Кавитационный теплогенератор: устройство, принцип работы, виды
Для отопления помещений или нагрева жидкостей зачастую применяются классические приспособления – тэны, камеры сгорания, нити накаливания и т.д. Но наряду с ними применяются устройства с принципиально иным типом воздействия на теплоноситель. К таким устройствам относится кавитационный теплогенератор, работа которого заключается в формировании пузырьков газа, за счет которых и возникает выделение тепла.
Устройство и принцип работы
Принцип действия кавитационного теплогенератора заключается в эффекте нагрева за счет преобразования механической энергии в тепловую. Теперь более детально рассмотрим само кавитационное явление. При создании избыточного давления в жидкости возникают завихрения, из-за того, что давление жидкости больше чем у содержащегося в ней газа, молекулы газа выделяются в отдельные включения – схлопывание пузырьков. За счет разности давления вода стремиться сжать газовый пузырь, что аккумулирует на его поверхности большое количество энергии, а температура внутри достигает порядка 1000 — 1200ºС.
При переходе кавитационных полостей в зону нормального давления пузырьки разрушаются, и энергия от их разрушения выделяется в окружающее пространство. За счет чего происходит выделение тепловой энергии, а жидкость нагревается от вихревого потока. На этом принципе основана работа тепловых генераторов, далее рассмотрите принцип работы простейшего варианта кавитационного обогревателя.
Простейшая модель
Рис. 1: Принцип работы кавитационного теплогенератора
Посмотрите на рисунок 1, здесь представлено устройство простейшего кавитационного теплогенератора, который заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.
Идеальный теплогенератор Потапова
Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:
Рис. 2: кавитационный теплогенератор Потапова
Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.
Виды
Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:
- Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
- Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
- Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.
Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.
Роторный теплогенератор
Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.
Рис. 3: конструкция генератора роторного типа
Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.
Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:
Рис. 4: дисковый теплогенератор
Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.
Трубчатые
Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.
В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.
Ультразвуковые
Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.
Рис. 5: принцип работы ультразвукового теплогенератора
Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.
Применение
В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:
- Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
- Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
- Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.
Плюсы и минусы
В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.
К плюсам таких устройств следует отнести:
- Куда более эффективный механизм получения тепловой энергии;
- Расходует значительно меньше ресурсов, чем топливные генераторы;
- Может применяться для обогрева как маломощных, так и крупных потребителей;
- Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.
К недостаткам кавитационных теплогенераторов следует отнести:
- Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
- Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
- Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).\
КТГ своими руками
Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:
- Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
- 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
- Термометр для измерения величины нагрева теплоносителя в системе.
- Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
- Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
- Трубы и соединительные элементы (радиаторы отопления при их отсутствии ) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
- Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.
Рис. 6: схема кавитационного теплогенератора
Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.
Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.
Список использованной литературы
- Акуличев В. А. «Кавитация в криогенных и кипящих жидкостях» 1978
- Корнфельд М. «Упругость и прочность жидкостей» 1951
- Федоткин И. М., Гулый И. С. «Кавитация, кавитационная техника и технология, их использование в промышленности» 1997
вихревой своими руками, чертежи и устройство, схемы Потапова, система отопления
Кавитационный теплогенератор отличается хорошей эффективностью и компактностьюРедко какой хозяин не пытается сэкономить на отоплении или потреблении еще каких-либо благ, которые с каждым годом становятся все дороже и дороже. Чтобы сделать экономной отопительную систему жилого или производственного помещения, многие люди прибегают к помощи различных схем и методам получения тепловой энергии. Один из аппаратов, подходящий под эти цели – кавитационный теплогенератор.
Что такое вихревой теплогенератор
Кавитационный вихревой генератор тепла – это простое устройство, способное эффективно обогреть помещение, затрачивая при этом минимум средств. Это происходит благодаря нагреву воды при кавитации – образовании небольших паровых пузырьков в местах снижения давления жидкости, которое возникает либо при работе насоса, либо при звуковых колебаниях.
Кавитационный нагреватель способен преобразовать механическую энергию в тепловую, что активно применяется в промышленности, где нагревающие элементы могут выйти из строя, работая с жидкостью, имеющей большую температурную разность. Такой кавитатор является альтернативой для систем, работающих на твердом топливе.
Преимущества вихревых кавитационных нагревателей:
- Экономичность системы отопления;
- Высокая эффективность обогрева;
- Доступность;
- Возможность собрать своими руками.
Вихревой теплогенератор не следует располагать рядом с жилым помещением в связи с его высоким уровнем шума
Недостатки аппарата:
- При самостоятельной сборке довольно сложно найти материалы для создания аппарата;
- Слишком большая мощность для небольшого помещения;
- Шумная работа;
- Немалые габариты.
Стандартное устройство теплогенератора и принцип его работы
Процесс кавитации выражается в образовании пузырьков пара в жидкости, впоследствии чего давление медленно понижается при большой скорости потока.
Из-за чего может происходить парообразование:
- Возникновением акустики, вызванной звуком;
- Излучением лазерного импульса.
Закрытые воздушные области перемешиваются с водой и уходят в место с большим давлением, где хлопаются с излучением ударной волны.
Принцип работы кавитационного аппарата:
- Струя воды движется через кавитатор, где насос создает водяное давление, попадающее в рабочую камеру;
- В камерах жидкость увеличивает скорость и давление с помощью различных трубочек разных размеров;
- В центре камеры потоки смешиваются, и появляется кавитация;
- При этом полости пара остаются маленькими и не взаимодействуют с электродами;
- Жидкость движется к противоположному концу камеры, откуда возвращается назад для следующего использования;
- Нагрев происходит благодаря движению и расширению воды на выходе из сопла.
Так работает вихревой кавитационный нагреватель. Его устройство простое, но позволяет быстро и эффективно обогреть помещение.
Кавитационный нагреватель и его типы
Нагреватель, работающий с кавитацией, может быть нескольких типов. Чтобы понять, какой генератор вам нужен, следует разобраться в его типажах.
Кавитационный нагреватель следует время от времени осматривать на наличие изношенных деталей
Виды кавитационного нагревателя:
- Роторный – самый популярный из них это аппарат Григгса, работающий с помощью центробежного насоса ротационного действия. Внешне он выглядит как диск с отверстиями без выхода. Одно такое отверстие носит название: ячейка Григгса. Параметры этих ячеек и их число зависят от типа генератора и частоты вращения привода. Нагрев воды происходит между статором и ротором посредством быстрого ее движения по поверхности диска.
- Статический – он не имеет никаких вращающихся элементов, а кавитацию создают специальные сопла (элементы Лаваля). Насос нагнетает давление воды, что проводит к ее быстрому движению и нагреву. Выходные отверстия сопел более узкие, чем предыдущие и жидкость начинает двигаться еще быстрее. Из-за быстрого расширения воды и получается кавитация, дающая в итоге тепло.
Если выбирать между этими двумя видами, то следует учитывать, что производительность роторного кавитатора более высокая и он не такой габаритный, как статический.
Правда, статический нагреватель меньше изнашивается из-за отсутствия вращающихся элементов. Использовать аппарат можно до 5 лет, а если выйдет из строя сопло – его с легкостью можно заменить, затрачивая на это куда меньше средств, чем на теплогенератор в роторном кавитаторе.
Экономный кавитационный теплогенератор своими руками
Создать самодельный вихревой генератор с кавитацией вполне реально, если внимательно изучить чертежи и схемы устройства, а также понимать его принцип работы. Самым простым для самостоятельного создания считается ВТГ Потапова с КПД 93%, схема которого подойдет как для домашнего, так и для промышленного использования.
Перед тем, как приступить к сборке прибора, следует правильно выбрать насос, ориентируясь по его типу, мощности, нужной тепловой энергии и величине напора.
В основном все кавитационные генераторы имеют формы сопла, которая считается самой простой и удобной для таких устройств.
Что нужно для создания кавитатора:
- Манометры для измерения давления;
- Термометр для замера температуры;
- Выходные и входные патрубки с краниками;
- Вентили для удаления воздушных пробок из отопительной системы;
- Гильзы для термометров.
Также нужно проследить за размером сечения отверстия между диффузором и конфузором. Оно должно быть примерно 8 – 15 см, не уже и не шире.
Схема создания кавитационного генератора:
- Выбор насоса – здесь следует определиться с нужными параметрами. Насос обязательно должен иметь возможность работать с жидкостями высоких температур, иначе он быстро сломается. Также он должен уметь создавать рабочее давление в минимум 4 атмосферы.
- Создание камеры кавитации – тут главное правильно выбрать размер сечения проходного канала. Оптимальным вариантом считается 8-15 мм.
- Выбор конфигурации сопла – оно может быть в виде конуса, цилиндра или просто быть закругленным. Впрочем, не так важна форма, как то, чтобы вихревой процесс начинался уже при входе воды в сопло.
- Изготовление водного контура – внешне это такая изогнутая трубка, ведущая от камеры кавитации. К ней присоединяются две гильзы с термометром, два манометра, воздушный вентиль, который ставится между входом и выходом.
Корпус кавитационного теплогенератора можно покрасить в любой цвет
После создания корпуса следует провести испытание теплогенератора. Для этого насос следует подключить к электроэнергии, а радиаторы к отопительной системе. Далее происходит включение в сеть.
Особенно стоит смотреть на показания манометров и выставить нужную разницу между входом и выходом жидкости в пределах 8-12 атмосфер.
Далее в систему пускается вода. Если она нагревается за 10 минут на 3-5 градусов в минуту – это хорошо. За непродолжительное время жидкость прогреется до 60 градусов. Этого вполне достаточно для работы.
Теплогенератор своими руками (видео)
Кавитационный нагреватель достаточно интересный и экономный способ обогреть помещение. Он легко доступен и при желании может создаваться самостоятельно. Для этого нужно докупить необходимые материалы и сделать все в соответствии со схемами. И эффективность аппарата не заставит себя долго ждать.
Добавить комментарий
теплогенератор своими руками, конструкция генератора тепла, теплоэлектрогенератор и котел
Чертежи кавитаторов можно легко найти в интернете и распечатать с помощью принтера Централизованное отопление постепенно вытесняется индивидуальным оборудованием. Это объясняется и высокой стоимостью коммунальных услуг, и тем, что не во всех частных домах есть центральные линии подачи ресурсов. Поэтому предприимчивые люди изобретают все больше различных приспособлений для обогрева дома. Одним из таких устройств является кавитационный теплоэлектрогенератор. Это новое оборудование, чертежи которого совсем недавно стали доступны для общего пользования.
Как работает кавитационный генератор тепла
Кавитация – это образование пузырьков в воде, которое появляется при медленном снижении давления и высокой скорости потока. Данные пузырьки появляются при прохождении лазерного импульса или ударной волны. Перемещаясь с водяным потоком, кавитационные пузырьки схлопываются с ударной волной.
Данный процесс очень похож на процесс закипания воды. Однако в чайнике пузырьки с паром и вода имеют практически одинаковое давление, а при кавитации давление в воде больше чем в пузырьках.
В кавитационные пузырьки из воды просачивается газ. Он разогревается до температуры 1200 градусов. Частицы агрессивного кислорода, возникающие в процессе, могут разрушить не только обычный металл, но даже золото и серебро.
В 2013 году данный процесс нашел применение в создании теплогенераторов. На этот проект было выделено большое количество средств, и он себя оправдал.
Как работает теплогениратор такого типа:
- Пузырьки образуются под действием переменного тока электричества;
- Такие паровые пузырьки имеют маленький размер, и не взаимодействуют с электродами;
- Они вскрываются в водяной толще и образуют тепловую энергию.
Кавитационный генератор тепла следует регулярно осматривать на наличие изношенных деталей
Вот так, несложно происходит процесс образования тепловой энергии кавитационным способом. Он используется для отопления домов и уже начинает набирать популярность среди простых обычвателей.
Виды кавитационных котлов отопления
Создание кавитаторов – это достаточно сложный процесс. Он может происходить по нескольким путям. От способа образования кавитации теплогенераторы делятся на виды.
Виды кавитационных теплоэлектрогенераторов:
- Генератор тепла роторного типа очень похож по принципу действия на центробежный насос. Здесь корпус насоса является статором, в который установлена труба. Там же находится камера с ротором крутящимся, как колесо. Ротор напоминает диск и имеет массу отверстий, количество которых связано с его мощностью. Этот диск помещен в запаянный с двух сторон корпус насоса. Благодаря отверстиям в роутере и его быстрому вращению и создаются кавитационные пузырьки. Конструкция таких устройств не идеальна, они имеют низкий КПД и маленький срок службы.
- Статические теплогенераторы не имеют вращательных деталей. Для воссоздания кавитации применяются сопла. Здесь насос центробежного типа подает поток воды в сопло, он проходит через несколько элементов и выходит через последний, с самым узким отверстием. Выйдя из узкого отверстия, вода быстро расширяется, и образуются кавитационные пузырьки с газом внутри. Благодаря этому вода нагревается. Эта модель имеет более длительный срок службы, чем роторный теплогениратор, но при этом обладает еще более низким КПД.
Оба варианта кавитационных котлов несовершенны. Они имею низкую эффективность и недолгий срок службы. Однако сама идея подобного котла очень интересна. Возможно, ее скоро доработают, и она начнет распространяться в массах.
Котел отопления подобного вида работает с использованием такого топлива, как электричество. Однако он использует немного энергии, а потому его разработки достаточно перспективны.
Устройство теплогенираторов достаточно сложное. Однако имея математический склад ума и хорошие чертежи, вы сможете создать его своими руками.
Преимущества и недостатки сделанных своими руками тепогенираторов
У кавитаторов есть свои преимущества и недостатки. Пока, последних больше. Однако сейчас наука работает над тем, чтобы ели не склонить устройство в положительную сторону, то хотя бы сравнять счеты.
Очень перспективной является кавитаторная конструкция Краснова. По его теории тепло можно получать добавив на литр воды пару капель отработанного масла. За счет этого вода начинает отлично гореть и выделять кавитационные пузырьки.
Итак, мы предлагаем вам рассмотреть вначале преимущества кавитаторов. Их не так много, но зато звучат они многообещающе.
Преимущества кавитаторных теплогенераторов:
- Энергия при кавитации действительно образуются;
- Данное устройство очень экономно, так как практически не требует топлива;
- Недорог в изготовлении своими руками.
Это, пожалуй, пока все преимущества данного устройства. При этом он еще и имеет отрицательные стороны.
Чтобы правильно сделать тепогенератор, нужно иметь соответствующую квалификацию и использовать чертежи
Недостатки кавитационного теплоэлектрогениратора:
- При кавитации теплогениратор очень шумит;
- Материалы для изготовления такого устройство достаточно сложно отыскать;
- Он использует большие показатели мощности, для любого помещения;
- Очень габаритен и занимает много места;
- Выглядит неэстетично;
- Имеет низкий КПД.
Из-за своих недостатков кавитаторы еще не нашли свое широкое применение в сфере обогрева дома. Их используют лишь те, кому интересен сам принцип такой добычи тепла. Однако и они жалуются на склонность к поломкам такого устройства.
Кавитаторы: инструкция по изготовлению
Если вы решили сделать самостоятельно кавитационный насос, то, прежде всего, вам потребуется чертеж. С подобными работами сможет справиться лишь профессионал, поэтому хорошенько подумайте, сможете ли вы воплотить свою идею в жизнь.
Изготовление кавитатора своими руками:
- Для начала, вам нужно определиться с насосом. При его выборе нужно учитывать то, что он должен выдерживать высокие температуры. Также обратите внимание на давление создаваемое насосом. Вам нужен показатель от 4 до 12.
- Теперь вам нужно сделать в корпусе приспособление сходное по строению соплу Лаваля. При этом, чем уже будет проходной канал этой конструкции, тем лучше будет нагреваться вода.
- Также нужно сделать водяной контур. Он должен начинаться там, где выходит разогретая после кавитации вода, а затем снова подавать жидкость в прибор. Протяженность такого контура будет зависеть от вашего желания. Также контур нужно снабдить вентилем для сбора воздуха, двумя гильзами, двумя манометрами и термометром. Вода будет поступать против часовой стрелки. Для создания контура берется труба с диаметром пятьдесят миллиметров, между входом и выходом ставится вентиль.
После того, как вы сделаете контур нужно его протестировать. И если все в порядке его можно использовать. Данное описание создания кавитатора очень приблизительно. Оно рассказывает о проведении подобной работы лишь в общих чертах. Поэтому к нему нужен обязательно грамотно составленный чертеж.
Кавитатор топлива своими руками (видео)
Чертеж кавитатора достаточно сложен. Однако если вы любитель создавать подобные самоделки, то разобраться в нем вы сможете, в этом вам поможет наше описание. Однако помните, что подобное устройство – скорее эксперимент, нежели полноценный способ обогрева дома.
Добавить комментарий
Кавитационный теплогенератор: как сделать своими руками
Кавитационный теплогенератор пользуется популярностью в качестве экономичного отопительного оборудования. Кавитация – специфический эффект с образованием микропузырьков пара в зонах локального снижения давления рабочей жидкости. Процесс предусматривает воздействие насосного агрегата или звуковых колебаний.
Конструктивные особенности и принцип работы
На основе кавитационного теплогенератора механическая энергия движения воды (рабочей жидкости) преобразуется в тепло, которое используется для обогрева помещений любого назначения. Кавитация подразумевает образование пузырьков в жидкости, в результате разрушения которых вырабатывается тепловая энергия.
Принцип работы кавитатора:
- рабочий поток перемещается по устройству, в котором обеспечивается давление при помощи насоса;
- далее с повышением скорости происходит локальное снижение давления субстанции;
- в жидкости образуются свободные места, заполняемые пузырьками.
Впоследствии в центре камеры потоки перемешиваются, и происходит процесс кавитации: пузырьки схлопываются, в результате механическая энергия преобразуется в тепловой потенциал. Это объясняется тем, что при формировании вихревого потока кавитационные разрывы приводят к нагреву жидкой среды.
Возможности применения
Приборы кавитационного действия востребованы в различных отраслях, при этом в основном их применяют в качестве альтернативного вида отопительных установок для дома. Также оборудование находит применение и в других сферах:
- обогрев и очистка воды в бассейнах;
- очистка отложений внутри теплообменников;
- в промышленности.
В последнем случае, к примеру, при изготовлении бетона с высокими эксплуатационными характеристиками.
Отопление
Кавитационный прибор способствует преобразованию механической энергии перемещающейся воды в тепловой потенциал, который направляется на обогрев различных по назначению и масштабу зданий, включая частные домовладения и промышленные комплексы.
Кавитационный теплогенератор может быть использован при отоплении
Автономное нагревание воды для бытовых нужд
Генератор кавитационного тепла способен в полной мере обеспечить хозяйство горячей водой, которая подается в кухню, санузел, баню. Также оборудование находит применение при подготовке воды в бассейнах, прачечных и саунах, используется в автономном водопроводе.
Применение кавитации тепла в производстве
Приборы актуальны при необходимости качественного смешивания субстанций с разными параметрами плотности и применяются в лабораториях, производственных цехах и других объектах промышленности.
Разновидности
Кавитационные устройства делятся на следующие виды:
- роторные – вихревой кавитационный теплогенератор предусматривает видоизмененный центробежный насос, корпус которого представляет собой статор с входящей и выходящей трубой. Основной рабочий орган прибора – камера с подвижным ротором, который вращается по типу колеса;
- статические – в приборе отсутствуют вращающиеся детали, для кавитации применяют конструкцию из сопел с мощным центробежным насосом;
- трубчатые – в конструкции предусмотрены продольно расположенные трубки. КПД трубчатых теплогенераторов кавитации отличается высокими показателями;
- ультразвуковые – эффект кавитации обеспечивается при помощи ультразвуковых волн.
Кавитационный теплогенератор вихревой
КПД ультразвукового оборудования невероятно высок.
Принцип работы роторных генераторов
Пожалуй, к самым продуктивным моделям относится конструкция Григгса, в которой ротор в форме диска располагает поверхностью с многочисленными глухими отверстиями определенного диаметра и глубины. Статор представлен в виде цилиндра с запаянными концами, в котором вращается ротор. Между роторным диском и стенками статора есть зазор величиной около 1,5 мм. В ячейках устройства обеспечивается возникновение завихрений для образования кавитационных полостей. Количество ячеек определяется частотой вращения ротора.
Как отмечают специалисты, для эффективности работы прибора применяется ротор с поперечным размером от 30 см со скоростью вращения 3 000 оборотов/мин. При меньшем диаметре требуется увеличить параметры оборотов.
Особенности роторных теплогенераторов кавитационного действия:
- присутствует значительный уровень шума;
- КПД устройства не впечатляет;
- непродолжительный срок службы;
- показатели производительности на 25% выше, чем у статических моделей.
При эксплуатации роторной установки требуется отработка четкого действия всех элементов, в том числе и балансировка цилиндра. Также необходимо своевременно менять исчерпавшие свой потенциал изоляционные материалы для уплотнения вала.
Принцип работы статического теплогенератора
Кавитация предполагает высокую скорость перемещения рабочей жидкости при помощи мощного мотора центробежного типа. Так как dвыхода сопла значительно меньше, чем параметры противоположного конца, увеличивается скорость перемещения субстанции, и возникают кавитационные эффекты.
Статические кавитаторные приборы располагают массой преимуществ:
- не требуется балансировка и точная подгонка деталей;
- уплотнители изнашиваются меньше, чем в роторной модели, так как здесь отсутствуют подвижные детали;
- продолжительность срока службы статического кавитатора около 5 лет, что значительно больше, чем у предыдущего варианта прибора.
При необходимости производится замена сопла, для чего понадобится относительно небольшой расход времени и сил, тогда как в случае с роторным прибором придется воссоздать его заново, если оборудование выйдет из строя.
Трубчатые тепловые генераторы: устройство и принцип работы
В этой модели кавитационное тепло вырабатывается благодаря продольному расположению трубок:
- помпа способствует нагнетанию давления во входящую камеру, и рабочая субстанция направляется через трубки. При этом на входе образуются пузырьки;
- при попадании во вторую камеру, где установлено высокое давление, пузырьки разрушаются, в процессе образуется тепловой потенциал.
Трубчатый тепловой генератор
Выработанная таким способом энергия направляется вместе с паром на отопление дома. Как утверждают производители трубчатых теплогенераторов кавитации, как и специалисты в сфере климатического оборудования, эта модель отличается высокими показателями КПД.
Особенности ультразвуковых генераторов кавитационного действия
В установке создаются ультразвуковые волны, благодаря которым образуется кавитационное тепло. Для этого применяется кварцевая пластина, на ее основе под воздействием электрического тока создаются звуковые колебания. Они направляются на вход, впоследствии чего образуется вибрация. На обратной фазе звуковых волн возникают участки разряжения и наблюдается эффект кавитации. Принцип работы ультразвукового кавитатора предполагает минимальные потери энергии и практическое отсутствие трения. Всем этим обуславливается исключительно высокий КПД ультразвукового оборудования.
Плюсы и минусы
Основным достоинством кавитационного теплогенератора считается экономичность работы отопительного устройства. Также среди плюсов отмечают следующие факторы:
- высокий уровень производительности прибора;
- возможность самостоятельного изготовления и монтажа;
- оборудование можно установить без разрешительных документов.
Среди недостатков выделяют:
- необходимо обустроить отдельное помещение под котельную;
- достаточно высокий уровень шума при работе прибора.
Нельзя забывать, что оборудование занимает много места.
Критерии выбора
При выборе устройства кавитации учитывают следующие моменты:
- Важно подобрать конструкцию в соответствии с условиями эксплуатации. Следует учесть масштабы отапливаемого пространства, возможности теплоизоляции помещений, климатические особенности местности в межсезонье и зимой.
- Стоит решить вопросы комплектации при приобретении стандартного оборудования. В этом случае, желательно, чтобы изделие было укомплектовано датчиками защиты и приборами контроля тепла. Оптимальный вариант – приобретение техники с автоматическим блоком контроля и управления, также стоит заказать услугу «монтаж под ключ».
- В случае приобретения оборудования по отдельным элементам, необходимо четко знать все особенности каждого компонента системы.
Если планируется самостоятельное изготовление, важно тщательно изучить схемы и вооружиться рекомендациями специалистов, далее приступают к выбору модели.
Популярные модели
Отечественными производителями предлагаются модели кавитаторов гидроударного и электрогидроударного типа. Линейка включает в себя агрегаты небольшой мощности.
ВТГ-2.2
Оборудование представляет собой прибор малой мощности, который подходит для отопления сооружения объемом до 90 м³. Стоимость продукции варьируется в пределах 32-35 т. р.
ВГТ-30
Агрегат средней мощности, разработан для обогрева зданий объемом до 1400 м³. Требуется комплектация в виде шкафа управления. Цена изделия – около 150 000 р.
ИТПО
Продукция ижевских производителей, как заявляют поставщики кавитаторов, располагает КПД до 150%. Несмотря на высокий диапазон стоимости, модель привлекает внимание широкой аудитории потребителей.
Как изготовить кавитационные теплогенераторы своими руками?
Оборудование представляет собой простое устройство, что позволяет при необходимости самостоятельно изготовить конструкцию.
Необходимые инструменты и материалы:
- манометры – для контроля давления на входе/выходе;
- термометры – для измерения температуры рабочей жидкости при входе/выходе;
- гильзы под термометры.
Также нужны патрубки с кранами – входные и для выхода.
Особенности выбора насоса
Параметры насоса должны соответствовать специфическим требованиям. Так, нужен агрегат с возможностью работы с высокотемпературными субстанциями. Также учитывается способность прибора создавать необходимое рабочее давление – при входе жидкости достаточно давления в 4 атмосферы, для увеличения скорости нагрева требуется показатель до 12 атмосфер.
Изготовление кавитационной камеры
В самодельных приборах кавитации чаще всего предусматривается вариант в виде сопла Лаваля. Выбирая размер сечения проходного канала, стоит учитывать, что требуется обеспечение максимального перепада давления рабочей субстанции. Для этого подбирают модель наименьшего диаметра, в результате получается достаточно активный процесс кавитации. Приемлемым считается d9-16 мм, при меньшем сечении уменьшается интенсивность водного потока, что приводит к смешиванию жидкости с холодными массами. Применение сопла с маленьким отверстием также чревато следующими последствиями:
- увеличивается число воздушных пузырьков. В результате наблюдается усиление шума при работе оборудования;
- есть риск образования пузырьков уже в камере насоса, что может стать причиной его быстрого выхода из строя.
В зависимости от параметров установки выбирают сопла цилиндрической формы, закругленного или конусного профиля. Главное – необходимо обеспечить образование вихревого процесса уже на начальном этапе входа рабочей субстанции в сопло.
Особенности изготовления водяного контура
При самостоятельном конструировании прибора предварительно выполняют схему: определяют протяженность контура, уточняют особенности модели и переносят все это мелом на пол.
Конструкция представляет собой изогнутую трубу, которая присоединяется к выходу камеры, далее рабочая среда снова подается на вход.Субстанцияв контур поступает по направлению против часовой стрелки. Контур снабжается двумя манометрами и парой гильз с термометрами. Модель дополняет вентиль для сбора воздуха. Для регулирования давления вентиль устанавливается между входом и выходом.
Испытание генератора
После установки оборудования и подключения радиаторов к системе отопления насосное устройство включают в сеть и запускают двигатель. При исправной работе конструкции подается необходимое количество воды. Показание манометров давления жидкой среды регулируют при помощи вентиля, учитывая, что требуется разница в диапазоне 8-12 атмосфер. После пуска рабочей жидкости наблюдают параметры температуры: корректным считается нагревание 3-5°C/10 минут. С учетом, что система и насос запитаны 15 л воды, за небольшой отрезок времени нагрев достигнет 60°C. Это хороший результат для эффективной работы отопительного оборудования.
Отопительное оборудование кавитационного типа – экономичный прибор, который способен обогреть помещение за короткий промежуток времени. Производители предлагают различные модели устройства, при необходимости несложно изготовить конструкции самостоятельно с учетом особенностей обустраиваемой площади.
Вихревой теплогенератор своими руками, принцип работы, втг, Потапова
Содержание статьи:
Принцип действия
Так выглядит рабочий генератор Потапова — поток воды из патрубка очень горячий
Традиционно считалось, что кавитация — это паразитное явление, характеризующееся интенсивным образованием пузырьков, которые, во время схлопывания, провоцируют разрушение окружающих предметов.
Характерный пример последствий кавитации — разрушение корабельных винтов или разрушение крыльчатки лопастных насосов. Теплогенератор вихревого типа — это прибор, в котором паразитное явление приносит пользу.
На фото еще один теплогенератор Потапова, в ходе испытательных работ подключённый к отопительному радиатору
Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.
Несмотря на то, что кавитация — это паразитное явление, конструкционные элементы современных теплогенераторов, в отличии от тех же корабельных винтов, не страдают. Это объясняется тем, что кавитационные процессы протекают не вокруг дискового активатора, а за ним.
Принцип действия кавитационного преобразователя
Иллюстрация | Описание процесса |
|
Устройство и особенности функционирования
Так выглядит стационарная кавитационная установка, подключённая к промышленной системе отопления
Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».
«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.
Дисковый активатор, одетый на вал — это приспособление отвечает за движение водной среды и за создание кавитационного эффекта
В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:
- Электродвигатель крутит дисковый активатор. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
- Активатор раскручивает жидкую среду. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
- Преобразование механической энергии в тепловую. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.
Ссылки Править
- Андрей Буторин — «Осада рая»
- Андрей Буторин — «Дочь небесного духа»
- . metro2033.ru (20 января 2013). Проверено 23 февраля 2013.
п • о • р | Трилогия «Полуостров надежды» |
Книги | «Север» • «Осада рая» • «Дочь небесного духа»«Полуостров надежды» (сборник) |
Персонажи | Нанас • Надежда Будина • Сейд • Семён Будин • Светлана Будина • Снежка • Силадан • Ародан • Сергей Никошин • Роман Андреевич • Юлия, Людмила и Анна • Серсош • Никигор • Веха • Виктор Сафонов • Игнат Сафонов • Олег Ярчук • Сергей Сошин • Виталий Киркин • Андрей Далистянц • Константин Парсыкин • Александр Смурнов • Анна Александровна • Сергей Бажов • Александр Сорокин • Гор • Шека • Туру • Светлана Смирнова • Сергей Коновалов • Митрофанов • Игорь Брюханков • Юрий Горшков • Сергей Гришин • Владимир Новосельцев • Стащук • Тюльканов • Рашидов • Виктор Потапов • Андрей Селиванов • Базз • Яндекс |
Локации | Мурманская область: Саамский сыйт • Ловозеро (озеро • село) • Ловозёрские тундры • Сейдозеро • Ревда • Кола • Мурманск • река Тулома • Ура-Губа • Видяево • озеро Имандра • Оленегорск • Мончегорск • комбинат «Североникель» • 27 километр • Африканда • Полярные Зори • Зашеек • Кольская АЭС • Кировск • Апатиты • Кандалакша • Кандалакшский заливКарелия: Кемь • Лоухи • Чупа • Кандалакшский заливФинляндия |
Существа | Разумная собака • Большеногий • Рогатый чешуйчатый заяц • Синеглаз • Гусеница • Белый змей • Медведь • Великая рыба • Червь |
Организации | Саамский сыйт • Оленегорские бандиты • ЮЛА • Полярные Зори • Варвары |
Прочее | Волшебный камень • Дополь • Установка Потапова |
Андрей Буторин • Вселенная Метро 2033 • АСТ • |
История создания
Французские же учёные тогда с недоверием отнеслись к этому изобретению и высмеяли доклад Ж. Ранке, сделанный в 1933 г. на заседании Французского физического общества. Ибо по мнению этих учёных, работа вихревой трубы, в которой происходило разделение подаваемого в неё воздуха на горячий и холодный потоки как фантастическим «демоном Максвелла», противоречила законам термодинамики. Тем не менее вихревая труба работала и позже нашла широкое применение во многих областях техники, в основном для получения холода.
Для нас наиболее интересны работы ленинградца В. Е
Финько, который обратил внимание на ряд парадоксов вихревой трубы, разрабатывая вихревой охладитель газов для получения сверхнизких температур. Он объяснил процесс нагрева газа в пристеночной области вихревой трубы «механизмом волнового расширения и сжатия газа» и обнаружил инфракрасное излучение газа из ее осевой области, имеющее полосовой спектр, что потом помогло нам разобраться и с работой вихревого теплогенератора Потапова
В вихревой трубе Ранке, схема которой приведена на рисунке 1, цилиндрическая труба 1 присоединена одним концом к улитке 2, которая заканчивается сопловым вводом прямоугольного сечения, обеспечивающим подачу сжатого рабочего газа в трубу по касательной к окружности её внутренней поверхности. С другого торца улитка закрыта диафрагмой 3 с отверстием в центре, диаметр которого существенно меньше внутреннего диметра трубы 1. Через это отверстие из трубы 1 выходит холодный поток газа, разделяющийся при его вихревом движении в трубе 1 на холодную (центральную) и горячую (периферийную) части. Горячая часть потока, прилегающая к внутренней поверхности трубы 1, вращаясь, движется к дальнему концу трубы 1 и выходит из нее через кольцевой зазор между её краем и регулировочным конусом 4.
Рисунок 1. Вихревая труба Ранке: 1-труба; 2- улитка; 3- диафрагма с отверстием в центре; 4- регулировочный конус.
Законченной и непротиворечивой теории вихревой трубы до сих пор не существует, несмотря на простоту этого устройства. «На пальцах» получается, что при раскручивании газа в вихревой трубе он под действием центробежных сил сжимается у стенок трубы, в результате чего нагревается тут, как нагревается при сжатии в насосе. А в осевой зоне трубы, наоборот, газ испытывает разрежение, и тут он охлаждается, расширяясь. Выводя газ из пристеночной зоны через одно отверстие, а из осевой — через другое, и достигают разделения исходного потока газа на горячий и холодный потоки.
Жидкости, в отличие от газов, практически не сжимаемы. Поэтому более полувека никому и в голову не приходило подать в вихревую трубу воду вместо газа или пара. И автор решился на, казалось бы, безнадёжный эксперимент — подал в вихревую трубу вместо газа воду из водопровода.
К его удивлению, вода в вихревой трубе разделилась на два потока, имеющих разные температуры. Но не на горячий и холодный, а на горячий и тёплый. Ибо температура «холодного» потока оказалась чуть выше, чем температура исходной воды, подаваемой насосом в вихревую трубу. Тщательная же калориметрия показала, что тепловой энергии такое устройство вырабатывает больше, чем потребляет электрической двигатель насоса, подающего воду в вихревую трубу.
Так родился теплогенератор Потапова.
Схемы изготовления теплогенератора кавитационного типа
Для того чтобы сделать действующий прибор своими руками, рассмотрим чертежи и схемы действующих устройств, эффективность которых установлена и документально зарегистрирована в патентных бюро.
Иллюстрации | Общее описание конструкций кавитационных теплогенераторов |
Общий вид агрегата. На рисунке 1 показана наиболее распространенная схема устройства кавитационного теплогенератора. Цифрой 1 обозначена вихревая форсунка, на которой смонтирована камера закрутки. С боку камеры закрутки можно видеть входной патрубок (3), который присоединён к центробежному насосу (4). Цифрой 6 на схеме обозначены впускные патрубки для создания встречного возмущающего потока. Особо важный элемент на схеме — это резонатор (7) выполненный в виде полой камеры, объем которой изменяется посредством поршня (9). Цифрой 12 и 11 обозначены дроссели, которые обеспечивают контроль интенсивности подачи водных потоков. | |
Прибор с двумя последовательными резонаторами. На рис 2 показан теплогенератор, в котором резонаторы (15 и 16) установлены последовательно. Один из резонаторов (15) выполнен в виде полой камеры, окружающей сопло, обозначенное цифрой 5. Второй резонатор (16) также выполнен в виде полой камеры и расположен с обратного торца устройства в непосредственной близости от входных патрубков (10) подающих возмущающие потоки. Дроссели, помеченные цифрами 17 и 18, отвечают за интенсивность подачи жидкой среды и за режим работы всего устройства. | |
Теплогенератор с встречными резонаторами. На рис. 3 показана малораспространённая, но очень эффективная схема прибора, в котором два резонатора (19, 20) расположены друг напротив друга. В этой схеме вихревая форсунка (1) соплом (5) огибает выходное отверстие резонатора (21). Напротив, резонатора, отмеченного цифрой 19, вы можете видеть входное отверстие (22) резонатора под номером 20. Обратите внимание на то, что выходные отверстия двух резонаторов расположены соосно. . |
Иллюстрации | Описание камеры закрутки (Улитки) в конструкции кавитационного теплогенератора |
«Улитка» кавитационного теплогенератора в поперечном разрезе. На этой схеме можно видеть следующие детали: 1 — корпус, который выполнен полым, и в котором располагаются все принципиально важные элементы; 2 — вал, на котором закреплен роторный диск; 3 — роторное кольцо; 4 — статор; 5 — технологические отверстия проделанная в статоре; 6 — излучатели в виде стержней. Основные трудности при изготовлении перечисленных элементов могут возникнуть при производстве полого корпуса, так как лучше всего его сделать литым. Так как оборудования для литья металла в домашней мастерской нет, такую конструкцию, пусть и с ущербом для прочности, придётся делать сварной. | |
Схема совмещения роторного кольца (3) и статора (4). На схеме показано роторное кольцо и статор в момент совмещения при прокручивании роторного диска. То есть, при каждом совмещении этих элементов мы видим образование эффекта, аналогичного действию трубы Ранка. Такой эффект будет возможен при условии, что в агрегате, собранном по предложенной схеме, все детали будут идеально подогнаны друг к другу . | |
Поворотное смещение роторного кольца и статора. На этой схеме показано то положение конструктивных элементов «улитки», при котором происходит гидравлический удар (схлопывание пузырьков), и жидкая среда нагревается. То есть, за счёт скорости вращения роторного диска, можно задать параметры интенсивности возникновения гидравлических ударов, провоцирующих выброс энергии. Проще говоря, чем быстрее будет раскручиваться диск, тем температура водной среды на выходе будет выше. |
Купить или смастерить
Как видим, цены на теплогенераторы космические. Не каждый может себе позволить такой , поэтому экономы пытаются сделать его своими руками. Покупать или делать самостоятельно напрямую зависит не только от благосостояния семьи, но и от навыков и умений человека. Если же таковых нет, лучше не рисковать и не тратить время зря, ведь конструкция прибора имеет достаточно сложное строение.
Таким образом, кавитационный теплогенератор является отличным вариантом альтернативного источника обогрева для дома. Однако его высокая стоимость делает его недоступным для большинства населения планеты.
Собрать его можно и своими руками, но этот шаг оправдан только в том случае, если имеется специальный навык.
Устройство и назначение Править
Установка Потапова выглядит как большая металлическая клетка, в которой может поместиться пять или шесть человек. Она содержит на своём каркасе разнообразные устройства неизвестного читателю назначения, а также обвита множеством проводов. В клетке установлено несколько кресел. Сама установка располагается на реакторном уровне Кольской АЭС, у паропровода.
Смысл установки Потапова в том, что она под воздействием высокого уровня радиации способна во много раз повышать ментальную (мыслительную) силу человека (оператора установки). Ментальные волны разносятся по округе и проникают в сознание всех людей на большом радиусе, формируя нужные ощущения у этих людей. Таким образом, по желанию операторов установка способна заставить окружающих людей почувствовать, например, страх. Если в зоне действия установки оказываются враги, их таким образом можно заставить убраться прочь от станции.
При проектировании устройства Потапов предусмотрел возможную опасность установки для персонала станции. По этой причине ментальное поле внутри помещений станции не представляет опасности для людей, а по мере удаления от станции его влияние возрастает. Поле действует настолько далеко, насколько хватает мощности излучения, и при сильном удалении от станции поле ослабевает по мере увеличения расстояния между источником и приёмником.
Операторами установки Потапова могут быть не все, а лишь немногие — те, у кого есть определённые способности к передаче мыслей на расстоянии — то есть, экстрасенсы. Как выясняется, роль операторов могут играть и . Недостаток установки в том, что её операторы, длительное время находясь слишком близко к сильным источникам радиации, получают дозу облучения, из-за чег
Обзор кавитационного генератора тепла и его самостоятельное изготовление
Кавитационный теплогенератор пользуется популярностью в качестве экономичного отопительного оборудования. Кавитация – специфический эффект с образованием микропузырьков пара в зонах локального снижения давления рабочей жидкости. Процесс предусматривает воздействие насосного агрегата или звуковых колебаний.
Конструктивные особенности и принцип работы
На основе кавитационного теплогенератора механическая энергия движения воды (рабочей жидкости) преобразуется в тепло, которое используется для обогрева помещений любого назначения. Кавитация подразумевает образование пузырьков в жидкости, в результате разрушения которых вырабатывается тепловая энергия.
Принцип работы кавитатора:
- рабочий поток перемещается по устройству, в котором обеспечивается давление при помощи насоса,
- далее с повышением скорости происходит локальное снижение давления субстанции,
- в жидкости образуются свободные места, заполняемые пузырьками.
Впоследствии в центре камеры потоки перемешиваются, и происходит процесс кавитации: пузырьки схлопываются, в результате механическая энергия преобразуется в тепловой потенциал. Это объясняется тем, что при формировании вихревого потока кавитационные разрывы приводят к нагреву жидкой среды.
Возможности применения
Приборы кавитационного действия востребованы в различных отраслях, при этом в основном их применяют в качестве альтернативного вида отопительных установок для дома. Также оборудование находит применение и в других сферах:
- обогрев и очистка воды в бассейнах,
- очистка отложений внутри теплообменников,
- в промышленности.
В последнем случае, к примеру, при изготовлении бетона с высокими эксплуатационными характеристиками.
Отопление
Кавитационный прибор способствует преобразованию механической энергии перемещающейся воды в тепловой потенциал, который направляется на обогрев различных по назначению и масштабу зданий, включая частные домовладения и промышленные комплексы.
Кавитационный теплогенератор может быть использован при отоплении
Автономное нагревание воды для бытовых нужд
Генератор кавитационного тепла способен в полной мере обеспечить хозяйство горячей водой, которая подается в кухню, санузел, баню. Также оборудование находит применение при подготовке воды в бассейнах, прачечных и саунах, используется в автономном водопроводе.
Применение кавитации тепла в производстве
Приборы актуальны при необходимости качественного смешивания субстанций с разными параметрами плотности и применяются в лабораториях, производственных цехах и других объектах промышленности.
Разновидности
Кавитационные устройства делятся на следующие виды:
- роторные – вихревой кавитационный теплогенератор предусматривает видоизмененный центробежный насос, корпус которого представляет собой статор с входящей и выходящей трубой. Основной рабочий орган прибора – камера с подвижным ротором, который вращается по типу колеса,
- статические – в приборе отсутствуют вращающиеся детали, для кавитации применяют конструкцию из сопел с мощным центробежным насосом,
- трубчатые – в конструкции предусмотрены продольно расположенные трубки. КПД трубчатых теплогенераторов кавитации отличается высокими показателями,
- ультразвуковые – эффект кавитации обеспечивается при помощи ультразвуковых волн.
Кавитационный теплогенератор вихревой
КПД ультразвукового оборудования невероятно высок.
Принцип работы роторных генераторов
Пожалуй, к самым продуктивным моделям относится конструкция Григгса, в которой ротор в форме диска располагает поверхностью с многочисленными глухими отверстиями определенного диаметра и глубины. Статор представлен в виде цилиндра с запаянными концами, в котором вращается ротор. Между роторным диском и стенками статора есть зазор величиной около 1,5 мм. В ячейках устройства обеспечивается возникновение завихрений для образования кавитационных полостей. Количество ячеек определяется частотой вращения ротора.
Как отмечают специалисты, для эффективности работы прибора применяется ротор с поперечным размером от 30 см со скоростью вращения 3 000 оборотов/мин. При меньшем диаметре требуется увеличить параметры оборотов.
Особенности роторных теплогенераторов кавитационного действия:
- присутствует значительный уровень шума,
- КПД устройства не впечатляет,
- непродолжительный срок службы,
- показатели производительности на 25% выше, чем у статических моделей.
При эксплуатации роторной установки требуется отработка четкого действия всех элементов, в том числе и балансировка цилиндра. Также необходимо своевременно менять исчерпавшие свой потенциал изоляционные материалы для уплотнения вала.
Принцип работы статического теплогенератора
Кавитация предполагает высокую скорость перемещения рабочей жидкости при помощи мощного мотора центробежного типа. Так как dвыхода сопла значительно меньше, чем параметры противоположного конца, увеличивается скорость перемещения субстанции, и возникают кавитационные эффекты.
Статические кавитаторные приборы располагают массой преимуществ:
- не требуется балансировка и точная подгонка деталей,
- уплотнители изнашиваются меньше, чем в роторной модели, так как здесь отсутствуют подвижные детали,
- продолжительность срока службы статического кавитатора около 5 лет, что значительно больше, чем у предыдущего варианта прибора.
При необходимости производится замена сопла, для чего понадобится относительно небольшой расход времени и сил, тогда как в случае с роторным прибором придется воссоздать его заново, если оборудование выйдет из строя.
Трубчатые тепловые генераторы: устройство и принцип работы
В этой модели кавитационное тепло вырабатывается благодаря продольному расположению трубок:
- помпа способствует нагнетанию давления во входящую камеру, и рабочая субстанция направляется через трубки. При этом на входе образуются пузырьки,
- при попадании во вторую камеру, где установлено высокое давление, пузырьки разрушаются, в процессе образуется тепловой потенциал.
Трубчатый тепловой генератор
Выработанная таким способом энергия направляется вместе с паром на отопление дома. Как утверждают производители трубчатых теплогенераторов кавитации, как и специалисты в сфере климатического оборудования, эта модель отличается высокими показателями КПД.
Особенности ультразвуковых генераторов кавитационного действия
В установке создаются ультразвуковые волны, благодаря которым образуется кавитационное тепло. Для этого применяется кварцевая пластина, на ее основе под воздействием электрического тока создаются звуковые колебания. Они направляются на вход, впоследствии чего образуется вибрация. На обратной фазе звуковых волн возникают участки разряжения и наблюдается эффект кавитации. Принцип работы ультразвукового кавитатора предполагает минимальные потери энергии и практическое отсутствие трения. Всем этим обуславливается исключительно высокий КПД ультразвукового оборудования.
Плюсы и минусы
Основным достоинством кавитационного теплогенератора считается экономичность работы отопительного устройства. Также среди плюсов отмечают следующие факторы:
- высокий уровень производительности прибора,
- возможность самостоятельного изготовления и монтажа,
- оборудование можно установить без разрешительных документов.
Среди недостатков выделяют:
- необходимо обустроить отдельное помещение под котельную,
- достаточно высокий уровень шума при работе прибора.
Нельзя забывать, что оборудование занимает много места.
Критерии выбора
При выборе устройства кавитации учитывают следующие моменты:
- Важно подобрать конструкцию в соответствии с условиями эксплуатации. Следует учесть масштабы отапливаемого пространства, возможности теплоизоляции помещений, климатические особенности местности в межсезонье и зимой.
- Стоит решить вопросы комплектации при приобретении стандартного оборудования. В этом случае, желательно, чтобы изделие было укомплектовано датчиками защиты и приборами контроля тепла. Оптимальный вариант – приобретение техники с автоматическим блоком контроля и управления, также стоит заказать услугу «монтаж под ключ».
- В случае приобретения оборудования по отдельным элементам, необходимо четко знать все особенности каждого компонента системы.
Если планируется самостоятельное изготовление, важно тщательно изучить схемы и вооружиться рекомендациями специалистов, далее приступают к выбору модели.
Популярные модели
Отечественными производителями предлагаются модели кавитаторов гидроударного и электрогидроударного типа. Линейка включает в себя агрегаты небольшой мощности.
ВТГ-2.2
Оборудование представляет собой прибор малой мощности, который подходит для отопления сооружения объемом до 90 м³. Стоимость продукции варьируется в пределах 32-35 т. р.
ВГТ-30
Агрегат средней мощности, разработан для обогрева зданий объемом до 1400 м³. Требуется комплектация в виде шкафа управления. Цена изделия – около 150 000 р.
ИТПО
Продукция ижевских производителей, как заявляют поставщики кавитаторов, располагает КПД до 150%. Несмотря на высокий диапазон стоимости, модель привлекает внимание широкой аудитории потребителей.
Как изготовить кавитационные теплогенераторы своими руками?
Оборудование представляет собой простое устройство, что позволяет при необходимости самостоятельно изготовить конструкцию.
Необходимые инструменты и материалы:
- манометры – для контроля давления на входе/выходе,
- термометры – для измерения температуры рабочей жидкости при входе/выходе,
- гильзы под термометры.
Также нужны патрубки с кранами – входные и для выхода.
Особенности выбора насоса
Параметры насоса должны соответствовать специфическим требованиям. Так, нужен агрегат с возможностью работы с высокотемпературными субстанциями. Также учитывается способность прибора создавать необходимое рабочее давление – при входе жидкости достаточно давления в 4 атмосферы, для увеличения скорости нагрева требуется показатель до 12 атмосфер.
Изготовление кавитационной камеры
В самодельных приборах кавитации чаще всего предусматривается вариант в виде сопла Лаваля. Выбирая размер сечения проходного канала, стоит учитывать, что требуется обеспечение максимального перепада давления рабочей субстанции. Для этого подбирают модель наименьшего диаметра, в результате получается достаточно активный процесс кавитации. Приемлемым считается d9-16 мм, при меньшем сечении уменьшается интенсивность водного потока, что приводит к смешиванию жидкости с холодными массами. Применение сопла с маленьким отверстием также чревато следующими последствиями:
- увеличивается число воздушных пузырьков. В результате наблюдается усиление шума при работе оборудования,
- есть риск образования пузырьков уже в камере насоса, что может стать причиной его быстрого выхода из строя.
В зависимости от параметров установки выбирают сопла цилиндрической формы, закругленного или конусного профиля. Главное – необходимо обеспечить образование вихревого процесса уже на начальном этапе входа рабочей субстанции в сопло.
Особенности изготовления водяного контура
При самостоятельном конструировании прибора предварительно выполняют схему: определяют протяженность контура, уточняют особенности модели и переносят все это мелом на пол.
Конструкция представляет собой изогнутую трубу, которая присоединяется к выходу камеры, далее рабочая среда снова подается на вход.Субстанцияв контур поступает по направлению против часовой стрелки. Контур снабжается двумя манометрами и парой гильз с термометрами. Модель дополняет вентиль для сбора воздуха. Для регулирования давления вентиль устанавливается между входом и выходом.
Испытание генератора
После установки оборудования и подключения радиаторов к системе отопления насосное устройство включают в сеть и запускают двигатель. При исправной работе конструкции подается необходимое количество воды. Показание манометров давления жидкой среды регулируют при помощи вентиля, учитывая, что требуется разница в диапазоне 8-12 атмосфер. После пуска рабочей жидкости наблюдают параметры температуры: корректным считается нагревание 3-5°C/10 минут. С учетом, что система и насос запитаны 15 л воды, за небольшой отрезок времени нагрев достигнет 60°C. Это хороший результат для эффективной работы отопительного оборудования.
Отопительное оборудование кавитационного типа – экономичный прибор, который способен обогреть помещение за короткий промежуток времени. Производители предлагают различные модели устройства, при необходимости несложно изготовить конструкции самостоятельно с учетом особенностей обустраиваемой площади.
Кавитационный теплогенератор своими руками чертежи устройство
Для отопления помещений или нагрева жидкостей зачастую применяются классические приспособления – тэны, камеры сгорания, нити накаливания и т.д. Но наряду с ними применяются устройства с принципиально иным типом воздействия на теплоноситель. К таким устройствам относится кавитационный теплогенератор, работа которого заключается в формировании пузырьков газа, за счет которых и возникает выделение тепла.
Устройство и принцип работы
Принцип действия кавитационного теплогенератора заключается в эффекте нагрева за счет преобразования механической энергии в тепловую. Теперь более детально рассмотрим само кавитационное явление. При создании избыточного давления в жидкости возникают завихрения, из-за того, что давление жидкости больше чем у содержащегося в ней газа, молекулы газа выделяются в отдельные включения – схлопывание пузырьков. За счет разности давления вода стремиться сжать газовый пузырь, что аккумулирует на его поверхности большое количество энергии, а температура внутри достигает порядка 1000 — 1200ºС.
При переходе кавитационных полостей в зону нормального давления пузырьки разрушаются, и энергия от их разрушения выделяется в окружающее пространство. За счет чего происходит выделение тепловой энергии, а жидкость нагревается от вихревого потока. На этом принципе основана работа тепловых генераторов, далее рассмотрите принцип работы простейшего варианта кавитационного обогревателя.
Простейшая модель
Посмотрите на рисунок 1, здесь представлено устройство простейшего кавитационного теплогенератора, который заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.
Идеальный теплогенератор Потапова
Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:
Рис. 2: кавитационный теплогенератор Потапова
Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.
Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:
- Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
- Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
- Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.
Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.
Роторный теплогенератор
Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.
Рис. 3: конструкция генератора роторного типа
Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.
Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:
Рис. 4: дисковый теплогенератор
Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.
Трубчатые
Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.
В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.
Ультразвуковые
Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.
Рис. 5: принцип работы ультразвукового теплогенератора
Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.
Применение
В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:
- Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
- Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
- Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.
Плюсы и минусы
В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.
К плюсам таких устройств следует отнести:
- Куда более эффективный механизм получения тепловой энергии;
- Расходует значительно меньше ресурсов, чем топливные генераторы;
- Может применяться для обогрева как маломощных, так и крупных потребителей;
- Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.
К недостаткам кавитационных теплогенераторов следует отнести:
- Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
- Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
- Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м 2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).
КТГ своими руками
Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:
- Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
- 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
- Термометр для измерения величины нагрева теплоносителя в системе.
- Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
- Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
- Трубы и соединительные элементы (радиаторы отопления при их отсутствии ) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
- Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.
Рис. 6: схема кавитационного теплогенератора
Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.
Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.
Хозяева частных домов всячески стремятся сэкономить на отоплении, которое год от года требует немалых затрат. С целью создания обогревательных экономных систем в жилых, производственных, общественных помещениях разрабатываются и применяются на практике различные схемы по выработке выгодной тепловой энергии. Для этих целей подходит кавитационный теплогенератор.
Вихревое устройство: общее понятие
Подобная установка конструктивно достаточно проста. Она используется для эффективного и выгодного отопления здания с минимальными финансовыми затратами. Экономичность обуславливается специальным нагревом воды через кавитацию. Такой метод заключается в создании мелких пузырьков из пара в зоне сниженного давления рабочей жидкости, которое обеспечивается специальными звуковыми колебаниями, функционированием насоса.
Кавитационный нагреватель справляется с переработкой механической энергии в тепловой поток, что немаловажно для промышленных объектов. В них нагревательные элементы периодически выходят из строя, поскольку функционируют с жидкостями большой разности по температуре.
Именно такие кавитаторы выступают надежной заменой устройствам, работа которых зависит от твердых видов топлива.
В этом видео вы узнаете, как устроен теплогенератор:
Кавитационные генераторы: преимущества
Такие установки нашли широкое применение в бутовых условиях и на производстве. Причиной тому выступают следующие факторы, их характеризующие:
- ценовая доступность;
- экономичность отопительной системы;
- возможность создания конструкции своими руками;
- высокий КПД обогрева.
Правила эксплуатации гласят, что нельзя устанавливать вихревые изделия внутри жилого помещения из-за создания высокоуровневого шума. Оптимальным вариантом станет обустройство отдельной хозпостройки, котельной.
К недостаткам относятся довольно большие размеры готового к эксплуатации обогревателя. Также отмечается чрезмерная мощность для частного дома, коттеджа, возможная сложность приобретения материалов, которые понадобятся в случае самостоятельного изготовления кавитатора.
Строение нагревателя и принцип работы
Кавитационное отопление характеризуется образованием пузырьков из пара в рабочей жидкости. В результате такого действия давление постепенно снижается благодаря высокой скорости потока. Следует отметить, что необходимое парообразование задается специальным излучением лазерных импульсов либо акустикой, заданной определенными звуками. Воздушные области закрытого типа смешиваются с водяной массой, после чего поступают в зону большого давления, где вскрываются и излучают ожидаемую ударную волну.
Оборудование кавитационного типа отличается способом функционирования. Схематично оно выглядит так:
- Водяной поток перемещается по кавитатору, в котором с помощью циркуляционного насоса обеспечивается рабочее давление, поступающее в рабочую емкость.
- Далее в таких емкостях повышается скорость, соответственно, и давление жидкости посредством установленных по чертежам трубок.
- Потоки, достигая центральной части камеры, перемешиваются, в результате чего и образуется кавитация.
- В результате описанного процесса пузырьки пара не увеличиваются в размерах, отсутствует их взаимодействие с электродами.
- После этого вода перемещается в противоположную часть емкости и возвращается для совершения нового круга.
- Нагревание обеспечивается передвижением и расширением жидкости в месте выхода из сопла.
Из работы вихревой установки видно, что ее конструкция незамысловата и проста, но при этом обеспечивает быстрый и выгодный обогрев помещения.
Типы обогревателей
Кавитационный котел отопления относится к одному из распространенных типов обогревателей. Наиболее востребованные из них:
- Роторные установки, среди которых особого внимания заслуживает устройство Григгса. Суть его действия основана на центробежном насосе роторного действия. Внешне описываемая конструкция напоминает диск с несколькими отверстиями. Каждая такая ниша называется ячейкой Григгса, их количество и функциональные параметры взаимозависимы с частотой вращения привода, типом применяемой генераторной установки. Рабочая жидкость подогревается в пространстве между ротором и статором из-за быстрого перемещения по дисковой поверхности.
- Статические обогреватели. Котлы лишены каких-либо передвигающихся деталей, кавитация в них обеспечивается за счет специальных элементов Лаваля. Установленный в отопительную систему насос задает необходимое давление воды, которая начинает быстро передвигаться и подогреваться. За счет узких отверстий в соплах жидкость перемещается в ускоренном режиме. Из-за ее быстрого расширения достигается необходимая для обогрева кавитация.
Выбор того или иного нагревателя зависит от потребностей человека. Следует учитывать, что роторный кавитатор более производителен, к тому же он отличается меньшими размерами.
Особенность статического агрегата заключается в отсутствии вращающихся деталей, чем и обуславливается его продолжительный эксплуатационный срок. Длительность работы без технического обслуживания достигает 5 лет. Если же сломается сопло, его без труда можно заменить, что стоит гораздо дешевле в сравнении с приобретением нового рабочего элемента в роторную установку.
Самостоятельное изготовление оборудования
Создать кавитатор своими руками вполне реально, но предварительно стоит ознакомиться со схематическими особенностями, точными чертежами агрегата, понять и подробно изучить принцип, по которому он действует. Наиболее простой моделью принято считать ВТГ Потапова с показателем КПД в 93%. Схематически теплогенератор довольно прост, будет уместен в быту и промышленном применении.
Приступая к сборке агрегата, необходимо подобрать в систему насос, который должен полностью соответствовать требованиям мощности, необходимой тепловой энергии. В большинстве своем описываемые генераторы по форме напоминают сопло, такие модели самые удобные и простые для домашнего применения.
При собственноручном создании теплогенератора не забываем нужные зап.части, например, гильзы
Создание кавитатора невозможно без предварительной подготовки определенных инструментов и приспособлений. К ним относятся:
- патрубки входного и выходного типа, оснащенные краниками;
- манометры, измеряющие давление;
- термометр, без которого невозможно произвести замер температуры;
- гильзы, которыми дополняются термометры;
- вентили, с помощью которых из всей отопительной системы устраняются воздушные пробки.
Специалисты рекомендуют следить за диаметральным показателем сечения отверстия, которое присутствует между конфузором и диффузором. Оптимальные пределы варьируются от 8 до 15 единиц, выход за эти рамки нежелателен.
Последовательность конструирования кавитационного теплогенератора своими руками представлена следующими действиями:
- Выбор насоса, который предназначен для эксплуатации с жидкостями высоких температур. В противном случае он быстро выйдет из строя. К такому элементу предъявляется обязательное требование: создание давления от 4 атмосфер.
- Выполнение емкости для кавитации. Главным условием выступает подбор необходимого по сечению проходного канала.
- Выбор сопла с учетом особенностей конфигурации. Такая деталь может быть цилиндрического, конусообразного, округлого типа. Важно, чтобы на входе воды в емкость развивался вихревой процесс.
- Подготовка внешнего контура — немаловажная процедура. Он представляет собой изогнутую трубку, которая отходит от кавитационной камеры. Далее она соединяется с двумя гильзами от термометра и двумя манометрами, а также с воздушным вентилем, помещенным в пространство между выходом и входом.
Когда закончена работа с корпусом, следует поэкспериментировать с обогревателем. Процедура заключается в подведении насосной установки к электросети, при этом радиаторы подключаются с обогревательной системой. Следующий шаг — включение сети.
Должен осуществляться строгий контроль показателей манометров. Разница между цифрами на входе и выходе должна колебаться в пределах 8-12 атмосфер.
Если конструкция работает исправно, в нее подается необходимое количество воды. Хороший показатель — подогрев жидкости на 3-5 градусов за 10-15 минут.
Нагреватель кавитационного типа представляет собой выгодную установку, за короткое время обогревает здание, к тому же максимально экономичен. При желании он легко конструируется в домашних условиях, для чего понадобятся доступные и недорогие приспособления.
Плотно занимаясь вопросами утепления и отопления дома, мы часто сталкиваемся с тем, что появляются какие-то чудо-приборы или материалы, которые позиционируются как прорыв века. При дальнейшем изучении оказывается, что это очередная манипуляция. Яркий тому пример кавитационный теплогенератор. В теории все получается очень выгодно, но пока на практике (в процессе полноценной эксплуатации) доказать эффективность прибора не удалось. То ли времени не хватило, то ли не все так гладко.
Критический взгляд на кавитационный теплогенератор
С позиции обычного пользователя кавитационный теплогенератор вызывает некоторое недоверие. Такова уж природа человека. По заявлениям изобретателей этот прибор выдает КПД в 300%. То есть агрегат, потребляя 1 кВт электрической энергии, выдает 3 кВт тепловой. Но так ли это на самом деле?
На уважаемых форумах нагрев воды кавитацией считают возможным, но эффективность этого процесса не превышает 60%. А по факту, это новшество всерьез никто не воспринимает. Да, на кавитационный теплогенератор есть патент, но это еще ничего не значит. Например, на краску-утеплитель тоже есть сертификаты и некоторые подрядчики даже пролоббировали возможность утеплять ею фасады многоэтажек в рамках государственной программы. Вот только после такого утепления люди оббили пороги судов, чтобы вернуть потраченные деньги, так как эффективность жидкой теплоизоляции не подтвердилась на практике.
Изобретатель может получить на свое детище патент, который в случае успешного внедрения будет приносить доход. Но это не дает гарантии, что прибор будет в будущем работать по заявленному алгоритму. Также нет гарантий, что его будут выпускать серийно.
При замере эффективности опытных образцов использовался какой-то хитрый способ вычисления КПД, понять который простому смертному не дано. Конкретики мало, сплошное замыливание глаз. Грубо говоря, все гладко только в теории. Если образец 100% рабочий, то почему ученым еще не присвоена Нобелевская премия?
На множественных форумах нам не удалось найти ни одного человека, который бы отапливал свой дом кавитационным генератором. Нет реальных доказательств его эффективности. В сети можно найти видео про этот прибор, но толкового объяснения, что и как работает – нет, все вокруг да около и крайне неубедительно. Мы считаем, что данный метод обогрева дома не стоит внимания.
Что такое кавитация
Кавитация – это негативное явление, которое возникает из-за перепада давления в жидкости. Когда давление воды понижается до значения давления насыщенного пара – это приводит к вскипанию. Это когда жидкость частично переходит в состояние пара, то есть образуются пузырьки. Когда давление повышается до уровня выше значения насыщенного пара – пузырьки лопаются. В результате всхлопывания возникают локальные волны давления до 7 тыс. бар. Эти волны давления и называются кавитацией.
Для утепления мансарды изнутри минватой своими руками нужно использовать паробарьеры.
Это касается и технологии утепления крыши изнутри минватой. Но кроме пароизоляции еще используется гидробарьер.
- эрозия металлов;
- питтинговая коррозия;
- появление вибраций.
Изобретатели кавитационного генератора уверяют, им удалось извлечь из негативного явления пользу.
Сделать своими руками?
Вы можете купить готовый кавитационный теплогенератор, но сделать это устройство своими руками по чертежам вряд ли получиться. В лучшем случае выйдет шумная машина, в которой кавитации не будет. Кроме этого, перед тем как что-то сделать, нужно задать себе вопрос: «Зачем?». Есть масса способов обогреть дом:
- газовые, твердотопливные, электрические котлы в тандеме с водяными системами отопления;
- электрические обогреватели;
- системы ПЛЭН;
- теплые инфракрасные полы;
- кондиционер;
- тепловые насосы или гелиосистемы – если хочется экзотики.
Не верьте тем, кто говорит, что сделать кавитационные теплогенераторы своими руками легко и просто, потратив две копейки. Это не так. Вы потратите только свое время и не получите взамен ничего, кроме разочарования.
Выбор материалов для утепления кровли изнутри минватой относительно невелик.
По сравнению со скатной крышей, утепление чердачного перекрытия минватой является более простым процессом.
Вот на видео ниже пример того, как народный умелец сделать данный прибор. Как думаете, можно им обогреть хоть что-нибудь?
Кавитационные нагреватели
Технически кавитационные нагреватели — это просто устройства, которые преобразуют механическую энергию в тепловую в рабочей жидкости. Обычная конструкция представляет собой очень неэффективный центробежный насос. Преобразование энергии в кавитационном нагревателе имеет хорошо известные преимущества в промышленных приложениях, где рабочая жидкость может быть повреждена при контакте с нагревательными элементами со значительным перепадом температур.
Например, в некоторых приложениях пищевой и химической промышленности, где некоторые составляющие жидкости могут выходить из раствора на поверхности теплопередачи (как при минерализации в водонагревателях и бойлерах) или где требуется нагревание по требованию (например, в воде для жилое или коммерческое использование).Известные коммерческие поставщики обслуживают эти промышленные рынки. -источник.
Есть несколько компаний, которые разработали кавитационные устройства, пожалуйста, проверьте ссылку выше, чтобы увидеть список компаний, которые в настоящее время поставляют кавитационные продукты.
Однако возможно более эффективное использование кавитационной технологии. В частности, за счет вращения ротора с отверстиями, который почти мгновенно создает горячую воду или пар. В результате этот процесс производит на 70% больше энергии, чем было вложено в систему.
Обнаружение гидроудара без топлива.
В Риме, штат Джорджия, Джим Григгс из Hydrodynamics, Inc продемонстрировал сборку и работу «гидрозвукового водяного насоса», который работал сверх единицы, производя горячую воду или пар с энергией, превышающей электрическую энергию, подаваемую на двигатель насоса. «Чрезмерное единство» было подтверждено довольными заказчиками, включая пожарную станцию Олбани, куда были приглашены инженеры из «местного университета» и «местной энергетической компании» для проверки эффективности более 100%.
Раскрытие видео
Quote-Hydrosonic Pump Джеймса Григгса уже продается клиентам, регулярно снабжая их энергией сверх единицы. Консультант по энергоэффективности из Джорджии, Григгс изобрел насос в результате своего любопытства к распространенному явлению, называемому гидроударом или кавитацией. Григгс заметил, что тепло исходит от жидкости, которая быстро течет по трубам котла, вызывая падение давления воды в части трубы.Пузырьки, образующиеся в областях с низким давлением, схлопываются, когда переносятся в области с более высоким давлением. Возникающие в результате ударные волны сталкиваются внутри трубы, вызывая эффект гидроудара.
Насос
Григгса состоит из цилиндрического ротора, который плотно прилегает к стальному корпусу. Когда ротор вращается, вода проталкивается через мелкое пространство между ротором и корпусом. В результате ускорение и турбулентность, создаваемые в зазоре, каким-то образом нагревают воду и создают пар. В 1988 году эксперт по испытаниям обнаружил, что тепловая энергия, выделяемая гидрозвуковым насосом, была на 10–30% выше, чем энергия, используемая для вращения ротора.
В 1990 году Григгс основал Hydrodynamics, Inc. Он и его партнер вложили в бизнес более миллиона долларов. Продаваемые ими агрегаты не только более эффективны, чем стандартные котлы, но и требуют меньшего обслуживания. Они самоочищаются и устраняют проблему отложений минералов, снижающих эффективность стандартных котлов. Джорджия Пауэр и отдел гражданского строительства Технологического института Джорджии в настоящее время проводят исследования насоса.
Новое кавитационное устройство, подобное машине Григгса, теперь доступно для испытаний, научных исследований и приобретения исследовательскими лабораториями. Это
«Кинетическая печь» компании Kinetic Heating Systems, Inc., Камминг, Джорджия. Печь, изобретенная совместно Юджином Перкинсом и Ральфом Поупом, представляет собой тепловыделяющее вращающееся кавитационное устройство, на которое изобретатели получили четыре патента США, последний из которых был выдан в 1994 году.Многочисленные независимые компании и агентства по тестированию обнаружили одинаковую производительность, превышающую единицу: коэффициент производительности или C.O.P. (отношение выходной мощности к входной мощности) в диапазоне от 1,2 до 7,0, при этом наиболее типичная работа находится в диапазоне от 1,5 до 2,0. Доктор Маллов и Джед Ротвелл из Infinite Energy недавно подтвердили наличие избыточного тепла в предварительных испытаниях на месте.
Реакции, ответственные за избыточную энергию в устройстве Перкинса-Поупа, могут быть новыми ядерными реакциями или задействованием резервуаров энергии, которые некоторые называют новыми энергетическими состояниями водорода или энергией нулевой точки.По словам доктора Маллова, невозможно, чтобы устройство можно было объяснить химической энергией или «накопительной энергией». -Конец цитаты. Ссылка.
В 2002 году было показано, что теплогенератор Akoils (VHG) может производить дешевую тепловую энергию и горячую воду. Теплогенераторы имеют коэффициент преобразования энергии (электрическая — механическая — тепловая), который намного превышает 100%.
Веб-сайт.
Изготавливают универсальные экологически чистые установки с очень низким потреблением электроэнергии и высоким выходом тепловой энергии (коэффициент преобразования электрической энергии в тепловую более 100%), работающие без нагревательных устройств, предназначены для систем отопления промышленных предприятий, жилищно-коммунальное хозяйство и частные дома.
Этот доступный прототип доказывает, что вихревой теплогенератор (VHG) может производить больше тепловой энергии, чем потребляемой электроэнергии.
Несмотря на то, что у этих людей есть работающее доступное устройство, эта научная находка не получила признания преподавателей, и они, кроме того, не могут заставить преподавателей представить и принять эти результаты.
Их вклады нуждаются в поддержке среды научных исследований и разработок, чтобы процветать, и они будут поддержаны грантом и представлены в исследованиях преподавателей в предлагаемом центре исследований и разработок Panaceas.
Если вы являетесь членом общества или научной группы, которая может помочь в грантах для центра или в исследованиях кавитации, пожалуйста, свяжитесь с Panacea.
Примечание. Кроме того, технология Roto Verter с открытым исходным кодом от Panacea также может значительно повысить эффективность этой технологии.
Ссылки на исследования
Ссылка
Ссылка
Ссылка
Ссылка
Ссылка
Ссылка
Ссылка
Ссылка
Ссылка
.
Онлайн-генератор слов для словаря
Pictionary — забавная игра-рисовалка для всех возрастов. Игроки рисуют слово, и их команда должна угадать слово. Побеждает команда, которая правильно угадает больше слов.
Что нужно для игры
Настройка
- Сформируйте две команды. В каждой команде должно быть не менее двух игроков.
- Перед началом игры команды должны определить следующее:
- Уровни сложности для использования в Wordraw (например,Легкий, средний, жесткий)
- Лимит времени на розыгрыш (обычно 1 минута)
- Количество раундов или количество очков, необходимых для победы
- Если жесты руками разрешены
- Если угаданная часть слова засчитывается как точка
- Выберите одну команду для розыгрыша первой. Это первая команда рисования.
Геймплей
- В команде розыгрышей выберите игрока, который будет рисовать первым.В каждом новом раунде будет играть другой игрок.
- Команда, не занимающаяся рисованием, будет использовать Wordraw, чтобы выбрать слово для рисования.
- Покажите это слово игроку, который рисует. Не показывать его / ее команду.
- Как только рисовавший игрок увидел и согласился со словом, вы готовы начать ход.
- Запустите таймер, и рисующий игрок начинает рисовать слово. Запрещены разговоры, буквы, слова или цифры. Символы ($, + и т. Д.) и стирание разрешены.
- Команда жеребьевки должна угадать нарисованное слово. Допускается любое количество предположений.
- Ход заканчивается, когда команда жеребьевки угадает слово или когда заканчивается таймер. Если слово было угадано правильно, команда рисования получает очко. Если слово не было угадано, команда рисования не получает балл.
- Начинается следующий ход, и следующая команда становится командой жеребьевки. Повторите вышеуказанные шаги.
- Раунд заканчивается, когда все команды однажды сыграют вничью.Начните новый раунд и повторите вышеуказанные шаги.
- Игра заканчивается, когда будет набрано необходимое количество раундов или очков. Побеждает команда, набравшая наибольшее количество очков.
Щелкните здесь, чтобы увидеть варианты игры и другие игры в слова.
.