21.07.2024

Генератор переменного тока как работает: принцип работы, устройство, назначение генератора

Содержание

принцип работы, устройство, назначение генератора

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Как устроен генератор переменного тока - назначение и принцип действия

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

Как устроен генератор переменного тока - назначение и принцип действия

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Как устроен генератор переменного тока - назначение и принцип действия

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Как устроен генератор переменного тока - назначение и принцип действия

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

Как устроен генератор переменного тока - назначение и принцип действия

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.
Дизельный генератор

Как устроен генератор переменного тока - назначение и принцип действия

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
Бензогенератор

Как устроен генератор переменного тока - назначение и принцип действия

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

Основные сферы применения

В зависимости от того, где используется электрогенератор, определяются его технические характеристики. Главным образом, отношения генератора к определенной категории по области применения, определяет его мощность. Разделяют следующие разновидности оборудования по сферам эксплуатации:

  • Бытовые. Обладают мощностью от 0,7 до 25 кВт. Обычно к этой категории относятся бензиновые и дизельные генераторы. Применяются для электроснабжения бытовых электроприборов и оборудования малой мощности, очень часто на строительных площадках. Сгодятся в качестве портативного источника электроэнергии при выезде на природу;
  • Профессиональные. Могут применяться в качестве постоянного источника электроэнергии в муниципальных учреждениях и мелких производственных предприятиях. Его мощность не превышает 100 кВт;
  • Промышленные. Могут эксплуатироваться на крупных фабриках и заводах, где требуется высокомощное оборудование. Такие аппараты обладают мощностью более 100 кВт, имеют немалые габариты и сложны в техническом обслуживании для неподготовленного человека.

Устройство Генератора Переменного Тока и Принцип Действия

Мощный тяговый генератор переменного тока – строение

Мощный тяговый генератор переменного тока – строение

Здравствуйте, ценители мира электрики и электроники. Если вы частенько заглядываете на наш сайт, то наверняка помните, что совсем недавно у нас вышел достаточно объемный материал про то, как устроен и работает генератор постоянного тока. Мы подробно описали его строение от самых простых лабораторных прототипов, до современных рабочих агрегатов. Обязательно почитайте, если еще этого не сделали.

Сегодня мы разовьем эту тему, и разберемся, в чем заключается принцип действия генератора переменного тока. Поговорим о сферах его применения, разновидностях и много еще о чем.

Теоретическая часть

Основной принцип работы альтернатора

Основной принцип работы альтернатора

Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.

Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.

Базовые принципы

Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.

  • Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
  • Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.

Строение простейшего электромагнитного генератора

Строение простейшего электромагнитного генератора

  • Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.

Генератор переменного тока - как устроен

Генератор переменного тока — как устроен

  • Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
  • Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
  • Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
  • Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.

Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.

Переменный ток

В его честь была названа частота тока

В его честь была названа частота тока

Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.

Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.

Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.

Мощнейшие генераторы, установленные на Пушкинской ГЭС

Мощнейшие генераторы, установленные на Пушкинской ГЭС

Строение генератора переменного тока

Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.

Основные рабочие части и их подключение

Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины,  а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.

За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.

Устройство и принцип действия генератора переменного тока

Устройство и принцип действия генератора переменного тока

  • Для переменного тока такого приспособления не нужно, поэтому его заменяют контактные кольца, к которым привязаны концы рамки. Вся конструкция вместе вращается вокруг центральной оси. К кольцам примыкают щетки, которые также по ним скользят, обеспечивая постоянный контакт.
  • Как и в случае с постоянным током, ЭДС, возникающие в разных частях рамки, будут суммироваться, образуя результирующее значение этого параметра. При этом во внешней цепи, подключенной через щетки (если подсоединить к ней резистор нагрузки RH), будет протекать электрический ток.
  • В рассмотренном выше примере «Т» равняется полному обороту рамки. Отсюда можно сделать логичный вывод, что частота тока, вырабатываемая генератором, напрямую зависит от скорости вращения якоря (рамки), или другими словами ротора, в секунду. Однако это касается только такого простейшего генератора.

Трехфазные генераторы переменного тока и устройство их

Трехфазные генераторы переменного тока и устройство их

Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.

  • Как мы уже писали выше, течение переменного тока графически изображается синусоидой, поэтому такой ток еще называется и синусоидальным. Сразу можно выделить основные условия, задающие постоянство характеристик такого тока – это равномерность магнитного поля (постоянная его величина) и неизменная скорость вращения якоря, в котором он индуктируется.
  • Для того чтобы сделать устройство достаточно мощным, в нем применяются электрические магниты. Обмотка ротора, в которой индуцируется ЭДС, в действующих агрегатах тоже не является рамкой, как мы показывали в схемах выше. Применяется очень большое количество проводников, которые соединены друг с другом по определенной схеме

Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.

  • Данное свойство позволяет размещать обмотку, в которой индуктируется ЭДС, не только на вращающейся центральной части устройства, но и на неподвижной части. При этом в движение приводится магнит, то есть полюсы.

Синхронный генератор электрического тока и принцип действия этого устройства

Синхронный генератор электрического тока и принцип действия этого устройства

  • При таком строении внешняя обмотка генератора, то есть силовая цепь, не нуждается ни в каких подвижных частях (кольцах и щетках) – соединение выполняется жесткое, чаще болтовое.
  • Да, но можно резонно возразить, мол, эти же элементы потребуется установить на обмотке возбуждения. Так и есть, однако сила тока, протекающая здесь, будет намного меньше итоговой мощности генератора, что значительно упрощает организацию подвода тока. Элементы будут малы по размерам и массе и очень надежны, что делает именно такую конструкцию самой востребованной, особенно для мощных агрегатов, например, тяговых, устанавливаемых на тепловозах.
  • Если же речь идет о маломощных генераторах, где токосъем не представляет каких-то сложностей, поэтому часто применяется «классическая» схема, с вращающейся якорной обмоткой и неподвижным магнитом (индуктором).

Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.

Вращать легче центральную часть

Вращать легче центральную часть

Виды генераторов переменного тока

Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.

Трехфазные генераторы

Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.

Схема трехфазного генератора

Схема трехфазного генератора

  • Как видно из картинки выше, силовая часть агрегата имеет три независимые обмотки, расположенные на статоре по окружности, со смещением друг относительно друга на 120 градусов.
  • Ротор в данном случае представляет собой электромагнит, который, вращаясь, индуктирует в обмотках переменные ЭДС, которые сдвинуты друг относительно друга во времени на одну третью периода «Т», то есть такта. По сути, каждая обмотка представляет собой отдельный однофазный генератор, который питает переменным током свою внешнюю цепь R. То есть мы имеет три значения тока I(1,2,3) и такое же количество цепей. Каждая такая обмотка вместе с внешней цепью получила название фазы.

Смещение синусоид на 1/3 такта

Смещение синусоид на 1/3 такта

  • Чтобы сократить число проводов, ведущих к генератору, три обратных провода, ведущих к нему от потребителей энергии, заменяют одним общим, по которому будут проходить токи от каждой фазы. Такой общий провод называют нулевым
  • Соединение всех обмоток такого генератора, когда их концы соединяются друг с другом, называется звездой. Отдельные три провода, соединяющие начала обмоток с потребителями электроэнергии называются линейными – по ним и идет передача.
  • Если нагрузка всех фаз будет одинаковой, то необходимость в нулевом проводе полностью отпадет, так как общий ток в нем будет равен нулю. Как так получается, спросите вы? Все предельно просто – для понятия принципа достаточно сложить алгебраические значения каждого синусоидального тока, сдвинутых по фазе на 120 градусов. Схема выше поможет понять этот принцип, если представить, что кривые на нем – это изменение тока в трех фазах генератора.
  • Если же нагрузка в фазах будет неодинаковой, то нулевой провод начнет пропускать ток. Именно поэтому распространена 4-х проводная схема подключения звездой, так как она позволяет сохранять электрические приборы, включенные в этот момент в сеть.

Варианты соединения обмоток у трехфазного генератора

Варианты соединения обмоток у трехфазного генератора

  • Напряжение между линейными проводами называется линейным, тогда как напряжение на каждой фазе – фазным. Токи, протекающие в фазах, являются и линейными.
  • Схема подключения звездой не является единственной. Существует и другой вариант последовательного подключения трех обмоток, когда конец одной соединен с началом второй, и так далее, пока не образуется замкнутое кольцо (см. схему выше «б»). Исходящие от генератора провода подключаются в местах соединения обмоток.
  • В таком случае фазовые и линейные напряжения будут одинаковыми, а ток линейного провода будет больше фазного, при их одинаковой нагрузке.
  • Такое соединение также не нуждается в нулевом проводе, в чем и заключается основное преимущество трехфазного генератора. Наличие меньшего количества проводов делают его проще, и цена его ниже, из-за меньшего количества используемых цветных металлов.

Принципиальная схема генератора тока

Принципиальная схема генератора тока

Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.

Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.

Различие по виду

Отличаются генераторы и по виду, которых существует 2:

Синхронный генератор

Синхронный генератор

  • Синхронный генератор переменного тока – главная особенность такого агрегата заключается в жесткой связи частоты переменной ЭДС, которая наведена в обмотке и синхронной частотой вращения, то есть вращения ротора.

Принцип действия и устройство синхронного генератора.

Принцип действия и устройство синхронного генератора.

  1. Взгляните на схему выше. На ней мы видим статор с трехфазной обмоткой, соединенной по треугольной схеме, которая мало чем отличается от той, что стоит на асинхронном двигателе.
  2. На роторе генератора располагается электромагнит с обмоткой возбуждения, питающаяся от постоянного тока, который может быть подан на него любым известным способом – об этом подробнее будет расписано далее.
  3. Вместо электромагнита может быть применен постоянный, тогда необходимость в скользящих частях схемы, в виде щеток и контактных колец, отпадает вовсе, на такой генератор не будет достаточно мощным и не сможет нормально стабилизировать выходные напряжения.
  4. К валу ротора подключается привод – любой двигатель, создающий механическую энергию, и он приводится в движение с определенной синхронной скоростью.
  5. Так как магнитное поле главных полюсов вращается вместе с ротором, начинается индукция переменных ЭДС в обмотке статора, которые можно обозначить как Е1, Е2 и Е3. Эти переменные будут одинаковыми по значению, но как уже не раз говорилось, смещенными на 120 градусов по фазе. Вместе эти значения образуют трехфазную систему ЭДС, которая симметрична.
  6. К точкам С1,С2 и С3 подключается нагрузка, и на фазах обмотки в статоре появляются токи I1,I2,и I В это время каждая фаза статора сама становится мощным электромагнитом и создает вращающееся магнитное поле.
  7. Частота вращения магнитного поля статора будет соответствовать частоте вращения ротора.

Асинхронный электрический двигатель

Асинхронный электрический двигатель

  • Асинхронные генераторы – их отличает от описанного выше примера то, что частоты ЭДС и вращения ротора жестко не привязаны друг к другу. Разница между этими параметрами называется скольжением.
  1. Электромагнитное поле такого генератора в обычном рабочем режиме оказывает под нагрузкой тормозной момент на вращение ротора, поэтому частота изменения магнитного поля будет меньшим.
  2. Эти агрегаты не требуют для создания сложных узлов и применения дорогих материалов, поэтому нашли широкое применение, как электрические двигатели для транспорта, из-за легкого обслуживая и простоты самого устройства. Данные генераторы устойчивы к перегрузкам и коротким замыканиям, однако на устройствах сильно зависящих от частоты тока они неприменимы.

Способы возбуждения обмотки

Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.

Тут можно выделить 4 типа:

  1. Питание на обмотку подается через сторонний источник.
  2. Генераторы с самовозбуждением – питание берется от самого генератора, при этом напряжение выпрямляется. Однако находясь в неактивном состоянии, такой генератор не сможет выработать достаточного напряжения, чтобы стартовать, для чего в схеме применяется аккумулятор, который будет задействован во время старта.
  3. Вариант с обмоткой возбуждения, питающейся от другого генератора меньшей мощности, установленного с ним на одном валу. Второй генератор уже должен стартовать от стороннего источника, например, того же аккумулятора.
  4. Последняя разновидность вообще не нуждается в подаче питания на обмотку возбуждения, так как ее у него нет, ведь применяется в устройстве постоянный магнит.

Применение генераторов переменного тока на практике

Промышленное производство мощных генераторов

Промышленное производство мощных генераторов

Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.

Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.

Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.

Автомобильные генераторы

На фото - электрический генератор для автомобиля

На фото — электрический генератор для автомобиля

Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.

Принципиальная схема автомобильного генератора

Принципиальная схема автомобильного генератора

Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.

Для выпрямления трехфазного тока используется несколько диодов.

Генератор на жидком топливе

Бензиновый генератор

Бензиновый генератор

Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.

Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.

Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.

Панель управления генератора

Панель управления генератора

На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…

На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов  максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.

Устройство генератора тока | У электрика.ру

Приветствую всех на нашем сайте. Сегодня мы поговорим об устройстве генератора тока. Попробуем максимально охватить данную тему  и рассмотреть устройство  генераторов постоянного и переменного токов.

На самом деле, не совсем верно называть это устройство генератором именно переменного или постоянного тока, поскольку, ток возникает только в замкнутом контуре. В общем, в обмотках генератора возникает ЭДС, а не ток. Ток начинает протекать только тогда, когда к обмоткам подключается какой-либо потребитель. Однако, в этой статье мы будем пользоваться устоявшимися понятиями.

Какие бы ни были электрические генераторы основной их принцип – выработка электрической энергии за счёт вращения обмотки в магнитном поле. Это значит, что можно выделить два схематических вида генераторов: либо мы вращаем магнитное поле в неподвижном проводнике, либо вращаем проводник в неподвижном магнитном поле.

Содержание:

Устройство генератора переменного тока

Итак, относительно устройства генератора переменного тока и принципа его действия.

генератор переменного тока устройство

Наибольшее распространение получили генераторы переменного тока с неподвижным проводником. Обусловлено это тем, что ток возбуждения по отношению к току, который получают с генератора, небольшой. Если посмотрите на картинку, то увидите два кольца, по которым протекает ток обмотки возбуждения и это слабое звено любого генератора с обмоткой возбуждения. То есть, либо по кольцам через щётки мы подаем небольшой ток возбуждения, либо через кольца снимаем большой рабочий ток. В электричестве неподвижная часть генераторов или двигателей, на которой находится обмотка, называется статором. Подвижная часть может называться ротором или якорем.

Основные виды генераторов переменного тока

Видов генераторов довольно много. Попробуем классифицировать их по основным направлениям.

  • По виду используемой энергии:
    • Энергия ветра
    • Энергия газа
    • Энергия жидкого топлива
    • Энергия тепла
    • Энергия воды
  • По типу генератора:
    • Однофазный
    • Трёхфазный
    • Синхронный
    • Асинхронный
    • По количеству полюсов статорной обмотки

Есть и другие типы, но они менее распространены.

  • По типу возбуждения:
    • Независимое возбуждение. В этом случае на одном валу с генератором переменного тока находится еще и генератор постоянного тока, который питает только обмотку возбуждения. Возбуждение в таком случае может выполняться и любым другим источником тока, например, аккумулятором.
    • Самовозбуждение. В этом случае, напряжение для обмотки возбуждения получают непосредственно с используемого генератора.
    • Возбуждение с помощью магнитов, которые располагаются на статоре или на якоре, что значительно упрощает устройство генератора, но с помощью такого способа получить мощные генераторы не получится.
Синхронный генератор : схема, устройство, принцип работы

Что значит синхронный по отношению к двигателю или генератору? Если совсем просто, то частота переменного тока жёстко зависит от скорости вращения ротора электрической машины и наоборот. Таким образом, можно относительно легко контролировать частоту переменного тока. Сам по себе синхронный генератор имеет ряд преимуществ, благодаря которым стал наиболее распространенным. Скажу вам по большому секрету, именно синхронные генераторы используются на всех станциях, где производят электричество.

синхронный генератор

Приводным двигателем (на схеме обозначен как ПД) может выступать любое вращающее устройство: двигатель, турбина, крыльчатка ветряной мельницы или водяного колеса. На одном валу с ПД находится ротор генератора с обмоткой возбуждения. На обмотку подается постоянное напряжение и вокруг обмотки образуется магнитное поле. Когда ротор вращается, в обмотках статора возникает ЭДС, то есть появляется напряжение, только уже переменное, частота которого зависит от скорости вращения ротора n1 и количества пар полюсов p. Частоту ЭДС можно высчитать по формуле.

формула

Асинхронный генератор: схема, устройство, принцип работы

асинхронный генератор устройство

Устройство асинхронного генератора

Асинхронный генератор, это, по сути, асинхронный двигатель. То есть, любой асинхронный двигатель можно перевести в режим генерации энергии и наоборот. Конструктивно, устройство, которое называют генератором, выполнено таким образом, чтобы иметь хорошее охлаждение. Глубоко останавливаться на принципе действия асинхронных машин не будем, но вкратце расскажу, почему их называют асинхронными на примере двигателя.

асинхронный двигатель

Когда на обмотки статора подается напряжение, образуется магнитное поле, у трёхфазных двигателей оно круговое, у однофазных эллипсообразное, стремящееся к круговому. Магнитное поле начинает пересекать витки обмотки статора. В короткозамкнутой обмотке ротора возникает ЭДС, то есть напряжение, а поскольку обмотка короткозамкнутая, по ней начинает протекать ток, который тоже создает магнитное поле. Взаимодействие этих магнитных полей приводит ротор в движение. Что будет, если скорость ротора станет равна скорости магнитного поля, создаваемого статором? Правильно, магнитное поле статора перестанет пересекать обмотку ротора. Это можно сравнить с тем, что две машины двигаются на одинаковой скорости. Вроде бы машины двигаются, но при этом по отношению друг к другу они словно стоят на месте, просто земля с большой скоростью проносится под машинами. Так вот, как только скорость ротора и скорость магнитного поля статора станут одинаковыми, в обмотке ротора перестанет вырабатываться ЭДС, прекратится взаимодействие магнитных полей статора и ротора и ротор начнёт останавливаться. Поэтому скорость вращения ротора асинхронного двигателя всегда несколько меньше скорости вращения магнитного поля статора и эта величина называется скольжение.

Так вот, чтобы асинхронный двигатель стал генератором, надо определить скольжение и увеличить скорость вращения ротора на эту величину. Допустим, мы имеем однополюсный трехфазный асинхронный двигатель со скоростью вращения вала 2800 оборотов. Если бы такой двигатель был синхронным, скорость вращения составила бы 3000 оборотов. То есть скольжение составляет 200 оборотов в минуту. Это значит, что если мы начнём вращать ротор со скоростью 3200 оборотов в минуту, то двигатель перейдёт в генераторный режим и будет уже не потреблять, а вырабатывать ЭДС.

Сложность применения таких генераторов в том, что они подвержены провалам. Например, если включить активную нагрузку (лампочку накаливания или нагреватель), пусковой ток будет небольшим. Значительной перегрузки не произойдет, и генератор будет работать стабильно. Если же включить реактивную нагрузку, например, двигатель, то будет большой пусковой ток, превышающий номинальный в 5-20 раз, который «провалит» генератор, то есть вызовет резкое падение напряжения на обмотках генератора. После такого провала асинхронный генератор снова нужно возбуждать. Так что, простота асинхронного генератора перевешивается серьезным недостатком.

Ну и еще нужна конденсаторная установка для возбуждения короткозамкнутой обмотки ротора. Если подобрать неверно ёмкость конденсаторов, то в случае «недобора» от генератора мы получим меньше тока, а в случае «перебора», наш генератор будет сильно перегреваться.

Схемы подключения

Собственно, даже не схемы включения, а варианты. Их, как правило, три:

      • Автоматическое включение. В этом случае устанавливается специальный блок аварийного включения. Как только отключают напряжение в сети, блок подаёт команду на запуск генератора и переключает сеть с внешнего источника питания, на генераторную установку.
      • Ручное включение. В этом случае, пользователь сам проводит операцию переключения с внешнего источника питания на генераторную установку и вручную запускает генератор.
      • Синхронная работа. Такой режим, в основном используется на крупных станциях, генераторы которых объединены в одну сеть. Все генераторы этой сети работают синхронно, с одной частотой, с одной очерёдностью фаз и с одинаковым напряжением на обмотках статора.
Однофазный генератор

Здесь я подробно останавливаться не буду. Такие устройства сейчас можно встретить в любом магазине инструментов. Если однофазный генератор используется как запасной источник электроэнергии, то подключается к домовой сети, как правило, посредством рубильника. То есть, одновременно внешний источник питания и генератор на одну сеть не могут – либо то, либо другое. Во-первых, незачем, во-вторых, это сильно усложнило бы и увеличило стоимость бытовых генераторов. Единственное, на чём могу здесь остановиться, это включение однофазного генератора в трёхфазную сеть.

Включение однофазного генератора

Включение однофазного генератора в трёхфазную сеть

Однако у такого метода есть свой недостаток. Трёхфазные двигатели в такой сети работать не будут, если же их включить, то очень быстро нагреются и выйдут из строя.

Трехфазный генератор

Трёхфазные генераторы могут быть бытовыми и промышленными. Устройство генератора трёхфазного тока в бытовом варианте практически ничем не отличается от однофазного, как и схема включения. Единственное условие при включении бытового генератора в сеть, если в такой сети имеются трёхфазные двигатели – соблюдать очередность фаз. В случае же, если нагрузка в доме однофазная, то такой предосторожностью можно пренебречь.

Устройство генератора трёхфазного тока в промышленном варианте – это устройство, оснащенное автоматическим пуском и иногда может быть оснащено устройством синхронизации. Подключение таких генераторов лучше доверить специалистам.

Ну а бытовой генератор точно так же, как и однофазный включается в сеть через рубильник. Следовательно, в зависимости от положения рубильника работает либо внешний источник питания, либо генератор.

Устройство генератора постоянного тока

Чтобы узнать, что такое генератор постоянного тока, устройство и принцип действия вернёмся немного назад. Мы уже выяснили, как работает генератор переменного тока. Давайте подробнее рассмотрим процесс возникновения ЭДС. Поскольку ротор вращается, у нас есть цикл равный одному обороту ротора или 360°. Давайте узнаем, что происходит в этом цикле:

      • 0° — ЭДС =0
      • 90° — ЭДС достигает максимального значения со знаком «+»
      • 180° — ЭДС снова равна 0
      • 270° — ЭДС достигает пикового значения со знаком «-»

Как же сделать так, чтобы не менялась полярность напряжения? Великие умы придумали следующее – применить коллектор, то есть, снимать напряжение только нужной полярности. Помните, мы говорили, что в генераторе переменного тока, рабочей является обмотка статора, а на роторе находится обмотка возбуждения. Так вот, в генераторе постоянного тока напряжение снимается только с ротора, который называется якорем.

генератор постоянного тока

Схема генератора постоянного тока

Если такой генератор будет иметь только одну пару полюсов, как на картинке, то мы получим пульсирующее постоянное напряжение, где частота будет в два раза больше скорости вращения. То есть, если скорость вращения будет 50 оборотов в секунду, то частота пульсации будет 100 Гц. Чтобы снизить пульсацию напряжения увеличивают количество пар полюсов.

принцип действия постоянного тока

С момента изобретения генератора постоянного тока схематично и по принципу действия он практически не изменился, изменилась лишь технология изготовления и сейчас он выглядит так:

генератор постоянного тока устройство

Основные виды генераторов постоянного тока

В настоящее время набирают популярность двигатели постоянного тока без коллектора. Возможен ли вариант бесколлекторного генератора? К сожалению, пока решить эту задачу не удалось. Так что, если вы где-то увидите название «Бесколлекторный генератор постоянного тока», знайте, что это генератор переменного тока с выпрямительным блоком.

По этой причине, генераторы постоянного тока характеризуют только по типу возбуждения:

  1. Генераторы, возбуждаемые магнитами. Большую мощность такие генераторы развить не могут, поэтому нашли применение только там, где требуются небольшие мощности. Ну и, конечно же, применение магнитов ощутимо удешевляет стоимость таких генераторов.
  2. Независимое возбуждение. Точно так же, как и у генераторов переменного тока, для возбуждения применяется внешний источник питания, не связанный с генератором.
  3. Зависимое возбуждение, которое делится на три типа:
    • Параллельное возбуждение. Как можно понять из названия, обмотка возбуждения в таком генераторе подключена параллельно обмотке якоря. Иногда такой вид возбуждения называют шунтовый.
    • Последовательное возбуждение. Здесь обмотка возбуждения подключается как гирлянда, последовательно обмотке якоря. Такой вид иногда называют сериесным.
    • Смешанное возбуждение или компаундное. Обмотка возбуждения таких генераторов состоит из двух частей, первая подключается шунтовым методом, вторая сериесным.
Генераторы с независимым возбуждением: схема, устройство, принцип работы

схема генератор независимое возбуждение

Схема генератора независимого возбуждения

Принцип работы этого генератора довольно прост. Однако простота генератора является его же недостатком – он требует внешнего независимого источника питания. Якорь генератора разгоняют до необходимой скорости, затем с помощью реостата начинают возбуждать генератор. На обмотках якоря возникает ЭДС и при подключении нагрузки начинает протекать ток.

Нагрузочная способность такого генератора очень хорошая. Как правило, разница между напряжением холостого хода, когда нагрузка не подключена и напряжением при номинальной нагрузке генератора, когда потребитель загружает полностью – составляет всего 5-10%.

Преимущество генератора с независимым возбуждением ещё и в том, что его можно запускать под нагрузкой, то есть, с присоединенными электроприборами.

Генераторы с параллельным возбуждением: схема, устройство, принцип работы

схема генератор с параллельным возбуждением

Схема генератора параллельного возбуждения

У генератора с параллельным включением обмотки возбуждения, в принципе, тоже неплохие нагрузочные характеристики, хотя и несколько хуже, чем у схем с независимым возбуждением – 10-30%. У схем с зависимым возбуждением есть одна особенность, для того, чтобы произошло возбуждение, металл генератора должен иметь остаточную намагниченность. Достаточно 2-3% остаточной намагниченности чтобы запустился процесс самовозбуждения. Конечно же, при этом направление обмотки возбуждения должно совпадать с направлением поля остаточной намагниченности.

Якорь генератора раскручивают до номинальных оборотов, за счет остаточного намагничивания происходит самовозбуждение, то есть, в контуре генератор-обмотка возбуждения появляется ЭДС, появляется небольшой ток. Он увеличивает ЭДС, следовательно, ток снова увеличивается и так происходит до тех пор, пока не будет достигнут баланс между падением напряжения в обмотке генератора и падением напряжения в обмотке возбуждения.

В работе генератора есть одна особенность. Если плавно увеличивать нагрузку вплоть до короткого замыкания, то в какой-то момент мощность генератора достигнет пиковых значений, затем пойдет на спад. По сути, если в момент номинальной загрузки генератора устроить короткое замыкание, то ничего страшного не произойдет. Но если это сделать при небольшой нагрузке, то ток короткого замыкания достигает критических значений 8-10 Iн, а значит, такие генераторы крайне настоятельно рекомендуется защищать от короткого замыкания любым доступным способом.

Такие генераторы получили наибольшее распространение, поскольку не требуют внешних источников питания, имеют неплохую нагрузочную способность и позволяют контролировать ток возбуждения.

Генераторы с последовательным возбуждением: схема, устройство, принцип работы

генератор с последовательным возбуждением

Схема генератора последовательного возбуждения

Поскольку ток обмотки возбуждения в данном случае равен току в цепи, а значит, достигает больших значений, обмотка возбуждения выполняется толстым проводом и имеет меньшее количество витков, чем в предыдущих двух схемах. Принцип работы такой же, как и у предыдущей схемы. Обмотка и поле остаточной намагниченности должны совпадать по направлению. При раскручивании якоря до номинальной частоты возникает ЭДС, поднимается ток и дальше по нарастающей, пока не будет достигнут баланс.

Но здесь есть один небольшой нюанс. Ток обмотки возбуждения изменяется от тока нагрузки, и регулировать ток возбуждения возможности нет. А это приводит к тому, что очень сильно изменяется и напряжение. Здесь мы получаем самый настоящий генератор тока, а не напряжения. Именно поэтому область применения генератора с последовательным возбуждением сильно ограничена.

Генераторы со смешанным возбуждением: схема, устройство, принцип работы

схема генератора со смешанным возбуждением

Схема генератора со смешанным возбуждением

На этом типе соединения нужно остановиться подробнее. У нас есть две обмотки, а значит, их можно включать как согласованно, так и встречно. Здесь я приведу график внешних характеристик  такого генератора, и мы по ним пройдемся.

график внешних характеристик генератора постоянного тока со смешанным

График внешних характеристик генератора постоянного тока со смешанным возбуждением

Итак, раскручиваем якорь до номинальных оборотов. Остаточная намагниченность возбуждает параллельную обмотку, генератор выходит на рабочий режим. Теперь, если мы подключим нагрузку, при этом последовательная обмотка включена согласованно, то возникает дополнительный ток возбуждения. Последовательная обмотка становится, как бы, поддерживающей или опорной. Этот вид включения, если последовательная обмотка была рассчитана, как компенсирующая, позволяет довольно жестко поддерживать напряжение в заданных пределах. На графике это очень хорошо видно по кривой №1.

Если требуется получить некий запас напряжения, например, генератор находится на значительном удалении от потребителя и требуется учесть потери на кабельных линиях, то в последовательной катушке возбуждения увеличивают количество витков. Тем самым, мы получаем более крутую внешнюю характеристику, но поддержание напряжения на номинальных нагрузках остается по-прежнему жестким. Это видно по кривой №2.

Для сравнения, кривая №3 показывает внешнюю характеристику генератора только с параллельным возбуждением.

Так зачем же требуется встречное включение катушек возбуждения? Если вы посмотрите на кривую №4, то можете догадаться, что в случае короткого замыкания, ток возрастает до определенного момента, затем начинает падать. Из графика видно, что ток не достигает даже номинального значения, то есть, примерно 0,7 Iн. В таком варианте включения обмоток генератор без риска повреждения можно использовать для частых коротких замыканий, например сварочные работы.

К сожалению, у всех схем, где используется зависимое возбуждение, есть один существенный недостаток. Поскольку это трудно назвать возбуждением, скорее это самовозбуждение, то запускать такие генераторы вместе с нагрузкой не представляется возможным. Как я уже говорил выше, возбуждение происходит за счёт остаточного намагничивания, которое составляет буквально 2-3%. А значит, если к выводам генератора будет подключена нагрузка, ток будет стремиться по пути наименьшего сопротивления, то есть самой нагрузки. Другими словами, вместе с нагрузкой тока будет недостаточно для формирования магнитного поля.

Думаю, на этом можно закончить ознакомительную статью по генераторам переменного и постоянного тока.

Поделиться ссылкой:

Похожее

Принцип работы и схема генератора переменного тока

Представить себе жизнь современного человека без электричества крайне сложно. Даже те люди, которые отдалены от цифровых технологий и Интернета, все равно пользуются бытовыми приборами, которые работают на электрической энергии. Часто для ее производства используют генератор переменного тока, ведь именно ток такого поля используется всеми бытовыми установками, подается во все квартиры и частные дома. Упомянутый выше прибор был изобретен уже достаточно давно, но он до сих пор не утратил своей популярности и применяется во многих сферах жизни людей. Про устройство генератора и принцип его работы рассказано в данной статье.

Что такое генератор переменного тока, и кто его изобрел

Генератор переменного тока представляет собой специализированную электрическую установку, которая преобразует механическую энергию в электрическую. Последняя обладает переменной характеристикой. Само превращение основано на механическом вращении катушки из проволоки внутри магнитного поля.

 Демонстрация рассматриваемого прибора в разрезе

К сведению! Практически все современные генераторы используют для получения электроэнергии вращающееся магнитное поле, а не катушку.

Как уже было сказано, электрический ток вырабатывается не только при механическом движении катушки в поле магнита, но и тогда, когда силовые линии магнита, находящегося во вращательном движении, пересекают витки катушки. Таким образом появляющиеся электроны начинают свое движение к положительному полюсу магнита, а сам электроток протекает от плюсового полюса к минусовому.

Ток индуцируется в проводнике (катушке). Его течение отталкивает магнит, когда рамка катушки подходит к нему, и отталкивает его, когда рамка удаляется. Его говорить проще, то ток каждый раз меняет свою ориентацию относительно полюсов магнита. Это и вызывает такое явление, как переменный электрический ток.

 Демонстрация прибора с помощью простого магнита и контура

Данное приспособление появилось еще в 1832 г. благодаря стараниям Н. Тесла. Именно тогда был создал самый первый однофазный синхронный генератор переменного электрического тока. Самые первые установки производили только постоянный ток, а рассматриваемый генератор переменной характеристики некоторое время не мог найти своего практического применения. Это длилось не долго, так как люди быстро поняли, что переменный ток использовать гораздо практичнее, чем постоянный.

Обратите внимание! Преимущество новой технологии заключалось в том, что такой электроток было легче выработать, а на обслуживание приборов уходило в разы меньше времени и ресурсов, чем на аналоги, работающие на постоянном токе.

Именно благодаря переменному току и его генератору смогли появиться на свет такие электроприборы, как радиоприемник, магнитофон и другие более поздние автоматические и электротехнические установки, без которых представить жизнь современного человека нельзя.

 Использование графика для демонстрации переменного и постоянного электротоков

Характеристики генератора переменного тока

Основные технические характеристики генератора переменного тока: внешняя, скоростная регулировочная и токоскоростная. Внешняя характеристика определяется, как зависимость напряженности прибора от генерируемого им тока. Она является константой и может быть определена в процессе самостоятельного и независимого возбуждения.

Скоростная регулировочная характеристика чаще всего высчитывается исходя из нескольких величин электротока нагрузки. Самое маленькое значение возбуждения находится при нагрузочном токе, равном нулю (частота вращений при этом максимальная).

Последняя токоскоростная характеристика определяется как одна из самых важных при выборе или создании генератора. Практически все новые генераторы могут самостоятельно ограничивать свой максимальный ток.

Обратите внимание! Делается это для того, чтобы частота вращения роторов не увеличивалось до частоты индуцированного стартера.

 Простой индукционный генератор для использования дома и на предприятии

Принцип работы генератора

Пришло время рассмотреть устройство генератора перемененного тока и принцип его действия. Он заключается в том, что в электроустановке используют специальную систему, которая при функционировании производит магнитный поток большой мощности.

За основу взято два сердечника, изготовленных из электротехнической стали. Пазы одного сердечника предполагают размещение обмотки, которая отвечает за генерацию потока магнитных волн. Второй же используется для индукции электродвижущей силы.

Обычно сердечник, который расположен внутри, находится в горизонтальном или вертикальном положении и вращается по соответствующим орбитам. Его называют ротором. Второй же сердечник, называемый статором, как понятно из его названия, остается в неподвижном состоянии. Чем меньшее расстояние будет между этими элементами, тем больше вырастет индуктивность магнитного потока. Далее рассмотрены назначение устройства и работа генератора переменного тока.

 Рассмотрение строения электрогенератора на практике

Назначение генератора переменного тока

Переменные генераторы тока применяют уже достаточно давно. За последние годы сфера применения стала еще более обширной. Используются такие приборы не только в промышленных, но и в бытовых целях. Производственные электроустановки представляют собой самый выгодный вариант для генерации электроэнергии, используемой на заводах и предприятиях, учебных учреждениях, торговых центрах и т. д. Также такие генераторы позволяют значительно ускорить строительство того или иного сооружения в тех местах, где нет возможности провести линию электропередачи.

В быту такие устройства также применяются. Они обладают более компактными размерными характеристиками и универсальностью. Часто их используют для питания частных домов, дачных участков или коттеджей.

Обратите внимание! Бытовые и производственные генераторы перемененного тока пользуются популярностью практически во всех сфера жизни человека. Особенно они полезны там, где постоянно возникают перебои с подачей электроэнергии или ее нет вообще.

 Возбуждение генератора переменного тока

Как устроен генератор переменного тока

Устройство генератора крайне простое. Он состоит из двух основных частей: подвижной (ротор или индуктор) и неподвижной (статор или якорь). В ГПТ ротором выступает электрический магнит, создающий магнитное поле, которое и принимает статор. Поверхность якоря обладает впадинами, которые называются пазами. В них виднеется обмотка катушки, выступающей в роли проводника.

Обратите внимание! Обычно якорь изготавливают их спрессованных листов стали толщиной не более 0,3 мм. Их изоляционный слой представляет собой простое лаковое покрытие.

Ротор устанавливают внутри статора. Его вращение осуществляется с помощью двигателя, мощность которого передается через обычный вал и некоторые опорные элементы. На валу также имеется возбудитель с постоянным значением электротока, питающий им обмотки катушки. Также среди компонентов имеется аккумуляторная батарея, которая инициализирует запуск стартера и может подавать электричество, если его не хватает для запуска двигателя, его работы.

Важно! Основное различие между однофазным и трехфазным генераторами электрического тока заключается в том, какое максимальное напряжение выдается прибором. В первом случае это 220 В, а во втором — и 220, и 380 В.

 Устройство установки

Виды генераторов переменного тока

Есть несколько типов классификации генераторов. Наиболее распространенный — по мощности. Они бывают маломощными и высокомощными. Для решения бытовых задач применяются компактная и маломощная электроустановки, которые обычно используется в качестве резервного источника питания.

В последнее время популярность обрели сварочные генераторы. С бензиновыми моделями следует быть осторожным, так как они должны использоваться только по своему прямому назначению. В противном случае их срок эксплуатации истечет намного раньше положенного. Диагностика и ремонт таких приборов — достаточно дорогостоящие, и чаще проще купить новый аппарат.

Еще одно разделение — асинхронные и синхронные генераторы. Они отличаются конструкцией ротора. В синхронном приборе катушка находится на роторе, а в асинхронном на валу есть специальные углубления, которые предназначены для вставки обмотки. Подробнее о них далее.

 Маломощный генератор

Асинхронные генераторы

Асинхронные двигатели — это приборы, которые работают в тормозящем режиме. В данной ситуации ротор выполняет вращения только в одном направлении, совпадающем с движением магнитного поля, но немного опережает его.

Обратите внимание! Такие установки практически не подвержены коротким замыканиям и обладают повышенной защитой от воздействия внешних факторов.

 Асинхронный генератор

Синхронные генераторы

Синхронный двигатель — это электромеханизм, который работает в режиме генерации электрической энергии. Его особенность в том, что частота вращения стартера, а точнее его магнитного поля, равна частоте вращения ротора.

К сведению! Синхронные обладают роторами, которые выполнены в виде постоянных или электрических магнитах. Полюсов у них может быть и 2, и 4, и 6. Главное, чтобы это число было кратным двум.

 Синхронный генератор

Какой ток вырабатывает генератор

Характеристика тока, который вырабатывается генератором, зависит от его конструкции. Как уже стало понятно, и переменный генератор, и постоянный генератор содержат в своей конструкции электрический или постоянный магнит, создающий поток магнитного поля. В обоих случаях можно найти обмотку из медного проводника. Она вращается и, занимая различные положения в поле магнита, создает наведенную ЭДС.

Если представить, что обмотка разделена на две одинаковые части, то они поочередно будут занимать то горизонтальное, то вертикальное положение. ЭДС будет сначала максимальной, а затем нулевой. Это и будет генерация переменного тока.

Обратите внимание! Если в процессе полуоборота каким-либо образом переключить потребитель энергии, то он будет получать уже постоянный, но пульсирующий ток. В этом и отличие.

 Характеристика переменного и постоянного электрических токов

Схема генератора переменного тока

Принципы работы генератора переменного и постоянного токов уже понятны, как и его основные конструкционные элементы. Необходимо рассмотреть пару схем для обобщения материала и понимания процесса генерации электротока.

 Схема обычного устройства генерации электротока

Таким образом, были рассмотрены генератор переменного тока, устройство и принцип его действия.

 Принципиальная схема электрического генерирующего устройства

Строение этого аппарата практически не поменялось с момента его создания еще в 1800-х гг. Данное электрооборудование служит для выработки тока, который применяется для бытовых или производственных целей.

Генератор переменного тока: устройство, принцип работы, назначение

Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угодно, и даже большие разрушения при неумелом использовании.

Но было время, когда электрические эффекты все так же присутствовали в природе, но никак не помогали человеку. Что же изменилось с тех пор? Люди стали изучать физические явления и придумали интересные машины – преобразователи, которые, в общем, и сделали революционный скачок нашей цивилизации, позволив человеку получать одну энергию из другой.

Так люди научились вырабатывать электричество из обычного металла, магнитов и механического движения – только и всего. Были построены генераторы, способные выдавать колоссальные по мощности потоки энергии, исчисляемые мегаваттами. Но интересно, что принцип действия этих машин не так уж сложен и вполне может быть понятен даже подростку. Что же такое генератор электрического тока? Попробуем разобраться в этом вопросе.

генератор переменного тока устройство [

Эффект электромагнитной индукции

Основой появления в проводнике электрического тока является электродвижущая сила — ЭДС. Она способна заставить перемещаться заряженные частицы, которых много в любом металле. Эта сила появляется только в случае, если проводник испытывает на себе изменение интенсивности магнитного поля. Сам эффект получил название электромагнитной индукции. ЭДС тем больше, чем больше скорость изменения потока магнитных волн. То есть, можно возле постоянного магнита перемещать проводник, или на неподвижный провод влиять полем электромагнита, меняя его силу, эффект будет один и тот же – в проводнике появится электрический ток.

Над этим вопросом в первой половине XIX века работали ученые Эрстед и Фарадей. Они же и открыли это физическое явление. В последствии на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины легко могут быть преобразованы друг в друга.

Как работают генераторы постоянного и переменного тока

Понятно, что генератор электрического тока – это электромеханическая машина, вырабатывающая ток. Но на самом деле она есть преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, которая уже вызывает ток в проводнике. Устройство любого генератора принципиально ничем не отличается от замкнутого проводящего контура, который вращается между полюсами магнита, как в первых опытах ученых. Только намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами. Замкнутый контур имеет вид многовитковой обмотки, которых в современном генераторе не одна, а минимум три. Все это сделано для того, чтобы получить как можно большую ЭДС.

Стандартный электрический генератор переменного тока (или постоянного) состоит из:

  • Корпуса. Выполняет функцию рамы, внутри которой крепят статор с полюсами электромагнита. В нем установлены подшипники качения роторного вала. Его изготавливают из металла, он также защищает всю внутреннюю начинку машины.
  • Статора с магнитными полюсами. На нем закреплена обмотка возбуждения магнитного потока. Его выполняют из ферромагнитной стали.
  • Ротора или якоря. Это подвижная часть генератора, вал которой приводит во вращательное движение посторонняя сила. На сердечнике якоря располагают обмотку самовозбуждения, где и образуется электрический ток.
  • Узла коммутации. Этот элемент конструкции служит для отведения электричества с подвижного вала ротора. Он включает в себя проводящие кольца, которые подвижно соединены с графитовыми токосъемными контактами.

принцип работы генератора переменного тока

Создание постоянного тока

В генераторе, продуцирующем постоянный ток, проводящий контур вращается в пространстве магнитной насыщенности. Причем за определенный момент вращения каждая половина контура оказывается вблизи того или иного полюсника. Заряд в проводнике за этот полуоборот движется в одном направлении.

Чтобы получить съем частиц, сделан механизм отвода энергии. Его особенность в том, что каждая половина обмотки (рамки) соединена с токопроводящим полукольцом. Полукольца между собой не замкнуты, а закреплены на диэлектрическом материале. За период, когда одна часть обмотки начинает проходить определенный полюс, полукольцо замыкается в электрическую схему щеточными контактными группами. Получается, на каждую клемму приходит только одного вида потенциал.

Правильнее назвать энергию не постоянной, а пульсирующей, с неизменной полярностью. Пульсация вызвана тем, что магнитный поток на проводник при вращении оказывает как максимальное, так и минимальное влияние. Чтобы эту пульсацию выровнять, применяют несколько обмоток на роторе и мощные конденсаторы на входе схемы. Для уменьшения потерь магнитного потока зазор между якорем и статором делают минимальным.

генератор 220 в

Схема генератора переменного тока

Когда происходит вращение подвижной части генерирующего ток устройства, в проводниках рамки также наводится ЭДС, как и в генераторе постоянного тока. Но небольшая особенность – генератор переменного тока устройство коллекторного узла имеет другое. В нем каждый вывод соединен со своим токопроводящим кольцом.

Принцип работы генератора переменного тока следующий: когда половина обмотки проходит возле одного полюса (другая, соответственно, возле противоположного полюса), в цепи движется ток в одном направлении от минимума к наивысшему своему значению и снова к нулю. Как только обмотки меняют свое положение относительно полюсов, ток начинает свое движение в обратном направлении с той же закономерностью.

При этом на входе схемы получается форма сигнала в виде синусоиды с частотой полуволн, соответствующей периоду вращения вала ротора. Для того, чтобы получить на выходе стабильный сигнал, где частота генератора переменного тока постоянна, период вращения механической части должен быть неизменным.

электрический генератор переменного тока

Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.

Генераторы МГД имеют более простое конструктивное решение – в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.

Генератор синхронный переменного тока

Существуют такие типы генераторов переменного тока:

  • Машины синхронные.
  • Машины асинхронные.

Синхронный генератор переменного тока имеет строгую физическую зависимость между вращательным движением ротора и генерируемой частотой электричества. В таких системах ротор – это электромагнит, собранный из сердечников, полюсов и возбуждающих обмоток. Последние запитываются от источника постоянного тока посредством щеток и кольцевых контактов. Статор же представляет собой катушки провода, соединенные между собой по принципу звезды с общей точкой – нолем. В них уже наводится ЭДС и вырабатывается ток.

Вал ротора приводится в движение посторонней силой, обычно турбинами, частота движения которых синхронизирована и постоянна. Электрическая цепь, подключаемая к такому генератору, представляет собой трехфазную схему, частота тока в отдельной линии которой смещена на фазу в 120 градусов относительно других линий. Чтобы получить правильную синусоиду, направление магнитного потока в просвете между статорной и роторной частью регулируют конструкцией последних.

Возбуждение генератора переменного тока реализуют двумя методами:

  1. Контактным.
  2. Бесконтактным.

В схеме контактного возбуждения на обмотки электромагнита через щеточную пару подают электроэнергию с другого генератора. Этот генератор может быть совмещен с валом основного. Он, как правило, имеет меньшую мощность, но достаточную, чтобы создать сильное магнитное поле.

Бесконтактный принцип предусматривает, что синхронный генератор переменного тока на валу имеет дополнительные трехфазные обмотки, в которых при вращении наводится ЭДС и вырабатывается электричество. Оно через выпрямляющую схему поступает на катушки возбуждения ротора. Конструктивно в такой системе отсутствуют подвижные контакты, что упрощает систему, делая ее более надежной.

синхронный генератор переменного тока

Асинхронный генератор

Существует асинхронный генератор переменного тока. Устройство его отличается от синхронного. В нем нет точной зависимости ЭДС от частоты с которой вал ротора вращается. Присутствует такое понятие как «скольжение S», которое характеризует эту разницу влияния. Величина скольжения определяется вычислением, так что неправильно думать, будто бы нет закономерности электромеханического процесса в асинхронном двигателе.

Если генератор, работающий вхолостую, нагрузить, то протекающий в обмотках ток будет создавать магнитный поток, препятствующий вращению ротора с заданной частотой. Так образуется скольжение, что, естественно, влияет на выработку ЭДС.

Современный асинхронный генератор переменного тока устройство подвижной части имеет в трех разных исполнениях:

  1. Полый ротор.
  2. Короткозамкнутый ротор.
  3. Фазный ротор.

Такие машины могут иметь само- и независимое возбуждение. Первая схема реализуется за счет включения в обмотку конденсаторов и полупроводниковых преобразователей. Возбуждение независимого типа создается дополнительным источником переменного тока.

Схемы включения генераторов

Все мощные источники питания линий электропередач вырабатывают трехфазный электрический ток. Они содержат в себе три обмотки, в которых образуются переменные токи со смещенной друг от друга фазой на 1/3 периода. Если рассматривать каждую отдельную обмотку такого источника питания, то получим однофазный переменный ток, идущий в линию. Напряжение в десятки тысяч вольт может вырабатывать генератор. 220 В потребитель получает с распределительного трансформатора.

Любой генератор переменного тока устройство обмоток имеет стандартное, но подключение к нагрузке бывает двух типов:

  • звездой;
  • треугольником.

Принцип работы генератора переменного тока, включенного звездой, предполагает объединение всех проводов (нулевых) в один, которые идут от нагрузки обратно к генератору. Это обусловлено тем, что сигнал (электрический ток) передается в основном через выходящий провод обмотки (линейный), который и называют фазой. На практике это очень удобно, ведь не нужно тянуть три дополнительных провода для подключения потребителя. Напряжение между линейными проводами и линейным и нулевым проводом будут отличаться.

Соединяя треугольником обмотки генератора, их замыкают друг с другом последовательно в один контур. Из точек их соединения выводят линии к потребителю. Тогда вообще не нужен нулевой провод, а напряжение на каждой линии будет одинаковым независимо от нагрузки.

Преимуществом трехфазного тока перед однофазным является его меньшая пульсация при выпрямлении. Это положительно сказывается на питаемых приборах, особенно двигателях постоянного напряжения. Также трехфазный ток создает вращающийся поток магнитного поля, который способен приводить в движение мощные асинхронные двигатели.

частота генератора переменного тока

Где применимы генераторы постоянного и переменного тока

Генераторы постоянного тока значительно меньше по размерам и массе, чем машины переменного напряжения. Имея более сложное конструктивное исполнение чем последние, они все же нашли применение во многих отраслях промышленности.

Основное распространение они получили в качестве высокооборотных приводов в машинах, где требуется регулирование частоты вращения, например, в металлообрабатывающих механизмах, подъемниках шахт, прокатных станах. В транспорте такие генераторы установлены на тепловозах, различных судах. Множество моделей ветрогенераторов собраны на базе источников постоянного напряжения.

Генераторы постоянного тока специального назначения применяют в сварке, для возбуждения обмоток генераторов синхронного типа, в качестве усилителей постоянного тока, для питания гальванических и электролизных установок.

Назначение генератора переменного тока — вырабатывать электроэнергию в промышленных масштабах. Такой вид энергии подарил человечеству Никола Тесла. Почему именно изменяющий полярность ток, а не постоянный нашел широкое применение? Это связано с тем, что при передаче постоянного напряжения идут большие потери в проводах. И чем длиннее провод, тем потери выше. Переменное напряжение можно транспортировать на огромные расстояния при гораздо меньших затратах. Причем легко можно преобразовывать переменное напряжение (понижая и повышая его), который выработал генератор 220 В.

 схема генератора переменного тока

Заключение

Человек до конца не познал природу магнетизма, который пронизывает все вокруг. И электрическая энергия – это лишь малая часть открытых тайн мироздания. Машины, которые мы называем генераторами энергии, по сути очень просты, но то, что они могут нам дать, просто поражает воображение. Все же настоящее чудо здесь не в технике, а в мысли человека, которая смогла проникнуть в неисчерпаемый резервуар идей, разлитых в пространстве!

Устройство генератора переменного тока — принцип работы и общее назначение

Генератор переменного тока

Конструктивно, электрогенератор состоит из:

  1. Токопроводящей рамки.
  2. Магнитов.

Работает он следующим образом:

  1. Токопроводящая рамка помещается в магнитное поле, созданное между полюсами магнитов. Ее концы снабжают контактными кольцами, которые также способны вращаться.
  2. С помощью упругих токопроводящих пластинок (щеток), кольца соединяют с электрической лампочкой.
  3. Рамка, вращаясь в магнитном поле, постоянно пересекает своими сторонами магнитные силовые линии.
  4. Пересечение рамкой магнитных силовых линий вызывает возникновение ЭДС и получение индукционного тока.
  5. Под действием полученного индукционного тока, лампочка начинает светиться. Свечение лампочки продолжается до тех пор, пока вращается рамка.

Один полный оборот рамки внутри магнитного поля приводит к тому, что возникающая ЭДС, дважды меняет свое направление, причем ее величина дважды увеличивается до максимального значения (проводники проходили под полюсами магнитов) и дважды была равна нулю (проводники двигались вдоль силовых линий магнитного поля).

Такое изменение ЭДС в процессе непрерывного вращения рамки вызывает в замкнутой электрической цепи постоянно изменяющийся по направлению и величине синусоидальный электрический ток, который в настоящее время называют переменным.

В современной энергетике используются индукционные генераторы переменного тока различного типа. При этом, принцип их действия одинаков и базируется на принципе электромагнитной индукции.

В общем виде, такие устройства представляют собой достаточно сложное изделие, состоящее из медной проволоки, и большого количества изоляционных и конструктивных материалов.

Устройство и принцип работы

Устройство

Любой генератор переменного тока состоит из:

  1. Постоянного тока или электромагнита, который создает магнитное поле. С целью получения мощного магнитного потока, в генераторах устанавливают специальные магнитные системы из двух сердечников, которые изготавливаются из электротехнической стали.
  2. Обмотки, в которой возникает переменная ЭДС. Обмотки, создающие магнитное поле, размещают в специальных пазах одного сердечника, а обмотки, в которых возникает ЭДС – в пазах другого.
  3. Для подвода питающего напряжения и съема полученного переменного тока, используются контактные кольца и щетки. Эти детали изготавливаются из токопроводящих материалов. Сила тока в обмотках электромагнита, создающего магнитное поле значительно меньше той, которую генератор отдает во внешнюю цепь, поэтому генерируемое напряжение удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить маломощное питающее напряжение.

В маломощных устройствах щетки и кольца используются значительно реже, так как в их конструкциях можно использовать вращающиеся постоянные магниты, которым подвод питающего напряжения не нужен.

Как правило:

  1. Внутренний сердечник (ротор) вместе с обмоткой вращается вокруг своей оси.
  2. Внешний сердечник (статор) неподвижен.
  3. Зазор между ротором и статором должен быть минимальным – только тогда мощность потока магнитной индукции максимальна. При этом, магнитное поле создает неподвижный магнит, а обмотки, в которых создается ЭДС, вращаются.

Однако, в больших промышленных генераторах, внешний сердечник, создающий магнитное поле, вращается вокруг внутреннего, а обмотки, в которых индуцируется ЭДС, остаются неподвижными.

Во время работы, в обмотке ротора возникает ЭДС, амплитуда которой пропорциональна количеству витков. Кроме того, она пропорциональна и амплитуде переменного магнитного потока (через виток).

Принцип работы синхронного генератора:

Принцип работы и устройство синхронного генератора

Область применения

Кэмпинг в лесуПовседневную жизнь человеческого общества невозможно представить без переменного тока. Его широкое использование связано с тем, что он обладает огромными преимуществами перед постоянным.

При этом, главным преимуществом является то, что напряжение и силу переменного тока можно легко и практически без потерь преобразовать в достаточно широких пределах.

Особенно, такое преобразование необходимо в случае передачи электроэнергии на большие расстояния. Электроэнергия обладает большими преимуществами перед другими видами энергии.

Ее можно передавать на большие расстояния с малыми потерями и достаточно легко распределять между потребителями. Кроме того, электроэнергия просто превращается в другие виды энергии (световая, тепловая, механическая и пр.).

Именно поэтому, генераторы переменного тока в современных условиях получили очень широкое применение. С их помощью вырабатывается электроэнергия, которая затем используется во всех отраслях промышленности, а также в быту и на всех видах транспорта.

Классификация

Синхронный и асинхронный двигатели

В связи с большим разнообразием генераторов, выпускаемых промышленностью различных стран, была разработана и достаточно обширная система их классификации.

Так, генераторы переменного тока различают по:

  1. Виду.
  2. Конструкции.
  3. Способу возбуждения.
  4. Количеству фаз.
  5. Соединению фазных обмоток.

Электрогенераторы переменного тока бывают:

  1. Асинхронными. Изделия, в которых на вращающемся валу имеются пазы, предназначенные для размещения обмоток. Они генерируют электрический ток с небольшими искажениями, величина которого не превышает номинального значения. Изделия этого типа используются для электропитания бытовой техники.
  2. Синхронными. Изделия, в которых катушки индуктивности размещены непосредственно на роторе. Они способны выдавать ток, который обладает высокой пусковой мощностью.

Генератор с неподвижным ротором

Конструктивно различают генераторы:

  1. С неподвижным ротором.
  2. С неподвижным статором

Конструкции с неподвижным статором получили наибольшее распространение благодаря тому, что отпадает необходимость в использовании контактных колец и плавающих щеток.

По способу возбуждения электрогенераторы бывают:

  1. С независимым возбуждением (питающее напряжение подается на обмотку возбуждения от отдельного источника постоянного тока).
  2. С самовозбуждением (обмотки возбуждения питаются выпрямленным (постоянным) током, получаемым от самого генератора).
  3. С обмотками возбуждения, питание которых осуществляется от стороннего генератора постоянного тока малой мощности, “сидящего” на одном валу с ним.
  4. С возбуждением от постоянного магнита.

По количеству фаз различают электрогенераторы:

  1. Однофазные.
  2. Двухфазные.
  3. Трехфазные.

Наибольшее распространение получили трехфазные генераторы.

Это связано с наличием некоторых преимуществ, среди которых нужно отметить возможность беспроблемного получения:

  1. Вращающегося кругового магнитного поля, что способствует экономичности их изготовления.
  2. Уравновешенной системы, что существенно повышает срок службы энергоустановок.
  3. Одновременно двух рабочих напряжений (фазного и линейного) в одной системе.
  4. Высоких экономических показателей – значительно уменьшается материалоемкость силовых кабелей и трансформаторов, а также упрощается процесс передачи электроэнергии на большие расстояния.

Трехфазные генераторы отличаются электрическими схемами соединения фазных обмоток.

Бывает, что фазные обмотки соединяются:

  1. “Звездой”.
  2. “Треугольником”.

Описание схем

Для получения связанной трехфазной системы, обмотки электрогенератора нужно соединить между собой одним из двух способов:

“Звезда”

Схема "звезда без нулевого провода" .

Соединение “звездой” предусматривает электрическое соединение концов всех обмоток в одной точке. Точка соединения называется “нулем”. При таком соединении нагрузка к генератору может быть подключена 3 или 4 проводами.

Провода, идущие от начала обмоток называются линейными, а провод, идущий от нулевой точки – нулевым. Напряжение между линейными проводами называют линейным.

Линейное напряжение больше фазного в 1,73 раза.

Напряжение между нулевым и любым из линейных проводов называется фазным. Фазные напряжения равны между собой и сдвинуты друг относительно друга на угол, который равен 120 градусов.

Особенностью схемы является также равенство линейных и фазных токов.

Наиболее распространена 4 проводная схема – соединение “звездой” с нейтральным проводом. Она позволяет избежать перекоса фаз в случае подключения несимметричной нагрузки, например, на одной фазе – включена активная нагрузка, а на другой – емкостная или реактивная. При этом, обеспечивается сохранность включенных электроприборов.

“Треугольник”

Схема соединения треугольником

Соединение “треугольником” – это последовательное соединение обмоток трехфазного генератора: конец первой обмотки соединяется с началом второй, ее конец – с началом третьей, а конец последней – с началом первой.

В этом случае, линейные провода отводятся от точек соединения обмоток. При этом, линейное напряжение равно фазному, а величина линейного тока в 1,73 раза больше фазного.

Все упомянутые зависимости справедливы только при равномерной нагрузке фаз. При неравномерной нагрузке фаз, их необходимо пересчитывать аналитическими или графическими методами.

Практическое применение

Генератор переменного токаИндукционные генераторы находят свое применение практически во всех областях жизнедеятельности человеческого общества.

Причем в любом случае, для получения переменного тока используется энергия вращения вала генератора.

Это касается:

  1. Крупных гидро-, тепло-, и атомных электростанций.
  2. Промышленных электрогенераторов.
  3. Бытовых электрогенераторов.

Генераторы, устанавливаемые на электростанциях, вырабатывают большое количество электроэнергии, которая затем передается на огромные расстояния.

Они разрабатываются под конкретные, узкоспециализированные задачи и представляют собой сложнейшие устройства, для установки которых необходимо строить отдельные здания и сооружения. Кроме того, их работа обеспечивается специально организованной инфраструктурой.

Промышленные генераторы используются для обеспечения электроэнергией объектов, в работе которых не должно быть перебоев с подачей напряжения.

Кроме того, их используют для обеспечения электроэнергией строительных площадок, вахтовых поселков, удаленных ферм и буровых установок, находящихся в местах, где подводка стационарных линий электропередач невозможна или экономически нецелесообразна.

Как правило, для работы они используют дизельное топливо, вырабатывая при этом переменный ток большой мощности (220 или 380 В). Используются для этого синхронные генераторы, которые способны обеспечить работу промышленного оборудования большой мощности.

В дизельных установках, вал генератора вращается с помощью двигателя внутреннего сгорания (ДВС).

Электрогенератор на шасси

Все комплектующие изделия, входящие в состав промышленного генератора, монтируются на высокопрочных стальных шасси, которое при необходимости устанавливается:

  1. Теплоизолированным контейнером.
  2. Передвижным шасси (колесное, на полозьях).

Бытовые электрогенераторы приобрели большую популярность сравнительно недавно.

Они используются для электрификации небольших коттеджей, загородных домов и дач, а также помогают решить ряд проблем, связанных с некорректной работой централизованной электросети и часто применяются в качестве аварийных источников переменного тока на ранее электрифицированных объектах подобного типа.

В устройствах этого типа для вращения вала генератора используют как бензиновые, так и дизельные ДВС. Они вырабатывают переменный ток небольшой мощности (от 0,5 до 15 кВт) и отличаются:

  1. Экономичностью.
  2. Небольшими размерами.
  3. Низким уровнем шума.

При выборе бытового генератора переменного тока, потенциальному потребителю необходимо обращать внимание на:

  1. Тип ДВС (бензиновый или дизельный).
  2. Заявленную в сопроводительной документации мощность.
  3. Тип генератора (синхронный или асинхронный).
  4. Фазность.
  5. Блок управления.
  6. Уровень шума.

Как работает генератор переменного тока?

Генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается и тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки {рисунок справа). Электроны {голубые шарики) перемещаются по направлению к положительному полюсу магнита, а электрический ток течет от положительного полюса к отрицательному. До тех пор, пока силовые линии магнитного поля пересекают катушку (проводник), в проводнике индуцируется электрический ток.

Аналогичный принцип работает и при перемещении проволочной рамки относительно магнита {дальний рисунок справа), т. е. когда рамка пересекает силовые линии магнитного поля. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Принцип действия генератора переменного тока

Простейший генератор переменного тока состоит из проволочной рамки, вращающейся между полюсами неподвижного магнита. Каждый конец рамки соединен со своим контактным кольцом, скользящим по электропроводной угольной щетке (рисунок над текстом). Индуцированный электрический ток течет к внутреннему контактному кольцу, когда соединенная с ним половина рамки проходит мимо северного полюса магнита, и, наоборот, к внешнему контактному кольцу, когда мимо северного полюса проходит другая половина рамки.

Трехфазный генератор переменного тока

Одним из наиболее экономически выгодных способов выработки сильного переменного тока является использование одного магнита, вращающегося относительно нескольких обмоток. В типичном трехфазном генераторе три катушки расположены равноудалено от оси магнита. Каждая катушка вырабатывает переменный ток, когда мимо нее проходит полюс магнита (правый рисунок).

Изменение направления электрического тока

Когда магнит вдвигается в проволочную катушку, он индуцирует в ней электрический ток. Этот ток заставляет стрелку гальванометра отклоняться в сторону от нулевого положения. Когда магнит вынимается из катушки, электрический ток изменяет свое направление на противоположное, и стрелка гальванометра отклоняется в другую сторону от нулевого положения.

Переменный ток

Магнит не будет индуцировать электрический ток до тех пор, пока его силовые линии не начнут пересекать проволочную петлю. Когда полюс магнита вдвигается в проволочную петлю, в ней индуцируется электрический ток. Если магнит прекращает движение, электрический ток (голубые стрелки) также прекращается (средняя диаграмма). Когда магнит вынимается из проволочной петли, в ней индуцируется электрический ток, текущий в противоположном направлении.

КАК РАБОТАЕТ ГЕНЕРАТОР?

Ключевым компонентом системы зарядки автомобиля, который обеспечивает ток
для зарядки аккумулятора и вырабатывает электричество для питания всех других электрических компонентов
при работающем двигателе, является генератор переменного тока. Другой компонент системы зарядки
— регулятор напряжения. Основная функция генератора
состоит в том, чтобы вырабатывать электричество, необходимое для запуска и запуска автомобиля
, в то время как регулятор предназначен для управления величиной напряжения
, которое циркулирует в системе.Это обсуждение будет полностью сосредоточено на генераторе
, в частности, на принципе работы, по которому он работает
и его основных компонентах. Генератор (Рис. 1) состоит из узла ротора, узла
статора и выпрямителя, установленного в корпусе.
Рис. 1. Детали генератора.

Корпус генератора переменного тока. Корпус обычно состоит из двух частей из литого под давлением алюминия марки
. Алюминий используется, потому что это немагнитный, легкий материал
, который обеспечивает хорошее рассеивание тепла.В переднем и заднем корпусе установлены подшипники, поддерживающие ротор
в сборе. Передний подшипник
обычно запрессован в передний корпус или на вал ротора. Обычно это шарикоподшипник
с заводской смазкой. Задний подшипник обычно устанавливается с легкой запрессовкой
в задний корпус.

Сборка статора. Статор зажат между передним и задним корпусом
. Несколько стальных штамповок склепаны вместе, чтобы сформировать его каркас.
Три обмотки вокруг рамы статора расположены слоями в каждом из
пазов рамы.На другом конце они подключены к ректификационному узлу
.

Ротор в сборе. Узел ротора состоит из вала ротора, обмотки
вокруг железного сердечника, двух полюсных наконечников и контактных колец. Ротор вдавливается
в сердечник. Шестипалые, податливые железные полюсные наконечники прижимаются к валу
к каждому концу сердечника обмотки. Они размещены так, чтобы
пальца сцепились, но не соприкасались. Когда через обмотку катушки возбуждения
пропускается постоянный ток, пальцы становятся попеременно северным и южным полюсами.Узел токосъемного кольца
прижимается к заднему концу вала ротора, а узел
соединяется с двумя концами обмотки возбуждения.

Две щетки удерживаются против контактных колец пружинами, обычно установленными в пластмассовых держателях
, которые поддерживают щетки и предотвращают прилипание щеток.
Каждая щетка подключается к цепи гибким медным проводом. Щетки
устанавливаются на контактных кольцах и подключаются через переключатель к батарее
. Когда переключатель замкнут, ток от аккумулятора проходит через
одну щетку, через контактное кольцо, а затем через обмотку возбуждения.После того, как
покидает обмотку возбуждения, ток течет через другое контактное кольцо и щетку
, прежде чем вернуться в батарею по пути возврата заземления. Поток
электрической энергии через обмотку возбуждения, называемый током возбуждения, создает магнитное поле
для ротора.

Выпрямитель в сборе. Выпрямительный блок состоит из шести диодов
, установленных либо в задней части корпуса, либо в отдельном небольшом корпусе, который называется мостом выпрямителя
. Три диода соединены с землей, а три
установлены в изоляторе.Поскольку монтажный узел отводит тепло, вызванное работой диода
, его часто называют радиатором.

Узел вентилятора и шкива либо прижимается к валу ротора, либо удерживается гайкой
. Шкив приводит в движение ротор через ремень привода вспомогательных агрегатов двигателя.
Вентилятор за шкивом генератора втягивает воздух через вентиляционные отверстия в задней части генератора
для охлаждения диодов.

.

Генератор, принцип работы, симптомы, тестирование, проблемы, замена

Обновлено: 20 марта 2016 г.

Генератор переменного тока — это генератор электроэнергии в автомобиле, который является основным компонентом системы зарядки автомобиля. Все автомобили с двигателем внутреннего сгорания, кроме некоторых гибридов, имеют генератор переменного тока. Когда двигатель работает, генератор заряжает аккумулятор и подает дополнительную электроэнергию в электрические системы автомобиля.

Генератор закреплен на двигателе болтами и приводится в движение змеевиком (приводным ремнем).

Генератор не требует обслуживания. В некоторых автомобилях он может прослужить до 10-15 лет без ремонта. Если генератор выходит из строя, автомобиль может еще некоторое время работать от аккумулятора. Однако двигатель заглохнет, как только разрядится аккумулятор. Замена генератора на новый OEM-компонент стоит дорого, но есть альтернативы.
Подробнее читайте ниже.

Признаки неисправности генератора

Наиболее частым признаком проблемы с системой зарядки вашего автомобиля является сигнальная лампа в виде аккумулятора (на фото) или значок «ЗАРЯДКА», который загорается во время движения.Обычно эта сигнальная лампа должна загораться при включении зажигания, но гаснет при запуске двигателя. Если он остается включенным, проблема в вашей системе зарядки.

Battery warning light

Предупреждающий световой сигнал в виде батареи
указывает на проблему с системой зарядки

Сигнальная лампа системы зарядки не указывает напрямую на неисправный генератор, хотя проблемы с генератором очень распространены.Вашему механику необходимо будет провести дополнительные испытания, чтобы определить неисправную деталь.

Еще одним признаком слабой системы зарядки является то, что приборная панель и фары тускнеют на холостом ходу, но становятся ярче, когда двигатель работает. Эта проблема может быть вызвана не только слабым генератором, но и неисправной батареей, плохим контактом на клеммах батареи или ослабленным змеевиком.
Пение / жужжание, исходящее от генератора переменного тока, является еще одним признаком неисправности генератора. В некоторых автомобилях это может быть вызвано шумом в подшипнике генератора.В некоторых автомобилях Jeep / Chrysler неисправный шкив развязки генератора может вызывать такой же шум.

Реклама — Продолжить чтение ниже

Как проверяется генератор

Charging system and battery tester

Компьютеризированный тестер аккумуляторных батарей и систем зарядки

Ваш механик может проверить состояние вашей системы зарядки с помощью тестера аккумулятора и системы зарядки (на фото). Тест аккумулятора и системы зарядки (тест AVR) может стоить от 30 до 50 долларов.Тест может показать, слабая ли система зарядки или совсем не работает. Он также может определить, вышел ли из строя один из диодов внутри генератора.

Если система зарядки не прошла проверку, вашему механику потребуется провести дополнительную диагностику, чтобы определить, не является ли причиной проблемы генератор переменного тока или что-то еще. Другие проблемы системы зарядки включают ослабление приводного ремня, неисправную проводку или перегоревший предохранитель, неисправный переключатель зажигания и т. Д. Читайте также: Как проверить предохранитель в автомобиле.

Checking the alternator output voltage

Проверка выходного напряжения генератора с помощью мультиметра

Если тестер системы зарядки недоступен, механик может провести простую проверку напряжения.Тест включает проверку напряжения аккумуляторной батареи при выключенном и работающем двигателе. Напряжение аккумуляторной батареи должно увеличиваться после запуска двигателя, поскольку генератор выдает дополнительную мощность (см. Фото). Если напряжение аккумуляторной батареи не увеличивается после запуска двигателя, проблема в системе зарядки.

Замена генератора и восстановление

Car alternator

Новый генератор

Замена генератора с запасной частью стоит от 350 до 520 долларов.Генераторы OEM от дилера дороже. Другой альтернативой является ремонт вашего генератора. Это работает так, что ваш механик может снять генератор и отправить его в ближайшую мастерскую по ремонту генератора / стартера.

Как только генератор будет восстановлен, ваш механик установит его обратно. Это может занять больше времени, но, как правило, дешевле, поскольку вы оплачиваете только стоимость удаления и установки (70–120 долларов США) плюс стоимость восстановления (80–150 долларов США). Восстановить генератор в домашних условиях сложно и занимает много времени, но возможно.Комплекты для восстановления генератора доступны в Интернете по цене от 15 до 50 долларов.

При каждой замене генератора рекомендуется также заменить змеевик. Это не очень дорого, и, заменив его вместе с генератором, вы можете сэкономить на рабочей силе, так как змеевиковый ремень необходимо снять для замены генератора. Подробнее про змеиный пояс.

Как продлить срок службы генератора

Часто генератор выходит из строя преждевременно, когда защитный кожух двигателя или щиток повреждены или отсутствуют.Это происходит потому, что брызги воды с дороги попадают внутрь генератора и вызывают его более быстрый износ. Если нижний щиток двигателя поврежден, замените его, чтобы моторный отсек оставался чистым и сухим.
Утечка охлаждающей жидкости или масла также может повредить генератор. Точно так же, если вам нужно мыть шампунь моторный отсек, генератор необходимо защитить от воды и моющих средств.

Как работает генератор, общие проблемы

Alternator cutaway

Генератор в разрезе.Изображение предоставлено Robert Bosch GmbH

Типичный автомобильный генератор переменного тока имеет две обмотки: статор (неподвижная внешняя обмотка) и ротор (вращающаяся внутренняя обмотка). Напряжение, подаваемое через регулятор напряжения на обмотку ротора, возбуждает ротор и превращает его в магнит. Ротор приводится в движение двигателем через приводной ремень.

Магнитное поле, создаваемое вращающимся ротором, индуцирует электрический ток переменного тока в неподвижной обмотке статора.Диоды используются для преобразования переменного тока в постоянный, используемый в электрической системе автомобиля. Выходное напряжение регулируется регулятором напряжения (фото ниже). Обычно в генератор встроен регулятор напряжения.

Alternator voltage regulator

Регулятор напряжения. Изображение предоставлено Robert Bosch GmbH

Наиболее частые проблемы генератора включают изношенные угольные щетки (две «ножки» на этой фотографии), изношенные контактные кольца (два медных цилиндра на задней части ротора на изображении в разрезе) и неисправный регулятор напряжения.
Неисправные внешний и внутренний подшипники генератора (большой и маленький серебряные цилиндры на изображении выше в разрезе) могут издавать воющий шум.
Когда генератор перестраивается, подшипники, регулятор напряжения, щетки и некоторые другие детали обычно заменяются новыми.

.

Что такое автомобильный генератор переменного тока и как он работает?

ПРЕДУПРЕЖДАЮЩАЯ ЛАМПА

Это возвращает нас к исходной точке — контрольной лампе генератора. Как видно из рисунка 5, схемы реального генератора переменного тока, существует путь к земле от входа источника тока возбуждения [1] до регулятора. В результате, когда ключ включен, ток течет через контрольную лампу, через резисторы, транзисторы и катушку возбуждения, а затем на землю, в результате чего лампа загорается.Как только генератор перейдет на полную мощность, напряжение от трио диодов, также приложенное к [1], будет равно напряжению батареи. В это время по 12 вольт с обеих сторон лампа погасла.

Если генератор выйдет из строя, напряжение на тройке диодов упадет, и лампа снова загорится от напряжения батареи. Если мощность генератора немного низкая, лампа будет тускло гореть. Если генератор выйдет из строя полностью и выходное напряжение упадет до нуля, лампа будет гореть с полной яркостью.И наоборот, если батарея выйдет из строя, и напряжение батареи упадет, с выходным напряжением генератора с одной стороны и низким напряжением батареи с другой, лампа также загорится.

Как указывалось ранее, если свет становится тусклее при увеличении частоты вращения двигателя, это связано с тем, что напряжение генератора переменного тока растет вместе с числом оборотов в минуту, создавая большее напряжение на стороне генератора переменного тока лампы. Чем ближе выходное напряжение к напряжению аккумулятора, тем ярче становится лампа. Точно так же, если свет становится ярче с увеличением числа оборотов, это связано с тем, что по мере увеличения напряжения генератора оно становится выше, чем напряжение аккумулятора.Чем выше напряжение по отношению к напряжению батареи, тем больше разница напряжений на лампе и тем ярче она становится.

СУММИРОВАНИЕ

Таким образом, можно сказать, что ток поля через катушки ротора создает магнитное поле, которое передается катушкам статора, создавая переменное напряжение. Это переменное напряжение преобразуется выходными диодами в пульсирующее постоянное напряжение, которое заряжает аккумулятор.

Ток возбуждения подается либо от аккумулятора, через контрольную лампу, либо от трио диодов.Величина тока возбуждения, пропускаемая через регулятор к ротору или катушке возбуждения, контролируется обратной связью по напряжению от батареи.

Вот и все — вкратце — полная работа генератора переменного тока. В следующий раз, когда вы увидите маленький красный огонек, вы точно будете знать, что он пытается вам сказать.

.

Компоненты генератора | HowStuffWorks

По большей части генераторы относительно небольшие и легкие. Генераторы, которые используются в большинстве легковых и легких грузовиков, размером примерно с кокосовый орех, имеют алюминиевый внешний корпус, так как легкий металл не намагничивается. Это важно, поскольку алюминий рассеивает огромное количество тепла, выделяемого при выработке электроэнергии, и поскольку узел ротора создает магнитное поле.

Если вы внимательно осмотрите генератор, вы обнаружите, что у него есть вентиляционные отверстия как на передней, так и на задней стороне. Опять же, это помогает рассеивать тепло. Ведущий шкив прикреплен к валу ротора в передней части генератора. Когда двигатель работает, коленчатый вал вращает приводной ремень, который, в свою очередь, раскручивает шкив на валу ротора. По сути, генератор преобразует механическую энергию двигателя в электрическую энергию для аксессуаров автомобиля.

Объявление

На задней стороне генератора вы найдете несколько клемм (или точек подключения в электрической цепи).Давайте посмотрим на те:

  • Клемма S — Измеряет напряжение аккумуляторной батареи
  • Клемма IG — Выключатель зажигания, который включает регулятор напряжения
  • Клемма L — Замыкает цепь на контрольную лампу
  • Клемма B — Выходная клемма главного генератора (подключен к аккумулятору)
  • Клемма F — Байпас полного поля для регулятора

Охлаждение важно для эффективности генератора.Старое устройство легко обнаружить по лопастям внешнего вентилятора, расположенным на валу ротора за шкивом. Современные генераторы имеют охлаждающих вентиляторов внутри алюминиевого корпуса. Эти вентиляторы работают одинаково, используя механическую энергию от вала вращающегося ротора.

Когда мы начинаем разбирать генератор, находим диодный выпрямитель (или выпрямительный мост ) , регулятор напряжения , контактные кольца и щетки .Регулятор распределяет мощность, создаваемую генератором, и регулирует подачу мощности на аккумулятор. Выпрямительный мост преобразует мощность, как мы узнаем в следующем разделе, в то время как щетки и контактные кольца помогают проводить ток в обмотке возбуждения ротора или проводном поле. Теперь давайте раскроем кокос.

Открыв генератор, вы обнаружите большой цилиндр с треугольными полюсами по окружности. Это ротор. Базовый генератор переменного тока состоит из ряда чередующихся пальцевых полюсных наконечников, размещенных вокруг проводов катушки, называемых обмотками возбуждения , которые наматываются на железный сердечник на валу ротора.Поскольку мы знаем, что шкив прикреплен к валу, теперь мы можем визуализировать, как ротор вращается внутри статора. Узел ротора помещается внутри статора с достаточным пространством или допуском между ними, поэтому ротор может вращаться на высоких скоростях, не ударяясь о стенку статора. На каждом конце вала расположены щетка и контактное кольцо.

Как мы вкратце коснулись, генераторы вырабатывают энергию за счет магнетизма. Треугольные полюса пальцев, закрепленные по окружности ротора, расположены в шахматном порядке, поэтому северный и южный полюса чередуются, поскольку они окружают проволочные обмотки возбуждения ротора.Этот переменный рисунок создает магнитное поле, которое, в свою очередь, индуцирует напряжение в статоре. Думайте о статоре как о перчатке ловца, поскольку он использует всю мощность, создаваемую вращающимся ротором.

Все эти компоненты работают вместе, чтобы дать нам мощность, необходимую для работы наших транспортных средств. Тесла улавливал эту электрическую энергию и использовал ее для освещения городов, но нам нужно достаточно вольт только для питания нашей стереосистемы, фонарей, окон и замков. Давайте посмотрим, как генератор вырабатывает эту мощность в следующем разделе.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *