходная кинетическая энергия.

Потенциальная энергия

Потенциальная энергия, , также называемая накопленной энергией, — это способность системы выполнять работу, обусловленную ее положением или внутренней структурой. Примерами могут служить энергия, запасенная в сваях в верхней части его пути, или энергия, запасенная в спиральной пружине.Потенциальная энергия измеряется в джоулях.

Гравитационная потенциальная энергия — энергия положения. Во-первых, рассмотрим потенциальную гравитационную энергию вблизи поверхности Земли, где ускорение свободного падения (g) приблизительно постоянно. В этом случае, гравитационный потенциал энергии объекта относительно некоторого опорного уровня является P.E . = mgh , где h — вертикальное расстояние над опорным уровнем.Чтобы поднять объект медленно, сила, равная его весу (мг) , прилагается через высоту (h) . Совершенная работа равна изменению потенциальной энергии: Вт = P . E . ф п . E . o = mgh f mgh o , где нижние индексы (f и o) относятся к окончательной и исходной высоте кузова.

Запуск ракеты в космос требует работы, чтобы разделить массу Земли и ракеты для преодоления силы тяжести. Для больших расстояний от центра Земли приведенное выше уравнение неадекватно, потому что g непостоянно. Общая форма гравитационной потенциальной энергии — это P.E . = — GMm / r , где M и m относятся к массам двух разделенных тел, а r — это расстояние между центрами масс.Отрицательный знак является результатом выбора нулевого задания при r равным бесконечности, то есть при очень большом расстоянии .

Упругая потенциальная энергия — это энергия, запасенная в пружине. Величина силы, необходимой для растяжения пружины, определяется выражением F = — kx , где x — это расстояние растяжения (или сжатия) пружины из ненагруженного положения, а k — это пружинная постоянная. Жесткость пружины — это мера жесткости пружины, при этом более жесткие пружины имеют большие значения k . Потенциальная энергия, запасенная в пружине, определяется формулой P . E . = (1/2) kx 2 .

Изменение потенциальной энергии равно работе. Сила тяжести и сила растяжения пружины — это разные силы; следовательно, приведенные выше уравнения потенциальной энергии для этих двух случаев также могут быть выведены из интегральной формы работы Δ P . E . = W = ∫ F · d x.

Мощность

Мощность — скорость выполнения работы, в среднем P = Вт / т , где t — временной интервал, в течение которого выполняется работа (Вт) .Другая форма мощности находится из Вт = F Δ x и замены средней скорости объекта за время t на Δ x / t : среднее P = F Δ x / Δ t = F (в среднем v ).

Сохранение энергии

Принцип сохранения энергии — один из самых далеко идущих общих законов физики. В нем говорится, что энергия не создается и не разрушается, а может быть преобразована из одной формы в другую только в изолированной системе.

Поскольку полная энергия системы всегда остается постоянной, закон сохранения энергии является полезным инструментом для анализа физической ситуации, когда энергия меняет форму. Представьте себе качающийся маятник с незначительными силами трения. На вершине его подъема вся энергия является гравитационной потенциальной энергией из-за высоты над неподвижным положением.Внизу качелей вся энергия преобразована в кинетическую энергию движения. Полная энергия — это сумма кинетической и потенциальной энергий. Он поддерживает одно и то же значение во время движения качелей вперед и назад (см. Рисунок 2).

Рисунок 2

Маятник подчиняется закону сохранения энергии.

В точке C потенциальная энергия зависит от высоты, а остальная часть полной энергии — кинетическая энергия.

Хотя полная энергия сохраняется, кинетическая энергия не требуется. Столкновение двух объектов с сохранением кинетической энергии называется упругим столкновением . Сталкивающиеся объекты, взаимодействующие с потерями кинетической энергии из-за потерь на трение или деформации объекта, называются неупругими столкновениями. В макроскопическом мире большинство столкновений неупругие; однако потери кинетической энергии незначительны в почти упругих столкновениях между атомными частицами и субатомными частицами.Для этих случаев закон сохранения количества движения и кинетической энергии дает полезные уравнения.

Рассмотрим простое лобовое упругое столкновение, когда одна масса ( м 1 ) с заданной скоростью ( v 1 ) сталкивается со второй массой ( м 2 ), которая изначально находится в состоянии покоя. Примените законы сохранения количества движения и кинетической энергии, чтобы получить м 1 v 1 = м 1 v 1 + m 2 v 2 ′ и (1/2) м 1 v 1 2 = (1/2) m 1 v 1 2 + (1 / 2) м 2 v 2 2 , где штрихи относятся к скоростям после столкновения. Решение уравнений дает скорости двух масс после взаимодействия:

Поучительны три особых случая:

Для равных масс, где м 1 = м 2 , обратите внимание, что v 1 ′ становится равным нулю и v 2 ′ равно v 1 ; таким образом, при равных массах объекты просто обмениваются скоростями, как это иногда наблюдается с шарами для пула. (Шары для пула имеют энергию вращения и несколько неупругие столкновения, поэтому их поведение только приближается к примеру.)

Если м 2 массивно, числитель и знаменатель почти совпадают в уравнении для v 1 ′. Тогда v 1 ′ приблизительно равно v 1 , но в противоположном направлении. Знаменатель выражения для v 2 ′ будет настолько большим, что скорость второй массы после столкновения будет небольшой. Другими словами, входящая масса ( м, , , 1, ) отскочит от второй массы почти с начальной скоростью, а пораженная масса ( м, , , 2, ) будет медленно перемещаться после столкновения.

Если m 1 является массивным, то v 1 ′ приблизительно равно v 1 , а v 2 ′ почти в два раза больше v 1 ; или падающая массивная частица продолжает двигаться почти с той же скоростью, а ударная масса движется вперед со скоростью, почти в два раза превышающей начальную скорость первой массы после столкновения.

Центр масс

Концепция центра масс (CM) полезна для анализа движения системы частиц.Система частиц действует так, как будто вся ее масса сосредоточена в КМ. В отсутствие внешней силы, если ЦМ системы находится в состоянии покоя, тогда он будет оставаться в покое, а если он изначально находится в движении, он будет поддерживать это движение. Другими словами, КМ движется в соответствии со вторым законом Ньютона. Координаты центра масс x и y равны

.

Рассмотрим предыдущий пример лобового столкновения двух равных масс, которые слиплись после столкновения. КМ изначально движется с постоянной скоростью и сохраняет ту же скорость после столкновения. Когда первая масса катится ко второй массе, CM всегда находится посередине между двумя массами. Перед столкновением КМ преодолевает половину расстояния приближающегося объекта за одно и то же время, и, следовательно, скорость КМ составляет половину начальной скорости приходящей массы. В тот момент, когда две массы взаимодействуют, CM находится прямо между двумя объектами. После столкновения массы слипаются и имеют половину начальной скорости, потому что эффективная масса удвоилась.CM продолжает оставаться на полпути между массами. Он сохраняет ту же скорость (1/2) v o после столкновения. На рисунке движущийся белый шар ударяется о неподвижный черный шар. Пронумерованные и обведенные позиции CM соответствуют пронумерованным позициям шаров.

Рисунок 3

Неупругое столкновение двух шаров.

Сохранение энергии | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объясните закон сохранения энергии.
  • Опишите некоторые из множества форм энергии.
  • Определите эффективность процесса преобразования энергии как долю оставшейся полезной энергии или работы, а не преобразованную, например, в тепловую энергию.

Закон сохранения энергии

Энергия, как мы уже отметили, сохраняется, что делает ее одной из важнейших физических величин в природе. Закон сохранения энергии можно сформулировать следующим образом:

Общая энергия постоянна в любом процессе.Он может меняться по форме или передаваться из одной системы в другую, но общая сумма остается неизменной.

Мы исследовали некоторые формы энергии и способы ее передачи из одной системы в другую. Это исследование привело к определению двух основных типов энергии — механической энергии (KE + PE) и энергии, передаваемой через работу, совершаемую неконсервативными силами ( W nc ). Но энергия принимает много других форм, проявляясь многими различными способами, и нам нужно иметь возможность справиться со всеми этими формами, прежде чем мы сможем написать уравнение для приведенного выше общего утверждения сохранения энергии.

Другие формы энергии, помимо механической

На этом этапе мы имеем дело со всеми другими формами энергии, объединяя их в одну группу, называемую другая энергия (OE). Тогда мы можем сформулировать сохранение энергии в форме уравнения как KE i + PE i + W nc + OE i = KE f + PE f + OE f .

Все виды энергии и работы могут быть включены в это очень общее заявление о сохранении энергии.Кинетическая энергия — это KE, работа, выполняемая консервативной силой, представлена ​​PE, работа, выполняемая неконсервативными силами, равна W nc , а все другие энергии включены как OE. Это уравнение применимо ко всем предыдущим примерам; в этих ситуациях OE было постоянным, поэтому оно вычиталось и не учитывалось напрямую.

Установление соединений: полезность принципа энергосбережения

Тот факт, что энергия сохраняется и имеет множество форм, делает ее очень важной. Вы обнаружите, что энергия обсуждается во многих контекстах, потому что она участвует во всех процессах. Также станет очевидным, что многие ситуации лучше всего понять с точки зрения энергии и что проблемы часто легче всего концептуализировать и решать, рассматривая энергию.

Когда OE играет роль? Один пример происходит, когда человек ест. Пища окисляется с выделением углекислого газа, воды и энергии. Некоторая часть этой химической энергии преобразуется в кинетическую энергию, когда человек движется, в потенциальную энергию, когда человек меняет высоту, и в тепловую энергию (другая форма OE).

Некоторые из многих форм энергии

Какие еще формы энергии? Вы, вероятно, можете назвать ряд форм энергии, которые еще не обсуждались. Многие из них будут рассмотрены в следующих главах, но давайте подробно остановимся на некоторых здесь. Электрическая энергия — это обычная форма, которая преобразуется во многие другие формы и действительно работает в широком диапазоне практических ситуаций. Топливо, такое как бензин и продукты питания, несут химической энергии , которая может быть передана системе путем окисления.Химическое топливо также может производить электрическую энергию, например, в батареях. Батареи, в свою очередь, могут производить свет, который является очень чистой формой энергии. Фактически, большинство источников энергии на Земле — это запасенная энергия из энергии, которую мы получаем от Солнца. Мы иногда называем это излучением или электромагнитным излучением, которое включает в себя видимый свет, инфракрасное и ультрафиолетовое излучение. Ядерная энергия происходит из процессов, которые преобразуют измеримые количества массы в энергию.Ядерная энергия преобразуется в энергию солнечного света, в электрическую энергию на электростанциях и в энергию передачи тепла и взрыва в оружии. Атомы и молекулы внутри всех объектов находятся в беспорядочном движении. Эта внутренняя механическая энергия от случайных движений называется тепловой энергией , потому что она связана с температурой объекта. Эти и все другие формы энергии могут быть преобразованы друг в друга и могут работать.

В таблице 1 указано количество энергии, накопленной, используемой или высвобождаемой различными объектами и в различных явлениях.Диапазон энергий, разнообразие типов и ситуаций впечатляет.

Стратегии решения проблем в области энергетики

Вы найдете следующие стратегии решения проблем полезными всякий раз, когда имеете дело с энергией. Стратегии помогают в организации и укреплении энергетических концепций. Фактически, они используются в примерах, представленных в этой главе. Знакомые общие стратегии решения проблем, представленные ранее, включающие определение физических принципов, известных и неизвестных, проверочные единицы и т. Д., По-прежнему актуальны.

Шаг 1. Определите интересующую систему и определите, какая информация предоставляется и какое количество должно быть рассчитано. Эскиз поможет.

Шаг 2. Изучите все задействованные силы и определите, знаете ли вы или получаете ли вы потенциальную энергию от работы, выполняемой силами. Затем используйте шаг 3 или шаг 4.

Шаг 3. Если вы знаете потенциальные энергии сил, которые входят в проблему, тогда все силы консервативны, и вы можете применить закон сохранения механической энергии просто в терминах потенциальной и кинетической энергии.Уравнение, выражающее сохранение энергии: KE i + PE i = KE f + PE f .

Шаг 4. Если вы знаете потенциальную энергию только для некоторых сил, возможно потому, что некоторые из них неконсервативны и не имеют потенциальной энергии, или если есть другие энергии, которые нелегко трактовать с точки зрения силы и работы, то необходимо использовать закон сохранения энергии в самом общем виде.

KE i + PE i + W NC + OE i = KE f + PE f + OE f .

В большинстве задач один или несколько членов равны нулю, что упрощает их решение. Не рассчитывайте W c , работа сделана консервативными силами; он уже включен в условия PE.

Шаг 5. Вы уже определили виды работы и энергии (на шаге 2). Перед тем как найти неизвестное, по возможности исключите члены , чтобы упростить алгебру. Например, выберите h = 0 либо в начальной, либо в конечной точке, чтобы PE g там был равен нулю.Затем привычным способом решите неизвестное.

Шаг 6. Проверьте ответ, чтобы убедиться, что он разумный . Решив проблему, еще раз проверьте формы работы и энергии, чтобы убедиться, что вы правильно составили уравнение сохранения энергии. Например, работа, выполняемая против трения, должна быть отрицательной, потенциальная энергия внизу холма должна быть меньше, чем наверху, и так далее. Также убедитесь, что полученное числовое значение является разумным.Например, конечная скорость скейтбордиста, спускающегося по наклонной рампе высотой 3 м, в разумных пределах может составлять 20 км / ч, но , а не 80 км / ч.

Преобразование энергии

Рис. 1. Солнечная энергия преобразуется в электрическую с помощью солнечных элементов, которые используются для запуска двигателя в этом летательном аппарате, работающем на солнечной энергии. (кредит: НАСА)

Преобразование энергии из одной формы в другую происходит постоянно. Химическая энергия пищи преобразуется в тепловую энергию в процессе метаболизма; световая энергия преобразуется в химическую энергию посредством фотосинтеза.В более крупном примере химическая энергия, содержащаяся в угле, преобразуется в тепловую энергию, когда он сгорает, превращая воду в пар в бойлере. Эта тепловая энергия пара, в свою очередь, преобразуется в механическую энергию при вращении турбины, которая соединена с генератором для производства электроэнергии. (Во всех этих примерах не вся начальная энергия преобразуется в упомянутые формы. Этот важный момент обсуждается позже в этом разделе.)

Другой пример преобразования энергии происходит в солнечном элементе. Солнечный свет, падающий на солнечный элемент (см. Рисунок 1), производит электричество, которое, в свою очередь, может использоваться для запуска электродвигателя. Энергия преобразуется из первичного источника солнечной энергии в электрическую, а затем в механическую.

Таблица 1. Энергия различных предметов и явлений
Объект / явление Энергия в джоулях
Большой взрыв 10 68
Энергия, выделяемая при сверхновой 10 44
Синтез всего водорода в океанах Земли 10 34
Годовое мировое потребление энергии 4 × 10 20
Большая термоядерная бомба (9 мегатонн) 3.8 × 10 16
1 кг водорода (синтез с гелием) 6,4 × 10 14
1 кг урана (ядерное деление) 8,0 × 10 13
Делящаяся бомба размером с Хиросиму (10 килотонн) 4,2 × 10 13
Авианосец водоизмещением

тонн, скорость 30 узлов

1,1 × 10 10
1 баррель сырой нефти 5. 9 × 10 9
1 тонна TNT 4,2 × 10 9
1 галлон бензина 1,2 × 10 8
Ежедневное потребление электроэнергии в домашних условиях (развитые страны) 7 × 10 7
Суточное потребление пищи взрослыми (рекомендуется) 1,2 × 10 7
Автомобиль массой 1000 кг, скорость 90 км / ч 3,1 × 10 5
1 г жира (9.3 ккал) 3,9 × 10 4
Реакция гидролиза АТФ 3,2 × 10 4
1 г углеводов (4,1 ккал) 1,7 × 10 4
1 г белка (4,1 ккал) 1,7 × 10 4
Теннисный мяч со скоростью 100 км / ч 22
Комар (10 −2 г при 0,5 м / с) 1,3 × 10 −6
Одиночный электрон в пучке телевизионной трубки 4. 0 × 10 −15
Энергия разрыва одной цепи ДНК 10 −19

КПД

Даже если энергия сохраняется в процессе преобразования энергии, выход полезной энергии или работы будет меньше, чем потребляемая энергия. Эффективность Eff процесса преобразования энергии определяется как

[латекс] \ displaystyle \ text {Эффективность} (Eff) = \ frac {\ text {полезная энергия или выход работы}} {\ text {общее количество потребляемой энергии}} = \ frac {W _ {\ text {out}}} {E _ {\ text {in}}} \\ [/ latex]

В таблице 2 перечислены некоторые показатели эффективности механических устройств и деятельности человека.Например, на угольной электростанции около 40% химической энергии угля становится полезной электрической энергией. Остальные 60% преобразуются в другие (возможно, менее полезные) формы энергии, такие как тепловая энергия, которая затем выделяется в окружающую среду через дымовые газы и градирни.

Таблица 2. Эффективность человеческого тела и механических устройств
Деятельность / устройство КПД (%)
Велоспорт и скалолазание 20
Плавание, поверхность 2
Плавание под водой 4
Лопатой 3
Тяжелая атлетика 9
Паровой двигатель 17
Бензиновый двигатель 30
Дизельный двигатель 35
Атомная электростанция 35
Угольная электростанция 42
Электродвигатель 98
Компактный люминесцентный свет 20
Газовый обогреватель (жилой) 90
Солнечный элемент 10

Исследования PhET: массы и источники

Реалистичная лаборатория масс и пружин. Подвесьте массы к пружинам и отрегулируйте жесткость и демпфирование пружины. Вы даже можете замедлить время. Перенесите лабораторию на разные планеты. На диаграмме показаны кинетическая, потенциальная и тепловая энергии каждой пружины.

Щелкните, чтобы запустить моделирование.

Сводка раздела

  • Закон сохранения энергии гласит, что полная энергия постоянна в любом процессе. Энергия может меняться по форме или передаваться из одной системы в другую, но общее количество остается неизменным.
  • Когда рассматриваются все формы энергии, сохранение энергии записывается в форме уравнения как KE i + PE i + W nc + OE i = KE f + PE f + OE f , где OE — , все другие виды энергии , кроме механической энергии.
  • Обычно встречающиеся формы энергии включают электрическую энергию, химическую энергию, лучистую энергию, ядерную энергию и тепловую энергию.
  • Энергия часто используется для выполнения работы, но невозможно преобразовать всю энергию системы для работы.
  • Эффективность Eff машины или человека определяется как [латекс] \ text {Eff} = \ frac {{W} _ {\ text {out}}} {{E} _ {\ text {in} }} \\ [/ latex], где Вт, , из — полезная рабочая мощность, а E, , в — потребляемая энергия.

Концептуальные вопросы

  1. Рассмотрим следующий сценарий. Автомобиль, для которого трение не является незначительным, ускоряется на спуске с холма, и бензин заканчивается после короткого расстояния. Водитель позволяет машине двигаться дальше вниз по склону, затем вверх и по небольшому гребню.Затем он спускается с холма на заправочную станцию, где тормозит до остановки и заправляет бак бензином. Определите формы энергии, которые есть в машине, и то, как они изменяются и передаются в этой серии событий. (См. Рисунок 2.)

    Рис. 2. Автомобиль, испытывающий существенное трение, спускается с холма, преодолевает небольшой гребень, затем снова спускается с холма и останавливается на заправочной станции.

  2. Автомобиль, испытывающий существенное трение, едет вниз по склону, преодолевает небольшой гребень, затем снова спускается по склону и останавливается на заправке.
  3. Автомобиль едет по инерции, пересекает гребень, затем снова спускается с горы и, наконец, останавливается на заправке. Каждая из этих позиций помечена стрелкой, направленной вниз.
  4. Опишите передачу энергии и трансформацию копья, начиная с момента, когда спортсмен поднимает копье, и заканчивая тем, что копье застревает в земле после броска.
  5. Нарушают ли устройства с КПД меньше единицы закон сохранения энергии? Объяснять.
  6. Перечислите четыре различных формы или типа энергии. Приведите один пример преобразования каждой из этих форм в другую.
  7. Перечислите преобразования энергии, которые происходят при езде на велосипеде.

Задачи и упражнения

  1. Используя значения из таблицы 1, сколько молекул ДНК могло бы быть разрушено энергией, переносимой одним электроном в луче старомодной телевизионной трубки? (Эти электроны сами по себе не опасны, но они создают опасные рентгеновские лучи. У более поздних моделей ламповых телевизоров была защита, которая поглощала рентгеновские лучи до того, как они ускользнули и подверглись воздействию зрителей.)
  2. Используя соображения энергии и допуская незначительное сопротивление воздуха, покажите, что камень, брошенный с моста на высоте 20,0 м над водой с начальной скоростью 15,0 м / с, ударяется о воду со скоростью 24,8 м / с независимо от направления метания.
  3. Если бы энергия термоядерных бомб использовалась для обеспечения мировых энергетических потребностей, сколько из 9-мегатоннных бомб потребовалось бы для годового запаса энергии (с использованием данных из Таблицы 1)? Это не так надумано, как может показаться — существуют тысячи ядерных бомб, и их энергия может быть захвачена в результате подземных взрывов и преобразована в электричество, как это делает природная геотермальная энергия.
  4. (a) Использование синтеза водорода для получения энергии — мечта, которая может быть реализована в следующем столетии. Термоядерный синтез будет относительно чистым и почти безграничным источником энергии, как видно из таблицы 1. Чтобы проиллюстрировать это, подсчитайте, сколько лет нынешние энергетические потребности мира могут быть обеспечены одной миллионной частью энергии синтеза водорода в Мировом океане. (б) Как это время соотносится с исторически значимыми событиями, такими как продолжительность стабильной экономической системы?

Глоссарий

закон сохранения энергии: общий закон, согласно которому полная энергия постоянна в любом процессе; энергия может меняться по форме или передаваться из одной системы в другую, но общее количество остается прежним

электрическая энергия: энергия, переносимая потоком заряда

химическая энергия: энергия вещества, хранящаяся в связях между атомами и молекулами, которая может высвобождаться в химической реакции

лучистая энергия: энергия, переносимая электромагнитными волнами

ядерная энергия: энергия, выделяемая в результате изменений в атомных ядрах, таких как слияние двух легких ядер или деление тяжелого ядра

тепловая энергия: энергия внутри объекта из-за случайного движения его атомов и молекул, которая составляет температуру объекта

эффективность: мера эффективности затраченной энергии для выполнения работы; полезная энергия или работа, деленная на общее количество потребляемой энергии

Избранные решения проблем и упражнения

1. 2} = 24,8 \ text {m / s} \\ [/ latex]

4. (а) 25 × 10 6 лет; (б) Это намного больше, чем человеческие масштабы времени.


1. Девять форм энергии


Девять форм энергии для GCSE Physics

Вот 10 различных форм энергии, которые вам нужно знать на экзамене по физике GCSE. Всякий раз, когда вы видите слово «потенциальная энергия», думайте «накопленная энергия», например, в батарее, которая является хранилищем химической потенциальной энергии (готовой к преобразованию в электрическую).

1. Электрическая потенциальная энергия. Клетка — это хранилище электрической «потенциальной» энергии в виде притягивающихся положительных и отрицательных зарядов. Поток электронов через резистор может преобразовывать электрическую потенциальную энергию в тепловую.

2. Звуковая энергия. Звуковые волны — это импульсы кинетической энергии, передаваемые из одного места в другое посредством вибрирующих частиц, когда они натыкаются на своих соседей. Звуковая энергия может проходить через газ, жидкость или твердое тело.

3. Атомная энергия. В ядрах атомов хранится много энергии. Его можно высвободить, когда ядро ​​разделено на два или когда два легких ядра сливаются в одно ядро. Атомные электростанции питаются от этой энергии.

4. Кинетическая энергия. Каждый движущийся объект имеет этот тип энергии. Чем больше скорость объекта, тем больше его кинетическая энергия. Здесь также важна масса — более массивный объект также будет иметь большую кинетическую энергию.

5. Свет. Видимый свет — это тип электромагнитного излучения, которое распространяется в виде волн. Члены этого семейства волн «Е-М» включают гамма-излучение, рентгеновское излучение, ультрафиолет, видимый свет, инфракрасный свет, микроволны и радиоволны.

6. Тепловая энергия может перемещаться из одного места в другое посредством теплопроводности, конвекции и излучения. Другое название этого вида энергии — «тепловая энергия».

7. Гравитационная потенциальная энергия. Любой объект, поднятый над землей, приобретает потенциальную гравитационную энергию.Если объект падает, то при падении эта энергия преобразуется в кинетическую энергию.

8. Химический потенциал энергии. Другой вид энергии, который можно легко накапливать. Примеры включают химическую потенциальную энергию в ваших мышцах или

9. Упругая потенциальная энергия. Когда вы растягиваете или сжимаете пружину, вы накапливаете энергию в связях между металлическими атомами пружины.

Обзор курса

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *