Как устроены атомные электростанции
Человек ищет энергию везде: в пламени горящих дров и угля, в напоре речного потока, силе ветра и тепле солнечных лучей. В середине прошлого века мы научились использовать энергию, спрятанную в атомных ядрах тяжелых элементов. Сегодня на атомных электростанциях эта невидимая глазу энергия атома превращается в такое привычное нам электричество.
Без мирного атома никак
Мировая экономика немыслима без атомной энергетики. На атомных электростанциях вырабатывается одна десятая всей производимой на планете электроэнергии. Сегодня 192 атомные электростанции работают в 31 стране мира. Как правило, все они имеют по несколько энергоблоков — технологических комплексов оборудования для производства электроэнергии, имеющих в своем составе ядерный реактор. Общее количество таких энергоблоков в мире составляет 451.
На первом месте по количеству АЭС находятся США — 62, на втором Франция — 19, третье место у Японии — 17. Россия занимает пятое место по количеству атомных электростанций. Их у нас 10 с 37 энергоблоками. Общая мощность всех АЭС мира составляет около 392 ГВт.
Атомная энергетика имеет много плюсов. Ключевые — высокая рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, как это происходит на тепловых электростанциях. Однако есть и серьезные минусы. В случае аварии на атомной электростанции продукты деления ядерного топлива, вырвавшиеся из реактора, могут надолго сделать непригодными для жизни большие территории, прилегающие к станции. Еще один минус — это проблема хранения и переработки отработанного ядерного топлива.
Принцип работы атомной электростанции
Использование атомной энергии началось практически одновременно с созданием ядерного оружия. Пока шли военные разработки, начались исследования возможности применения атомной энергии и в мирных целях, прежде всего для производства электроэнергии. Началом мирного использования ядерной энергии принято считать 1954 г., когда в подмосковном Обнинске заработала первая в мире атомная электростанция.
В отличие от ядерной бомбы, при взрыве которой происходит неуправляемая цепная реакция деления атомных ядер с одномоментным высвобождением колоссального количества энергии, в ядерном реакторе происходит регулируемая ядерная реакция деления — топливо медленно отдает нам свою энергию. Тем самым для того, чтобы использовать цепную реакцию деления атома в мирных целях, ученым пришлось придумать, как ее приручить.
Атомная электростанция — это целый комплекс технических сооружений, предназначенных для выработки электрической энергии. Ядерная реакция происходит в самом сердце атомной электростанции — ядерном реакторе. Но само электричество вырабатывает совсем не он.
На АЭС происходит три взаимных преобразования форм энергии: ядерная энергия переходит в тепловую, тепловая — в механическую, а уже механическая энергия преобразуется в электрическую. И для каждого преобразования предусмотрен свой технологический «остров» — комплекс оборудования, где происходят эти превращения. Пройдемся вдоль технологической цепочки и подробно посмотрим, как рождается электричество.
Ядерный реактор
Реактор атомной электростанции представляет собой конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Ядерный реактор можно сравнить с мощным железобетонным бункером. Он имеет стальной корпус и помещен в железобетонную герметичную оболочку.
Эффект Вавилова — Черенкова (излучение Вавилова — Черенкова) — свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде
Пространство, в котором непосредственно происходит реакция деления ядер, называется «активной зоной ядерного реактора». В ее процессе выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель. В большинстве случаев теплоносителем выступает обычная вода. Правда, предварительно ее очищают от различных примесей и газов. Она подается снизу в активную зону реактора с помощью главных циркуляционных насосов. Именно теплоноситель передает тепло за пределы реактора. Он обращается в замкнутой системе труб — контуре. Первый контур нужен для того, чтобы отобрать тепло у разогретого реакцией деления реактора (охладить его) и передать его дальше. Первый контур является радиоактивным, но он включает в себя не все оборудование станции, а лишь его часть, преимущественно ядерный реактор.
В активной зоне ядерного реактора находится ядерное топливо и, за редким исключением, так называемый замедлитель. Как правило, в большинстве типов реакторов в качестве топлива применяется уран 235 или плутоний 239.
Для того чтобы можно было использовать ядерное топливо в реакторе, его первоначально помещают в тепловыделяющие элементы — твэлы. Это герметичные трубки из стали или циркониевых сплавов внешним диаметром около сантиметра и длиной от нескольких десятков до сотен сантиметров, которые заполнены таблетками ядерного топлива. При этом в качестве топлива выступает не чистый химический элемент, а его соединение, например оксид урана UO2. Все это происходит еще на предприятии, где ядерное топливо производится.
Для упрощения учета и перемещения ядерного топлива в реакторе твэлы собираются в тепловыделяющие сборки по 150-350 штук. Одновременно в активную зону реактора обычно помещается 200-450 таких сборок. Устанавливают их в рабочих каналах активной зоны реактора.
Именно твэлы — главный конструктивный элемент активной зоны большинства ядерных реакторов. В них происходит деление тяжелых ядер, сопровождающееся выделением тепловой энергии, которая затем передается теплоносителю. Конструкция тепловыделяющего элемента должна обеспечить отвод тепла от топлива к теплоносителю и не допустить попадания в теплоноситель продуктов деления.
В ходе ядерных реакций образуются, как правило, быстрые нейтроны, то есть нейтроны, имеющие высокую кинетическую энергию. Если не уменьшить их скорость, то ядерная реакция со временем может затухнуть. Замедлитель и решает задачу снижения скорости нейтронов. В качестве замедлителя, широко используемого в ядерных реакторах, выступают вода, бериллий или графит. Но наилучшим замедлителем является тяжелая вода (D2O).
Здесь нужно добавить, что по уровню энергии нейтронов реакторы разделяются на два основных класса: тепловые (на тепловых нейтронах) и быстрые (на быстрых нейтронах). Сегодня в мире только два действующих реактора на быстрых нейтронах и оба находятся в России. Они установлены на Белоярской АЭС. Однако использование реакторов на быстрых нейтронах является перспективным, и интерес к этому направлению энергетики сохраняется. Скоро реакторы на быстрых нейтронах могут появиться и в других странах.
Так вот, в реакторах на быстрых нейтронах в замедлителе нет необходимости, они работают по другому принципу. Но и систему охлаждения реактора здесь тоже нужно выстраивать иначе. Вода, применяемая в качестве теплоносителя в тепловых реакторах, — хороший замедлитель, и ее использование в этом качестве в быстрых реакторах невозможно. Здесь могут применяться только легкоплавкие металлы, например ртуть, натрий и свинец. Кроме того, в быстрых реакторах используется и другое топливо — уран-238 и торий-232. Причем уран-238 гораздо чаще встречается в природе, чем его «собрат» уран-235. Строительство атомных электростанций с реакторами на быстрых нейтронах способно значительно расширить топливную базу ядерной энергетики.
Для того чтобы предотвратить попадание нейтронов в окружающую среду, активная зона реактора окружается отражателем. В качестве материала для отражателей часто используют те же вещества, что и в замедлителях. Кроме того, наличие отражателя необходимо для повышения эффективности использования ядерного топлива, так как отражатель возвращает назад в активную зону часть вылетевших из зоны нейтронов.
Парогенератор
Вернемся к процессу преобразования ядерной энергии в электричество. Для производства водяного пара на АЭС применяются парогенераторы. Тепло они получают от реактора, оно приходит с теплоносителем первого контура, а пар нужен для того, чтобы крутить паровые турбины.
Применяются парогенераторы на двух- и трехконтурных АЭС. На одноконтурных их роль играет сам ядерный реактор. Это так называемые кипящие реакторы, в них пар генерируется непосредственно в активной зоне, после чего направляется в турбину. В схеме таких АЭС нет парогенератора. Пример электростанции с такими реакторами — японская АЭС «Фукусима-1».
Вода первого контура, циркулирующая через активную зону реактора, омывает тепловыделяющие элементы, нагреваясь при этом до температуры 320-330° С. Но поскольку вода в обычном состоянии при давлении в 1 атмосферу закипает уже при температуре 100°С, то для того чтобы повысить температуру кипения, повышают и давление в первом контуре теплоносителя. В современных реакторах типа ВВЭР (водо-водяной энергетический реактор — они являются основой мировой атомной энергетики) давление в первом контуре достигает 160 атмосфер.
Дальше эта очень горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура. Это контур так называемого рабочего тела, т. е. среды, совершающей работу, преобразуя тепловую энергию в механическую. Эта вода, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому она закипает. Образовавшийся водяной пар под высоким давлением поступает на лопатки турбины.
Турбина и генератор
Пар из парогенератора поступает на турбину, в которой энергия пара преобразуется в механическую работу. В паровой турбине потенциальная энергия сжатого и нагретого водяного пара преобразуется в энергию кинетическую, которая, в свою очередь, преобразуется в механическую работу — вращение вала турбины, а он уже вращает ротор электрогенератора. Теперь механическая энергия превратилась в электрическую.
Прошедший через турбину пар поступает в конденсатор. Здесь пар охлаждается, конденсируется и превращается в воду. По второму контуру она поступает в парогенератор, где снова превратится в пар. Конденсатор охлаждается большим количеством воды из внешнего открытого источника, например водохранилища или пруда-охладителя. С водой первого контура, как мы помним, радиоактивного, паровая турбина и конденсатор не взаимодействуют, это облегчает их ремонт и уменьшает количество радиоактивных отходов при закрытии и демонтаже станции.
Управление реактором
Вернемся снова к ядерному реактору. Как же он управляется? Помимо твэлов с топливом и замедлителя в нем находятся еще управляющие стержни. Они предназначены для пуска и остановки реактора, поддержания его критического состояния в любой момент его работы и для перехода с одного уровня мощности на другой. Стержни изготовлены из материала, хорошо поглощающего нейтроны.
Для того чтобы реактор работал на постоянном уровне мощности, необходимо создать и поддерживать в его активной зоне такие условия, чтобы плотность нейтронов была неизменной во времени. Это состояние реактора и принято называть «критическим состоянием», или просто «критичностью».
Когда активная зона сильно разогревается, в нее опускаются управляющие стержни, которые встают между твэлами и вбирают в себя избыточные нейтроны. Если нужно добавить мощности, управляющие стержни снова поднимают. Если же их опустить на всю длину твэлов, то цепная реакция прекратится, реактор будет заглушен.
Кроме того, на случай непредвиденного катастрофического развития цепной реакции, а также возникновения других аварийных режимов, связанных с избыточным энерговыделением в активной зоне реактора, в каждом реакторе предусмотрена возможность экстренного прекращения цепной реакции. В этом случае в центральную часть активной зоны под действием силы тяжести сбрасываются стержни аварийной защиты.
Что еще есть на АЭС?
После удаления из реактора в твэлах с отработанным ядерным топливом все еще продолжаются процессы деления. В течение длительного периода времени они продолжают оставаться мощным источником нейтронов и выделяют тепло. Поэтому в течение некоторого времени твэлы выдерживают под водой в специальных бассейнах, которые находятся тут же, на атомной электростанции. Если их не охлаждать, они просто могут расплавиться.
После того как их радиоактивность и температура снизятся до значений, позволяющих их перевозить, а для водо-водяных реакторов это три года, твэлы извлекают, помещают в толстостенную стальную тару и отправляют в «сухие хранилища».
Кроме того, если посмотреть на атомную электростанцию со стороны, то ее силуэт, как правило, определяют высокие сооружения башенного типа. Это градирни. Они нужны в случае если невозможно использовать воду для конденсации пара из водохранилища. Тогда на станции применяют оборотные системы охлаждения, ключевым элементом которых являются охладительные башни. Внутри градирен горячая вода распыляется, падая с высоты как в обычном душе. Часть воды при этом испаряется, что и обеспечивает требуемое охлаждение. Благодаря своим внушительным размерам, а некоторые из них достигают высоты 60-этажного дома (например, градирня энергоблока №6 Нововоронежской АЭС), градирни обычно являются самой заметной частью атомной электростанции.
Кроме того, каждая атомная станция имеет еще одну или несколько высоких труб, внешне похожих на дымовые трубы обычных тепловых электростанций. Но дым из них не идет — это вентиляционные трубы, через них выводятся газоаэрозольные выбросы — радиоактивные инертные газы, аэрозоли радиоактивных продуктов деления и летучие соединения радиоактивного иода. Но по большей части это радиоактивные изотопы инертных газов — аргон-41, криптон-87 и ксенон-133. Они представляют собой короткоживущие радионуклиды и без ущерба для экологии распадаются за несколько дней или даже часов.
Как работает атомная электростанция (АЭС)
Несмотря на то, что долгие годы не утихают споры вокруг атомных электростанций, большинство людей мало представляют себе, как АЭС вырабатывает электроэнергию, хотя наверняка знают какую-нибудь легенду про АЭС. В статье будет рассказано в общих чертах как работает атомная электростанция. Каких-то тайн и разоблачений ждать не стоит, но кто-нибудь узнает для себя что-то новенькое.
В статье будет описываются атомные реакторы типа ВВЭР (водо-водяные энергетические реакторы), как самые распространенные.
Видео о том как работает атомная электростанция
Принцип работы атомной электростанции — анимация
В активную зону реактора загружены тепловыделяющие сборки, состоящие из пучка циркониевых тепловыделяющих элементов (ТВЭЛов), заполненных таблетками двуокиси урана.
Тепловыделяющая сборка реактора АЭС в натуральную величину
Деление ядер урана внутри атомного реактора
Ядра урана делятся с образованием нейтронов (2 или 3 нейтрона), которые, попадая в другие ядра, также могут вызывать их деление. Так возникает цепная ядерная реакция. При этом отношение числа образовавшихся нейтронов к числу нейтронов на предыдущем шаге деления называется коэффициентом размножения нейтронов k. Если k<1, реакция затухает. При к=1 идёт самоподдерживающаяся цепная ядерная реакция. Когда k>1, реакция ускоряется, вплоть до ядерного взрыва. В ядерных реакторах поддерживается управляемая цепная ядерная реакция, удерживая k близкой к единице.
Реактор атомной электростанции с загруженными тепловыделяющими сборками
Как вырабатывается электроэнергия на АЭС
В ходе протекания цепной реакции выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель первого контура — воду. Вода подается снизу в активную зону реактора с помощью главных циркуляционных насосов (ГЦН). Нагреваясь до температуры 322 °С вода поступает в парогенератор (теплообменник), где, пройдя по тысячам теплообменных трубок и отдав часть тепла воде второго контура, вновь поступает в активную зону.
Так как давление второго контура ниже, вода в парогенераторе вскипает, образуя пар с температурой 274°С, который поступает на турбину. Поступая в цилиндр высокого давления, а затем в три цилиндра низкого давления, пар раскручивает турбину, которая, в свою очередь, вращает генератор, вырабатывая электричество. Отработанный пар поступает в конденсатор, в котором он конденсируется с помощью холодной воды из пруда-охладителя или градирни и вновь возвращается в парогенератор с помощью питательных насосов.
Турбинное отделение АЭС и сама турбина
Такая сложная двухконтурная система создана для того, чтобы оградить оборудование АЭС (турбина, конденсатор), а также окружающую среду от попадания радиоактивных частиц из первого контура, появление которых возможно из-за коррозии оборудования, наведенной радиоактивности, а также разгерметизации оболочек ТВЭЛов.
Откуда и как управляют атомной электростанцией
Управление блоками АЭС осуществляется из блочного щита управления, который обычно сводит простого обывателя обилием «лампочек, крутилочек и кнопочек».
Щит управления расположен в реакторном отделении, но в «чистой зоне» и на нем постоянно находятся:
- ведущий инженер по управлению реактором
- ведущий инженер по управлению турбинами
- ведущий инженер по управлению блоком
- начальник смены блока
Территория АЭС
Вокруг атомной станции организуется зона наблюдения (та самая тридцатикилометровая зона), в которой ведется постоянный мониторинг радиационной обстановки. Также существует санитарно-защитная зона радиусом 3 км (зависит от проектной мощности АЭС), в которой запрещено проживание людей, а также ограничена сельскохозяйственная деятельность.
Зоны доступа атомной электростанции
Внутренняя территория АЭС разделена на две зоны: зона свободного доступа (чистая зона), где воздействие радиационных факторов на персонал практически исключено, и зону контролируемого доступа (ЗКД), где возможно воздействие радиации на персонал.
Доступ в ЗКД разрешен далеко не всем и возможен только через помещение санпропускника, после процедуры переодевания в спец. одежду и получения индивидуального дозиметра. Доступ в гермооболочку, в которой расположены сам реактор и оборудование первого контура, при работе реактора на мощности вообще запрещен и возможен лишь в исключительных случаях. Получаемые дозы работников АЭС строго фиксируются и нормируются, хотя фактическое облучение при нормальной работе реактора в сотни раз меньше предельных доз.
Дозиметрический контроль на выходе из ЗКД атомной электростанции
Выбросы в атмосферу через трубу АЭС
Наверное, самое большое число слухов и домыслов ходят вокруг выбросов атомных станций. Выбросы действительно есть и происходят они, в основном, через вентиляционные трубы — это те самые трубы, которые стоят возле каждого энергоблока и никогда не дымят. По большей части, в атмосферу попадают инертные радиоактивные газы — ксенон, криптон и аргон.
Но перед сбросом в атмосферу воздух из помещений АЭС проходит систему сложных фильтров, где удаляется большая часть радионуклидов. Короткоживущие изотопы распадаются еще до того, как газы достигнут верха трубы, еще больше снижая радиоактивность. В итоге, вклад в естественный радиационный фон газоаэрозольных выбросов АЭС в атмосферу незначителен и им вообще можно пренебречь. Поэтому атомная энергия является одной из самых чистых, в сравнении с другими электростанциями. В любом случае, все радиоактивные выбросы атомных станций строго контролируются экологами и разрабатываются способы дальнейшего их снижения.
Безопасность атомной электростанции
Все системы атомной станции проектируются и работают с учетом многочисленных принципов безопасности. Например, концепция глубоко эшелонированной защиты подразумевает наличие нескольких барьеров на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую среду. Очень похоже на принцип Кащея Бессмертного: топливо сгруппировано в таблетки, которые находятся в циркониевых ТВЭЛах, которые помещены в стальной корпус реактора, который помещен в железобетонную гермооболочку. Таким образом, разрушение одного из барьеров компенсируется следующим. Делается все, чтобы при любой аварии радиоактивные вещества не вышли за пределы зоны контролируемого доступа.
Также, все системы имеют двух- и трехкратное резервирование, в соответствии с принципом единичного отказа, по которому система должна бесперебойно выполнять свои функции даже при отказе любого ее элемента. Вместе с этим применяется принцип разнообразия, то есть использования систем, имеющих разные принципы работы. Например, при срабатывании аварийной защиты в активную зону реактора падают стержни-поглотители и в теплоноситель первого контура дополнительно впрыскивается борная кислота.
Как ремонтируют атомные электростанции?
Энергоблоки регулярно выводятся в планово-предупредительные ремонты (ППР), в периоды которых происходит перегрузка топлива, а также производится диагностика, ремонт и замена оборудования, модернизация оборудования. дин раз в четыре года работающий энергоблок выводится в капитальный ППР с полной выгрузкой ядерного топлива из активной зоны реактора, обследованием и испытанием внутрикорпусных устройств, а также испытания корпуса реактора на прочность.
Источник
Принцип работы атомной электростанции. Справка
Сpеди них пеpвый и наиболее pаспpостpаненный тип – это pеактоp на обогащенном уpане, в котоpом и теплоносителем, и замедлителем является обычная, или «легкая», вода (легководный реактор). Существуют две основные pазновидности легководного реактора: pеактоp, в котоpом паp, вpащающий туpбины, обpазуется непосpедственно в активной зоне (кипящий реактор, в России – РБМК — реактор большой мощности, канальный), и pеактоp, в котоpом паp обpазуется во внешнем, или втоpом, контуpе, связанном с пеpвым контуpом теплообменниками и паpогенеpатоpами (водо водяной энергетический реактор – ВВЭР).
Втоpой тип pеактоpа – газоохлаждаемый pеактоp (с гpафитовым замедлителем).
Тpетий тип pеактоpа, – это реактоp, в котоpом и теплоносителем, и замедлителем является тяжелая вода, а топливом природный уран.
Существует также реактор на быстрых нейтронах (БН).
Реактор смонтирован в стальном корпусе, рассчитанном на высокое давление – до 1,6 х 107 Па, или 160 атмосфер.
Основными частями ВВЭР-1000 являются:
1. Активная зона, где находится ядерное топливо, протекает цепная реакция деления ядер и выделяется энергия.
2. Отражатель нейтронов, окружающий активную зону.
3. Теплоноситель.
4. Система управления защиты (СУЗ).
5. Радиационная защита.
Теплота в реакторе выделяется за счет цепной реакции деления ядерного топлива под действием тепловых нейтронов. При этом образуются продукты деления ядер, среди которых есть и твердые вещества, и газы – ксенон, криптон. Продукты деления обладают очень высокой радиоактивностью, поэтому топливо (таблетки двуокиси урана) помещают в герметичные циркониевые трубки – ТВЭЛы (тепловыделяющие элементы). Эти трубки объединяются по несколько штук рядом в единую тепловыделяющую сборку. Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.
Схема станции – двухконтурная. Первый, радиоактивный, контур состоит из одного реактора ВВЭР 1000 и четырех циркуляционных петель охлаждения. Второй контур, нерадиоактивный, включает в себя парогенераторную и водопитательную установки и один турбоагрегат мощностью 1030 МВт. Теплоносителем первого контура является некипящая вода высокой чистоты под давлением в 16 МПа с добавлением раствора борной кислоты – сильного поглотителя нейтронов, что используется для регулирования мощности реактора.
Основные процессы, происходящие во время работы АЭС:
1. Главными циркуляционными насосами вода прокачивается через активную зону реактора, где она нагревается до температуры 320 градусов за счет тепла, выделяемого при ядерной реакции.
2. Нагретый теплоноситель отдает свою теплоту воде второго контура (рабочему телу), испаряя ее в парогенераторе.
3. Охлажденный теплоноситель вновь поступает в реактор.
4. Парогенератор выдает насыщенный пар под давлением 6,4 МПа, который подается к паровой турбине.
5. Турбина приводит в движение ротор электрогенератора.
6. Отработанный пар конденсируется в конденсаторе и вновь подается в парогенератор конденсатным насосом. Для поддержания постоянного давления в контуре установлен паровой компенсатор объема.
7. Теплота конденсации пара отводится из конденсатора циркуляционной водой, которая подается питательным насосом из пруда охладителя.
8. И первый, и второй контур реактора герметичны. Это обеспечивает безопасность работы реактора для персонала и населения.
В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях).
Безопасность и экологичность работы реактора обеспечиваются жестким выполнением регламента (правил эксплуатации) и большим количеством контрольного оборудования. Все оно предназначено для продуманного и эффективного управления реактором.
Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.
Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.
Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.
Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают «Систему аварийного охлаждения активной зоны» (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.
Согласно «Правилам ядерной безопасности реакторных установок атомных станций», по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.
Аппаратура АЗ должна состоять минимум из двух независимых комплектов.
Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:
1. По плотности нейтронного потока – не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока – не менее чем тремя независимыми каналами.
Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.
Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.
Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:
1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).
Материал подготовлен интернет-редакцией www.rian.ru на основе информации РИА Новости и открытых источников
Как устроены атомные электростанции — Naked Science
Войти Регистрация Написать
- Журнал
- Мероприятия
- Блоги
- Live
- Астрономия
- Hi-Tech
- Антропология
- Палеонтология
- Long Read
- Видео
- Физика
- Химия
- Биология
- Интервью
- История
- Космонавтика
- Медицина
- Оружие и техника
- Геология
- Психология
- С точки зрения науки
- Sci-Fi
- Концепты
- Фотогалерея
- Все статьи
- Журнал
- Мероприятия
- Блоги
- Live
- Астрономия
- Hi-Tech
- Антропология
- Палеонтология
- Long Read
- Видео
- Физика
- Химия
- Биология
- Интервью
- История
- Космонавтика
- Медицина
- Оружие и техника
- Геология
- Психология
- С точки зрения науки
- Sci-Fi
- Концепты
- Фотогалерея
- Все статьи
Искать Войти Регистрация Написать
Станции и проекты
Интенсивное развитие ядерной энергетики можно считать одним из средств борьбы с глобальным потеплением. К примеру, по подсчетам экспертов, атомные станции в Европе ежегодно позволяют избежать эмиссии около 700 миллионов тонн СО2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу около 210 млн тонн углекислого газа. Таким образом, ядерная энергетика, являясь мощным базовым источником электрогенерации, вносит свой вклад в декарбонизацию.
КАК РАБОТАЕТ АЭС
Атомная электростанция – это комплекс необходимых зданий, систем, устройств, оборудования и сооружений, предназначенных для производства электроэнергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.
На АЭС происходит три взаимных преобразования форм энергии:
- ядерная энергия переходит в тепловую,
- тепловая энергия переходит в механическую,
- механическая энергия преобразуется в электрическую.
Основой атомной станции является реактор, который располагается в реакторном зале, в основном корпусе. Это конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.
Основным элементом реактора является активная зона. Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.
Тепло отводится из активной зоны реактора теплоносителем – жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе. Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.
Парогенератор и сама турбина располагаются в турбинном зале.
На территории площадки также обычно находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями, прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.
Также в технологической цепочке есть конденсаторы и высоковольтные линии электропередач (ЛЭП), уходящие за пределы площадки станции.
КАКИЕ АЭС БЫВАЮТ
В зависимости от типа реактора на атомной станции могут быть 1, 2 или 3 контура теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).
Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.
Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.
Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.
Атомная электростанция (АЭС) — Что такое Атомная электростанция (АЭС)?
Ядерная установка, использующая для производства электрической (и в некоторых случаях тепловой) энергии ядерный реактор (реакторы) и содер
ИА Neftegaz.RU. Атомная электростанция (АЭС) — ядерная установка, использующая для производства электрической (и в некоторых случаях тепловой) энергии ядерный реактор (реакторы) и содержащая комплекс необходимых сооружений и оборудования.
Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю 1го контура.
Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура.
Полученный при этом пар поступает в турбины, вращающие электрогенераторы.
На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.
Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя.
Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).
Помимо воды в различных реакторах в качестве теплоносителя и охладителя могут применяться также расплавы металлов: натрий, свинец, эвтектический сплав свинца с висмутом и др.
Использование жидкометаллических теплоносителей позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в жидкометаллическом контуре не превышает атмосферного), избавиться от компенсатора давления.
Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР(Водо-водяной энергетический реактор).
Реакторы типа РБМК (Реактор большой мощности канального типа) использует один водяной контур, реакторы на быстрых нейтронах — 2 натриевых и один водяной контуры, перспективные проекты реакторных установок СВБР-100 и БРЕСТ предполагают двухконтурную схему, с тяжелым теплоносителем в первом контуре и водой во втором.
В случае невозможности использования большого количества воды для конденсации пара вместо использования водохранилища вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.
Атомные электростанции использует 31 страна.
Подавляющее большинство АЭС находится в странах Европы, Северной Америки, Дальневосточной Азии и на территории бывшего СССР, в то время как в Африке их почти нет, а в Австралии и Океании их нет вообще.
В мире действует 411 энергетических ядерных реакторов общей мощностью 353,4 ГВт.
Еще 41 реактор не производил электричества от 1,5 до 20 лет, причём 40 из них находятся в Японии.
Согласно докладу о состоянии индустрии ядерной энергетики, на 2016 г. в отрасли наблюдается спад.
Пик производства ядерной энергии был зафиксирован в 2006 г. (2660 ТВт⋅ч).
Доля ядерной энергетики в глобальном производстве электричества снизилась с 17,6 % в 1996 г. до 10,7 % в 2015 г.
158 реакторов были окончательно остановлены. Средний возраст закрытого реактора составляет 25 лет.
Кроме того, строительство 6 реакторов формально продолжается более 15 лет.
За последние 10 лет в мире в эксплуатацию было введено 47 энергоблоков, почти все из них находятся либо в Азии (26 — в Китае), либо в Восточной Европе.
2/3 строящихся на данный момент реакторов приходятся на Китай, Индию и Россию.
КНР осуществляет самую масштабную программу строительства новых АЭС, ещё около полутора десятка стран мира строят АЭС или развивают проекты их строительства.
Прослеживается тенденция к старению ядерных реакторов.
Средний возраст действующих реакторов составляет 29 лет.
Самый старый действующий реактор находится в Швейцарии, работает в течение 47 лет.
В настоящее время разрабатываются международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые обещают повысить безопасность и увеличить КПД АЭС.
В 2007 г. Россия приступила к строительству первой в мире плавучей АЭС, позволяющей решить проблему нехватки энергии в отдалённых прибрежных районах страны.
Строительство столкнулось с задержками.
По разным оценкам, первая плавающая АЭС заработает в 2018-2019 г.
Все, что вам нужно знать об атомных электростанциях
Число атомных электростанций за последние годы увеличилось. По состоянию на 2019 год в мире насчитывается более 400 атомных электростанций. В настоящее время более 14% мировой электроэнергии вырабатывается атомными электростанциями.
В 2018 году только атомные электростанции в США произвели 807,1 миллиарда киловатт энергии, что составляет 20% электроэнергии страны.
СВЯЗАННЫЙ: ПОЗНАКОМЬТЕСЬ С ПЕРВОЙ В МИРЕ АТОМНОЙ ЭЛЕКТРОСТАНЦИИ
Как атомные электростанции вырабатывают энергию?
Простой ответ — ядерная реакция.Однако если вы копнете немного глубже, вы откроете для себя набор сложных процессов, которые позволяют нам получать энергию из ядерных частиц.
И в этом руководстве мы будем внимательны!
Ядерные реакции бывают двух типов — ядерное деление и ядерный синтез. Мы используем ядерное деление для выработки энергии из ядерных реакторов. Причина, по которой мы не используем ядерный синтез, заключается в том, что у нас нет технологии, достаточно зрелой для безопасного и экономичного выполнения этого процесса.
Тем не менее, уже ведутся исследования по созданию устойчивого синтеза энергии.
Энергия, выделяемая в ядерных реакциях, находится в виде тепла.
На атомных электростанциях это тепло, выделяемое в результате реакций, используется для превращения воды в перегретый пар. Затем этот пар используется для вращения турбины, соединенной с генератором.
Когда турбина раскручивается, генератор начинает вырабатывать энергию.
Что такое деление ядер и как оно работает?
Деление ядра — это процесс расщепления атома.Когда атом расщепляется, он высвобождает огромное количество энергии.
Атомные электростанции, которые мы используем сегодня, используют эту энергию и преобразуют ее в электрическую.
У атома есть ядро и электроны, вращающиеся вокруг него. Ядро атома состоит из нейтронов и протонов. Ядро удерживается силой, называемой сильной ядерной силой.
Это самая сильная сила в природе.
Один из способов преодолеть эту силу и разделить атом — это ударить по ядру нейтроном.
При делении ядер мы используем атомы урана из-за их большого атомного размера. Большой размер означает, что атомная сила внутри него не такая уж сильная.
Следовательно, существует большая вероятность расщепления ядра.
Еще одно преимущество урана состоит в том, что, хотя он редко встречается в природе, радиоактивность урана обеспечивает постоянный поток энергии. Один фунт урана производит столько же энергии, сколько и три миллиона фунтов угля.
При делении ядра нейтроны высоких энергий заставляют бомбардировать ядра урана.Бомбардировка заставляет ядра ядер урана расщепляться.
Этот процесс высвобождает большое количество энергии, и нейтроны внутри ядер урана также высвобождаются. Затем эти нейтроны бомбардируют другие атомы урана.
Этот процесс превращается в цепную реакцию, где каждая бомбардировка приводит к новым бомбардировкам. Чтобы эта цепная реакция не вышла из-под контроля, в ядерных реакторах используются регулирующие стержни, которые поглощают нейтроны.
При делении ядер создается температура до 520 ° F (270 ° C) в центре ядерного реактора.
Все атомные станции не одинаковы. Они похожи по типу используемого ядерного топлива, но отличаются способом нагрева воды и превращения ее в пар.
Основываясь на этой классификации, атомные электростанции можно условно разделить на две:
- Реактор с кипящей водой (BWR)
- Реакция с водой под давлением (PWR)
Реактор с водой под давлением (PWR): A водяной реактор — самый распространенный тип атомных электростанций.В реакторе с водой под давлением или PWR есть два резервуара для воды.
Первый контейнер находится внутри реактора и находится под давлением с помощью компенсатора давления. Подача воды под давлением повышает температуру кипения воды.
В PWR давление установлено на 150 МПа , что приводит к температуре кипения около 644 ° F (340 ° C) . Вода поступает в реактор при 554 ° F (290 ° C) и выходит из него при 608 ° F (320 ° C) .
Горячая вода, выходящая из реактора, проходит по трубам, помещенным во второй контейнер.Вода во втором контейнере вообще не находится под давлением, поэтому она начинает закипать, как только горячая вода проходит по трубкам, генерируя пар для вращения турбины.
Реактор с кипящей водой (BWR): В реакторе с кипящей водой не используется двухкамерный подход PWR. Вместо этого вода, протекающая через реактор, — это та же вода, которая вращает турбину.
Когда вода попадает в реактор, она превращается в пар, поскольку температура внутри реактора составляет 545 ° F (285 ° C) .Фактический КПД реактора с кипящей водой (BWR) составляет около 33-34% .
Переход от электростанций, работающих на ископаемом топливе, к атомным электростанциям дает множество преимуществ. Мы перечислили несколько ниже:
- Достижения в области сканирования и добычи позволили получить относительно дешевый уран
- Уран имеет очень высокую плотность энергии, во много раз превышающую массу ископаемого топлива
- Атомные электростанции способны производить производство постоянной энергии
- Отсутствие выбросов парниковых газов
- Производство большой энергии на относительно небольшой площади по сравнению с солнечными или ветряными альтернативами.
Когда мы смотрим на недостатки атомных электростанций, их всего два. Во-первых, первоначальная стоимость атомной электростанции очень высока и исчисляется миллиардами. Во-вторых, радиоактивные отходы, являющиеся побочным продуктом ядерной реакции.
Ядерная энергия — один из самых надежных видов энергии, которые используются сегодня. С годами мы наблюдаем постепенный рост количества атомных станций в мире.
СВЯЗАННЫЕ С: ПРЕВРАЩЕНИЕ ЯДЕРНОГО ОРУЖИЯ В ЯДЕРНОЕ ТОПЛИВО
Благодаря новым достижениям в исследованиях ядерной энергетики, таким как замена тория вместо урана, мы можем обеспечить стабильные поставки ядерного топлива на ближайшие века.Мы также активно исследуем способы утилизации ядерных отходов, образующихся на атомных электростанциях.
По сути, мы можем без сомнения сказать, что ядерная энергия никуда не денется!
.
КАК РАБОТАЕТ АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ?
КАК ЭТО РАБОТАЕТ ГЕНЕРАЦИЯ ЭЛЕКТРОЭНЕРГИИ
10 2 ЭЛЕКТРИЧЕСТВО В ОНТАРИО Онтарио получает электроэнергию из различных источников энергии. Около половины нашей электроэнергии вырабатывается атомной энергетикой.Остальное — смесь гидроэлектростанций, угля и природного газа
.
Дополнительная информация
Системы реакторов с кипящей водой
Кипящая вода (BWR) В этой главе будут обсуждаться цели некоторых основных систем и компонентов, связанных с реактором с кипящей водой (BWR) для выработки электроэнергии. Технический отдел USNRC
Дополнительная информация
Структура и свойства атомов.
ПС-2.1 Сравните субатомные частицы (протоны, нейтроны, электроны) атома по массе, местоположению и заряду и объясните, как эти частицы влияют на свойства атома (включая идентичность,
Дополнительная информация
Ядерная энергия: ядерная энергия
Введение Ядерное: Ядерное Как мы обсуждали в предыдущем упражнении, энергия выделяется при распаде изотопов. Эта энергия может быть либо в форме электромагнитного излучения, либо в виде кинетической энергии
Дополнительная информация
Обычные источники энергии
9.2 Обычные источники энергии Ключевой вопрос: Какие преимущества и проблемы связаны с общими источниками энергии? Подсказки Слово «растение» здесь не из тех, что растут из земли. В этом разделе растения
Дополнительная информация
22.1 Ядерные реакции
В средние века люди, которых называли алхимиками, тратили много времени на изготовление золота. Часто они обманывали людей, заставляя их поверить в то, что они сделали золото.Хотя алхимикам так и не удалось создать
Дополнительная информация
www.universityquestions.in
ОТДЕЛ ЭЛЕКТРОЭНЕРГЕТИКИ И ЭЛЕКТРОНИКИ БАНК ВОПРОСОВ ТЕМА: ME6701-ЭЛЕКТРОСТАНЦИЯ ГОД / СЕВЕР: III / V БЛОК-I УГОЛЬНЫЕ ТЕПЛОВЫЕ ЭЛЕКТРОСТАНЦИИ 1. Каковы процессы цикла Ранкина?
Дополнительная информация
Радиоактивность и частицы
Введение в радиоактивность и частицы… 2 Атомная структура … 2 Как устроены эти частицы? … 2 Атомные обозначения … 4 Изотопы … 4 Что такое радиоактивность? … 5 Типы излучения: альфа, бета и
Дополнительная информация
В К. Райна. Группа Реакторов, БАРК
Критическая установка для реакторов AHWR и PHWR V K Raina Reactor Group, BARC Индия имеет большие запасы тория. Критическая установка. Использование тория для производства энергии является основной задачей индийской атомной станции
.
Дополнительная информация
Готовим со скоростью света!
Готовка в инфракрасной печи Cooking & Colouring Infrabaker — это модульная инфракрасная система непрерывного приготовления, разработанная Infrabaker International.Машина предназначена для приготовления и / или нанесения красок на широкий
Дополнительная информация
Введение в ядерную физику
Введение в ядерную физику 1. Структура атома и периодическая таблица Согласно модели атома Бора-Резерфорда, также называемой моделью солнечной системы, атом состоит из центрального ядра
Дополнительная информация
MCQ — ЭНЕРГЕТИКА и КЛИМАТ
1 MCQ — ЭНЕРГЕТИКА и КЛИМАТ 1.Объем данной массы воды при температуре T 1 равен V 1. Объем увеличивается до V 2 при температуре T 2. Можно рассчитать коэффициент объемного расширения воды
Дополнительная информация
Цели 404 ГЛАВА 9 ИЗЛУЧЕНИЕ
Цели Объяснить разницу между изотопами одного и того же элемента. Опишите силу, удерживающую нуклоны вместе. Объясните взаимосвязь между массой и энергией согласно теории Эйнштейна
Дополнительная информация
АВАРИЯ НА ТРИМИЛЬНОМ ОСТРОВЕ
АВАРИЯ НА ТРИ МИЛЬ ОСТРОВ М.Ragheb 4/12/2011 1. ВВЕДЕНИЕ Авария на Три-Майл-Айленде (TMI) в Харрисбурге, штат Пенсильвания, США, является серьезным и дорогостоящим происшествием, которое серьезно повлияло на
Дополнительная информация
СИСТЕМЫ ПРОИЗВОДСТВА ЭНЕРГИИ
СИСТЕМЫ ПРОИЗВОДСТВА ЭНЕРГИИ СОЛНЕЧНАЯ ЭНЕРГИЯ ВВЕДЕНИЕ Энергия солнца падает на нашу планету ежедневно. Тепло солнца создает на земле условия, способствующие жизни. Погодные условия, которые
Дополнительная информация
5.2. Испарители — типы и использование
5.2. Испарители — виды и применение 5.2.1. Вапорайзеры General имеют множество конструкций и работают во многих режимах. В зависимости от приложения услуги проектирование, строительство, проверка,
Дополнительная информация
ПРИМЕЧАНИЯ К СТРУКТУРЕ АТОМА
ПРИМЕЧАНИЯ ПО СТРУКТУРЕ АТОМА. Химия — это изучение вещества и его свойств.Эти свойства можно объяснить, исследуя атомы, из которых состоит материя. Атом — самая маленькая частица
Дополнительная информация
Модуль 2.2. Механизмы теплопередачи
Модуль 2.2 Механизмы теплопередачи Результаты обучения После успешного завершения этого модуля слушатели смогут: — Описывать 1-й и 2-й законы термодинамики. — Опишите механизмы теплопередачи.
Дополнительная информация
Руководство по реагированию на чрезвычайные ситуации
Руководство по реагированию на чрезвычайные ситуации Автомобиль на топливных элементах Honda, подготовленный для пожарной службы, правоохранительных органов, скорой медицинской помощи и профессионального буксирующего персонала компанией American Honda Motor Co., Inc. Содержание Ключевые компоненты … 2
Дополнительная информация
факты о ядерной энергии
Факты об атомной энергии 2 За последние полвека обеспокоенность общественности и поддержка ядерной энергии росли и ослабевали. Опасения усилились в результате аварии на Три-Майл-Айленд, Чернобыль и Япония
Дополнительная информация
Энергосберегающие котлы
Информационный бюллетень по энергосбережению Котлы Превратите насущную проблему в реальную экономию энергии Вам нужен котел для обогрева помещений и обеспечения горячей водой или для выработки пара для использования в промышленных процессах.К сожалению,
Дополнительная информация
СИСТЕМЫ РАДИАЦИОННОГО МОНИТОРИНГА
СИСТЕМЫ РАДИАЦИОННОГО МОНИТОРИНГА Мониторы на участке Мониторы процессов Встроенные мониторы, Мониторы примыкающего к линии Локальные / удаленные процессоры, Системы сбора данных Сертифицированы NUPIC, Чувствительность в широком диапазоне, утвержденная NRC поставщиком
Дополнительная информация
Массы в атомных единицах
Ядерный состав — силы, связывающие протоны и нейтроны в ядре, намного сильнее (энергия связи МэВ), чем силы, связывающие электроны с атомом (энергия связи ev) — составляющие
Дополнительная информация
.
Как работает ядерный реактор
Комбинированный логотип ShapeemailfaxFS 2017PDF IconphoneplayShapeПерейти к основному содержанию
Вторичная навигация
Новости
Голоса за ядерную энергию
Действовать
Конференции
Членам
Поиск
Поиск
Отправить
Закрыть поиск
Институт ядерной энергии
Навигация по сайту
Основы
Развернуть навигацию
Основы
Что такое ядерная энергия?
Как работает ядерный реактор
Ядерное топливо
Ядерные отходы
Безопасность
Ядерная энергия обеспечивает безуглеродную энергию 24/7
Помимо электричества
Пропаганда
Развернуть навигацию
Пропаганда
Сохранить атомные станции
Сделайте правила умнее
Строить новые реакторы
Соревнуйтесь глобально
Институт ядерной энергии
Преимущества
Развернуть навигацию
Преимущества
Национальная безопасность
Климат
Технологическое лидерство
Инфраструктура
Вакансии
Качество воздуха
Устойчивое развитие
Электрические транспортные средства
.
Как работает ядерный реактор
Ядерные реакторы — это, по сути, большие котлы, которые используются для нагрева воды с целью производства огромного количества электроэнергии с низким содержанием углерода. Они бывают разных размеров и форм и могут работать на различных видах топлива.
Атомная электростанция Рингхалс с четырьмя реакторами, способными вырабатывать 20% потребности Швеции в электроэнергии (Изображение: Vattenfall)
Ядерный реактор приводится в движение расщеплением атомов, процессом, называемым делением, когда частица («нейтрон») выстреливает в атом, который затем делится на два меньших атома и несколько дополнительных нейтронов.Некоторые из нейтронов, которые высвобождаются, затем поражают другие атомы, заставляя их тоже делиться и выделять больше нейтронов. Это называется цепной реакцией.
При делении атомов в цепной реакции также выделяется большое количество энергии в виде тепла. Вырабатываемое тепло отводится из реактора циркулирующей жидкостью, обычно водой. Затем это тепло можно использовать для производства пара, который приводит в действие турбины для производства электроэнергии.
Для того, чтобы ядерная реакция протекала с нужной скоростью, в реакторах есть системы, которые ускоряют, замедляют или останавливают ядерную реакцию и выделяют тепло.Обычно это делается с помощью управляющих стержней, которые обычно изготавливаются из материалов, поглощающих нейтроны, таких как серебро и бор.
Два примера ядерного деления урана-235, наиболее часто используемого топлива в ядерных реакторах.
Ядерные реакторы бывают разных форм и размеров — в некоторых используется вода для охлаждения активной зоны, в других — газ или жидкий металл. Наиболее распространенные типы энергетических реакторов используют воду, причем более 90% реакторов в мире являются водными.Дополнительную информацию о различных типах реакторов по всему миру можно найти в разделе «Ядерные реакторы» Информационной библиотеки.
Ядерные реакторы очень надежны при производстве электроэнергии, они могут работать 24 часа в сутки в течение многих месяцев, если не лет, без перебоев, независимо от погоды или времени года. Кроме того, большинство ядерных реакторов могут работать очень долгое время — во многих случаях более 60 лет. В 2019 году блоки 3 и 4 завода в Турции Пойнт во Флориде стали первыми реакторами в мире, получившими лицензию на 80-летнюю эксплуатацию.
Перезаправка реактора (Изображение: Vattenfall)
Что питает реактор?
В качестве топлива для реактора можно использовать ряд различных материалов, но чаще всего используется уран. Урана много, и его можно найти во многих местах по всему миру, в том числе в океанах. Также можно использовать другие виды топлива, такие как плутоний и торий.
Большинство современных реакторов содержат несколько сотен тепловыделяющих сборок, каждая из которых содержит тысячи небольших таблеток уранового топлива.Одна окатыша содержит столько энергии, сколько содержится в одной тонне угля. Типичный реактор требует около 27 тонн свежего топлива в год. Напротив, угольной электростанции аналогичного размера потребуется более двух с половиной миллионов тонн угля для производства такого же количества электроэнергии.
Таблетки ядерного топлива не намного больше кубика сахара (Изображение: Казатомпром)
Как насчет отходов?
Как и любая другая отрасль, ядерная промышленность производит отходы.Однако, в отличие от многих отраслей, ядерная энергия вырабатывает очень мало энергии и полностью содержит то, что она производит, и управляет ею. Подавляющее большинство отходов атомных электростанций не очень радиоактивны, и в течение многих десятилетий с ними ответственно обращались и утилизировали. Если бы ядерная энергия использовалась для снабжения человека электроэнергией в течение всего года, было бы произведено всего около 5 граммов высокорадиоактивных отходов, что равно весу листа бумаги.
С отработанным топливом, выходящим из реактора, можно обращаться по-разному, включая переработку для производства энергии или прямую утилизацию.Фактически, многие страны десятилетиями использовали переработанное топливо для частичного заправления своих реакторов.
Отработанное ядерное топливо, ожидающее утилизации (Изображение: Росатом)
Поделиться
Связанная информация
Как уран превращается в ядерное топливо?
Ядерные реакторы
Вас также может заинтересовать
.