Генератор Г-222: характеристики, устройство, схема подключения. Схема генератор


Схема автомобильного генератора

Устройство авто генератора, принцип работы генератора в автомобиле.

Генератор — неотъемлемая часть каждого автомобиля. С помощью данного устройства, мы получаем электрическую энергию в автомобиле. Рассмотрим его составляющие и способ функционирования. Каждый автомобиль оснащен генератором, для функционирования всего электрооборудования. Генератор — изменяет энергию движка машины в электро — энергию, необходимую устройствам машины и питает потребителей. Генератор, неразрывно связан с стабилизатором тока. Данная схема, имеет название — устройство генерирования электричества. Наиболее популярными, стали генераторы изменяющие заряд тока. Они хорошо справляются с поставленной задачей и отвечают необходимым техническим требованиям.

Технические характеристики генератора. Подключение автомобильного генератора в электрическую цепь автомобиля.

Вывод генератора, предотвращает снижение заряда АКБ, в различных режимах работы автомобиля. Генератор, обеспечивает постоянное напряжение, при различных нагрузках.

Аккумуляторная батарея, является наиболее чувствительной к изменению напряжения. Именно по этому, подключение автомобильного генератора — берет на себя роль стабилизатора напряжения. Если напряжение понижается, батарея может разрядиться. Данные последствия, не позволили бы автомобилю свободно запускаться. В случае превышенного заряда, батарея, может в скором времени нарушить правильное функционирование.

В основном, генераторы отличаются качеством изготовления и соответственно схемой. Принципы функционирования и устройство, аналогичны на всех автомобилях. В зависимости от производителя, могут изменяться габариты, схема и выходы генератора (способы подключения автомобильного генератора).

Схема устройства генератора.

Генератор, включает в себя следующие составные части:

— Шкив. Данное устройство отвечает за подачу силы двигателя к установке генерации. Передача происходит при помощи ременного привода.

— Оболочка генератора. Cхема оболочки, состоит из двух частей: торцевая (смотрящая на шкив) и тыловая (в сторону контактов). Оболочка генерирующего устройства, необходима для монтажа генератора и сопутствующих составляющих на движок машины. Тыловая часть, содержит выпрямитель, щеточный механизм, штатный стабилизатор напряжения и выход, для подключения электрического оборудования.

— Ротор. Схема Данного устройства, имеет вид вала с двумя металлическими втулками. Между ними, находиться рабочая обмотка. Выводы к обмотке, соединяют ее с контактами. На большинстве генераторов, контакты представлены в виде колец из меди.

— Статор. Представляет собой небольшую трубку, созданной из стальных составляющих. В обмотке стартера, формируется необходимая сила генератора.

— Узел, с диодами. В узле, расположены 6 диодов. В каждом тепло отводе, находятся по три свето — диоды.

— Регулятор. Стабилизирует напряжение в сети, предотвращает перепад нагрузок электричества.

— Щеточный механизм. Представляет собой небольшую конструкцию из пластика. На съемном механизме, имеется ряд щеток, взаимодействующие с контактами ротора.

— Крышка защиты диодов.

Система функционирования генератора и отдельных его частей.

Генератор, функционирует согласно методу индукции. Когда, катушку пронизывает магнитный ток, во время его изменения — на выходе катушки появляется электрическое напряжение. Напряжение, напрямую зависит от скорости изменения передаваемого тока. Таким же образом, принцип действует в обратном порядке. Для получения магнитного потока, необходимо пустить на катушку электрический ток. Выходит, для того, чтобы получить электрический ток, необходим источник (с переменным магнитным полем) и катушка (для снятия переменного напряжения).Источником переменного тока, является вращающаяся часть рабочей обмотки. Обмотка с системой полюсов, в совокупности представляют ротор.

На полюсах ротора, находиться магнитный поток. Даже, если ток отсутствует в обмотке, на полюсах сохраняются его остатки. Ток остается в незначительном количестве и способен запустить генератор, только при высоких оборотах.Для получения первичного магнитного импульса ротором, АКБ подает небольшую часть тока, через обмотку ротора. Данный процесс осуществляется через контакты лампочки подтверждающей правильную работу генератора. Оптимальный поток тока, позволяет запустить холостой генератор. При этом, ток не должен быть высоким, в противном случае произойдет полный разряд батареи. В связи с этим, мощность сигнальной лампочки около двух с половиной Вт. Когда на обмотках набирается необходимое количество напряжения, сигнальная лампочка тухнет. В дальнейшем, обмотка получает питание уже от самого генератора. В данном случае, генератор функционирует автономно.

Обмотки статора, подают выходящее напряжение. Когда ротор вращается, со стороны катушек, сменно появляются плюсовую и минусовую полярность ротора. По этому, изменение движения магнитного импульса, проходит через катушку, образуя переменный импульс. Напряжение в катушке, зависит от скорости движения генератора и количества полюсов. Дело в том, что ротор может быть оснащен несколькими парами полюсов.Статор, имеет обмотку с тремя фазами. Обмотка состоит из нескольких частей, намотанных по специальной методике.

Для подведения потока к трех фазовой обмотки статера, катушки размещены в специальных пазах магнито — провода. Данная конструкция, не позволяет магнитному потоку рассеиваться. МП, находиться в катушках и магнито — проводе. Таким образом, появляется побочный ток, который занижает уровень тока и способны нагревать статор. Именно поэтому, магнито — провод, собирают из стальных частей.

Электрическая сеть машины, требует стабильного и бесперебойного напряжения. Обмотка генератора, питает части машины, через специальный стабилизатор. В стабилизатор, встроены диоды, имеющих по три выхода с определенной полярностью. Диоды открыты и не замедляют движение тока по цепи.Часть производителей, наиболее заботливы об электрических приборах автомобиля. Таковые, заменяют диоды специальными стабилизирующими устройствами. Привычная схема диодов, заменяется на стабилизатор. Отличие данного устройства от классических диодов, заключается в пропускании тока, только необходимой величины. Обычно, данное напряжение не превышает предела в тридцать Вт. При увеличении данного показателя, стабилизаторы, направляют ток в обратном порядке. При этом, на выводах, напряжение остается стабильным. Тем самым, стабилизаторы, не допускают ток, нарушающий работу электронных приборов в автомобиле.Стабилизатор, поддерживает постоянство напряжения на выходе и используется как регулятор.

Регуляторы напряжения.

Не зависимо от конструкции регуляторов, принцип действия у них аналогичен. Электрические регуляторы, включают и выключают подачу тока с катушки, тем самым стабилизирую напряжение. При необходимости снизить заряд тока, время подачи тока с катушки уменьшается. В случае, необходимости большего заряда тока, время подачи с катушки — увеличивается.Модернизированная схема стабилизатора.

Часть регуляторов, обладают свойствами компенсации. Они адаптируют заряд, подходящий к аккумулятору автомобиля. Данное регулирование, осуществляется в связи с изменением температур под капотом авто. В случае снижения температура, на АКБ, подается большее количество тока.

Генератор, одна из важнейших составляющий автомобиля. Схема генератора, позволит подробно изучить его элементы и принцип функционирования. Изучение устройства, поможет вам правильно диагностировать неисправность. От правильной работу рассматриваемого устройства, зависит функционирование всех электронных устройств и срок эксплуатации аккумуляторной батареи. При возникновении ошибок в работе генератора, необходимо оперативно приступить к его диагностике и устранению неисправностей. Своевременно обслуживайте и проверяйте генератор, во избежание масштабных неполадок. Для снятия и замены электрического генератора, пользуйтесь советами производителя, указанных в комплектующей инструкции. Удачи в изучении генератора!

 

Похожие статьи

carmend.ru

Генератор Г-222: характеристики, устройство, схема подключения

Генератор Г-222 используется на большинстве отечественных автомобилей. Он способен выдать максимальную силу тока 55 Ампер при напряжении 13 Вольт и 5000 оборотов в минуту. Передаточное соотношение между коленчатым валом двигателя и шкивом генератора 1 к 2,04. При этом ротор может вращаться с максимальной скоростью 13000 оборотов в минуту. Регулировка напряжения производится в интервале от 13,6 до 14,6 Вольт.

Конструктивные особенности

На автомобилях ВАЗ-2105 и других моделях генератор необходим для питания системы электроснабжения при работе двигателя. От него также производится зарядка аккумуляторной батареи. Практически до конца восьмидесятых на всех автомобилях устанавливали генератор Г-222.

Начиная с модели ВАЗ-2108, устанавливали генераторы 37.3701. Его конструкция абсолютно такая же, как и у генератора Г-222, характеристики отличаются совсем немного. Имеются отличия в намоточных данных статора и ротора, немного иной тип регулятора напряжения и тока выпрямителя. Позднее 37.3701 начали устанавливаться и на автомобили ВАЗ-2105.

Где установлен генератор?

Если присмотреться внимательно, то окажется, что автомобильный генератор вырабатывает трехфазное напряжение. Это синхронные электрические машины, возбуждение обмоток производится при помощи электромагнита. Чтобы преобразовать переменный ток в постоянный, в задней части генератора устанавливается выпрямитель, который состоит из кремниевых диодов. Благодаря такой схеме подключения получается преобразовать трехфазное переменное напряжение в постоянное однополярное.

Монтаж генераторной установки производится возле блока двигателя, с правой стороны. Крутящий момент от шкива коленвала передается при помощи клинообразного ремня. На крышках генераторной установки имеются проушины, при помощи которых устройство закрепляется на кронштейнах. Внутри этих проушин установлены резиновые втулки, они позволяют сберечь их от повреждения при чрезмерной затяжке. Сверху генератор Г-222, схема подключения которого приведена на фото в статье, крепится к натяжной планке при помощи шпильки и гайки.

Основные компоненты генератора

Можно выделить четыре основных элемента, из которых состоит генератор Г-222:

  1. Подвижный ротор, на котором имеется обмотка возбуждения.
  2. Статор – неподвижная часть, в которой вырабатывается электрический ток.
  3. Передняя и задняя крышки, изготавливаются они из сплава алюминия. Благодаря этому они имеют очень маленький вес, а самое главное – прекрасно охлаждаются.
  4. Ротор представляет собой вал с рифленой поверхностью. На нём запрессованы стальные полюса, имеющие форму клюва. Вместе с сердечником вал образует электромагнит. Внутри клювообразных полюсов находится пластиковый каркас, на котором имеется обмотка возбуждения. Края обмоток подключены к контактным кольцам с задней стороны ротора. Эти кольца смонтированы на пластиковой втулке.

Подшипники ротора

Чтобы облегчить вращение ротора, в передней и задней крышках устанавливаются подшипники. Они имеют закрытый тип, смазка заложена непосредственно во время изготовления устройства. Когда происходит эксплуатация, нет необходимости дополнительно закладывать туда смазочные материалы. При неисправности генератора Г-222, связанной с подшипниками, необходимо заменять ролики, ремонту они не подлежат.

Внутренняя часть подшипника, расположенного сзади, запрессована непосредственно на валу ротора. При помощи резинового кольца зажимается наружная часть подшипника. Внутренняя часть подшипника, расположенного в передней крышке, свободно установлена на роторе. Также там имеется дистанционное кольцо. Наружная обойма зажата при помощи двух шайб, зафиксированных четырьмя болтами.

В передней части вала ротора при помощи шпоночного соединения установлен шкив и вентилятор, которым происходит охлаждение выпрямительного блока и внутренней части генератора. Поток воздуха поступает в окна, расположенные в передней крышке, свободно проходит по статору и ротору, после чего, охлаждая выпрямительный блок, вырывается наружу.

Статор генератора

Для изготовления статора используется электротехническая сталь. Множество пластин соединяются при помощи электрической сварки. Изнутри в статоре есть 36 пазов. Они изолированы при помощи лака или картона. В эти базы плотно укладывается три обмотки, которые позволяют вырабатывать трехфазное напряжение.

Чтобы эти обмотки не выпадали, они закрепляются при помощи пластиковых трубок либо же деревянных клиньев. Одна обмотка содержит в себе шесть катушек. Все три обмотки соединяются по схеме «звезда». Другими словами, один конец каждой из них соединяется с корпусом генератора Г-222. Ремонт статорной обмотки нецелесообразен, намного проще заменить ее полностью.

В задней крышке расположены следующие компоненты:

  1. Полупроводниковый выпрямительный блок.
  2. Регулятор напряжения и щеткодержатель в едином корпусе.
  3. Конденсатор.
  4. Подшипник.
  5. Силовые контакты.

Блок выпрямителя

На задней крышке находится выпрямительный блок. Он собран по мостовой схеме, содержит в себе шесть силовых полупроводниковых диодов. Если проводить диагностику этих устройств, то необходимо знать, что они пропускают электрический ток лишь в одну сторону. Диоды расположены на специальных алюминиевых держателях. Чтобы упростить крепеж, половина полупроводников соединяется с одной частью подковообразной пластины, другие со второй.

Отрицательные полупроводники, которые имеются в схеме выпрямительного блока, установлены в специальном держателе. Положительные соединяются с выводом «36» генераторной установки. Благодаря тому, что диоды прочно установлены в соответствующих держателях, обеспечивается эффективное охлаждение. Блок выпрямителя закреплен на крышке при помощи трех болтов.

Положительные диоды, изолированные при помощи пластмассовых втулок, тоже надежно фиксируются в алюминиевой пластине. Гайки на болтах крепления пластин к задней крышке одновременно зажимают не только выводы полупроводников, но и обмоток. Минусовой вывод генератора – это его корпус. Плюсовой – это контакт «30», установленный на задней крышке.

Регулятор напряжения

Благодаря этому прибору на выходе статорных обмоток удерживается оптимальное значение напряжения, независимо от того, с какой частотой вращается ротор. Причем значение напряжения будет удерживаться в диапазоне 13,6-14,6 Вольт, невзирая на то, какая нагрузка воздействует на двигатель и систему электроснабжения. Генератор Г-222, устройство которого такое же, как и у его последователя 37.3701, имеет малогабаритный регулятор напряжения.

Конструктивно реле-регулятор и щеткодержатель выполнены в одном корпусе. По щеткам, которые прижимаются к контактным кольцам на роторе, поступает напряжение питания обмотки возбуждения. Одна щётка соединяется контактом "В" регулятора напряжения, вторая с выводом "Ш".

Если бы не было регулятора

В том случае, если бы не было этого прибора, напряжение на выходе генератора могло бы изменяться в огромном диапазоне – от 9 В до 25-30 В. Конечно, это сразу бы вывело из строя все потребители электричества. Основные условия работы любого генератора – это наличие постоянного магнитного поля, причем подвижного. Именно регулятор и позволяет создать постоянное поле. Чтобы скорректировать напряжение на выходе установки, в выпрямительный блок устанавливаются менее мощные дополнительные диоды. С их помощью можно немного увеличить напряжение на выходе.

Как работает генераторная установка?

После того как включается зажигание, срабатывает реле, которое подает напряжение от положительной клеммы аккумулятора на регулятор. При этом регулятор напряжения переходит в открытое состояние, подает ток на обмотку возбуждения ротора. Питание от плюса аккумулятора поступает на регулятор, через обмотку возбуждения, на массу, то есть минусовой вывод АКБ.

При этом вокруг ротора создается магнитное поле, причём оно постоянное. Как только начинает вращаться коленчатый вал, раскручивается и ротор генераторной установки. При этом под зубцами статора проходит то северный полюс, то южный. Магнитное поле движется, в результате этого на статорных обмотках вырабатывается электрический ток. После этого переменное напряжение, которое снимается с трех выводов статорной обмотки, поступает на блок выпрямителя.

В том случае, если частота вращения ротора увеличивается, на выходе генератора напряжение превышает значение в 14,6 Вольт, регулятор переходит в закрытое состояние. При этом ток на обмотку возбуждения не подаётся. И тогда резко уменьшается напряжение на выходе генератора, после этого регулятор открывается. Количество переходов в открытое и закрытое состояние может составлять до 250 раз за одну секунду. А на выходе генераторной установки изменения напряжения незаметны. Чтобы максимально сгладить пульсации электрического тока, а самое главное – избавиться от переменной составляющей, установлен электролитический конденсатор.

Как разобрать генератор?

Чтобы разобрать генератор, необходимо сначала его снять. Для этого выкручивается гайка, расположенная на верхней планке. Снизу выкручивается болт, которым произведено крепление к блоку двигателя. Желательно перед началом разборки очистить и продуть устройство. После чего можно выкрутить гайку, при помощи которой крепится шкив. Дальнейшие действия:

  1. Съемником необходимо демонтировать шкив, аккуратно снять шпонку и шайбу.
  2. Теперь нужно отключить вывод регулятора. Регулятор напряжения закреплен на задней части генератора при помощи двух болтов. Выкрутите их.
  3. Аккуратно извлеките устройство вместе с щеткодержателем. После этого отсоедините конденсатор.
  4. Далее необходимо выкрутить гайки, которыми произведена стяжка крышек генераторной установки. Выкрутить винты, которые соединяют выводы диодов и обмоток статора.
  5. Выкрутите гайку на контактном выводе.
  6. Демонтируйте блок выпрямителя.

После этого можно полностью вынуть ротор и заняться диагностикой всех компонентов генератора. Отличия генераторов Г-221 от Г-222 незначительные, поэтому можно проводить разборку по вышеизложенной инструкции.

fb.ru

Автомобильный генератор - устойство, схема, принцип работы + видео

Когда речь заходит о питании автомобиля электрической энергией, многие автовладельцы, почему-то, вспоминают только аккумулятор (аккумуляторную батарею), здесь, читаем — как выбрать аккумулятор. Но ведь главной деталью, благодаря которой и происходит превращение энергии, идущей с двигателя, из механической в электрическую, является генератор. Именно он питает все электрооборудование в машине (в заведенном состоянии) и заряжает аккумулятор.

Устройство автомобильного генератора.

Рассмотрим, из чего состоит, а также как работает данный автомобильный узел. Правда сразу оговорюсь, что речь будет идти об автомобильном генераторе переменного тока, поскольку именно этот их вид устанавливается на современные транспортные средства.

Из чего состоит генератор?

Автомобильный генератор, как правило, имеет следующие составные части:

  1. шкив – это своего рода место входа (с помощью ремня) механической энергии в генератор;
  2. корпус генератора, который образуют две крышки, передняя и задняя, к ним собственно и крепятся практически все остальные составляющие рассматриваемой нами детали;
  3. ротор – крепится к передней крышке корпуса генератора и состоит из стального вала с 2 стальными втулками (они имеют форму клюва) и обмотки возбуждения между ними, к которой присоединены, как правило, медные цилиндрические, контактные кольца;
  4. статор – отвечает за мощность генератора и состоит из металлического сердечника с 36 пазами и обмотки;
  5. выпрямительный щит – с помощью 6 мощных диодов (3 положительных и 3 отрицательных) преобразует напряжение, которое создает статор, в напряжение постоянного тока бортовой сети авто;
  6. регулятор напряжения – следит за тем, т.е. регулирует, чтобы напряжение бортовой сети машины всегда находилось в заданных пределах, вне зависимости от нагрузки, температуры окружающей среды и работы ротора.

Схема автомобильного генератора.

Принцип работы генератора.

Значит, когда водитель поворачивает ключ в замке зажигания, на обмотку (в ней находится магнитное поле) возбуждения в роторе от аккумуляторной батареи через щеточный узел поступает напряжение. И как только коленвал двигателя начинает вращаться, как вы помните, благодаря шкиву начинает вращаться и ротор генератора. Магнитное поле, которое создается в последнем, начинает обмотки статора, создавая тем самым на их выводах переменное напряжение. На определенной частоте вращения генератор перестает подпитываться механической энергией и начинает создавать необходимое себе напряжение сам (обмотка возбуждения запитывается внутри генератора).

Полученное напряжение направляется в выпрямительный щит, где преобразуется в постоянный ток, который заряжает аккумуляторную батарею и питает электроприборы авто.

При этом если коленчатый вал изменяет скорость своего вращения, то в данную систему включается еще регулятор напряжения. Он в зависимости от внешней нагрузки регулирует время включения обмотки возбуждения: при уменьшении нагрузки и/или увеличения скорости вращения коленвала время включения обмотки возбуждения сокращается, а при увеличении нагрузки и/или уменьшении оборотов коленвала – увеличивается. Именно в этом заключается работа автомобильного генератора. Кроме того рекомендую вам прочитать две статьи: замена ремня генератора и как подтянуть ремень генератора.

Видео

Рекомендую прочитать:

autoepoch.ru

схема и принцип действия. Генератор синусоидального сигнала

Генераторы сигнала - это устройства, которые в первую очередь предназначены для тестирования передатчиков. Дополнительно специалисты используют их для измерения характеристик аналоговых преобразователей. Тестирование модельных передатчиков происходит путем имитации сигнала. Это необходимо, чтобы проверить прибор на соответствие современным стандартам. Непосредственно сигнал на устройство может подаваться в чистом виде либо с искажением. Скорость его по каналам может сильно различаться.

Как выглядит генератор?

Если рассматривать обычную модель генератора сигналов, то на передней панели можно заметить экран. Необходим он для того, чтобы следить за колебаниями и проводить управление. В верхней части экрана располагается редактор, который предлагает на выбор различные функции. Далее ниже идет севенсор, который показывает частоту колебаний. Под ним располагается режимная строка. Уровень амплитуды или смещения сигнала можно регулировать с помощью двух кнопок. Для работы с файлами имеется отдельная мини-панель. С ее помощью результаты тестирования можно сохранить либо сразу открыть.

Чтобы пользователь был способен менять частоту дискретизации, в генераторе имеется специальный регулятор. По числовым значениям можно довольно быстро произвести синхронизацию. Выходы сигналов, как правило, располагаются в нижней части устройства под экраном. Там же имеется копка для запуска генератора.

Самодельные устройства

Сделать генератор сигналов своими руками довольно проблематично из-за сложности устройства. Основным элементом оборудования принято считать селектор. Рассчитан он в модели на определенное число каналов. Микросхем в устройстве, как правило, имеется две. Для регулировки частоты генератору необходим синтезатор. Если рассматривать многоканальные приборы, то микроконтроллеры для них подойдут серии КН148. Преобразователи используются только аналогового типа.

Устройства синусоидального сигнала

Генератор синусоидального сигнала микросхемы использует довольно простые. Усилители при этом могут применяться только операционного типа. Это необходимо для нормальной передачи сигнала от резисторов на плату. Потенциометры включаются в систему с номиналом не менее 200 Ом. Показатель коэффициента заполнения импульсов зависит от скорости процесса генерации.

Для гибкой настройки устройства блоки устанавливаются многоканальные. Диапазон частот генератор синусоидального сигнала изменяет при помощи поворотного регулятора. Для тестирования приемников он подходит только модулирующего типа. Это говорит о том, что каналов у генератора должно быть как минимум пять.

Схема низкочастотного генератора

Низкочастотный генератор сигналов (схема показана ниже) включает в себя аналоговые резисторы. Потенциометры должны быть установлены только номиналом 150 Ом. Для изменения величины импульса используют модуляторы серии КК202. Генерация в данном случае происходит через конденсаторы. Между резисторами в схеме должна находиться перемычка. Наличие двух выводов позволяет установить в генератор сигналов (низкочастотный) переключатель.

Принцип действия модели звукового сигнала

Подключая генератор сигналов звуковой частоты, первоначально напряжение подают на селектор. Далее переменный ток проходит через связку транзисторов. После преобразования в работу включаются конденсаторы. Отражаются колебания на экране при помощи микроконтроллера. Чтобы регулировать предельную частоту, необходимы специальные выводы на микросхеме.

Максимальную выходную мощность в этом случае генератор звукового сигнала может достичь в 3 ГГц, но погрешность должна быть минимальной. Для этого возле резистора устанавливается ограничитель. Фазовый шум системой воспринимается за счет коннектора. Показатель фазовой модуляции зависит исключительно от скорости преобразования тока.

Схема устройства смешанных сигналов

Стандартная схема генератора такого типа отличается многоканальным селектором. При этом выходов на панели имеется более пяти. В данном случае предельную частоту максимум можно выставлять в 70 Гц. Конденсаторы во многих моделях имеются с емкостью не более 20 пФ. Резисторы чаще всего включаются номиналом в 4 Ом. Время установки первого режима составляет в среднем 2.5 с.

За счет наличия ограничителя пропускания обратная мощность агрегата может достигать 2 МГц. Частоту спектра в данном случае можно регулировать при помощи модулятора. Для выходного импеданса имеются отдельные выходы. Абсолютная погрешность уровня в схеме равняется меньше 2 Дб. Преобразователи в стандартных системах имеются серии РР201.

Прибор сигналов произвольной формы

Данные приборы рассчитаны на малую погрешность. Режим гибкой последовательности в них предусмотрен. Стандартная схема селектора предполагает шесть каналов. Минимальный параметр частоты равняется 70 Гц. Положительные импульсы генератором данного типа воспринимаются. Конденсаторы в цепи емкость имеют не менее 20 пФ. Выходное сопротивление устройством выдерживается до 5 Ом.

По параметрам синхронизации данные генераторы сигнала довольно сильно отличаются. Связано это, как правило, с типом коннектора. В результате время нарастания колеблется от 15 до 40 нс. Всего режимов в моделях имеется два (линейный, а также логарифмический). С их помощью амплитуду можно менять. Погрешность частоты в данном случае составляет менее 3%.

Модификации сложных сигналов

Для модификации сложных сигналов специалисты используют в генераторах только многоканальные селекторы. Усилителями они оборудуются в обязательном порядке. Для смены режимов работы используют регуляторы. Благодаря преобразователю ток становится постоянным с частотой ниже 60 Гц. Время нарастания в среднем должно составлять не более 40 нс. С этой целью минимальная емкость конденсатора равняется 15 пФ. Сопротивление системой для сигнала обязано восприниматься в районе 50 Ом. Искажение при 40 кГц составляет обычно 1%. Таким образом, для тестирования приемников генераторы применяться могут.

Генераторы со встроенными редакторами

Генераторы сигнала указанного типа очень просты в настройке. Регуляторы в них рассчитаны на четыре позиции. Таким образом, уровень предельной частоты можно настраивать. Если говорить о времени установки, то оно во многих моделях составляет 3 мс. Достигается это за счет микроконтроллеров. Соединяются они с платой при помощи перемычек. Ограничители пропускания в генераторах данного типа не устанавливаются. Преобразователи по схеме устройства располагаются за селекторами. Синтезаторы в моделях применяются редко. Максимальная выходная мощность устройства находится на уровне 2 МГц. Погрешность в данном случае допускается только 2%.

Устройства с цифровыми выходами

Генераторы сигнала с цифровыми выходами коннекторами оснащаются серии КР300. Резисторы, в свою очередь, включаются номиналом не менее 4 Ом. Таким образом, внутреннее сопротивление резистором выдерживается большое. Тестировать данные устройства способны приемники с мощностью не более 15 В. Соединение с преобразователем осуществляется только через перемычки.

Селекторы в генераторах можно встретить трех- и четырехканальные. Микросхема в стандартной цепи, как правило, применяется типа КА345. Переключатели для измерительных приборов используют только поворачивающиеся. Импульсная модуляция в генераторах происходит довольно быстро, а достигается это за счет высокого коэффициента прохождения. Также следует учитывать малый уровень широкополосного шума на уровне 10 дБ.

Модели с высокой тактовой частотой

Генератор сигналов с высокой тактовой частотой отличается большой мощностью. Внутреннее сопротивление он способен в среднем выдерживать 50 Ом. Полоса пропускания у таких моделей обычно равняется 2 ГГц. Дополнительно следует учитывать, что конденсаторы используются емкостью не менее 7 пФ. Таким образом, максимальный ток выдерживается на отметке в 3 А. Искажение в системе максимум может составлять 1%.

Усилители, как правило, в генераторах можно встретить только операционного типа. Ограничители пропускания в цепи устанавливаются вначале, а также в конце. Коннектор для выбора типа сигналов присутствует. Микроконтроллеры можно встретить чаще всего серии РРК211. Селектор как минимум рассчитан на шесть каналов. Регуляторы поворотные в таких устройствах имеются. Максимум предельную частоту можно выставлять в 90 Гц.

Работа генераторов логических сигналов

Данный генератор сигналов резисторы имеет номиналом не более 4 Ом. При этом внутреннее сопротивление держится довольно высокое. Для уменьшения скорости передачи сигнала устанавливаются усилители операционного типа. Выводов на панели, как правило, имеется три. Соединение с ограничителями пропускания происходит только через перемычки.

Переключатели в приборах установлены поворотные. Можно выбирать два режима. Для фазовой модуляции генераторы сигнала указанного типа использоваться могут. Параметр широкополосного шума у них не превышает 5 дБ. Показатель частотной девации, как правило, находится на отметке в 16 МГц. К недостаткам можно отнести долгое время нарастания, а также спада. Связано это с низкой пропускной способностью микроконтроллера.

Схема генератора с модулятором МХ101

Стандартная схема генератора с таким модулятором предусматривает наличие селектора на пять каналов. Это дает возможность работать в линейном режиме. Максимальная амплитуда при низкой нагрузке выдерживается в 10 пик. Смещение по постоянному напряжению происходит довольно редко. Параметр выходного тока находится на отметке в 4 А. Погрешность частоты максимум способна доходить до 3%. Среднее время нарастания у генераторов с такими модуляторами равно 50 нс.

Форма сигнала меандр системой воспринимается. Тестировать приемники с помощью этой модели можно мощностью не более 5 В. Режим логарифмической развертки позволяет довольно успешно работать с различными измерительными приборами. Скорость перестройки на панели можно менять плавно. За счет высокого выходного сопротивления нагрузка с преобразователей снимается.

fb.ru

Кварцевый генератор. Схема Пирса | Практическая электроника

В прошлой статье мы с вами вели разговор о  кварцевом резонаторе и генераторе . Думаю, теперь все знают отличия резонатора от генератора. Как вы помните, кварцевый генератор обладает очень хорошей стабильностью частоты и поэтому в радиотехнической промышленности стараются применять именно кварцевые генераторы.

Для того, чтобы возбудить кварц на частоте параллельного резонанса, нам надо собрать схему. Самая простая схема для возбуждения кварца — это классический генератор Пирса, который состоит всего лишь из одного полевого транзистора и небольшой обвязки из четырех радиоэлементов:

Пару слов о том как работает схема. В схеме  есть положительная обратная связь и в ней начинают возникать автоколебания. Но что такое положительная обратная связь?

В школе всем вам ставили прививки на реакцию Манту, чтобы определить, если у вас тубик или нет. Через некоторое время приходили медсестры и линейкой замеряли вашу реакцию кожи на эту прививку

Когда ставили эту прививку, нельзя было чесать место укола. Но мне, тогда еще салабону, было по барабану. Как только я начинал тихонько чесать место укола, мне хотелось чесать еще больше)) И вот скорость руки, которая чесала прививку, у меня замерла на каком-то пике, потому что совершать колебания рукой у меня максимум получалось с частотой Герц  в 15.  Прививка набухала на пол руки))  И даже  один раз меня водили сдавать кровь в подозрении на тубик, но как оказалось, тубика не нашли. Оно и неудивительно ;-).

Так что это я вам тут рассказываю хохмы из жизни? Дело в том, что эта чесотка прививки самая что ни на есть положительная обратная связь. То есть пока я ее не трогал, чесать не хотелось. Но как только тихонько почесал, стало чесаться больше и я стал чесать больше, и чесаться стало еще больше и тд.  Если бы на мою руку не было физический ограничений, то наверняка, место прививки уже бы стерлось до мяса. Но я мог махать рукой только с какой-то максимальной частотой. Так вот, такой же принцип и у кварцевого генератора ;-). Чуть подал импульс, и он начинает разгоняться и уже останавливается только на частоте параллельного резонанса ;-). Скажем так, «физическое ограничение».

Давайте соберем эту схемку в реале. Итак, погнали.

Первым делом нам надо подобрать катушку индуктивности. Я взял тороидальный сердечник и намотал из провода МГТФ несколько витков

Весь процесс контролировал с помощью LC-метра, добиваясь номинала, как на схеме — 2,5 мГн. Если не доставало, прибавлял витки, если переборщивал номинал, то убавлял. В результате добился  вот такой индуктивности:

Транзистора у меня в загашнике не нашлось и в местном радиомагазине его тоже не было. Поэтому пришлось заказывать на Али. Кому интересно, брал здесь.

Его правильное название: транзистор полевой с каналом N типа.

Распиновка слева-направо: Сток — Исток — Затвор

Ну а дальше дело за малым. Собираем схемку:

Небольшое лирическое отступление.

Как вы видите, я пытался максимально сократить связи между радиоэлементами. Дело все в том, что все радиоэлементы имеют свои паразитные параметры. Чем длиннее их выводы, а также провода, соединяющие эти радиоэлементы в схеме, тем хуже будет работать схема, а то и вовсе «не зафурычит». Да и вообще, схемы с кварцевым резонатором на печатных платах трассируют не просто так от балды. Здесь есть свои тонкие нюансы. Мельчайшие паразитные параметры могут испоганить весь сигнал на выходе такого генератора.

Итак, схемку мы собрали, напряжение подали, осталось только снять сигнал с выхода нашего самопального генератора. За дело берется цифровой осциллограф OWON SDS6062

Первым  делом я взял кварц на самую большую частоту, которая у меня есть: 32 768 МегаГерц. Не путайте его с часовым кварцем (о нем пойдет речь ниже).

Не, ну а что вы хотели? Хотели увидеть идеальную синусоиду? Хрен-то там. Сказались паразитные параметры плохо собранной схемы и монтажа.

Внизу в левом углу осцил нам сразу же показывает и частоту:

Осцил нам показал верную частоту с небольшим округлением 😉 А главное, что наш кварц жив и схемка работает!

Давайте возьмем кварц с частотой 27 МегаГерц:

Показания у меня прыгали. Заскринил, что успел:

 

Ну и аналогично проверяем все остальные кварцы, которые у меня есть.

Вот осциллограмма  кварца на 16 МегаГерц:

Осцил показал частоту ровненько 16 МегаГерц.

Здесь поставил кварц на 6 МегаГерц:

Ровно 6 МегаГерц

На 4 МегаГерца:

Все ОК.

Ну и возьмем еще советский на 1 МегаГерц. Вот так он выглядит:

Сверху написано 1000 КилоГерц = 1МегаГерц 😉

Смотрим осциллограмму:

Рабочий!

При большом желании можно даже замерять частоту китайским генератором-частотомером:

400 Герц погрешность для старенького советского кварца не очень и много. Но лучше, конечно, воспользоваться нормальным профессиональным частотомером 😉

С часовым кварцем схема не завелась…

«Что еще за часовой кварц?» — спросите вы.  Часовой кварц — это кварц с частотой в 32 768 Герц. Почему на нем такая странная частота? Дело все в том, что 32 768 это и есть 215. Такой кварц работает в паре с 15-разрядной микросхемой-счетчиком. Это наша микросхема К176ИЕ5.

Принцип работы этой микросхемы таков:

после того, как она сосчитает 32 768 импульсов, на одной из ножек она выдает импульс. Этот импульс на ножке  с кварцевым резонатором на 32 768 Герц появляется ровно один раз в секунду. А как вы помните,  колебание один раз в секунду — это и есть 1 Герц. То есть на этой ножке импульс будет выдаваться с частотой в 1 Герц. А раз это так, то почему бы не использовать это в часах? Отсюда и пошло название — часовой кварц. В настоящее время в наручных часах и других мобильных гаджетах этот счетчик и кварцевый резонатор встроены в одну микросхему и обеспечивают не только счет секунд, но и целый мультикомбайн, типа будильника, календаря и тд. Такие микросхемы называется RTC (Real Time Clock) или в переводе с буржуйского Часы Реального Времени.

Итак, вернемся к схеме Пирса. Классическая схема Пирса генерирует синусоидальный сигнал

Но также есть видоизмененная схема Пирса для прямоугольного сигнала

А вот и она:

Номиналы некоторых радиоэлементов можно менять в достаточно широком диапазоне. Например, конденсаторы С1 и С2 могут быть в диапазоне от 10 и до 100 пФ. Тут правило такое: чем меньше частота кварца, тем меньше должна быть емкость конденсатора. Для часовых кварцев конденсаторы можно поставить номиналом в 15-18 пФ. Если кварц с частотой от 1 до 10 МегаГерц, то можно поставить 22-56 пФ. Если не хотите заморачиваться, то просто поставьте конденсаторы емкостью в 22 пФ, точно уж не прогадаете.

Также небольшая фишка на заметку: меняя значение конденсатора С1 можно настраивать частоту резонанса в очень тонких пределах.

Резистор R1 можно менять от 1 и до 20 МегаОм, а R2 от нуля и до 100 КилоОм. Тут тоже есть правило: чем меньше частота кварца, тем больше значение этих резисторов и наоборот.

Максимальная частота кварца, которую можно вставить в схему, зависит от быстродействия инвертора КМОП. Я взял микросхему 74HC04. Она не слишком быстродействующая. Состоит она из шести инверторов, но использовать буду только один:

Вот ее распиновка:

Подключив к этой схеме часовой кварц, осцил выдал вот такую осциллограмму:

Ну как всегда всю картинку испортили паразитные параметры монтажа 😉 Но, обратите внимание на частоту. Осцил почти верно ее показал с небольшой погрешностью. Ну оно и понятно, так как главная функция осцила отображать сигнал, а не считать частоту)

Кстати, вам эта часть схемы ничего не напоминает?

Не эта ли часть схемы используется для тактирования МК AVR?

Она самая! Просто недостающие элементы схемы уже есть в самом МК 😉

И вообще, я советую не заморачиваться по поводу этих самопальных кварцевых генераторов и купить сразу готовый кварцевый генератор в хорошем железном корпусе, вроде этого:

Вот его вид взади:

Его распиновку я показывал еще в предыдущей статье

Подавая постоянное напряжение от 3,3 и до 5 Вольт плюсом на #8,  а минусом на #4, с выхода #5  я получил чистый ровный красивый меандр с частотой, написанной на кварцевом генераторе, то бишь 1 МегаГерц, с очень небольшими выбросами.

Красота!

Да и китайский генератор-частотомер показал точную частоту:

Отсюда делаем вывод: лучше купить готовый кварцевый генератор, чем самому убивать кучу времени и нервов на наладку схемы Пирса. Схема Пирса будет пригодна для проверки резонаторов и для ваших различных самоделок.

www.ruselectronic.com

Разные схемы генераторов. - МикроСхема

Бывает необходимо выбрать, какой же тип генератора поставить в свою схему и для этого полезно сделать быстрый обзор аналогичных решений. Тут много разных схем, все без описания, с единой целью: дать инженеру пищу для идеи в виде схемы, подсказку в каком направлении выбирать генератор. Собственно на этом основании привожу вам только лишь пустые схемы без описаний. Примеры схем вот в таком виде:

Итак: Более 100 схем.

Генераторы — часть 1

 1.Генератор на пьезофильтре

 

 2.Генератор,управляемый напряжением.

 

 

3.Высокостабильный генератор.

4.Генератор на транзисторе,работающий в режиме лавинного пробоя.

5.Генератор на ПТ

6.Генератор на однопереходном транзисторе.

7.Генератор с низким энергопотреблением.

8.кварцевый генератор на гармониках

9.Гун

10.ВЧ RC Генератор

11.Генератор гармонических колебаний.

12.ГСП

13.ГСП

14.ГСП

15.высокочастотный RC Генератор на ЭСЛ.

16.Генератор,работающий на разности частот.

17.ВЧ Генератор.

18.RC Генератор/

19.Звуковой Генератор

20.Электроудочка.

21.Релаксационный Генератор.

22.Релаксационный Генератор.

23.Генератор на аналоге лямбда-диода.

24.RC генератор на триггере Шмидта.

25.RC генератор на триггере Шмидта с изменяемой скважинностью.

26.Генератор на пьезофильтре.

27.Электронный микрометр.

28.Генератор на одном транзисторе.

29.ГУН

30.LC генератор на ОУ.

Генераторы — часть 2

 31.Прецезионный измеритель перемещения.

 

 32.ГСП

 

 

 

33.ГСП.

34.RC генератор на D-триггере.

35.Звуковой генератор от телефона.

36.RC генератор на RS-триггере.

37.3-х фазный генератор с регулированием ширины импульсов.

38.RC генератор на ОУ.

39.Генератор на индуктивном интеграторе.

40.LC генератор.

41.LC генератор.

42.LC генератор.

43.LC генератор.

44.LC генератор на последовательном контуре.

45.LC генератор c регулировкой амплитуды.

46.LC генератор.

47.LC генератор.

48.LC генератор.

49.LC генератор на последовательном контуре/

50.Релаксационный / резонансный генератор.

51.RC генератор,

52.Релаксационный генератор.

53.Релаксационный генератор.

54.Релаксационный генератор.

55.Релаксационный генератор.

56.LC генератор.

57.ГСП.

58.Генератор гармонического сигнала.

59.ВЧ генератор.

60.Генератор для преобразователя напряжения с высоким КПД.

Генераторы — часть 3

61.Генератор на ПТ.

62.Преобразователь напряжения для питания сетодиода.

63.Металлоискатель.Сигнал принимается на средневолновый приёмник.

64.Генераторы на транзисторах в барьерном режиме.

65.Генераторы на динисторах.

66.Кварцевый генератор.

67.LC генератор.

68.Кварцевый генератор на гармониках.

69.Кварцевый генератор на ОУ.

70.Ультразвуковой генератор.

71.LC генератор на последовательном контуре.

72.Кварцевый генератор на стабилитроне(cybercircuit demo).

73.Кварцевый генератор на ОУ.

74.Генератор с катушкой индуктивности.

75.Генератор гармонических колебаний.

76.Генератор гармонических колебаний.

77.Кварцевый генератор на гармониках.

78.Генератор на динисторе с питанием от постоянного тока.

79.RC генератор.

80.Кварцевый генератор на ОУ (cybercircuit demo).

81.Генератор гармонических колебаний (cybercircuit demo).

82. LC генератор на ОУ.

83.LC генератор на ОУ.

84.Генератор с очень низким коэффициентом гармоник.

85.Генератор гармонического сигнала с регулировкой частоты.

86.Звуковой генератор.

87.RC генератор для преобразователя напряжения.

88.Генератор для преобразователя напряжения с высоким КПД.

89.Кварцевый генератор со стабилизацией амплитуды.

90.Гармонический генератор с регулировкой частоты.

91.Генератор радиопередатчика.

92.Синусоидальный генератор на аналоговом перемножителе.

Генераторы — часть 4

93. ГУН.

94. ГУН.

95. Мультивибратор с эмиттерной связью.

96. Последовательный мультивибратор.

97. Последовательный мультивибратор.

98. Комплементарный мультивибратор.

99. Мигающие по очереди светодиоды.

100. Модифицированный генератор Клаппа с низкими искажениями.

101. Генератор с раздельной регулировкой частоты и длительности импульсов.

102. Генератор синусоидального сигнала.

103. Кварцевые генераторы на ограничителях тока.

104. Обертоновый бесконтурный кварцевый генератор.

105. ГУН.

106. ГУН.

107. Низкочастотные кварцевые генераторы.

108. Двухтактный генератор на базе управляемых стабилизаторов тока.

109. Синусоидальный генератор Вина-Робертсона.

110. Кварцевый генератор.

111. Кварцевый генератор с большим диапазоном перестройки.

112. Двухтактный LC генератор.

113. Мостовая схема RC генератора.

114. Радиомаяк.

115. Триггер на оптроне.

116. автогенератор с трансформаторной ОС.

117. Преобразователь треугольного напряжения в синусоидальное с последовательной аппроксимацией.

118. Преобразователь треугольного напряжения в синусоидальное.

119. Схема включения шагового двигателя в шаговом режиме.

120. Схема включения шагового двигателя в синхронном режиме.

прямая ссылка: разные, полезные, схемы генераторов.

www.uschema.com

Генератор прямоугольных импульсов на логике HEF4011BP

В радиолюбительской практике часто возникает потребность в настройке различных преобразовательных узлов схем, особенно если дело касается изобретательской деятельности, когда схема зарождается в голове. В такие моменты будет как нельзя кстати источник управляющего сигнала.

Представляю Вашему вниманию генератор сигнала прямоугольной формы.

Характеристики

Питание: 10 ÷ 15 В постоянного тока.

Три режима генерации:

1 – симметричный (меандр), дискретное переключение диапазонов генерируемых частот, плавная регулировка частоты внутри диапазона;

2 – независимый, дискретное переключение диапазонов генерируемых частот, плавная раздельная регулировка длительности импульса и паузы между импульсами внутри диапазона;

3 – широтно-импульсная модуляция (ШИМ), дискретный выбор частоты переключателем диапазонов, плавная регулировка скважности импульсов.

Два раздельных канала – прямой и инверсный.

Раздельная регулировка уровня выходного сигнала каналов от 0 В до значения напряжения источника питания при подключении высокоомной нагрузки, и до половины напряжения источника питания при подключении нагрузки с входным сопротивлением 50 Ом.

Выходное сопротивление канала примерно 50 Ом.

Базовые схемы

Рисунок 1. Мультивибратор на логических инверторах.

Для построения генератора за основу взята схема автогенератора на двух логических инверторах (рисунок 1). Принцип её работы основан на периодической перезарядке конденсатора. Момент переключения состояния схемы определяется степенью заряда конденсатора C1. Процесс перезаряда происходит через резистор R1. Чем больше ёмкость C1 и сопротивление R1, тем дольше происходит процесс заряда конденсатора, и тем больше длительность периодов переключения состояния схемы. И наоборот.

 

Для построения схемы генераторов в качестве логических элементов была взята микросхема с четырьмя элементами 2И-НЕ – HEF4011BP. Базовая схема, показанная выше, позволяет получать на выходе Q прямоугольный сигнал фиксированной частоты и скважности 50% (меандр). Для расширения возможностей устройства было принято решение объединить в нём три различных схемы, реализуемых на тех же двух логических инверторах.

Схема генератора меандра

Схема генератора меандра изображена на рисунке 2-а. Времязадающая ёмкость схемы может изменяться от значения C1 до суммарного значения C1 и ёмкости, подключаемой перемычкой П. Это позволяет изменять диапазон частот генерируемого сигнала.

Рисунок 2. Принципиальные схемы генераторов на логических инверторах.

Резистор R1 позволяет плавно изменять ток заряда (перезаряда) ёмкости. Резистор R2 является токоограничивающим, для исключения перегрузки выходного канала логического элемента DD1.1 в случае, когда ползунок резистора R2 находится в крайнем верхнем положение и его сопротивление приближено к нулю. Поскольку заряд и перезаряд конденсатора производится по одной цепочке с неизменными параметрами, длительности импульса и паузы между ними равны. Такой сигнал имеет симметричную прямоугольную форму и называется меандр. Регулировкой R1 изменяется только частота генерируемого сигнала в определённом диапазоне, заданном времязадающей ёмкостью.

Схема генератора прямоугольных импульсов с раздельной регулировкой длительности импульса и паузы

На рисунке 2-б цепь заряда и цепь перезаряда разделены диодами VD1 и VD2. Если импульс формируется во время заряда времязадающей ёмкости, его длительность характеризуется сопротивлением цепочки VD1-R2-R1. Длительность паузы между импульсами при обратном перезаряде ёмкости характеризуется сопротивлением цепи R1-R3-VD2. Так, изменяя положение ползунков резисторов R2 и R3 можно плавно раздельно задавать длительность импульса и паузы между ними.

Диапазон частот генерируемого сигнала, как и в первом случае, переключается перемычкой П.

Схема генератора с ШИМ

Схема на рисунке 2-в имеет аналогичное разделение цепей прямого и обратного заряда времязадающей ёмкости с той разницей, что переменные сопротивления являются плечами переменного резистора R2, которые имеют обратную зависимость параметров по отношению друг к другу. Т.е., при увеличении одного плеча резистора прямопропорционально уменьшается второе, а общая сума их сопротивлений постоянна. Таким образом, регулируя соотношение плеч резистора R2 можно плавно изменять соотношение длительности импульсов к длительности пауз между ими, а время периода следования импульсов будет оставаться неизменным. Этот способ регулировки позволяет реализовать функцию широтно- импульсной модуляции (ШИМ)

Частота генерируемого сигнала в данной схеме выбирается дискретно переключением перемычки П. При необходимости можно использовать несколько перемычек П для суммирования больших и малых значений ёмкостей, добиваясь более точной требуемой частоты генерации сигнала внутри всего диапазона.

Окончательная схема генератора

На рисунке 3 представлена схема генератора, в которой реализованы все три схемы, рассмотренные на рисунке 2. В основе генератора два логических инвертора на элементах DD1.1 и DD1.2. Выбор диапазона частот (частоты в режиме ШИМ) осуществляется переключением перемычки П.

Рисунок 3. Схема генератора прямоугольных импульсов.

Для сборки нужного варианта схемы генератора введены штыревые разъёмы, коммутируемые параллельными сборками перемычек, изображенных цветными линиями. Каждый цвет перемычек соответствует своей схеме соединений. Перемычки реализованы путём соединения пар контактов проволочками от шлейфа разъёма типа FC-10P A. Сами штыревые разъёмы расположены тремя группами по пять пар для удобства коммутации. Разъём-перемычки позволяет переключать режим генерации.

Элементы DD1.3 и DD1.4 выполняют роль инвертирующих повторителей и служат для развязки времязадающих и выходных цепей генератора для исключения их взаимовлияния. С выхода DD1.3 берётся инвертированный сигнал, с выхода DD1.4 – основной.

Резисторы R5 и R6 служат для регулировки уровня напряжения импульсов соответствующих каналов. Транзисторы VT1 и VT2 включены по схеме эмиттерного повторителя для усиления сигналов, снимаемых с ползунков резисторов  R5 и R6 соответственно. Транзисторы VT3 и VT4 шунтируют выходные цепи своих каналов, подтягивая к минусу питания. Их роль важна при подаче сигнала генератора на нагрузку с наличием ёмкости, когда в бестоковую паузу необходим разряд этой ёмкости, как например при управлении полевыми транзисторами. Диоды VD5 и VD6 отделяют базовые цепи шунтирующих транзисторов от выхода генератора, исключая влияние ёмкостной нагрузки на работу этих транзисторов. Резисторы R9 и R10 необходимы для согласования выходов генератора с сопротивлением нагрузки 50 Ом, а также для ограничения максимального тока транзисторов выходных каскадов каналов.

Диод VD3 защищает схему от подключения питающего напряжения обратной полярности. Светодиод VD4 выполняет роль индикатора питания. Конденсатор C21 частично сглаживает пульсации при питании от нестабилизированного источника.

Особенности схемы

С целью уменьшения габаритов устройства для времязадающей ёмкости применены SMD конденсаторы C1-C20. При наименьшей ёмкости конденсатора C1=68 пФ генератор формирует сигнал частотой до 17÷500 кГц. При промежуточных значениях ёмкостей 3,3 нФ и 100 нФ генератор формирует сигналы в диапазонах частот 360÷20000 Гц и 6,25÷500 Гц соответственно. При наименьшей ёмкости С2=5,1 мкФ получается частота в диапазоне 0,2-10 Гц. Таким образом, при использовании всего четырёх конденсаторов можно перекрыть диапазонами частот интервал от 0,2 Гц до 500 кГц. Но при этом в режиме ШИМ будет доступна генерация сигнала всего четырёх значений частоты при использовании одной перемычки П. Поэтому, для улучшения характеристики генератора было принято решение ввести в схему 20 конденсаторов различной ёмкости с равномерным распределением значений по интервалам. Дополнительную точность установки частоты в режиме ШИМ можно получить, применяя несколько перемычек идентичных П, которые позволят корректировать частоту подключением емкостей меньших значений в сравнении с основной добавочной.

Питание схемы имеет некоторые ограничения. Не смотря на достаточно широкий диапазон напряжения питания микросхемы 3÷15 В, как показал опыт, при напряжении питания схемы ниже 9 В не происходит запуск генератора. При напряжении 9 В запуск не стабилен. Поэтому рекомендуется использовать источник питания 12÷15 В.

При напряжении питания 15 В, нагрузке сопротивлением 50 Ом подключенной к одному каналу генератора и максимальном выходном уровне сигнала, устройство потребляет не более 2,5 Вт мощности. При этом основная доля мощности рассеивается на нагрузке и согласующем выходном резисторе R9 (R10).

Не рекомендуется включать генератор на короткозамкнутую нагрузку, поскольку выходной транзистор при этом работает в предельном режиме. Это касается и тестирования схем с биполярными ключами, не имеющими в цепи базы ограничивающего резистора. В таких случаях рекомендуется уровень выходного сигнала снижать как минимум за половину оборота ручки резистора, а потом по мере необходимости добавлять.

В моём случае для варьирования частотных диапазонов генерации я использовал следующий ряд номиналов конденсаторов:С1 - 68 пФ;С2 - 100 пФ;С3 - 220 пФ;С4 - 330 пФ;С5 - 680 пФ;С6 - 1 нФ;С7 - 2,2 нФ;С8 - 3,3 нФ;С9 - 9,1 нФ;С10 - 22 нФ;С11 - 33 нФ;С12 - 47 нФ;С13 - 82 нФ;С14 - 100 нФ;С15 - 220 нФ;С16 - 330 нФ;С17 - 510 нФ;С18 - 1 мкФ;С19 - 2,4 мкФ;С20 - 5,1 мкФ.

Вы из каких либо соображений можете применить номиналы, отличные от указанных. Единственное ограничение, минимальная ёмкость не должна быть меньше 68 пФ, иначе генератор на этой ёмкости может просто не запуститься, либо начать автогенерацию в ненасыщающемся режиме, при котором форма сигнала не прямоугольная, а искажённый прямоугольник, стремящийся к синусоиде.

Красным цветом выделены номиналы, при которых перекрывается весь диапазон генерируемых частот.

Фотогалерея

Здесь показана укладка проводов-перемычек в разъём, собранный разъём и уже готовый разъём-перемычка с обрезанными проводниками.

  На этих фото генератор с разных ракурсов 

 А это со стороны печатки. Качество дорожек получилось просто отвратительное, поэтому пришлось налудить так много олова.

А это, собственно, перемычка переключения диапазонов и перемычка переключения режимов. Чуть правее выдны гнёзда и штыри, которые эти перемычки коммутируют.

Печатную плату каждый может сделать под детали, которые есть в наличии. Кого интересует печатка моего варианта генератора, можете скачать архив по ссылке ниже. Там есть печатка в формате страници PDF, а так же в формате PCB для P-CAD версии не ниже 2010. Схема так же есть в архиве, можете не пытаться сохранять её со страницы, просто скачайте архив.

Файлы проекта.

 

volt-info.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.