Регулятор переменного 3-х фазного напряжения. 3 фазный регулятор напряжения


припаяй это по-человечески!: Трехфазный регулятор напряжения (реле-регулятор) для большого мотоцикла (а-ля Scrut)

Эпиграф:

Если вольт вдруг стало много - 

кидай лом на провода!

Лом сгорел? Да не беда!

Лом потолще надо, да!

Электронное оснащение даже относительно дорогих и современных мотоциклов вызывает у меня легкое уныние. Да, появляются новые точные приборы контроля и сервиса (далее свистелки и перделки), всевозможные подогревы булочек, ксеноны, лампочки. Но самое главное - электростанция - то бишь система из АКБ и генератора по-прежнему, в том виде, в коем ее придумали в XX веке. Думаю, что довоенный немецкий Цундапп имел примерно те же средства генерации элетричества, что и Хонда, которая на полвека моложе.
Структурная схема "электростанции" мотоцикла

А насколько эта система важна я прочуял, заночевав с высосанной в ноль батареей в д. Яжелбицы.Переменное напряжение с генератора 1 выпрямляется трехфазным диодным мостом 3 и идёт в бортсеть. При этом, если напряжение бортсети становится выше 14 Вольт, срабатывает шунтирующее устройство 2 и фазы генератора закорачиваются. Помните эпиграф? На фазные провода шунт кидает, по сути, "лом" и начинается продолжительная борьба генератора с шунтом. Лом должен быть мощный, однако.

Вот еще одна скелетная схема по той же теме

Если аккуратно подходить к вопросу, не все мотоциклы собраны по этой схеме. Всякие мелкие китайские перделки оснащены однофазным генератором и свет у них от переменки, совковые ИЖи оснащены управляемым выпрямителем и у них есть отдельная обмотка возбуждения (ох уж этот БПВ!!!, сколько их перечинено!), а есть и мажорные мотики, где генератор точь-в-точь автомобильный и туда можно присобачивать всякие жигулевские РР.

Но вернемся к варианту с шунтом. Сколько мотоциклов ездит, а все у них одинаково. Сгоревший РР упорно меняется на новый китайский, тот тоже вылетает, и все по новому кругу. Ситуация такая: включаем много потребителей - перегружаем мост, пффф и он сгорел. Ездим нежно, без света, экономим силы моста - весь лишний ток стравливает (берет) на себя шунт, пффф и он тоже сгорел. Безобразие. Единственная хоть какая-то гарантия избежать такого - покупать массивные крупные РР. Силовая электроника. Вес это надежность, заклинит - можно будет дать по голове!

А если денег на покупку запасного РР нет, придется практиковаться в дендрофекализме*. Наиболее распространена схема Scrut, она с небольшими вариациями встречается в 100% самодельных РР. Учитывая техническую дремучесть большинства байкеров, находятся индивиды, пронюхавшие момент и пилящие себе копеечку на пиво все с той же схемы. Фу таким быть. Вот схемы:

"Зачотная" - (название автора)
"зач0тная-2" (название автора)
и монтажка "Зачотной-2" на трех мостах и симисторах BTA41 для надежности, прозванная автором Ever Est

Последнее из творений и было взято за основу моего регулятора. Ибо синхронные выпрямители на исполинских FET это здорово и приятно, но никто такого еще не делал, а регулятор нужен здесь и сейчас. И ни времени, ни средств на разработку не имеется (возвращаемся к идеям дендрофекализма*).

Сперва был найден радиатор, на полке которого можно было разместить три однофазных мостовых выпрямителя KBPC 5010, типа на 50А. Источники ОБС** сообщают о недостаточной надежности этих мостов, мол до 50А им как до Луны. Но. Ток в бортсети ампер 20, фаз три и диоды собраны в пары. Будем посмотреть. От души притянул выпрямители к радиатору, не забыв про термопасту. Должны работать по феншую.

Собрал мост

Перемычки ломовые из медной жилы, толстые провода, вот это всё.

Симисторы BTA41-600B и их "мозги" на обратной стороне

Здесь я немного дал волю фантазии. Возьмем исходник. Плюс от АКБ постоянно подключен к катоду стабилитрона. По идее, когда стабилитрон закрыт, ток через него не идет. Но ближе к порогу включения он-таки может протекать, да и случаи утечек через переход не редкость, так что в цепь питания стабилитрона я добавил верхний ключ на P-канальном полевом транзисторе. Открывается он транзистором оптопары PC817. А светодиод оптопары зажигается, стоит лишь появиться переменному напряжению между двух фаз. Схема на фото выше как раз собрана по этому варианту - полный стоковый Scrut с моей включайкой.

В этом варианте девайс не заработал сразу, помешала незамеченная сопля с плюса питания на выход ULN2003, и микруха мгновенно пыхнула.

Структура одного канала ULN2003. Выходной транзистор держит 500 мА.

После устранения ошибки монтажа я решил еще раз все переделать к бениной маме. Хотя агрегат заработал как положено.

Стенд для проверки РР

Кстати, о проверке. Цепляем РР выходом к регулируемому источнику питания 10-15В и вольтметру. На фазные провода вешаем вспомогательный любой источник напряжения в любой полярности, обязательно через лампу! Увеличивая напряжение на выходе РР, отмечаем при каком напряжении загорится лампа. Погаснет она теперь лишь если снять один из проводов с фазных входов (если вспомогательный источник постоянного тока), однако, тиристоры такие тиристоры, закрываются если снять протекающий через них ток!

Тут я снова решил отступить от канона. И переколбасил измерительную цепь. Scrut рекомендует подбирать выходное напряжение заменой стабилитрона или добавлением последовательно с ним диодов - получается 0,5-0,7 В прибавки на каждом диоде. Паяльником мой мот не оснащен, а очень хотелось бы отрегулировать напряжение по месту.

Так родился мой окончательный крокодил:

Схема регулятора напряжения, V1

То о чем я говорил раньше. VT4 ключ для питания измерительной части, VD5 и DA1 схема его автоматического открывания.

Скрутовская DA2 ULN2003 осталась при своей должности, это нижний ключ Дарлингтона, распахивающий симисторы. Напряжение отслеживает теперь узел на VD1, TL431 с допуском 0,5%, уж поточнее стабилитрона. Резисторы R1, R2 задают порог включения TL431, они рассчитаны так, чтобы в среднем положении движка R3 при питании 14В на управление VD1 пришло 2,5В. Ток через открывшийся TL431 откроет транзистор VT1 и уже дальше по цепочке откроются DA2 и симисторы. VT1 может быть в принципе любого типа структуры p-n-p, это суть инвертор.

Детали измерительного узла собраны на отдельной макетной плате, привинченной под болты симисторов.

Заработал регулятор напряжения сразу. Регулятором R3 надо накрутить примерно 14В при включенной фаре на средних оборотах, после чего залить его лаком.

Регулятор пребывает в опытной эксплуатации с 7 мая 2018 года на мото  Хонда Трансальп с генератором 310/360 Вт.

__________________________________________________________________

*Дендрофекализм - учение, что все на свете можно слепить из говна и палок, такой метод называется дендрофекальным.

** Одна Бабка Сказала

electroforpeople.blogspot.com

Трехфазный регулятор мощности - схема, описание работы

Данный трехфазный регулятор мощности был разработан для управления током нагревателя  в вакуумной печи мощностью 150 КВт. Подойдет для регулирования мощности в любых трехфазных схемах с тиристорами от 100 до 2500 А.

 

 

  • Регулятор мощности тиристорный.
  • Применим для схем с тиристорами от 50А до 2500А.
  • Входной сигнал 0-10V
  • Диапазон регулировки мощности от 0 до 100%
  • Варианты подключения смотрите ниже в данной статье

 

Схема трехфазного регулятор мощности и его принцип действия.

 

tca

Изображение 1 из 1

Схема трехфазного регулятора мощности

Регулятор мощности разработан на базе 3-х микросхем TCA (Siemens) 785. Данная микросхема вырабатывает управляющие импульсы открытия тиристоров и устроена таким образом, что при 0 В на входе — импульс управления подается в начале полуволны(тиристор полностью открыт) А при входном напряжении 10V управляющий импульс не подается(тиристор закрыт). Поэтому, для перехода на классическую схему управления — 0V на входе — минимальная  мощность на выходе, 10V — максимальная, сделана соответствующая доработка. Импульсы выдаваемые микросхемой TCA 785 усилены и преобразованы.

В данном трехфазном регуляторе так же присутствует плата синхронизации с трехфазной питающей сетью, на схеме не показана.

Варианты подключения

  • Напрямую от питающей сети

Напрямую от трехфазной сети, без использования понижающего трансформатора данный регулятор можно применять для регулирования мощности как трехфазной нагрузки, так нагрузки постоянного тока. Коммутационная схема регулятора мощности в таких случаях выглядит так

 

  • С использованием понижающего или разделительного трансформатора. С потребителем постоянного тока

В таком случае вторичные обмотки трансформатора можно соединять как треугольником так и в звезду.

Важно! При включении регулятора мощности в первичку, первичные обмотки трансформатора соеденять только звездой.

 

  • Без понижающего трансформатора. С  нагрузкой постоянного тока.

 

Подытожим. Если у вас есть  трехфазная установка, печь, нагреватель, да что угодно, любой потребитель мощности с максимальным потребляемым током  до 2500 А. Можете смело использовать такой трехфазный регулятор мощности. Подобрав при этом трансформатор в зависимости от потребляемой мощности вашей установки. Или подключить наш регулятор напрямую от питающей трехфазной сети без использования понижающего трансформатора. Данный трехфазный регулятор мощности испытан и отлично себя зарекомендовал на более чем 10ти печах мощностью до 300 000 W (срок эксплуатации уже более 4 лет).

Купить такой 3-х фазный регулятор можно по ссылке.

Если вы хотите собрать трехфазный регулятор мощности своими руками, напишите в комментариях, дам необходимую информацию.

 

fhworld.com.ua

РЕГУЛЯТОР МОЩНОСТИ ДЛЯ 3 ФАЗНОГО МОТОРА

Цифровой регулятор мощности для 3 фазного мотора переменного тока выполнен с использованием специальной микросхемы MC3PHAC от фирмы NXP Semiconductor. Она генерирует 6 ШИМ-сигналов для 3 фазного двигателя переменного тока. Блок легко совмещается с мощным 3 фазным IGBT/MOSFET ключевым приводом. Плата обеспечивает 6 ШИМ сигналов для IPM или IGBT инвертора, а также сигнал торможения. Схема работает в автономном режиме и не требует программирования и кодирования.

Схема регулятора

Органы управления

  • PR1: Потенциометр для установки ускорения
  • PR2: Потенциометр для регулировки скорости
  • SW1: Переключатель DIPX4 для установки частот 60Hz/50Hz и установки выхода активный низкий / активный высокий
  • SW2: Переключатель сброса
  • SW3: Старт / стоп мотор
  • SW4: изменить направление двигателя

Основные параметры

  • Питание драйвера 7-15 В постоянного тока
  • Потенциометр для управления скоростью двигателя
  • Частота ШИМ по умолчанию 10.582 кГц (5.291 кГц – 164 кГц)

М/с MC3PHAC - это монолитный интеллектуальный контроллер, разработанный специально для удовлетворения потребности в недорогих 3-фазных системах управления электродвигателем переменного тока с регулировкой скорости вращения. Устройство адаптируется и настраивается в зависимости от его параметров. Оно содержит все активные функции, необходимые для реализации части управления с открытым контуром. Всё это делает MC3PHAC идеально подходящей для устройств, требующих поддержки управления двигателем переменного тока.

В состав MC3PHAC входят защитные функции, состоящие из контроля напряжения шины постоянного тока и входа неисправности системы, которые немедленно отключат модуль ШИМ при обнаружении неисправности системы.

Все выходные сигналы TTL уровня. Вход для блока питания 5-15 В постоянного тока, постоянное напряжение на шине должно быть в пределах 1.75 - 4,75 вольта, DIP-переключатель предусмотрен на плате для установки под двигатели с частотой 60 или 50 Гц, перемычки помогают установить полярность выходного ШИМ-сигнала, то есть активный низкий или активный высокий уровень, что позволяет использовать эту плату в любом модуле, так как выход можно установить активный низкий или высокий. Потенциометр PR2 помогает регулировать скорость двигателя. Для изменения базовой частоты, времени отключения ШИМ, других возможных параметров - изучайте даташит. Файлы платы - в архиве

Управление скоростью. Синхронная частота электродвигателя может быть задана в режиме реального времени для любого значения от 1 Гц до 128 Гц регулировкой потенциометра PR2. Коэффициент масштабирования составляет 25,6 Гц на вольт. Обработка 24-битным цифровым фильтром для того чтобы увеличить стабильность скорости.

Управление ускорением. Ускорение двигателя может быть задано в режиме реального времени в диапазоне от 0,5 Гц/сек до 128 Гц/сек, путем регулировки потенциометра PR1. Коэффициент масштабирования составляет 25,6 Гц/секунду на вольт.

Защита. При возникновении неисправности MC3PHAC немедленно отключает ШИМ и ожидает, пока условие неисправности не будет устранено перед запуском таймера для повторного включения. В автономном режиме этот интервал времени ожидания задается на этапе инициализации путем подачи напряжения на вывод MUX_IN, в то время как вывод RETRY_TxD управляется на низком уровне. Таким образом, время повтора может быть указано от 1 до 60 секунд с коэффициентом масштабирования 12 секунд на вольт.

Контроль внешних неисправностей. Вывод FAULTIN принимает цифровой сигнал, указывающий на неисправность, обнаруженную с помощью внешних цепей мониторинга. Высокий уровень на этом входе приводит к немедленному отключению ШИМ. Как только этот вход возвращается к низкому уровню логики, таймер повтора сбоя начинает работать, и ШИМ повторно включается после достижения запрограммированного значения тайм-аута. Входной контакт 9 разъема CN3 FLTIN должен быть с высоким потенциалом.

Мониторинг целостности напряжения (входной сигнал pin 10 в cn3) в DC_BUS отслеживается на частоте 5.3 кГц (4.0 кГц, если частота ШИМ имеет значение до 15,9 кГц). В автономном режиме пороги фиксируются на 4.47 вольт (128% от номинальной), и 1,75 вольт (50% от номинальной), где номинальное значение определяется в 3,5 вольт. Как только уровень сигнала DC_BUS возвращается к значению в пределах допустимого - таймер повтора сбоя начинает работать, и ШИМ снова включается после достижения запрограммированного значения тайм-аута.

Регенерация. Процесс экономии, с помощью которого сохраненная механическая энергия в двигателе и нагрузке переносятся обратно в привод электроники, происходит это как правило, в результате принудительного замедления. В особых случаях, когда этот процесс происходит часто (например, системы управления двигателями лифтов), он включает специальные функции, чтобы позволить этой энергии перейти обратно в сеть переменного тока. Однако для большинства недорогих приводов переменного тока эта энергия сохраняется в конденсаторе шины постоянного тока за счет увеличения ее напряжения. Если этот процесс не установлен, напряжение шины постоянного тока может подниматься до опасного уровня, что может привести к порче конденсатора шины или транзисторов в инверторе питания. MC3PHAC позволяет автоматизировать и стабилизировать этот процесс.

Резистивное торможение. DC_BUS пин-код отслеживается на 5.3 кГц (4.0 кГц, если частота ШИМ имеет значение до 15,9 кГц), и когда напряжение достигает определенного порога, RBRAKE контакт примет высокий потенциал. Этот сигнал может использоваться для управления резистивным тормозом, размещенным через конденсатор шины постоянного тока, таким образом, механическая энергия от двигателя будет рассеиваться в виде тепла в резисторе. В автономном режиме порог DC_BUS, необходимый для подтверждения сигнала RBRAKE, зафиксирован на уровне 3,85 вольта (110 % номинала), где номинал определяется как 3,5 вольта.

Выбор частоты ШИМ. У MC3PHAC имеется четырех дискретных частоты ШИМ, которые могут быть динамически изменены во время вращения электродвигателя. Этот резистор может быть потенциометром или фиксированным резистором в диапазоне, показанном в таблице. Частота ШИМ определяется подачей напряжения на контакт MUX_IN в то время как контакт ШИМ FREQ_RxD управляется низким потенциалом.

   Форум

   Обсудить статью РЕГУЛЯТОР МОЩНОСТИ ДЛЯ 3 ФАЗНОГО МОТОРА

radioskot.ru

Реле контроля напряжения в трехфазной сети 380В

Здравствуйте, уважаемые читатели сайта http://elektrik-sam.info!

В этой публикации мы рассмотрим, как обезопаситься от перепадов и скачков напряжения в трехфазных электрических сетях 380В.

О том, как влияют перепады напряжения на электропроводку и подключенные к ней приборы я уже подробно рассматривал. Напомню вкратце.

Повышение напряжения выше допустимого приводит к выходу из строя бытовой техники – она просто сгорает.

Снижение напряжения ниже допустимого уровня опасно для бытовой техники с электродвигателями, поскольку увеличиваются пусковые токи, что может привести к повреждению их обмоток.

Поэтому, с целью защиты электропроводки и подключаемых к ней электроприборов, применяют реле контроля напряжения, которые также еще называют реле перенапряжения, «барьерами» или реле максимального и минимального напряжения.

Эти реле осуществляют контроль действующего значения напряжения в электрической сети и, в случае выхода его за установленный диапазон, отключают внешнюю питающую электрическую сеть от внутренней сети, защищаю саму внутреннюю электропроводку и подключенные к ней электрические приборы.

В этой статье мы рассмотрим две различные схемы и два различных варианта использования реле напряжения в трехфазных электрических сетях 380В на примере реле напряжения DigiTOP.

Цель этой статьи – показать схематичное решение по защите от перепадов напряжения в трехфазных электрических сетях. Можно применять реле других производителей, принцип остается такой же.

Подробно описание принципа работы самого реле напряжения и схемы я рассматривал в статье по реле напряжения в однофазных сетях. Подробную инструкцию на само реле вы можете скачать в интернете, здесь напомню вкратце, что реле имеет две уставки:

— первая при превышении напряжением максимального значения, по умолчнию 250В;— вторая уставка при снижении напряжения ниже 170В (по умолчнию).

Эти параметры выставляются на передней панели самого реле с помощью кнопок.

При выходе напряжения за этот диапазон, реле размыкает свой силовой контакт и отключает внешнюю электрическую сеть от внутренней.

Также можно задать время задержки на повторное подключение. После того, как реле отключилось, схематехника реле отслеживает значение напряжения, и когда оно снова возвращается в рабочий диапазон, спустя задержку времени реле снова замыкает свой силовой контакт и подключает внешнюю электрическую сеть к внутренней.

В тех квартирах и домах, где электропроводка трехфазная, все равно в основном используются однофазные потребители – обычные бытовые приборы и техника.

Потребители группируются по фазам, чтобы по возможности была равномерная нагрузка по каждой из фаз.

Давайте рассмотрим все это на конкретном примере.

Трехфазное напряжение подводится через вводной автоматический выключатель, трехфазный счетчик электрической энергии к электропроводке квартиры.

Потребители сгруппированы по каждой из трех фаз следующим образом:

— в первую фазу LA подключена электроплита;— во вторую фазу LB подключены кондиционер, стиральная машина и розетки одной из комнат;— в третью фазу LC подключены розетки кухни, розетки другой комнаты и освещение.

Для того, чтобы при выходе напряжения за свои допустимые значения при срабатывании реле контроля напряжения не обесточивалась сразу вся квартира, вместо одного общего устанавливают три отдельных реле напряжения в каждую фазу.

Если в одной из фаз напряжение выйдет за свой рабочий диапазон, сработает соответствующее реле и отключит внутреннюю проводку только в этой фазе. В оставшихся фазах, если величина напряжения находится в заданном диапазоне, потребители останутся подключенными и работоспособными.

Подробно пошаговую работу этой схемы смотрите в видео внизу этой статьи.

В случае подключения трехфазных потребителей применяется несколько другая схемотехника.

Для этого применяют специальное трехфазное реле напряжения, которое позволяет контролировать напряжение в каждой отдельной фазе, последовательность чередования фаз и контроль перекоса фаз.

Схема подключения в этом случае будет выглядеть следующим образом.

К реле напряжения подключаются все три фазы и ноль, чтобы контроллер реле контролировал напряжение отдельно по каждой из фаз, правильность чередования фаз и контроль перекоса фаз.

Через силовые контакты реле контроля напряжения подключен контактор К1. Один конец обмотки контактора подключен к нулевому проводу, второй через силовые контакты реле подключен к одной из фаз. На нашей схеме к фазе LA.

Силовые нормально-разомкнутые контакты К1.1, К1.2, К1.3 контактора подключают внешнюю трехфазную электрическую сеть к трехфазной нагрузке. Это могут быть электродвигатели, мощные калориферы, проточные водонагреватели и др.

Реле напряжения контролирует уровень действующих напряжений во всех трех фазах и, если они находятся в допуске, то через силовой контакт реле подается питание на контактор К1. Контакты контактора находятся в замкнутом состоянии и трехфазное напряжение внешней сети подается к нагрузке.

Если в одной из фаз напряжение выходит за установленный диапазон, реле напряжения размыкает свой силовой контакт, снимая питание с обмотки контактора К1. Контакты контактора размыкаются, отключая нагрузку от внешней трехфазной сети.

Когда напряжение вернется в свой рабочий диапазон, реле напряжения, спустя выдержку времени, вновь замкнет свой силовой контакт, подавая питание на обмотку контактора.

Контакты контактора замкнутся и нагрузка снова подключится к питающей сети.

Таким вот образом работает эта схема. В быту эта схема применяется редко, это больше промышленный вариант, чаще всего применяется первая схема.

Более подробно пошагово смотрите работу этих схем в видео:

Реле контроля напряжения. Защита от скачков напряжения в трехфазных сетях

Рекомендую материалы по теме:

Реле контроля напряжения. Защита от скачков напряжения.

Схема подключения нескольких реле напряжения.

Стабилизатор или реле напряжения — что выбрать?

Автоматические выключатели УЗО дифавтоматы — руководство.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

УЗО — стратегия выбора.

Автоматические выключатели — стратегия выбора.

Автоматические выключатели — конструкция и принцип работы.

Расчет сечения кабеля.

Расчет сечения кабеля. Ошибки.

Как рассчитать номинальный ток автоматического выключателя?

Устройство УЗО и принцип действия.

Как выбрать УЗО.

elektrik-sam.info

Самодельный регулятор напряжения — MotoRegulator.com

Как я делал Реле-Регулятор (Реле зарядки) для мотоцикла. Для начала отмечу, что нижеследующий текст является популистским и предназначен для людей, слабо разбирающихся в электронике, поэтому изобилует не совсем корректными сравнениями и упрощениями. Не надо тыкать мне в лицо учебником электротехники и учить меня законам Кирхгофа. Началось все с того, что ребята из дружественного мото-сервиса попросили меня срочно решить «проблемку с РР». Отказать ребятам было нельзя — свои, и я принялся изучать вопрос. Сначала выяснилось, что мотоциклетное РР — это совсем не то, что автомобильное. Отличий два и все они очень серьёзны. 1) Авто — это стабилизатор. Мото — это выпрямитель + стабилизатор . 2) Авто — регулирует напряжение на обмотке возбуждения генератора . Мото — регулирует выходное напряжение генератора . Есть мотоциклы с генераторами автомобильного типа, но их немного. Вот тут надо сделать небольшое отступление на тему «что такое сила тока, напряжение, и стабилизатор напряжения». Электрический ток, как известно из школьного курса физики, это «направленное движение электронов». Вдаваться в подробности сейчас не будем, важно уяснить главное — у электрического тока есть множество параметров, но нам наиболее важны два из них — сила тока и напряжение. Ток измеряется в Амперах, а напряжение измеряется в Вольтах. Чтобы понять что это такое, представьте, что ваш провод это канал, а ток — вода текущая по нему. Так вот сила тока это скорость потока воды, а напряжение — уровень воды в канале. Для понимания дальнейшего текста этого хватит. Теперь о стабилизаторах. Заморачиваться на выпрямителях мы пока не будем — диод он диод и есть. Задача любого стабилизатора напряжения — получить напряжение, понизить его до заданного уровня и удерживать на этом уровне. По принципу действия стабилизаторы делятся на импульсные, линейные и шунтирующие. Шунтирующий стабилизатор «пускает лишнее напряжение мимо потребителя». Простейший шунтирующий стабилизатор собирается из двух деталей — резистора и стабилитрона. Стабилитрон, это такой забавный штук, который, когда напряжение меньше чем нужно, прикидывается что его (стабилитрона) нет (то есть якобы провод оборван), а когда напряжение больше, чем нужно, прикидывается проволочкой (то есть начинает свободно проводить ток). Представьте себе клапан с пружиной, вот принцип тот же. Работает это так. Вот напряжение, меньше чем нужно, стабилитрон ток не проводит, весь ток уходит потребителю. Воды мало, клапан закрыт. Вот напряжение почему-то повысилось и стало больше чем нужно. Стабилитрон начинает проводить ток, и все лишнее «проваливается» мимо потребителя через стабилитрон на массу. Воды много, клапан открылся и слил лишнюю воду. Таким образом, наше напряжение, наш «уровень воды» все время находится примерно на одном значении. Все бы ничего, но не бывает стабилитронов на большие токи. Этот клапан может быть только маленького диаметра. Поэтому сделать стабилизатор для большой силы тока только на стабилитроне — невозможно. Как с этим справляются расскажу позже. Линейный стабилизатор действует по принципу: «при повышении напряжения ему создаются дополнительные трудности для прохождения». Лучшее сравнение — унитазный бачок. Уровень в бачке маленький — клапан открыт — вода наливается, уровень поднимается — поплавок тащит вверх, клапан закрывается, отверстие всё уже, уже, уже…. Уровень достиг нужного — клапан закрылся. Спустили воду — уровень упал — вода полилась, и всё по новой. Только быстро. Приделываем к нашему стабилитрону транзистор. Транзистор это и есть тот самый клапан в бачке. Напряжение маленькое — стабилитрон отключен (говорится «закрыт») — ток открывает транзистор — ток идет через транзистор к потребителю, напряжение повысилось — стабилитрон открылся — ток слился на массу — транзистор открывать уже нечем — он закрылся — отключил источник от потребителя. Ваша любимая «КРЕНка» и есть такой вот линейный стабилизатор, только схема внутри нее посложнее. И все бы ничего но, сам принцип линейного стабилизатора подразумевает «преобразование лишнего тока в тепло». Шунтирующий стабилизатор «пропускает через себя только лишнее». А линейный — всё. Поэтому греется он гораздо больше. И если заставить его стабилизировать большие токи, то греться он будет быстрее чем остывать. И быстро сгорит. И никакие радиаторы не помогут. А в мотоциклах очень большие токи (я говорю о японцах). Поэтому тот кто советует «сделать РР для мотоцикла на КРЕНке» — бредит. Импульсный стабилизатор действует по похожему принципу, только у него нет промежуточных состояний. Он либо подключает, либо отключает источник от потребителя. Подробности в википедии. Теперь вернёмся к нашим мотоциклам. Итак для начала я попробовал собрать классический линейный стабилизатор. Да, да, я наступил на все грабли, на которые можно было наступить. 20-ти амперный тошибовский транзистор шарахнул так, что слышно было на улице. Тогда вместо классического «биполярного» транзистора я применил так называемый «полевой». Полевые транзисторы свободно оперируют большими токами не особо при этом нагреваясь. Моя первая схема имела следующий вид. Транзистор VT0 выполняет функцию «чем больше напряжение питания, тем меньше напряжение он выдаёт», микросхема DA1 — «дёргает напряжение, управляющее полевым транзистором, чем меньше напряжение на входе, тем реже дёргает» микросхема DA2 — усиливает напряжение, управляющее полевым тразистором, а то ему с DA1 мало, ну а полевой транзистор VT1 уже выполняет роль того самого клапана в бачке унитаза и питает весь мотоцикл. И ничего. Не перегревается. Эту схему я изготовил в единственном экземпляре, и она работала. О дальнейшей ее судьбе мне ничего не известно. Но судя по тому, что рекламаций мне не высказали, наверно работала она удовлетворительно. Однако это получается импульсный стабилизатор. И у него есть главный недостаток импульсного стабилизатора — большие пульсации. Грубо говоря, напряжение на его выходе не 13 вольт, как надо, а «то много, то мало, а в среднем то что надо». Если мой друг Вася выпил при мне две бутылки пива, а мне не дал ни одной, то теоретически, мы вместе выпили по бутылке пива каждый, а практически Васе пора бить морду. Я показал эту схему лишь для того, чтобы обозначить «этапы большого пути».Но эту схему собирать не надо. Именно из-за пульсаций. Мой коллега предложил аналогичную схему с меньшим количеством деталей, но работающую по тому же принципу. Её тоже сделали. И она тоже работала. Но и это импульсный стабилизатор со всеми своими пульсациями, поэтому от этой схемы так же отказались. Что ж, я стал искать дальше. Очень скоро я обнаружил, что производители японских мотоциклов используют шунтирующие стабилизаторы, но ревностно хранят тайну их устройства. Вот все что мне удалось найти, листая официальную документацию. Содержимое «Integrated Circuit» остаётся загадкой. Однако главный принцип ясен — роль шунтирующего стабилизатора (то есть «клапана, сливающего лишнюю воду»), выполняет деталь под названием «тиристор». Это мощный электронный «клапан», который открывается, если на его управляющий контакт пустить ток, а закрывается когда ток через него падает до нуля(почти). Именно этим и занимается Integrated Circuit, осталось додуматься что же у него внутри? Поискав еще, я обнаружил, что не один я заморачиваюсь этой проблемой, и, в общем повторяю путь других людей. Вот только большинство людей остановились на одном и том же этапе — прицепили к тиристору стабилитрон. Попутно изыскатели еще и наделали других ошибок. Так что я продолжаю показывать схемы, которые собирать не надо : В этой схеме к стабилитрону зачем-то прилеплен конденсатор большой ёмкости. Конденсатор большой ёмкости замедляет процесс «переключения напряжения туда-сюда», в линейном стабилизаторе он нужен, здесь же он только мешает стабилитрону нормально работать. Кроме того в этой схеме есть та же проблема, что и в следующей. В этой схеме на первый взгляд все неплохо. Но тут уже начинается физика с математикой. Как я уже говорил раньше «стабилитрон это клапан который не может быть слишком большим». Добавлю: слишком маленьким тоже. То есть — вот у вас стабилитрон который должен открываться при напряжении 13 вольт. Но кроме напряжения у нас есть понятие силы тока. Так вот у любого стабилитрона есть минимальный ток, меньше которого он еще не работает, и максимальный ток, больше которого он уже горит. Такой же параметр есть и у тиристора. И они не совпадают. Среднестатистический стабилитрон начинает работать с 5-ти миллиампер и сгорает, если ток выше 30-ти миллиампер. А тиристору, чтоб открыться нужно миллиампер 15. Одному. Но генератор мотоцикла трёхфазный — выдаёт ток с трёх точек. Поэтому тиристоров-то у нас три! А в этой схеме вообще применены «более другие клапана» под названием «симистор». Симистору, чтоб открыться, в зависимости от модели, нужно от 30-ти до 70-ти миллиампер. Одному. Дальше все зависит от резистора под стабилитроном — если он маленький — стабилитрон сгорит. Если большой — тиристоры не будут нормально открываться. Есть стабилитроны которые держат до 100 миллиампер. Но они начинают работать только с 50-ти. Дело в том, что мотоциклетный генератор выдаёт очень большой разброс напряжений. На холостых это вольт 10, зато на полном газу — 60 вольт не предел. Вспоминаем закон ома «чем больше напряжение, тем больше сила тока». Считаем. 10 вольт генератора делим на 330 ом резистора — получаем 30 миллиампер тока. Обычный стабилитрон уже на пределе. Мощный еще даже не приготовился работать. 60 вольт генератора делим на те же 330 ом — получаем 180 миллиампер. Оно конечно, тиристоры сразу же, за микросекунду «уронят» напряжение обратно, но все же… все же… Может увеличить сопротивление ? Давайте попробуем. 60 / 1200 = 50 миллиампер. Вроде нормально. Но 10 / 1200 = ? То-то и оно. Кроме того в этой схеме есть лишние детали. Следующую схему помещаю просто для коллекции — в ней та же проблема. К тому же на ней честно написано «Не для сборки !» А вот эта схема на первый взгляд лишена всех вышеперечисленных недостатков. Тиристору надо 20 миллиампер ? Стабилитрон работает в разбросе 5-30? Пожалуйста — каждому тиристору свой стабилитрон. Все довольны. Но только вот какая засада — даже если детали сделаны на одном заводе, в один день и на одном станке, они все равно чуть-чуть разные. Вы купите три стабилитрона на 13 вольт, а реально получите один на 12.9 второй на 13 третий на 13.1 вольт. Та же история будет с резисторами — их сопротивление будет отличаться ом на 5-10 в разные стороны. Кроме того генератор изготовлен тоже людьми. И поэтому выдает не абсолютно одинаковые напряжения на каждой точке а чуть-чуть да разные. В итоге какой-то из трёх стабилитронов будет открываться чуть раньше остальных. И открывать тиристор. И на этот тиристор ляжет основная нагрузка. Большая часть «лишнего» напряжения будет «сливаться» через один тиристор и он быстро сдохнет от перенагрузки. То есть эта схема вполне работоспособна при условии максимальной одинаковости деталей. Иначе она будет сильно греться и быстро сгорит. Делаем вывод — стабилитрон должен быть один, общий, и рулить всеми тремя тиристорами одновременно, но между ним и тиристорами должно быть что-то еще, усиливающее ток. Через некоторое время я нашел вот эту схему. В принципе ее можно делать. Она будет работать как надо. Но я ее делать не стал. Я перфекционист. Транзисторы, предлагаемые тут, держат ток 100 миллиампер, причём тиристорами-симисторами управляет только один из них — правый — Q2. Если использовать симисторы — 90 миллиампер «съедаться» ими, еще немного уходит на взаимодействие со вторым транзистором, сколько остаётся запаса? Не люблю я так, чтоб впритык. А если взять транзисторы по мощнее, то стабилитрон их «не раскачает» как следует. Опять же — деталей в схеме много, паять ее долго и муторно. Надо двигаться дальше. Надо сказать что тогда я много спорил с автором одной из выше расположенных схем — Dingosobak-ой именно на счёт стабилитрона, и вот я, плюнув на всё, начинаю разрисовывать свой собственный вариант, но тут, Dingosobaka присылает мне схему которую получил от GogiII Здесь все нормально, за исключением некоторых номиналов резисторов — резисторы R1 и R2 надо уменьшить килоОМ так до трёх, а то на опять-таки многострадальный стабилитрон идёт слишком маленький ток. (Схема требует пересчета многих номиналов, но ввиду её невостребованности делать это никто не собирается — поэтому относитесь к ней как к экспонату в музее). В этой схеме маленький стабилитрон «качает» маленький транзистор, маленький транзистор «качает» транзистор побольше, а большой транзистор «рулит» мощными симисторами — он свободно держит ток в 1000 миллиампер. То есть 1 ампер. Вот это я называю «запас» ! К тому времени схем накопилось много и надо было их как-то друг от друга отличать. Этой схеме я присвоил название исходная . Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. На этом бы успокоиться, но — нет. Схема-то, для тех, кто «не в теме», сложная. И я стал искать пути упростить изготовление схемы без потери функциональности. Сначала я вознамерился приспособить автомобильное РР к мотоциклу. Исходил я из того что автомобильное РР по сути выполняет ту же функцию, что и Integrated Circuit, с той лишь разницей, что автомобильное РР управляет обмоткой возбуждения, а мотоциклетное — тиристорами-симисторами. Вот что в итоге у меня получилось: Сначала собираем блок тиристоров-симисторов. Затем берем автомобильное РР, выкусываем детальки, зачёркнутые крестиками, и впаиваем новые, отмеченные синим. Внимание ! Нужно реле зарядки под названием 121.3702 . Всяческие 121.3702 -01 , 121.3702 -02 и 121.3702 -03 не годятся ! В зависимости от типа применяемых тиристоров-симисторов придётся подобрать тот резистор, что справа (как считать-подбирать резистор написано в конце статьи). По сути, мы просто собираем предыдущую схему GogiII-Dingosobaka, только с минимальными трудозатратами и максимальным использованием готовых изделий. Настроение было игривое, поэтому эта схема получила название брутальная . Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Дальше я стал делать ту же схему но задался целью найти готовый Integrated Circuit не в виде «РР от жигулей», а в виде готовой законченной микросхемы. И нашёл. Аж три штуки. Схема приобрела вот такой вид. За красоту и аккуратность схема получила название гламурная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но тут-то и возник парадокс. Почти у каждого из вас есть дома такая микросхема. В музыкальном центре. Она управляет светодиодными индикаторами. Но кто-нибудь хоть раз видел магнитофон у которого сдох светодиодный индикатор ? Ну не горит она, эта микросхема. Не с чего ей гореть. А раз не горит, значит ее не покупают. А раз не покупают, значит не везут ! Копеечную микросхему купить практически невозможно ее нет в магазинах. Но именно эту схему я собрал себе как запасную. Родное РР у меня пока (тьху-тьху-тьху) живо. И я стал думать дальше. Во всех предыдущих схемах используются тиристоры. Можно использовать и симисторы. Но именно можно а не обязательно. Напомню принцип работы тиристора — на «палочку» подключили массу, на «треугольничек» — плюс, если на управляющий контакт подать плюс — тиристор откроется, если минус — закроется. Только так и никак иначе. Поэтому я не могу использовать с тиристорами очень распространённую микросхему TL431 (она же КРЕН19) — тиристоры, чтобы открыть их, надо подключать к плюсу, а TL431 подключает к минусу. Сначала я пошёл по проторённому пути, и воткнул между TL431 и тиристорами переходной транзистор. Продолжая модную тогда тему «падонкаффскаго езыка» я назвал схему готичная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но (!) больше я этого делать не буду. Смысл ? Опять много деталей. Меняем шило на мыло. Ну раньше было два транзистора, теперь одна трёхногая микросхема и один транзистор. Разницы-то? Хотя в этой схеме можно вместо стабилитрона с резистором поставить один переменный резистор, тогда появится возможность плавно регулировать напряжение, но переменный резистор это ненадёжная деталь. Особенно в условиях мотоцикла. Спустя почти год (я сделал эту схему в июле 2007-го) ребята из Саратова практически повторили эту схему, применив хоть и другие, но аналогичные детали. Схема хороша, но сохраняет главный недостаток — много деталей. Микросхема, которую применили саратовчане (так называемый «супервайзер»)держит совсем уж мизерный ток, поэтому они усилили ее дополнительным транзистором. (Вот что непонятно — неужели в Саратове микросхема TL431 это большая проблема чем применённая ими PST529 ?) Когда я начинал, я смотрел в сторону PST529 и подобных, но отказался от них потому что они требуют большого количества дополнительных деталей. А моя задача была — свести количество деталей к минимуму, сохранив достойную функциональность. Вот тут видно как мне предлагают микросхему типа «супервайзер» а я от неё отказываюсь. Через несколько лет Dyn предложил свой вариант «готичной»: И успешно её изготовил. Деталей опять много, но ему было не лень.(да, чего уж там — на две три детали то больше… Если кого то интересует изготовление этой схемы — по ссылке выше описание и там же указаны номиналы деталей. Только я немного ошибся — R6 R7 надо поменять местами. Dyn) Ну а пока я, с подачи Dyn-a, стал изучать симисторы. И обнаружил принципиальное их отличие от тиристоров. А именно — им совершенно не обязательно «на палочку подключили массу, на треугольничек — плюс, открывать плюсом». Им вообще пофиг какая полярность куда подключена. Это резко меняло дело и открывало новые горизонты. Еще раз напомню — все предыдущие схемы рассчитаны под тиристоры . В них можно использовать симисторы, но не обязательно. А я сделал схему, которая будет работать только с симисторами. И в ней симисторы работают в удобном для себя режиме. В итоге схема приняла такой вид. В уже сложившейся традиции схема была названа зач0тная. Ещё раз отмечу — с этим вариантом Integrated circuit можно использовать только симисторы, тиристоры использовать нельзя ! И включаются эти симисторы не так как на всех предыдущих схемах. То есть взять эту схемку и пришпилить к ней «силовой блок» из прeдыдущих схем — нельзя! Запас по току правда не очень велик — TL431 держит всего 150 миллиампер, но все же это вполне допустимо. Но, как уже отмечалось, я — перфекционист и всё люблю делать с запасом, поэтому я заменил TL431 на классический нижний ключ ULN2003. (Так же можно использовать аналог TD62083). Эта микросхема есть в продаже, работает в этой схеме в своём нормальном режиме и держит ток 500 миллиампер. C этой деталью схема упростилась уже до полного безобразия, а так как принцип не поменялся, получила название зач0тная-2. Эти схемы я делал и делаю до сих пор. И они работают. Их делают и другие люди. И у них эти схемы так же работают.Некоторое время назад товарищ Poner предложил использовать вместо ключа оптореле.Собраный им образец показал свою работоспособность, хотя и чуть худшие характеристики. От себя добавлю, что не вижу причин, почему бы не использовать в качестве ключа любой подходящий полевой МОП транзистор (MOSFET) . После прочтения всей этой моей писанины, у вас наверняка накопились вопросы. Постараюсь на них ответить. Многие спрашивают, почему я пишу «тиристоры» а на схемах рисую симисторы BTA26 ? Причина проста — из-за лени. Большинство тиристоров-симисторов нельзя использовать без прокладок и неметаллических винтов! А вот симисторы BTA16-24-26-41 — можно. Если же использовать другие тиристоры-симисторы (25TTS, BT152, BT225 и т. д.) то приходится ставить каждый на прокладку, да прикручивать его неметаллическим винтом, да следить, чтоб не замкнуло, это так лениво. Так же многие спрашивают какие можно еще применять тиристоры-симисторы. Да в общем-то любые, рассчитанные на ток не меньше 20-ти ампер. Вот прям прийти в магазин и сказать «дайте мне три тиристора или симистора ампер на двадцать.» Вообще-то можно и меньше (10-15 ампер), но как уже отмечалось — лично я люблю все делать с запасом. Кроме того, чем на меньше ампер рассчитан тиристор-симистор тем больше он будет греться. Только если использовать симисторы, то для схем «исходная», «гламурная», «брутальная» и «готичная» годятся не любые симисторы а только четырёхквадрантные (4Q). Ещё бывают трёхквадрантные (3Q или hi-com) и они для вышеназванных схем не годятся. А вот для схем «зач0тная» и «зач0тная-2» не только подходят любые симисторы — и 4Q и 3Q, но 3Q даже предпочтительнее, так как будут меньше нагреваться. Но самый лучший симистор для наших целей это конечно BTA26 (он же ВТА24 в другом корпусе). Он подходит ко всем схемам, надёжен и недорог. К тому же выпускается в двух вариантах BTA26бла-бла-бла B это 4Q, а BTA26бла-бла-бла W это 3Q. Кроме того, под неизвестно-какие тиристоры-симисторы потребуется пересчитать номиналы резисторов, иначе тиристоры-симисторы будут сильно греться и в итоге сгорят. Разберём этот момент на примере симисторов BTA140. Открываем даташыт (ссылка) Ищем в таблицах параметр I GT (Gate Trigger Current) видим максимальное значение 35 миллиампер. Чуть-чуть «откатываемся назад» от максимального значения, чтобы не грузить симистор, и считаем: 14 вольт / 0.03 ампер = 470 ом. То есть в управляющем контакте одного симистора BTA140 должно быть 470 ом. То есть если взять схему «зачотная», то все резисторы между микросхемой и симисторами должны быть по 470 ом. Если взять схему «брутальная» — по 360 а общий резистор в переделанном РР от жигулей — 110 ом. Единственно чего нельзя делать — это ставить один общий резистор на все три тиристора-симистора, а их управляющие контакты собирать в один пучок. Тогда между тиристорами-симисторами возникнут паразитные связи и всё пойдёт в разнос. У каждого тиристора-симистора должен быть свой «персональный» резистор хотя бы ом на 70, а остальное может быть общим. Короче, купив тиристоры-симисторы, уточняйте все эти моменты по документации на сайте оллдаташыт ! Часто меня спрашивают какой стабилитрон нужно применять в схеме. Стабилитронов много, и многие годятся, но нужно учитывать следующие моменты: Стабилитрон нужен на правильный ток. То есть минимальный ток стабилитрона должен быть не больше 5-ти миллиампер, а максимальный — не меньше 15-ти. Причём эти токи взаимосвязаны, рабочий участок стабилитрона обычно равен 20-30 миллиампер, то есть если у стабилитрона максимальный ток 50 миллиампер, то его минимальный ток будет миллиампер 50-30=20, то есть такой стабилитрон не годится. В магазинах частенько обозначают стабилитроны по мощности, например «13 вольт 0.5 ватта». Это значит, что максимальный ток стабилитрона 0.5W / 13v = 30 миллиампер. Значит у этого стабилитрона минимальный ток будет около 1 миллиампера, и такой стабилитрон подойдёт. Стабилитрон нужен на правильное напряжение, то есть на 14 вольт. Вольт туда — вольт сюда на стабилитроне, аукнется полутора вольтами на выходе схемы. Если стабилитрона на 14 вольт под руками нет, можно набрать его из нескольких стабилитронов в сумме (7+7 6+8) или добавить нужное количество любых маломощных кремниевых диодов в прямом включении, из расчёта, что 1 диод добавляет к стабилитрону 0.7 вольта. Например к стабилитрону на 13 вольт нужен 1 диод вроде 1N400*, КД521 , КД522 , КД509 , КД510 итд. C тем же успехом вместо диода можно использовать второй такой же стабилитрон. С точки зрения сборки это даже предпочтительнее — взял два стабилитрона на 13 вольт, спаял метками друг к другу, воткнул в схему любой стороной, и вопрос закрыт. Теперь пару слов о той части мотоциклетного РР о которой мы еще не говорили — о выпрямительной. Токи потребляемые мотоциклом исчисляются десятками ампер, поэтому диоды надо применять мощные. Если объем двигателя кубиков 400-600, то вполне хватит 30-ти амперных диодов. Я обычно применяю готовый 36-ти амперный диодный мост (сборка на 6 диодов) 36MT. Но если объём двигателя большой — 36МТ не справится. Зависимость проста — большой двигатель труднее крутить стартером, значит стартер ставится более мощный, чтоб его крутить нужен мощный аккумулятор, значит он потребляет большой ток при зарядке. Для того чтоб не рисковать надо использовать 40-ка а то и 50-ти амперные диоды. Например 40CTQ 50HQ 52CPQ и т. д. Вот например вариант «зач0тной-2» на трёх 50-ти амперных мостах KBPC5006 (они же MB506) и трёх симисторах BTA41 (все резисторы по 300 ом). Про себя я называю этот вариант Ever Est что в переводе с латыни означает «вечный». Еще одно замечание — по той же причине (большие токи) провода, которые используются, должны быть очень толстыми. Иначе будет «чота я спаял а оно не работает». Я использую провода сечением 2-3 миллиметра. Ещё один важный момент — радиатор. Лучший радиатор — крышка канализационного люка прикрученная на траверсу. Радиатор от старой РР не годится — он маленький. В родных РР бескорпусные детали приварены к радиатору, этим достигается лучший тепловой контакт. Прикручивая обычные детали к неровной поверхности «родного» радиатора вы не добьётесь такого же хорошего теплового контакта. Поэтому радиатор должен быть большой (я использую примерно 8см на 10см с высотой рёбер 2см) и иметь хотя бы одну идеально ровную поверхность (туда вы прикрутите детали). Ну и о проверке — проверять схему можно только полностью подключенной! Если вы прицепите три провода от генератора, а плюс и минус никуда не подключив будете мерить тестером — вы ничего не увидите. Схема работает только в полном подключении (впрочем так же себя ведут и «родные» РР). Если вы боитесь за мотоцикл то проверяйте на заменителе (аккумулятор плюс лампочка). Никогда, ни при каких обстоятельствах, категорически НЕЛЬЗЯ сдёргивать клемму с аккумулятора на работающем мотоцикле ! Это верный способ убить мозг! (если вы это уже делали и мозг до сих пор жив, вам просто повезло) Пара фоток как это выглядит в реале: (Но я вас умоляю — не надо делать РР по фоткам ! РР надо делать по схемам. А фотки я помещаю исключительно для подтверждения, что всё написанное выше не теоретические измышлизмы, а вполне реальная практика) После сборки и проверки обязательно залить эпоксидкой! Иначе от вибрации у деталей поотваливаются «ножки». Причем быстро. В течение дня-двух. Вот собственно и всё. Если будут вопросы — задавайте в разделе ниже, тот который «обсуждения». P.S. Как вы заметили, я постоянно обновляю этот постинг. Дело в том, что некоторые подробности, которые я сперва не описывал, для меня само-собой разумеющееся, а вот для многих читателей оказались непонятны. Поэтому как только я получаю вопрос — ответ на него я вношу в этот постинг. Так что не стесняйтесь, спрашивайте. Часто задается вопрос родной регулятор мотоцикла шести контактный, все схемы пятиконтактные — как поступить?В некоторых мотоциклах сделано так, что управляющая схема регулятора запитывается от замка зажигания. То есть при выключенном замке зажигания нет утечки тока через регулятор и аккумулятор через него не разряжается.Таким образом на регулятор приходит шесть проводов. Три фазы (обычно желтых) из генератора. Минус (он же корпус мотоцикла). Плюс аккумулятора и плюс с замка зажигания.Варианта два.Либо плюнуть на все умности и оставить провод с замка зажигания не при делах. Только его изолировать от реальности тщательно. И поставить пятиконтактный регулятор. Это на случай , например, установки не родного регулятора.Либо если вы сами собрали схему, то руководствуясь приложенным рисунком сделать разрыв между точками А и В. Точку А подать на провод идущий к замку зажигания. Точку В подать на провод идущий к аккумулятору.Если же вас интересует обратный процес — установка шестиконтактного регулятора (купленного по случаю) в мотоцикл где на регулятор приходит лишь пять проводов, тогда все так же три фазы на генератор, затем найдите минус (прозвоните тестером — минус звонится на корпус регулятора накоротко),остальные два провода скрутить и на плюс.Еще часто бывает что выходные провода дублируются. из регулятора выходит два минуса и два плюса. Это легко понять по одинаковому цвету пар проводов. Это другая история — не перепутайте.

Источник: moto-electro.ru Для правильного восприятия текст отредактирован. Орфография и пунктуация сохранены. Все оригинальные ссылки сохранены. Фото перенесены на сервер.

motoregulator.com

Регулятор переменного 3-х фазного напряжения

 

Союз Советских

Социалистических

Республик

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ (61) Дополнительное к авт. свид-ву— (22) Заявлено 16.06.80 (21) 2940997/24-07 с присоединением заявки №вЂ” (23) Приоритет— (51) М. Ул.

Н 02 М 5/257

Гасударственные комитет

СССР (53) УДК 621.316..722 (088.8) Опубликовано 23.02.82. Бюллетень №7

Дата опубликования описания 05.03.82 па делам изобретений и аткрмтий (72) Авторы изобретения

О. П. Ильин, В. П. Беляев и О. А. Головач (54) РЕГУЛЯТОР ПЕРЕМЕННОГО ТРЕХФАЗНОГО

НАПРЯЖЕНИЯ

Изобретение относится к электротехнике в частности, к тиристорным преобразователям переменного тока для фазового управления асинхронным двигателем, а также к устройствам регулирования накаломощных ламп, промышленных печей сопротивления и т. д.

Известно устройство для фазового управления асинхронным дви гателем, содержащее встречно-параллельные тиристоры, коммутирующие конденсаторы, диоды и сис- 1р тему управления (1).

Однако имея общий узел коммутации устройство не позволяет многократно закрывать тиристоры в фазах нагрузки по выбранному закону к широтно-импульсной модуляции в силу того, что тиристоры в фазах работают с сдвигом 120 эл. град.

Наиболее близким к изобретению по технической сущности является регулятор переменного 3-фазного напряжения, содержащий включенные между входными и выход- 2р ными выводами соответствующих фаз три коммутирующих элемента, каждый из которых состоит из пары встречно-параллельно включенных тиристоров и присоединенного параллельно к ним узла коммутации, содержащего последовательно соединенные конденсатор, коммутирующий тиристор и три диода, каждый из которых соединен с входным выводом соответствующей фазы (2).

Недостатком указанного устройства является то, что один из встречно-параллельно включенных тиристоров может быть принудительно выключен только один раз за период питающего напряжения. Это происходит из-за того, что коммутирующий конденсатор тиристора перезаряжается обратной полярностью напряжения. Получение необходимой полярности заряда конденсатора происходит только после изменения полярности прикладываемого к тиристорной паре напряжения.

При фазовом управлении величиной напряжения переменного тока, его гармонический состав является плохим. Существенное улучшение гармонического состава дает использование широтно-импульсной модуляции при регулировании выходного напряжения, а известное устройство не позволяет это осуществить.

907730

Кроме того, общим недостатком рассматриваемых устройств является также отсутствие цепей сброса реактивной энергии нагрузки в момент принудительной коммутации тиристоров. В результате энергия запасается в коммутирующих конденсаторах и ограни- s чивающих реакторах, поэтому эти элементы имеют большие габариты и вес. Вследствие колебательного процесса перезаряда ком-. мутирующих конденсаторов на них возникают напряжения в несколько раз превышающие амплитудное напряжение сети, что может привести к выходу из строя других элементов схемы.

Цель изобретения — осуществление качественной широтно-импульсной модуляции

На чертеже приведена схема предлагаемого устройства.

Асинхронный двигатель 1, встречно-параллельные тиристоры 2 и 3, коммутирующий и дополнительные 5 и 6 тиристоры и конденсатор 7 образуют узел 8 коммутации фазы А, при этом тиристоры 4 — 6 и конденсатор 7 формируют коммутирующий элемент.

Кроме того, устройство содержит узлы

9 и 10 коммутации фаз В и С соответствен- зр но, конструкция которых аналогична конструкции узла 8 группу 11 дополнительных диодов, катод каждого из которых соединен с выходным выводом соответствующей фазы, группу 12 диодов, анод каждого из которых соединен с входным выводом соответствующей фазы.

Устройство работает следующим образом. трехфазного на пряжения, питающего нагрузку с индуктивным характером, при одновременном ограничении напряжения на коммутирующих конденсаторах, т. е. расширение функциональных возможностей, уменьшение весогабаритных показателей и повышение надежности.

Поставленная цель достигается тем, что в известное устройство введены три дополнительных диода и каждый узел коммутации снабжен двумя дополнительными тиристорами, при этом диоды, связанные с входными выводами, подключены к упомянутым выводам анодами, а их катоды соединены между собой, каждый из дополнительных диодов соединен катодом с выходным выводом соответствующей фазы, а их аноды соединены между собой, первый дополнительный тиристор узла коммутации подключен катодом к общей точке коммутирующего тиристора и конденсатора, а анодом к точке соединения катодов диодов, второй дополнительный тиристор подключен катодом к другому выводу конденсатора и точке соединения анодов дополнительных диодов, катод коммутирующего тиристора соединен с входным выводом соответствующей фазы, а анод второго дополнительного тиристора с входным выводом соответствующей фазы. зо зз

К двигателю приложено напряжение U A

Для прохождения положительного полупериода этого напряжения необходимо включить тиристор 2 в фазе С и тиристор 3 в фазе А. Одновременно с подачей импульса управления на тиристоры 2 и 3 подается команда на включение тиристора 6. Осуществляется заряд конденсатора 7 с полярностью указанной на фиг. 1. После заряда конденсатора 7 тиристор 6 закроется. Для получения широтно-импульсной модуляции указанного полупериода напряжения необходимо закрывать и открывать тиристор 3 по определенному закону. Закрыть тиристор 3 можно, включив тиристоры 4 и 5. При этом к открытому тиристору 3 прикладывается напряжение обратной полярности, что приводит к его гашению. Конденсатор 7 под действием прикладываемого напряжения U

После спадания тока тиристор 5 закроется.

Через промежуток времени, определяемый законом широтно-импульсной модуляции, снова подаются импульсы на включение тиристоров 2, 3, 6. Открытие тиристора 6 приводит к перезарядке конденсатора 7 напряжением с полярностью, необходимой для следующей коммутации тиристора 3 и т. д. в течение всего положительного полупериода питающего напряжения U A. Для получения широтно-импульсной модуляции отрицательного полупериода напряжения UqA следует выполнить такое же управление тиристором 3 фазы С. Поскольку коммутирующий конденсаор 7 заряжается от мостовой трехфазной схемы выпрямления, то независимо от момента включения зарядного тиристора 6 конденсатор 7 заряжается до напряжения, близкого.к амплитудному, что достаточно для устойчивой коммутации тиристора 3.

Работа других фаз аналогична описанной.

Таким образом, устройство позволяет выполнить широтно-импульсную модуляцию выходного напряжения при регулировании его величины и тем самым улучшить его гармонический состав. Причем снижаются габариты и вес коммутирующих элементов, уменьшается влияние нагрузки на форму выходного напряжения.

Формула изобретения

Регулятор переменного трехфазного напряжения содержащий три коммутирующих элемента, включенных между входными и выходными выводами соответствующих фаз, каждый из которых состоит из пары встречно-параллельно включенных тиристоров и присоединенного параллельно к ним узла коммутации, содержащего последовательно соединенные конденсатор, коммутирующий тиристор и три диода, каждый из которых соединен с входным выводом соответствующей фазы; отличающийся тем, что, с целью расц1ирения функциональных возможностей, улучшения весогабаритных показателей и повышения надежности, в него введены три дополнительных диода, и каждый узел коммутации снабжен двумя дополнительными тиристорами, при этом диоды, связанные с входными выводами, подключены к упомянутым выводам анодами, а их

07730 6 катоды соединены между собой, каждый из дополнительных диодов соединен катодом с выходным выводом соответствующей фазы, а.их аноды соединены между собой, первый дополнительный- тиристор узла коммутации подключен катодом к общей точке коммутирующего тиристора и конденсатора, а анодом к точке, соединения катодов диодов, второй дополнительный тиуистор подключен катодом к другому выводу конденсатора и точке соединения анодов дополнительных дио1ð дов, катод коммутирующего тиристора соединен с входным выводом соответствующей фазы, а анод второго дополнительного тиристора — с выходным выводом соответствующей фазы.

Источники информации, принятые во внимание при экспертизе

1. Патент Японии № 50 — 24426, 5890

1975.

2: Патент ГД1 № 113672, кл. Н 02 М 1/08, 1976.

Редактор Н. Джуган

Заказ 612/б7

Составитель И. Головинова

Техред А. Войкас Корректор У. Пономаренко

Тираж 719 Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий .

113035, Москва, Ж вЂ” 35, Раушская наб., д. 4/5

Филиал ППП «Патент>, г. Ужгород, ул. Проектная, 4

   

www.findpatent.ru

Ремонт 3-х фазных генераторов

В электростанциях Briggs & Stratton Power Products используются 3-фазные генераторы прямого возбуждения, оснащенные автоматическим регулятором напряжения. Генератор состоит из ротора и статора. Ротор соединен с валом отбора мощности двигателя и вращается внутри неподвижного статора, который прикреплен к картеру двигателя. Статор имеет две обмотки: обмотку возбуждения и силовую обмотку. В отличие от однофазного генератора основная обмотка статора и обмотка возбуждения состоят из трех обмоток, по одной на каждую из трех фаз (схема 1).

Процесс возбуждения (превращение ротора в магнит) осуществляется обмоткой возбуждения. Розетки соединяются с силовой обмоткой. При вращении магнита (ротора) внутри силовой обмотки статора вырабатывается выходное напряжение. Постоянный ток в роторной обмотке создает магнитное поле ротора. Обмотка возбуждения создает переменный ток, который после выпрямления диодным мостом подается через контактные кольца в обмотку ротора. При завершении работы генератора в роторе сохраняется небольшая часть магнетизма, которая называется остаточным магнетизмом. Регулятор напряжения трансформаторного типа контролирует величину тока в обмотках ротора, а, следовательно, и силу магнитного поля ротора.

Регулятор напряжения

Регулятор напряжения 3-х фазного генератора состоит из 3 трансформаторов (составной трансформатор) рисунок 2. Обмоткавозбуждения соединяется с вторичной обмоткой регулятора напряжения трансформаторного типа, с диодными выпрямителями и контактными кольцами. Силовая обмотка генератора соединена с первичной обмоткой составного трансформатора и с розеткой. При увеличении тока нагрузки составной трансформатор увеличивает ток в обмотках ротора, регулируя выходное напряжение.

Корректировка регулятора напряжения

Увеличение или уменьшение воздушного зазора регулятора напряжения трансформаторного типа изменяет выходное напряжение. Отрегулируйте воздушный зазор добавлением или удалением изоляционных прокладок, как показано на рисунке 3. 

ВНИМАНИЕ: регулятор напряжения трансформаторного типа отрегулирован при производстве и не требует корректировки при обычных условиях. Увеличение воздушного промежутка увеличивает напряжение. В целях безопасности корректировка всегда должна производиться при выключенном генераторе.

Поиск неисправностей

Для нахождения неисправностей необходимо:

Запустить двигатель и проверить его частоту вращения, при необходимости отрегулировать. Проверить выходное напряжение непосредственно в розетке электростанции.(Используя вольтметр, имейте в виду, что напряжение может быть нулевым или очень низким).

ВНИМАНИЕ: Нулевое напряжение свидетельствует либо о разрыве цепи, либо о полной потери остаточного магнетизма на роторе. Установите переключатель напряжения на 230 В одна фаза, запустите двигатель и измерьте напряжение в розетке. Установите переключатель на 380В три фазы, измерьте напряжение в каждой из фаз. Напряжение во всех трех фазах должно совпадать.

Восстановление остаточного магнетизма

Проводить данную операцию только в случае нулевого напряжения на выходе электростанции и, если не был найден разрыв цепи генератора и приборной панели. Для восстановления остаточного магнетизма, нужно подсоединить аккумулятор 12В к проводам, соединяющим диодный моствыпрямителя и набор щеток, и запустить двигатель. ВНИМАНИЕ: Необходимо снять крышку генератора и запустить двигатель. Убедитесь, что провода подсоединены правильно, и не пытайтесь отсоединить провода при включенном двигателе.

  1. Снять 4 шурупа панели управления, чтобы получить доступ к щеткам.
  2. Снять верхнюю крышку генератора.
  3. Отметить плюсовой и минусовой провода, идущие от диодного моста выпрямителя к щеткам (1 и 2 на рисунке 4)
  4. Отсоединить провода от диодного моста выпрямителя (3 и 4 на рисунке 4) и изолировать их.
  5. Присоедините аккумулятор 12 В непосредственно к плюсовому и минусовому проводу щеток ротора (рисунок 5).
  6. Установить панель с розетками на генератор.
  7. Запустить двигатель и измерить напряжение в розетке.
  8. Если причина в остаточном магнетизме, то выходное напряжение восстановится.
  9. Отсоединить аккумулятор.
  10. Снова присоединить провода к диодному мосту выпрямителя.
  11. Запустить двигатель и измерить выходное напряжение.

 

Альтернативный способ

Если небольшая часть магнетизма сохраняется в роторе, то восстановить выходное напряжение можно, немного увеличив частоту вращения. При этом важно не превысить максимально допустимое число оборотов.

1. Запустить двигатель и дать ему нагреться. 2. Тягой управления дросселем медленно увеличить частоту вращения до 3600 мин-1, на 5 секунд. 3. Дать возможность двигателю восстановить обороты и снова проверить выходное напряжение в розетке.

Проверка фильтра EMC

Осуществить проверку фильтра EMC без специального оборудования невозможно.

Проверка составного трансформатора

Составной трансформатор состоит из трех простых трансформаторов, соединенных с силовой обмоткой и обмоткой возбуждения. Для проверки трансформатора найдите соответствующие разъемы и измерьте сопротивление на первичной (основной обмотке) и вторичной (обмотке возбуждения) обмотках. Опираясь на таблицу сопротивления проводов, помните, что температура оказывает большое влияние на показания, значения могут расходиться с табличными до 20%. Замените составной трансформатор полностью, если неисправна одна из обмоток.

Проверка ротора

Для проверки ротора измерьте сопротивление на контактных кольцах. Проверьте, нет ли на них задиров.

remontbenzogeneratora.com.ua


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.