A, B, C и D
Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины. Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции. Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена. АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя. В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.
Особенности работы автоматов защиты сети
К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.
Токи, которые могут представлять опасность для сети, подразделяются на два вида:
- Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
- Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.
Устройство и принцип работы автоматического выключателя – на видео:
Токи перегрузки
Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.
Время срабатывания защитного автоматического выключателя зависит от величины перегрузки: при небольшом превышении нормы оно может занять час и более, а при значительном – несколько секунд.
За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.
Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.
Токи короткого замыкания
Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.
Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?
На видео про селективность автоматических выключателей:
Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.
Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.
Характеристики срабатывания защитных автоматических выключателей
Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.
В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.
Автоматы типа МА
Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.
Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.
Приборы класса А
Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.
Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.
Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.
Защитные устройства класса B
Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.
Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.
Автоматы категории C
Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.
Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.
Это позволит соблюсти селективность защитных автоматов (избирательность), и при КЗ в одной из веток не будет происходить обесточивания всего дома.
Автоматические выключатели категории Д
Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.
Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.
Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.
Защитные устройства категории K и Z
Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.
Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.
Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.
Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.
Наглядно про категории автоматов на видео:
Заключение
В этой статье мы рассмотрели время токовые характеристики защитных автоматов, классификацию этих устройств в соответствии с ПУЭ, а также разобрались, в каких цепях устанавливаются приборы различных категорий. Полученная информация поможет вам определить, какое защитное оборудование следует использовать в сети, исходя из того, какие устройства к ней подключены.
Какую характеристику автоматического выключателя правильно устанавливать в жилых помещениях
← Новые распределительные щиты New VEGA HAGER — ваш хаб инноваций || Видеообзор шкафы Hager Volta →
Какую характеристику автоматического выключателя правильно устанавливать в жилых помещениях
Для тех, кто не хочет вникать в технические тонкости, какую характеристику автоматического выключателя или дифавтомата (поскольку автоматический выключатель в нем, как часть) применить в защите вашей электросети, предлагаем вниманию рекомендации немецкого производителя HAGER – прочесть и принять:
- Характеристика срабатывания В (3-5 In):
Применяется преимущественно для защиты кабелей и цепей в жилых домах (цепи освещения, розетки)
- Характеристика срабатывания С (5-10 In):
Применяется для защиты кабелей и цепей преимущественно в приборах с повышенным пусковым током (группы ламп, электродвигатели, и т.д.)
- Характеристика срабатывания D (10-20 In):
Применяется для защиты кабелей и цепей, особенно в приборах с очень большим пусковым током (сварочные трансформаторы, электродвигатели и т.д.)
Т.е. компания HAGER для жилых помещений рекомендует устанавливать характеристику «В». И ей следуют немецкие электрики. В принципе, подобной рекомендации придерживаются другие европейские производители. Почему же в нашей стране электромонтажники характеристику «В» в жилом фонде не принимают за стандарт, а часто применяют «С» характеристику?
Попробуем разобраться.
Рассмотрим таблицу отключения автоматического выключателя в зависимости от характеристики отключения:
Рис.1 Характеристика «В»
Выпуск автоматических выключателей с разными характеристиками отключения и отсутствие универсальной характеристики обусловлены различными требованиями к защите электрической линии от перегрузок, пусковых токов, короткого замыкания. Из таблицы мы видим, что самый быстрый и чувствительный автомат с «В» характеристикой, самый медленный и не чувствительный к пиковым нагрузкам – автомат с характеристикой «D».
Рис.2 характеристика «C»
Характеристика «С» кажется оптимальной, поскольку находится посередине графика (см. выше). Так ли это? Тот факт, что автоматы типа C сейчас активно применяются, не означает, что тип C «лучше» или «более продвинутый». Это просто два разных типа для разных условий, но технологический уровень их исполнения одинаков. И цена, практически, тоже одинакова.
Рис.3 характеристика «D»
Следует отметить, что в современной высококачественной бытовой технике, благодаря применению специальных технологий, пусковые токи значительно меньше, чем были раньше, даже если используется импульсный блок питания. Поэтому, если вы оснастили квартиру или коттедж современной техникой, можно сделать выбор в пользу защитных автоматов типа «B». При этом можно повысить надежность энергоснабжения, реализовав принцип селективного отключения. Он заключается в том, что из-за задержки по времени в срабатывании вышестоящего защитного автомата относительно нижестоящего предотвращается отключение питания по всему коттеджу или по всей квартире. Самый экономичный способ реализации селективной защиты — поставить вводной автомат типа С, а в качестве нижестоящих использовать автоматы типа B.
Еще одно хорошее преимущество характеристики «В» в квартире. Автоматы с такой характеристикой лучше щадят вашу сеть при коротком замыкании, т.к. раньше отключаются и не настолько требовательны к сечению проводников, как характеристика «С».
Выбор характеристики автоматических выключателей остается за вами. Можно полностью установить с характеристикой «С».
Что такое время токовые характеристики автоматических выключателей
При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток. Однако если сила тока по каким-либо причинам превысила номинальные значения, происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.
Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.
Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.
Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний – в этом и заключается важность данной характеристики.
В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.
При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.
По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем – 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.
Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».
Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой
Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.
Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.
Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления – происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.
Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.
Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.
Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата – наименьший ток при котором автомат отключится мгновенно.
Автоматы имеют несколько характеристик, самыми распространенными из которых являются:
- — B — от 3 до 5 ×In;
- — C — от 5 до 10 ×In;
- — D — от 10 до 20 ×In.
Что означают цифры указанные выше?
Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.
Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3…5)=48…80А. Для С16 диапазон токов мгновенного срабатывания 16*(5…10)=80…160А.
При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).
В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.
Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.
Согласитесь логично, что время срабатывания зависит от температуры автомата. Автомат отключится быстрее, если его тепловой орган (биметаллическая пластина) разогретый. И наоборот при первом включении когда биметалл автомата холодный время отключения будет больше.
Поэтому на графике верхняя кривая характеризует холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата.
Пунктирной линией обозначен предельный ток срабатывания для автоматов до 32 А.
Что показано на графике время токовой характеристики
На примере 16-Амперного автомата, имеющего время токовую характеристику C, попробуем рассмотреть характеристики срабатывания автоматических выключателей.
На графике можно увидеть, как протекающий через автоматический выключатель ток влияет на зависимость времени его отключения. Кратность тока протекающего в цепи к номинальному току автомата (I/In) изображает ось Х, а время срабатывания, в секундах – ось У.
Выше говорилось, что в состав автомата входит электромагнитный и тепловой расцепитель. Поэтому график можно разделить на два участка. Крутая часть графика показывает защиту от перегрузки (работа теплового расцепителя), а более пологая часть защиту от КЗ (работа электромагнитного расцепителя).
Как видно на графике если к автомату С16 подключить нагрузку 23 А то он должен отключится за 40 сек. То есть при возникновении перегрузки на 45 % автомат отключится через 40 сек.
На токи большой величины, которые могут привести к повреждению изоляции электропроводки автомат способен реагировать мгновенно благодаря наличию электромагнитного расцепителя.
При прохождении через автомат С16 тока 5×In (80 А) он должен сработать через 0.02 сек (это если автомат горячий). В холодном состоянии, при такой нагрузке, он отключится в пределах 11 сек. и 25 сек. (для автоматов до 32 А и выше 32 А соответственно).
Если через автомат будет протекать ток равный 10×In, то он отключается за 0,03 секунды в холодном состоянии или меньше чем за 0,01 секунду в горячем.
К примеру, при коротком замыкании в цепи, которая защищена автоматом С16, и возникновении тока в 320 Ампер, диапазон времени отключения автомата будет составлять от 0,008 до 0,015 секунды. Это позволит снять питание с аварийной цепи и защитить от возгорания и полного разрушения сам автомат, закоротивший электроприбор и электропроводку.
Автоматы с какими характеристиками предпочтительнее использовать дома
В квартирах по возможности необходимо обязательно применять автоматы категории B, которые являются более чувствительными. Данный автомат отработает от перегрузки так же, как и автомат категории С. А вот о случае короткого замыкания?.
Если дом новый, имеет хорошее состояние электросети, подстанция находится рядом, а все соединения качественные, то ток при коротком замыкании может достигать таких величин, что его должно хватить на срабатывание даже вводного автомата.
Ток может оказаться малым при коротком замыкании, если дом является старым, а к нему идут плохие провода с огромным сопротивлением линии (особенно в сельских сетях, где большое сопротивление петли фаза-нуль) – в таком случае автомат категории C может не сработать вообще. Поэтому единственным выходом из этой ситуации является установка автоматов с характеристикой типа В.
Следовательно, время токовая характеристика типа В является определенно более предпочтительной, в особенности в дачной или сельской местности или в старом фонде.
В быту на вводной автомат вполне целесообразно ставить именно тип С, а на автоматы групповых линий для розеток и освещения – тип В. Таким образом будет соблюдена селективность, и где-нибудь в линии при коротком замыкании вводной автомат не будет отключаться и «гасить» всю квартиру.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Электрические автоматы. Виды и работа. Характеристики
С самого начала возникновения электричества инженеры стали думать над безопасностью электрических сетей и устройств от токовых перегрузок. Вследствие этого было сконструировано много разных устройств, которые отличаются надежной и качественной защитой. Одними из последних разработок стали электрические автоматы.
Электрические автоматы
Этот прибор называется автоматическим по причине того, что он оснащен функцией отключения питания в автоматическом режиме, при возникновении коротких замыканий, перегрузок. Обычные предохранители после срабатывания подлежат замене на новые, а автоматы после устранения причин аварии можно снова включить.
Такое защитное устройство необходимо в любой схеме электрической сети. Защитный автомат защитит здание или помещение от разных аварийных ситуаций:
- Пожаров.
- Ударов человека током.
- Неисправностей электропроводки.
Виды и конструктивные особенности
Необходимо знать информацию о существующих видах автоматических выключателей, чтобы во время приобретения правильно выбрать подходящее устройство. Имеется классификация электрических автоматов по нескольким параметрам.
Отключающая способность
Это свойство определяет ток короткого замыкания, при котором автомат разомкнет цепь, тем самым отключит сеть и приборы, которые были подключены к сети. По этому свойству автоматы подразделяются:
- Автоматы на 4500 ампер, применяются для предотвращения неисправностей силовых линий жилых домов старой постройки.
- На 6000 ампер, используются для предотвращения аварий при замыканиях в сети домов в новостройках.
- На 10000 ампер, применяются в промышленности для защиты электрических установок. Ток такой величины может образоваться в непосредственной близости от подстанции.
Срабатывание автоматического выключателя возникает при замыканиях, сопровождающихся возникновением определенной величины тока.
Автомат защищает электропроводку от повреждения изоляции большим током.
Число полюсов
Это свойство говорит нам о наибольшем количестве проводов, которые возможно подключить к автомату для обеспечения защиты. При аварии, напряжение на этих полюсах отключаются.
Особенности автоматов с одним полюсом
Такие электрические автоматы наиболее простые по своей конструкции, и служат для защиты отдельных участков сети. К такому автоматическому выключателю можно подсоединить два провода: вход и выход.
Задачей таких устройств является защита электрической проводки от перегрузок и КЗ проводов. Нейтральный провод подключается к нулевой шине, в обход автомата. Заземление подключается отдельно.
Электрические автоматы с одним полюсом не являются вводными, так как при его отключении разрывается фаза, а нулевой провод по-прежнему остается соединенным с питанием. Это не обеспечивает защиту на 100%.
Свойства автоматов с двумя полюсами
В случаях, когда при аварии требуется полное отсоединение от электрической сети, используют автоматические выключатели с двумя полюсами. Они используются как вводные. В аварийных случаях, либо при коротком замыкании вся электрическая проводка отключается в одно время. Это дает возможность осуществлять работы по ремонту и обслуживанию, а также проведения работ по подключению оборудования, так как гарантирована полная безопасность.
Двухполюсные электрические автоматы используют, когда необходимо наличие отдельного выключателя для устройства, работающего от сети 220 вольт.
Автомат с двумя полюсами подключают к устройству с помощью четырех проводов. Из них два приходят от сети питания, а другие два выходят из него.
Трехполюсные электрические автоматы
В электрической сети, имеющей три фазы, применяются 3-полюсные автоматы. Заземление оставляют незащищенным, а проводники фаз соединяют с полюсами.
Трехполюсный автомат служит вводным устройством для любых трехфазных потребителей нагрузки. Чаще всего такой вариант исполнения автомата применяют в промышленных условиях для питания электричеством электродвигателей.
К автомату можно подключить 6 проводников, три из которых – фазы электрической сети, а остальные три выходящие от автомата, и обеспеченные защитой.
Использование четырехполюсного автомата
Чтобы обеспечить защитой трехфазную сеть с четырехпроводной системой проводников (например, электродвигатель, включенных по схеме «звезды»), применяют 4-полюсный автоматический выключатель. Он играет роль вводного устройства четырехпроводной сети.
Имеется возможность подключения к устройству восьми проводников. С одной стороны – три фазы и ноль, с другой стороны – выход трех фаз с нолем.
Время-токовая характеристика
Когда устройства, потребляющие электроэнергию, и электрическая сеть работают в нормальном режиме, то происходит обычное протекание тока. Это явление касается и электрического автомата. Но, в случае повышения силы тока по разным причинам выше номинального значения, происходит срабатывание расцепителя автомата, и цепь разрывается.
Параметр этого срабатывания называется время-токовой характеристикой электрического автомата. Она является зависимостью времени сработки автомата и соотношения между реальной силой тока, проходящей через автомат, и номинальным значением тока.
Важность этой характеристики заключается в том, что обеспечивается наименьшее число ложных срабатываний с одной стороны, и осуществляется защита по току, с другой стороны.
В энергетической промышленности бывают ситуации, когда кратковременное повышение тока не связано с аварией, и защита не должна срабатывать. Также происходит и с электрическими автоматами.
Время-токовые характеристики определяют, через какое время сработает защита, и какие параметры силы тока при этом возникнут. Чем больше перегрузка тем быстрее сработает автомат.
Электрические автоматы с маркировкой «В»
Автоматические выключатели категории «В», способны отключаться за 5 — 20 с. При этом значение тока составляет от 3 до 5 номинальных значений тока ≅0.02 с. Такие автоматы используются для защиты бытовых устройств, а также всей электропроводки квартир и домов.
Свойства автоматов с маркировкой «С»
Электрические автоматы этой категории могут выключиться за время 1 — 10 с, при 5 — 10 кратной токовой нагрузке ≅0.02 с. Такие применяют во многих областях, наиболее популярны для домов, квартир и других помещений.
Значение маркировки «D» на автомате
С таким классом автоматы используются в промышленности и выполнены в виде 3-полюсных и 4-полюсных исполнений. Их применяют для того, чтобы защитить мощные электрические моторы и разные трехфазные устройства. Время их сработки составляет до 10 секунд, при этом ток срабатывания может превышать номинальное значение в 14 раз. Это дает возможность с необходимым эффектом использовать его для защиты различных схем.
Электродвигатели со значительной мощностью чаще всего подключают через электрические автоматы с характеристикой «D», т.к. пусковой ток высокий.
Номинальный ток
Имеется 12 вариантов исполнения автоматов, которые различаются по характеристике номинального тока работы, от 1 до 63 ампер. Этот параметр определяет скорость выключения автомата при достижении предельного значения тока.
Автомат по этому свойству выбирают с учетом поперечного сечения жил проводов, допускаемому току.
Принцип действия электрических автоматов
Обычный режим
При обычной работе автомата управляющий рычаг взведен, ток поступает через провод питания на верхней клемме. Далее ток идет на неподвижный контакт, через него на подвижный контакт и по гибкому проводу на катушку соленоида. После него по проводу ток идет на биметаллическую пластину расцепителя. От него ток проходит на нижнюю клемму и дальше на нагрузку.
Режим перегрузки
Этот режим возникает при превышении номинального тока автомата. Биметаллическая пластина нагревается большим током, изгибается и размыкает цепь. Для действия пластины требуется время, которое зависит от значения проходящего тока.
Автоматический выключатель является аналоговым устройством. При его настройке есть определенные сложности. Ток срабатывания расцепителя настраивается на заводе специальным регулировочным винтом. После остывания пластины автомат снова может функционировать. Температура биметаллической пластины зависит от окружающей среды.
Расцепитель действует не сразу, давая возможность току к возврату номинального значения. Если ток не снижается, то расцепитель срабатывает. Перегрузка может возникнуть из-за мощных устройств на линии, либо подключении сразу нескольких устройств.
Режим короткого замыкания
При этом режиме ток возрастает очень быстро. Магнитное поле в катушке соленоида движет сердечник, приводящий в действие расцепитель, и отключает контакты сети питания, тем самым снимает аварийную нагрузку цепи и защищает сеть от возможного пожара и разрушения.
Электромагнитный расцепитель действует мгновенно, чем отличается от теплового расцепителя. При размыкании контактов рабочей цепи появляется электрическая дуга, величина которой зависит от тока в цепи. Она вызывает разрушение контактов. Чтобы предотвратить это отрицательное действие, сделана дугогасительная камера, которая состоит из параллельных пластин. В ней дуга затухает и исчезает. Возникающие газы отводятся в специальное отверстие.
Похожие темы:
Время-токовые характеристики автоматических выключателей (В, С, D)
Время-токовые характеристики автоматических выключателей (В, С, D)
Вы наверное замечали, что на корпусах модульных автоматов изображены латинские буквы: B, C или D. Так вот они обозначают время-токовую характеристику этого автомата, или другими словами, ток мгновенного расцепления.
Согласно ГОСТ это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. это его электромагнитная защита. В этом же ГОСТ говорится, что всего существует три стандартные характеристики (типы мгновенного расцепления):
B — электромагнитный расцепитель (ЭР) срабатывает в пределах от 3 до 5-кратного тока от номинального (3·In до 5·In)
C — электромагнитный расцепитель (ЭР) срабатывает в пределах от 5 до 10-кратного тока от номинального (5·In до 10·In)
D — электромагнитный расцепитель (ЭР) срабатывает в пределах от 10 до 20-кратного тока от номинального (10·In до 20·In, но встречаются иногда и 10·In до 50·In)
In – номинальный ток автоматического выключателя, тот что указан на корпусе.
Рассмотрим каждый вид характеристики более подробно на примере модульных автоматических выключателей серии ВА47-29 от производителя ИЕК.
Время-токовая характеристика типа В
Рассмотрим время-токовую характеристику В на примере автоматических выключателей ВА47-29.
Вот график время-токовой характеристики (сокращенно, ВТХ) типа В:
На нем показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания, в секундах. Время-токовые характеристики практически всех автоматов изображаются при температуре +30°С.
График разделен двумя линиями, которые и определяют разброс времени срабатывания зон теплового и электромагнитного расцепителей автомата. Верхняя линия — это холодное состояние, т.е. без предварительного пропускания тока через автомат, а нижняя линия — это горячее состояние автомата, который только что был в работе или сразу же после его срабатывания. Пунктирная линия на графике — это верхняя граница (предел) для автоматов с номинальным током менее 32 А.
- Токи условного нерасцепления (1,13·In)
У каждого автомата есть такое понятие, как «условный ток нерасцепления» и он всегда равен 1,13·In. При таком токе автомат не отключится в течение 1 часа (для автоматов с номинальным током менее 63А) и в течение 2 часов (для автоматов с номинальным током более 63А). Точку условного нерасцепления автомата (1,13·In) всегда отображают на графике. Если провести прямую, то видно, что прямая уходит как бы в бесконечность и с нижней линией графика пересекается в точке 60-120 минут. Например, автомат с номинальным током 10 А. При протекании через него тока 1,13·In = 11,3 А его тепловой расцепитель не сработает в течение 1 часа. Еще пример, автомат с номинальным током 16 А. При протекании через него тока 1,13·In = 18,08 А его тепловой расцепитель не сработает в течение 1 часа.
Вот значения «токов условного нерасцепления» для различных номиналов:
- 10 А — 11,3 А
- 16 А — 18,08 А
- 20 А — 22,6 А
- 25 А — 28,25 А
- 32 А — 36,16 А
- 40 А — 45,2 А
- 50 А — 56,5 А
- 63 А – 71,2 А
- Токи условного расцепления (1,45·In)
Есть еще понятие, как «условный ток расцепления» автомата и он всегда равен 1,45·In. При таком токе автомат отключится за время не более 1 часа (для автоматов с номинальным током менее 63А) и за время не более 2 часов (для автоматов с номинальным током более 63А). Кстати, точку условного расцепления автомата (1,45·In) практически всегда отображают на графике. Если провести прямую, то видно, что прямая пересекает график в двух точках: нижнюю линию в точке 40 секунд, а верхнюю — в точке 60-120 минут (в зависимости от номинала автомата).
Таким образом, автомат с номинальным током 10 А в течение часа, не отключаясь, может держать нагрузку порядка 14,5 А, а автомат с номинальным током 16 А — порядка 23,2 А. Но это при условии, что автоматы изначально были в холодном состоянии, в ином случае время их отключения будет находиться в пределах от 40 секунд до одного часа.
Вот значения «токов условного расцепления» для различных номиналов:
- 10 А — 14,5 А
- 16 А — 23,2 А
- 20 А — 29 А
- 25 А — 36,25 А
- 32 А — 46,4 А
- 40 А — 58А
- 50 А — 72,5 А
- 63 А — 91,4 А
Вот об этом не стоит забывать при выборе сечения проводов и кабелей для электропроводки. Представьте себе, что кабель сечением 2,5 кв.мм Вы защищаете автоматом на 25 А. Вдруг по некоторым причинам Вы перегрузили линию до 36 А. Автомат 25 А может не отключаться в течение целого часа, а по кабелю будет идти ток, который в значительной мере превышает его длительно-допустимый ток — 25 А. За это время кабель сильно нагреется и может расплавиться, что может привести к пожару или короткому замыканию. А если еще учесть то, что в последнее время многие производители кабельной продукции преднамеренно занижают сечения жил, то ситуация тем более усугубляется.
Допустимые токи для проводов различного сечения приведены в таблице
Можно рекомендовать защищать кабели следующим образом:
- 1,5 кв.мм — защищаем автоматом на 10 А
- 2,5 кв.мм — защищаем автоматом на 16 А
- 4 кв.мм — защищаем автоматом на 20 А и 25 А
- 6 кв.мм — защищаем автоматом на 25 А и 32 А
- 10 кв.мм — защищаем автоматом 40 А
- 16 кв.мм — защищаем автоматом 50 А
Для удобства все данные сведем в одну таблицу:
- Срабатывание теплового расцепителя при токе 2,55·In
Согласно ГОСТ , если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния (для автоматов с номинальным током менее 32А) и не более 120 секунд из холодного состояния (для автоматов с номинальным током более 32А). На графике Вы можете видеть, что нижний предел по отключению взят с небольшим запасом, т.е. не 1 секунду, а 4 секунды. На то есть право у производителей автоматов. Вот поэтому они всегда к каждому автомату прикладывают свою ВТХ, которая, естественно, что удовлетворяет всем требованиям ГОСТ.
- Срабатывание электромагнитного расцепителя при токе 3·In
Согласно ГОСТ, если через автоматический выключатель будет проходить ток, равный 3·In, то он должен отключиться за время не менее 0,1 секунды. Верхний предел по времени не определен, и у автоматов разных производителей здесь может наблюдаться небольшой разброс в пределах от 1 до 10 секунд. При токе 3·In электромагнитный расцепитель может еще не сработать и по факту автомат отключается от теплового расцепителя. Вот именно поэтому измеренное значение петли фаза-ноль сравнивают с током не 3·In, а с 5·In, учитывая коэффициент 1,1. Автомат ВА47-29 с номинальным током 10 А при токе 30 А должен отключиться за время не менее 0,1 секунды.
- Срабатывание электромагнитного расцепителя при токе 5·In
Согласно ГОСТ, если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время менее 0,1 секунды. Автомат ВА47-29 с номинальным током 10 А при токе 50 А должен отключиться за время менее 0,1 секунды.
Автоматы с характеристикой В применяются для защиты распределительных и групповых цепей с большими длинами кабелей и малыми токами короткого замыкания преимущественно с активной нагрузкой, например, электрические печи, электрические нагреватели, цепи освещения. Но почему-то в магазинах их количество всегда ограничено, т.к. по мнению продавцов наиболее распространенными являются автоматы с характеристикой С. С чего это вдруг?! Вполне логично и целесообразно для групповых линий цепей освещения и розеток применять именно автоматы с характеристикой типа В, а в качестве вводного автомата устанавливать автомат с характеристикой С (это один из вариантов). Так хоть каким-то образом будет соблюдена селективность, и при коротком замыкании где-нибудь в линии вместе с отходящим автоматом не будет отключаться вводной автомат и «гасить» всю квартиру. Но о селективности я еще расскажу Вам более подробно в другой раз.
Время-токовая характеристика типа С
1. Токи условного нерасцепления (1,13·In) и Токи условного расцепления (1,45·In)
По графику видно, что в зоне срабатывания теплового расцепителя все аналогично характеристики В, так же видим условный ток нерасцепления равеный 1,13·In и условный ток расцепления равеный 1,45·In. Их значения для различных номиналов автоматов характеристики С совпадает с аналогичными значениями автоматов характеристики В. Отличия начинаются в зоне срабатывания электромагнитного расцепителя
- Срабатывание теплового расцепителя при токе 2,55·In
Согласно ГОСТ , если через автоматический выключатель будет проходить ток, равный 2,55·In, то его тепловой расцепитель должен сработать за время не менее 1 секунды и не более 60 секунд для автоматов с номинальным током ≤ 32 А, или не менее 1 секунды и не более 120 секунд для автоматов с номинальным током > 32 А.
- Срабатывание электромагнитного расцепителя при токе 5·In
Согласно ГОСТ, если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время не менее 0,1 секунды. Верхний предел по времени не определен, и у автоматов разных производителей здесь может наблюдаться не большой разброс в пределах от 1 до 10 секунд.
- Срабатывание электромагнитного расцепителя при токе 10·In
Согласно ГОСТ,если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время менее 0,1 секунды.
Автоматы с характеристикой С применяются в основном для защиты трансформаторов и двигателей с малыми пусковыми токами. Также их можно использовать для питания цепей освещения. Это, наверное, одна из самых распространенных и применяемых характеристик в жилом секторе, хотя порой ее применение не всегда оправдано.
Время-токовая характеристика типа D
По графику видно, что, как и в случае характеристики С, отличия от характеристики В начинаются в зоне срабатывания электромагнитного расцепителя. Тепловой расцепитель ведет себя одинаково во всех случаях.
- Токи условного нерасцепления (1,13·In) и токи условного расцепления (1,45·In) полностью аналогичны таковым для характеристик В и С,
- Если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды в горячем состоянии и не более 60 секунд в холодном состоянии (для автоматов с номинальным током менее 32А) и не более 120 секунд в холодном состоянии (для автоматов с номинальным током более 32А).
- Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время не менее 0,1 секунды.
- Если через автоматический выключатель будет проходить ток, равный 20·In, то он должен отключиться за время менее 0,1 секунды.
Автоматы с характеристикой D применяются в основном для защиты электрических двигателей с частыми запусками или значительными пусковыми токами (тяжелый пуск).
Изменение характеристик расцепления автоматов
Как мы уже говорили в начале, все характеристики автоматов изображаются при температуре окружающего воздуха +30°С. Поэтому, чтобы узнать время отключения автоматов при других температурах, необходимо учитывать следующие поправочные коэффициенты:
- Температурный коэффициент окружающего воздуха — Кt.
Думаю тут все понятно из графика. Чем ниже температура воздуха, тем значение коэффициента больше, а значит и увеличивается номинальный ток автомата, другими словами, его нагрузочная способность. Или, наоборот, чем жарче, тем нагрузочная способность автомата становится меньше. Ведь не зря, в жарких помещениях или летнюю жару многие замечают частые отключения автоматов, хотя нагрузка вовсе не изменялась. Ответ кроется в этом графике.
- Коэффициент, учитывающий количество рядом установленных автоматов — Кn.
Здесь тоже никаких премудростей нет. Когда в одном ряду установлено несколько автоматов, то они передают свое тепло рядом стоящим автоматам. Этот график учитывает конвекцию тепла и выдает корректирующий коэффициент, учитывающий этот фактор. Логика проста. Чем больше в ряду автоматов, тем больше уменьшается их нагрузочная способность.
Далее необходимо найти ток, приведенный к условиям нашего окружающего воздуха и монтажа:
In* = In · Кt · Кn
Как эти два коэффициента применить на практике?
Для этого рассмотрим пример. Щиток стоит на улице, в нем установлены 4 автомата — один вводной (ВА47-29 С40) и три групповых (ВА47-29 С16). Температура окружающего воздуха составляет -10°С.
Найдем поправочные коэффициенты для группового автомата ВА47-29 С16:
Кt = 1,1
Кn = 0,82
Найдем ток, приведенный к нашим условиям:
In* = In · Кt · Кn = 16 · 1,1 · 0,82 = 14,43 А
Таким образом, при определении времени срабатывания автомата по характеристике С кратность тока нужно брать не как отношение I/In (I/16), а как I/In* (I/14,43).
Заключение
Как видите, разницей между время-токовыми характеристиками В, С и D являются только значения срабатывания электромагнитного расцепителя. По тепловой защите они работают в одних интервалах времени. Можно сказать, что характеристики отличаются током срабатывания электромагнитного расцепителя как D > C > B. Срабатывание за время менее 0,1 сек для характеристики В вызывает ток 5* In, для С – 10* In, для D – 50* In. Таким образом видно, что для бытового применения подходят автоматы с характеристикой В, автоматы с характеристикой С также можно использовать, но, желательно как входные или там, где есть электромоторы с большими пусковыми токами. Характеристика D не пригодна для бытового применения.
Характеристики автоматических выключателей *
Характеристики автоматических выключателей (ниже сокращенно — автоматов) важный фактор при выборе защиты электроприборов в каждом конкретном случае
Потому автомат необходимо выбирать учитывая характеристики автоматических выключателей, обозначения которых нанесены на их корпусе
[lwptoc]
Автомат нужен нам, потребителям электрической энергии, чтобы защищать идущий к розетке, светильнику и вообще к любому электрическому прибору кабель. Нужен он, чтобы мы потребители не перегрели кабель и не сожгли его изоляцию, перегрузив его кучей мощных приборов, для которых сечение жилы слишком мало. Или же включив, допустим неисправный электроприбор, не расплавили жилы кабеля большим током короткого замыкания. Если сила тока превысит допустимую норму, которую могут вынести жилы и изоляция кабеля, автомат должен обесточить сеть автоматически.
Характеристики автоматических выключателей — обозначение
Для того чтобы мы могли правильно выбрать автомат, производитель пишет основные характеристики автоматических выключателей на его корпусе. В бытовом автомате обязательно стоят два защитных реле — тепловое в качестве защиты от перегрузки и электромагнитное для защиты от короткого замыкания. Реле эти и сам автомат в целом обладают различными характеристиками и некоторые из них написаны на корпусе автомата, а другие нужно смотреть дополнительно в графиках и таблицах производителя.
Наверху обычно указана фирма производитель – IEK, Schneider electric, Legrand и тому подобное. Чуть ниже написана серия автомата, например C60a или Ic60N у Schneider или S201, Sh303L у ABB. Вариантов серий у разных фирм великое множество. Первые буквы и цифры серии обычно ничего не говорят потребителю – просто родители так назвали автомат на заводе. Последние же символы серии обычно означают количество полюсов автомата, (то есть количество клемм крепления проводов входа и выхода, расположенных вверху и внизу выключателя), номинальный ток и тому подобное. Более развернуто серии автоматов расписаны в каталогах изготовителей, по которым удобно подбирать оборудование по каждому конкретному монтажу.
Характеристики автоматических выключателей — номинальный ток автомата
Ниже серии, рядом друг с другом изображены латинская буква и число. Допустим C25, B10 или D32. Число означает номинальный ток автоматического выключателя (In). То есть, это самое большое значение силы тока, который в принципе бесконечно долго может протекать через автомат в нормальных условиях. Нормальные условия – это около 30ºC, то есть комнатная температура плюс автоматы в узком пространстве электрощита греют друг друга. При понижении температуры автомат сможет выдерживать больший ток, так как лучше охлаждается, а при повышении соответственно будет отключаться при токе меньше номинального. В таблицах производителей среди факторов, оказывающих влияние на величину номинального тока, учитывается еще высота над уровнем моря, частота тока и количество устройств в щите.
Времятоковые характеристики электромагнитного и теплового расцепителей автомата
Латинская буква в обозначениях означает времятоковую характеристику электромагнитного расцепителя (упомянутого выше реле, стоящего для защиты от короткого замыкания) и теплового расцепителя (биметаллической пластины, отключающей контакты при перегрузке) — за какое время и при какой величине тока они отключит нагрузку от напряжения. Существуют следующие буквенные обозначения – A; B; C; D; L; U; K; Z. Обозначают они время отключения автомата при коротком замыкании или перегреве в зависимости от величины номинального тока. В быту применяются в основном B; C; D. Их и рассматриваем в данном случае.
Так автоматы характеристики B отключат нагрузку при токе короткого замыкания превышающий номинальный от 3 (за время ≥0,1 секунды) до 5 раз (за менее 0,1 секунды) и применяются для электрических цепей, при включении которых не происходит резкого увеличения силы тока – лампы накаливания, тэны.
Автоматические выключатели с характеристикой C отключаются при токах в 5 (за ≥0,1 секунды)-10 раз (за <0,1 секунды) превышающих номинальный. Они являются самыми распространенными автоматами. Потому что применяются для защиты смешанной нагрузки.
Несколько реже имеется возможность купить автоматы B типа и еще реже с характеристиками D, отключающими нагрузку при превышении номинала в 10 (за ≥0,1 секунды) -20 раз (за <0,1 секунды), что незаменимо для защиты электродвигателей, имеющих большой пусковой ток.
Из этого следует, что в автомате, на котором написано C25, электромагнитное реле от короткого замыкания сработает при токах от 25*5=125 ампер более чем через 0,1 секунду и гарантировано сработает при 25*10=250 ампер за 0,1 секунду или еще быстрее. А, скажем, B25 отключится в пределе токов от 75 до 125 ампер.
Времятоковые характеристики теплового расцепителя для автоматических выключателей обозначений B; C; D одинаковы. Задержка отключения по перегрузке составляет интервал между условным неотключающим током равным 1,13 In (время срабатывания больше или равно часу) и условным током отключения равным 1,45 In (время срабатывания меньше часа).
Значит автоматический выключатель C16 при перегрузке сети до 18,08 ампера (16*1,13=18,08) не будет отключатся в течении часа или более. А при достижении перегрузки в 23,2 A (16*1,45=23,2) отключится тепловым расцепителем менее чем через час. При увеличении перегрузки время срабатывания теплового реле будет постоянно уменьшаться. При достижении силы тока превышающий номинальный в 5 раз (для автомата характеристики C) выключатель будет обесточивать нагрузку при помощи электромагнитного реле. Отключение при помощи электромагнитного расцепителя будет происходить для характеристики B при токе больше номинального в 3 раза, а для D соответственно в 10 раз.
Коммутационная способность автоматического выключателя
Характеристики автоматических выключателей
В низу в прямоугольной рамке стоит обозначение коммутационной способности автомата, то есть такой величины тока, при которой выключатель может отключиться при коротком замыкании и при этом остаться живым и здоровым. Обычно – это числа 3000, 4500, 6000, 10000 ампер и так далее. На 3000 ампер сейчас вроде никто автоматы не выпускает, так что с таким обозначением может быть только что то устаревшее. Автоматы на 4500 ампер – это обычный бытовой уровень. С 6000 ампер начинаются автоматические выключатели для небольших производственных объектов и так далее по нарастающей. Но в быту можно установить автоматы с предельной коммутационной способностью и 10000 ампер – кашу маслом не испортишь. Главное чтобы другие характеристики автоматических выключателей подходили для каждого конкретного случая. Более подробно про отключающую способность.
Характеристики автоматических выключателей — класс токоограничения автомата
Под прямоугольником с обозначением предельной коммутационной способностью нарисована маленькая квадратная рамка с цифрами 2 или 3. Это обозначение класса токоограничения. Характеристика токоограничения показывает, с какой скоростью происходит гашение электрической дуги при размыкании контактов во время короткого замыкания. Существует три класса токоограничения. Во-первых, наиболее высокий 3-ий класс. При нем гашения дуги происходит за 3-6 миллисекунд (0,003-0,006 секунды). Во-вторых, 2-ой класс. Гашение происходит за 10 миллисекунд (0,01 секунды). В-третьих, 1-класс. На него ограничения не устанавливаются и на корпус не наносятся. Безусловно только то, что гашение длится более 10 миллисекунд. Про класс токоограничения более подробно.
Вы можете прочитать записи на похожие темы в рубрике – Автоматизация и защита
Рекомендуем прочитать
Коммутационная или отключающая способность автоматического выключателя
Коммутационная или отключающая способность автомата – это возможность автомата отключатся определенное количество раз, при токе короткого замыкания (КЗ) определенной силы. Бытовые автоматы маркируются по стандарту IEC 23-3/EN 60898. Международный стандарт-“Выключатели автоматические для защиты от сверхтоков электроустановок бытового и аналогичного назначения”. Натурально, по правилам этого стандарта на автоматическом выключателе указывается номинальная наибольшая отключающая способность Icn Читать далее…
Класс токоограничения автоматического выключателя
Класс токоограничения автоматического выключателя определяется скоростью гашения электрической дуги, возникающей при отключении автомата в случае короткого замыкания.
По определению, во время короткого замыкания автомат разрывает контакты и соответственно, отключается. Факт, сила тока при коротком замыкании может достигать несколько тысяч ампер. Понятное дело, между размыкающимися контактами образуется электрическая дуга. Помимо всего прочего, дуга имеет высокую температуру. Следовательно, из-за данного обстоятельства автомат может выйти из строя. Значит, дуга должна быть как можно быстрее погашена. Гасится дуга с помощью дугогасительной камеры Читать далее…
Ваш Удобный дом
Также рекомендуем прочитать
Номинал и токовые характеристики автоматических выключателей
Уставка по току отключения при коротком замыкании (Im)
Расцепители мгновенного действия или срабатывающие с небольшой выдержкой времени предназначены для быстрого выключения автоматического выключателя в случае возникновения больших токов короткого замыкания. Порог их срабатывания Im:
- для бытовых автоматических выключателей регламентируется стандартами, например МЭК 60898;
- для промышленных автоматических выключателей указывается изготовителем согласно действующим стандартам, в частности МЭК 60947-2.
Для промышленных выключателей имеется большой выбор расцепителей, что позволяет пользователю адаптировать защитные функции автоматического выключателя к конкретным требованиям нагрузки (см. рис. h41, h42 и h43).
Тип расцепителя | Защита от перегрузки | Защита от короткого замыкания | |||
---|---|---|---|---|---|
Бытовые автоматические выключатели (МЭК 60898) | Термомагнитный (комбинирован.) | Ir = In | Нижняя уставка Тип B 3 In ≤ Im ≤ 5 In | Стандартная уставка Тип C 5 In ≤ Im ≤ 10 In | Верхняя уставкаТип D10 In ≤ Im ≤ 20 In |
Модульные промышленные авт. выключатели | Термомагнитный (комбинирован.) | Ir = In (не регулируется) | Нижняя уставка Тип B или Z3,2 In ≤ постоянная ≤ 4,8 In | Стандартная уставка Тип C 7 In ≤ постоянная ≤ 10 In | Верхняя уставка Тип D или K 10 In ≤ постоянная ≤ 14 In |
Промышленные автоматические выключатели (МЭК 60947-2) | Термомагнитный (комбинирован.) | Ir = In (не регул.) | Постоянная: Im = 7 — 10 In | ||
Регулируется: 0,7 In ≤ Ir ≤ In | |||||
Регулируемая: — нижняя уставка: 2 — 5 In — стандартная уставка: 5 — 10 In | |||||
Электронный | Большая выдержка времени 0,4 In ≤ Ir ≤ In | Короткая выдержка времени, регулируемая: 1,5 Ir ≤ Im ≤ 10 Ir Мгновенное срабатывание (I), время не регулируется:I = 12 — 15 In |
50 In в стандарте МЭК 60898, что по мнению большинства европейских изготовителей является нереально большим значением (M-G = 10-14 In).
Для промышленного использования значения не регламентируются стандартами МЭК. Указанные выше значения соответствуют тем, которые обычно используются.
Рис. h41: Диапазоны токов отключения устройств защиты от перегрузки и короткого замыкания для низковольтных автоматических выключателей
Рис. h42: Кривая срабатывания термомагнитного комбинированного расцепителя автоматического выключателя
Ir: уставка по току отключения при перегрузке (тепловое реле или реле с большой выдержкой времени) Im: уставка по току отключения при коротком замыкании (магнитное реле или реле с малой выдержкой времени) Ii: уставка расцепителя мгновенного действия по току отключения при коротком замыкании Icu: отключающая способность
Рис. h43: Кривая срабатывания электронного расцепителя автоматического выключателя
Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой
Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.
Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.
Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления – происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.
Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.
Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.
Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата – наименьший ток при котором автомат отключится мгновенно.
Автоматы имеют несколько характеристик, самыми распространенными из которых являются:
- – B — от 3 до 5 ×In;
- – C — от 5 до 10 ×In;
- – D — от 10 до 20 ×In.
Что означают цифры указанные выше?
Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.
Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3. 5)=48. 80А. Для С16 диапазон токов мгновенного срабатывания 16*(5. 10)=80. 160А.
При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).
В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.
Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.
Согласитесь логично, что время срабатывания зависит от температуры автомата. Автомат отключится быстрее, если его тепловой орган (биметаллическая пластина) разогретый. И наоборот при первом включении когда биметалл автомата холодный время отключения будет больше.
Поэтому на графике верхняя кривая характеризует холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата.
Пунктирной линией обозначен предельный ток срабатывания для автоматов до 32 А.
Характеристика Z
Также имеет разброс при работе на постоянном и переменном напряжении и предназначен для обеспечения максимальной защиты электронных устройств управления. Кривая работы приведена ниже:
При работе на переменном напряжении отключение происходит при достижении 2 – 3 номиналов, при постоянном 2 – 5.
Как видим, выбор автоматического выключателя для защиты электрических цепей не такая уж и простая задача, как кажется на первый взгляд. Поэтому при выборе автоматического выключателя необходимо сопоставлять не только номинальные данные (напряжение, ток, фазность), но и знать характеристики работы системы, для которой выбирается автомат, чтобы выбранный вами автоматический выключатель в полной мере обеспечивал защиту вашего оборудования.
Что показано на графике время токовой характеристики
На примере 16-Амперного автомата, имеющего время токовую характеристику C, попробуем рассмотреть характеристики срабатывания автоматических выключателей .
На графике можно увидеть, как протекающий через автоматический выключатель ток влияет на зависимость времени его отключения. Кратность тока протекающего в цепи к номинальному току автомата (I/In) изображает ось Х, а время срабатывания, в секундах – ось У.
Выше говорилось, что в состав автомата входит электромагнитный и тепловой расцепитель. Поэтому график можно разделить на два участка. Крутая часть графика показывает защиту от перегрузки (работа теплового расцепителя), а более пологая часть защиту от КЗ (работа электромагнитного расцепителя).
Как видно на графике если к автомату С16 подключить нагрузку 23 А то он должен отключится за 40 сек. То есть при возникновении перегрузки на 45 % автомат отключится через 40 сек.
На токи большой величины, которые могут привести к повреждению изоляции электропроводки автомат способен реагировать мгновенно благодаря наличию электромагнитного расцепителя.
При прохождении через автомат С16 тока 5×In (80 А) он должен сработать через 0.02 сек (это если автомат горячий). В холодном состоянии, при такой нагрузке, он отключится в пределах 11 сек. и 25 сек. (для автоматов до 32 А и выше 32 А соответственно).
Если через автомат будет протекать ток равный 10×In, то он отключается за 0,03 секунды в холодном состоянии или меньше чем за 0,01 секунду в горячем.
К примеру, при коротком замыкании в цепи, которая защищена автоматом С16, и возникновении тока в 320 Ампер, диапазон времени отключения автомата будет составлять от 0,008 до 0,015 секунды. Это позволит снять питание с аварийной цепи и защитить от возгорания и полного разрушения сам автомат, закоротивший электроприбор и электропроводку.
Автоматы с какими характеристиками предпочтительнее использовать дома
В квартирах по возможности необходимо обязательно применять автоматы категории B, которые являются более чувствительными. Данный автомат отработает от перегрузки так же, как и автомат категории С. А вот о случае короткого замыкания?.
Если дом новый, имеет хорошее состояние электросети, подстанция находится рядом, а все соединения качественные, то ток при коротком замыкании может достигать таких величин, что его должно хватить на срабатывание даже вводного автомата.
Ток может оказаться малым при коротком замыкании, если дом является старым, а к нему идут плохие провода с огромным сопротивлением линии (особенно в сельских сетях, где большое сопротивление петли фаза-нуль) – в таком случае автомат категории C может не сработать вообще. Поэтому единственным выходом из этой ситуации является установка автоматов с характеристикой типа В.
Следовательно, время токовая характеристика типа В является определенно более предпочтительной, в особенности в дачной или сельской местности или в старом фонде.
В быту на вводной автомат вполне целесообразно ставить именно тип С, а на автоматы групповых линий для розеток и освещения – тип В. Таким образом будет соблюдена селективность, и где-нибудь в линии при коротком замыкании вводной автомат не будет отключаться и «гасить» всю квартиру.
Похожие материалы на сайте:
Защита человека – превыше всего!
В заключение, скажем о ещё одном устройстве, которое должно стать головным защитным прибором в Вашем щитке. В статье мы рассмотрели аспекты защиты сети и приборов, теперь поговорим, как защитить человека. Для этого используется так называемый выключатель автоматический дифференциального тока, назначение которого кроме отслеживания токов, контролировать «утечки» и нештатные изменения в сети. Проще говоря, данный тип автомата распознаёт, что в сети происходит несанкционированное изменений характеристик, попадающих в разряд «повреждение изоляции», «возможное прикосновение человека к проводам под напряжением» и т.д.
Такое обнаружение приводит к мгновенному обесточиванию участка сети. Иногда автоматические выключатели дифференциального тока называют УЗО (Устройство защитного отключения), МДЗ (Модуль дифференцированной защиты). Они могут быть использованы в комбинации с другими автоматами. Главное отличие этого автомата в том, что он работает на защиту человека от поражения электрическим током. Наиболее актуальны такие устройства для подключения санузлов и ванн (желательно с максимальной чувствительностью) и кухонь. Но сегодня многие предпочитают ставить такие выключатели на все участки сети в квартире.
Мы надеемся, что данная статья будет Вам полезна при выборе УЗО и,как следствие, Ваша электросеть, электрические приборы будут надёжно защищены.
Номинальная отключающая способность при коротком замыкании (Icu или Icn)
Отключающая способность низковольтного автоматического выключателя связана с коэффициентом мощности (cos φ) поврежденного участка цепи. В ряде стандартов приводятся типовые значения такого соотношения. |
Отключающая способность автоматического выключателя – максимальный (ожидаемый) ток, который данный автоматический выключатель способен отключить и остаться в работоспособном состоянии. Упоминаемая в стандартах величина тока представляет собой действующее значение периодической составляющей тока замыкания, т.е. при расчете этой стандартной величины предполагается, что апериодическая составляющая тока в переходном процессе (которая всегда присутствует в наихудшем возможном случае короткого замыкания) равна нулю. Эта номинальная величина (Icu) для промышленных автоматических выключателей и (Icn) для бытовых автоматических выключателей обычно указывается в кА.
Icu (номинальная предельная отключающая способность) и Ics (номинальная эксплуатационная отключающая способность) определены в стандарте МЭК 60947-2 вместе с соотношением Ics и Icu для различных категорий использования A (мгновенное отключение) и B (отключение с выдержкой времени), рассмотренных в подразделе Другие характеристики автоматического выключателя.
Проверки для подтверждения номинальных отключающих способностей автоматических выключателей регламентируются стандартами и включают в себя:
- коммутационные циклы, состоящие из последовательности операций, т.е. включения и отключения при коротком замыкании;
- фазовый сдвиг между током и напряжением. Когда ток в цепи находится в фазе с напряжением питания (cos φ = 1), отключение тока осуществить легче, чем при любом другом коэффициенте мощности. Гораздо труднее осуществлять отключение тока при низких отстающих величинах cos φ,при этом отключение тока в цепи с нулевым коэффициентом мощности является самым трудным случаем.
На практике все токи короткого замыкания в системах электроснабжения возникают обычно при отстающих коэффициентах мощности, и стандарты основаны на значениях, которые обычно считаются типовыми для большинства силовых систем. В целом, чем больше ток короткого замыкания (при данном напряжении), тем ниже коэффициент мощности цепи короткого замыкания, например, рядом с генераторами или большими трансформаторами.
В таблице, приведенной на рис. h44 и взятой из стандарта МЭК 60947-2, указано соотношение между стандартными величинами cos φ для промышленных автоматических выключателей и их предельной отключающей способностью Icu.
после проведения цикла «отключение – выдержка времени — включение/ отключение» для проверки предельной отключающей способности (Icu) автоматического выключателя выполняются дополнительные испытания, имеющие целью убедиться в том, что в результате проведения этого испытания не ухудшились:
— электрическая прочность изоляции; — разъединяющая способность; — правильное срабатывание защиты от перегрузки.
Icu | cosφ |
---|---|
6 kA | 0,5 |
10 kA | 0,3 |
20 kA | 0,25 |
50 kA | 0,2 |
Рис. h44: Соотношение между Icu и коэффициентом мощности (cos φ) цепи короткого замыкания (МЭК 60947-2)
Время-токовые характеристики автоматов
Срабатывание автоматических выключателей происходит за счет действия его основных элементов – теплового и электромагнитного расцепителя. Конструкция теплового расцепителя состоит из биметаллической пластины, нагревающейся под действием протекающего тока. В результате, она изгибается и приводит в действие механизм расцепления. Для срабатывания необходима длительная нагрузка, обратно пропорциональная выдержке по времени. Уровень перегрузки напрямую влияет на нагрев пластинки и время срабатывания теплового расцепителя.
Основными составляющими электромагнитного расцепителя служат катушка и сердечник. При достижении током определенного уровня, магнитное поле катушки втягивает сердечник, под действием которого срабатывает расцепляющий механизм. Устройство мгновенно срабатывает при коротких замыканиях, не дожидаясь нагрева теплового расцепителя. Время срабатывания автомата зависит от силы тока, проходящего через автоматический выключатель. Данная зависимость как раз и представляет собой времятоковую характеристику защитного устройства.
На корпусе каждого прибора наносятся латинские символы В, С и D. Каждый из них соответствует кратности уставки электромагнитного расцепителя к номинальному значению автомата. То есть, с помощью этих букв отображается ток мгновенного срабатывания расцепителя или чувствительность автоматического выключателя. Данный параметр обозначает минимальный ток, при котором происходит мгновенное отключение защитного устройства. Таким образом, латинскими буквами обозначается времятоковая характеристика каждого конкретного автомата. Символ «В» соответствует характеристикам 3-5 х ln, «С» – 5-10 х ln и «D» – 10-20 х ln.
Значение этих цифр необходимо рассмотреть на примере двух автоматов, равных по мощности, то есть, с одинаковым номинальным током, например, модели В16 и С16. Для выключателя В16 диапазон срабатывания электромагнитного расцепителя составит 16 х (3-5) = 48-80 А. Соответственно, у автомата С16 этот диапазон будет находиться в пределах 16 х (5-10) = 80-160 ампер. Таким образом, при наличии тока в 100 А, произойдет мгновенное отключение модели В16, а устройство С16 отключится лишь через несколько секунд после нагрева биметаллической пластины.
Для жилых и административных зданий наиболее подходящими вариантами считаются автоматы с маркировкой В и С. Это связано с отсутствием больших пусковых токов и крайне редким включением электродвигателей повышенной мощности. Автоматы категории D используются в основном на тех объектах, где имеются мощные электродвигатели и другие устройства с большими пусковыми токами.
График время токовой характеристики обязательно учитывает температуру самого защитного устройства. В случае первого срабатывания времени на отключение затрачивается больше, поскольку биметаллическая пластинка холодная. При повторном срабатывании, когда пластинка уже была ранее разогрета, отключение происходит быстрее.
Что показано на графике время токовой характеристики
На примере 16-Амперного автомата, имеющего время токовую характеристику C, попробуем рассмотреть характеристики срабатывания автоматических выключателей.
На графике можно увидеть, как протекающий через автоматический выключатель ток влияет на зависимость времени его отключения. Кратность тока протекающего в цепи к номинальному току автомата (I/In) изображает ось Х, а время срабатывания, в секундах – ось У.
Выше говорилось, что в состав автомата входит электромагнитный и тепловой расцепитель. Поэтому график можно разделить на два участка. Крутая часть графика показывает защиту от перегрузки (работа теплового расцепителя), а более пологая часть защиту от КЗ (работа электромагнитного расцепителя).
Как видно на графике если к автомату С16 подключить нагрузку 23 А то он должен отключится за 40 сек. То есть при возникновении перегрузки на 45 % автомат отключится через 40 сек.
На токи большой величины, которые могут привести к повреждению изоляции электропроводки автомат способен реагировать мгновенно благодаря наличию электромагнитного расцепителя.
При прохождении через автомат С16 тока 5×In (80 А) он должен сработать через 0.02 сек (это если автомат горячий). В холодном состоянии, при такой нагрузке, он отключится в пределах 11 сек. и 25 сек. (для автоматов до 32 А и выше 32 А соответственно).
Если через автомат будет протекать ток равный 10×In, то он отключается за 0,03 секунды в холодном состоянии или меньше чем за 0,01 секунду в горячем.
К примеру, при коротком замыкании в цепи, которая защищена автоматом С16, и возникновении тока в 320 Ампер, диапазон времени отключения автомата будет составлять от 0,008 до 0,015 секунды. Это позволит снять питание с аварийной цепи и защитить от возгорания и полного разрушения сам автомат, закоротивший электроприбор и электропроводку.
Автоматы с какими характеристиками предпочтительнее использовать дома
В квартирах по возможности необходимо обязательно применять автоматы категории B, которые являются более чувствительными. Данный автомат отработает от перегрузки так же, как и автомат категории С. А вот о случае короткого замыкания?.
Если дом новый, имеет хорошее состояние электросети, подстанция находится рядом, а все соединения качественные, то ток при коротком замыкании может достигать таких величин, что его должно хватить на срабатывание даже вводного автомата.
Ток может оказаться малым при коротком замыкании, если дом является старым, а к нему идут плохие провода с огромным сопротивлением линии (особенно в сельских сетях, где большое сопротивление петли фаза-нуль) – в таком случае автомат категории C может не сработать вообще. Поэтому единственным выходом из этой ситуации является установка автоматов с характеристикой типа В.
Следовательно, время токовая характеристика типа В является определенно более предпочтительной, в особенности в дачной или сельской местности или в старом фонде.
В быту на вводной автомат вполне целесообразно ставить именно тип С, а на автоматы групповых линий для розеток и освещения – тип В. Таким образом будет соблюдена селективность, и где-нибудь в линии при коротком замыкании вводной автомат не будет отключаться и «гасить» всю квартиру.
Характеристики срабатывания защитных автоматических выключателей
Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.
В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.
Автоматы типа МА
Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.
Приборы класса А
Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.
Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.
Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.
Защитные устройства класса B
Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.
Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.
Автоматы категории C
Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.
Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.
Автоматические выключатели категории Д
Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.
Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.
Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.
Защитные устройства категории K и Z
Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.
Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.
Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.
Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.
Наглядно про категории автоматов на видео:
Автоматическое присвоение значения признакам технологической инструкции
Автоматическое присвоение значения во время генерации
Этот тип присвоения значений можно использовать только для определенных стандартных признаков. Это зависит от объема генерации (см. Таблицу ниже).
Если вы выбрали объем генерации
По всем предметам бронирования
, позиция, для которой была сгенерирована соответствующая технологическая инструкция, присваивается признаку PPPI_RESERVATION_ITEM (позиция резервирования).
Объем генерации | Признаки с автоматическим присвоением значений |
---|---|
Для всех позиций резервирования и заказа | PPPI_MATERIAL_ITEM |
Для всех бронирований | PPPI_BATCH |
На все позиции заказа | PPPI_ORDER_ITEM_NUMBER (позиция заказа) |
Для всех контрольных характеристик | PPPI_INSPECTION_CHARACTERISTIC |
Для всех предшественников | PPPI_PREDECESSOR |
Для всех переменных мероприятий фаз | PPPI_STD_VALUE_PARAMETER_ID |
Автоматическое присвоение значений во время создания рецепта управления
При создании рецепта управления этот тип присвоения значений используется для признаков, для которых были выполнены соответствующие параметры пользовательской настройки (см.
Предварительные требования
), значения которых еще не присвоены.
Если вы хотите проверить и, при необходимости, исправить значения, определенные автоматически, перед созданием рецепта управления, вы также можете запустить присвоение значений вручную в технологическом заказе. Однако обратите внимание, что значения признаков не обновляются автоматически при последующем изменении соответствующего объекта (например, списка материалов для характеристик материала).
Стандартная система содержит ряд признаков, которым была присвоена функция присвоения значений.В этих функциях значение характеристики часто определяется в соответствии со значениями других характеристик, присвоенных той же инструкции процесса. В следующих разделах дается обзор этих зависимостей.
А
Индикатор (автоматическое присвоение значений) устанавливается в обзоре признаков инструкций процесса для признаков, значение которых присваивается автоматически при создании рецептуры управления. Для получения информации о логике присвоения значений для стандартных признаков, значение которых присваивается с помощью функции, см. Справку по полю для этого индикатора.
Присвоение значений характеристикам материала — зависимости
При автоматическом присвоении значения признака данные материала определяются следующим образом:
Для соответствующего компонента материала, если признак для номера позиции компонентов материала (PPPI_MATERIAL_ITEM) содержится в инструкции процесса
Для соответствующей позиции резервирования, если признак для позиции резервирования (PPPI_RESERVATION_ITEM) содержится в инструкции процесса
Для соответствующего компонента материала, если признак позиции заказа (PPPI_ORDER_ITEM) содержится в инструкции процесса
Для материала заголовка во всех остальных случаях
Если вы используете определение партии, обратите внимание на следующее:
Чтобы система могла определять отдельную запись партии, мы рекомендуем использовать в инструкции процесса признак PPPI_RESERVATION_ITEM.Признак PPPI_MATERIAL_ITEM не уникален, поскольку для одной позиции материала может быть несколько партий.
Чтобы обеспечить правильное присвоение значений всем признакам, всегда используйте создание инструкции процесса, если вы используете определение партии.
Присвоение значений единицам измерения — зависимости
Значение автоматически присваивается единице измерения только в том случае, если величина была определена автоматически в той же инструкции процесса ранее.
Единица измерения количества материала автоматически присваивается признаку, если значение было автоматически присвоено ранее одному из следующих признаков в технологической инструкции:
PPPI_MATERIAL_QUANTITY
PPPI_MATERIAL_CONSUMED (количество израсходованного материала)
PPPI_MATERIAL_PRODUCED (количество произведенного материала)
Присвоение значений признакам деятельности — зависимости
Значение автоматически присваивается признакам для переменных действий только в том случае, если значение было присвоено характеристике для соответствующего идентификатора параметра стандартного значения (PPPI_STD_VALUE_PARAMETER) в инструкции процесса.
Присвоение значений характеристикам ресурса — зависимости
Используя функцию присвоения значений COAV_RESOURCE_CHARACTERISTIC, можно скопировать значения признаков, которые были введены во время классификации ресурсов, в признак инструкции процесса. Должно быть выполнено одно из следующих требований:
Имя характеристики технологической инструкции идентично имени характеристики классификации.
Имя характеристики классификации было присвоено как значение непосредственно предшествующей характеристике инструкции процесса.
Группировка входных значений — зависимости
Значение автоматически присваивается признаку для группировки входных значений только в том случае, если выполняются следующие требования:
Если номер позиции контрольного признака (PPPI_INSPECTION_CHARACTERISTIC) содержится в инструкции процесса, описание контрольного признака присваивается признаку для группировки входных значений.
Если номер материала (PPPI_MATERIAL) содержится в инструкции процесса, номер материала присваивается признаку для группировки входных значений.
На t h e присвоение значения признака s c re en, вы определяете особенности варианта […] настраиваемого продукта. help.sap.com | En la p an talla de valoracin, se define n la s caractersticas d e un …] продукт настраивается. help.sap.com |
Можно филиал […] help.sap.com | Pue de pas ar a l a valoracin de caracterstica d e s ust ancia d irectamente […] desde el rbol de propiedades. help.sap.com |
Когда ты […] выделено организационной […] области, которые определены как в классе, так и в профиле конфигурации. справка.sap.com | Конфигурация алюминия под […] Вид на Апликацин […] que estn Definidas tanto en la clase como en el perfil de configuracin. help.sap.com |
Это необходимо для […] help.sap.com | Esto es necesario, por […] help.sap.com |
Вы не можете скопировать pla nn e d присвоение значения признака t o t he article master. help.sap.com | No se puede c opia r la valoracin de caracterstica pl ani ficada en el m aestro […] de artculos. help.sap.com |
Этот номер можно использовать для определения […] help.sap.com | Este nmero puede utilizarse для определения […] help.sap.com |
Также полезно выбрать настройку для […] help.sap.com | Tambin es til seleccionar la opcin pa ra la […] help.sap.com |
Эти значения предлагаются du ri n g присвоение характеристического значения b u t их можно изменить. help.sap.com | E stos valores se p ro pondrn durant e la valoracin de la caracterstica pe ros mod help.sap.com |
Однако вы можете использовать эту опцию, только если настройки […] требуется для автоматической […] help.sap.com | Sin embargo, slo puede utilizar esta opcin si se han realizado las opciones necesarias para […] asignacin automtica de […] help.sap.com |
Если вы работаете со спецификациями заказа на продажу для конфигурируемых материалов, вы можете определить в конфигурации […] профиль для […] для заказа на продажу […] Спецификация возможна из заказа клиента. help.sap.com | Si est trabajando con listas de materiales para pedido de materiales configurables, puede Definir, en el perfil de configuracin del mater […] , настраиваемый, si es […] из списка […] материалов для педиатрии от клиентов-педиатров. help.sap.com |
Если вы назначаете настраиваемый материал настраиваемому стандарту […] или в сеть, созданную с использованием конфигурации, вы […] help.sap.com | Указывает, что материал конфигурируется, а не графически, конфигурируется на […] un grafo que se ha creado p or medio de la configuracin, se […] help.sap.com |
копия t h e присвоение характеристического значения o f a другая (общая) статья help.sap.com | c op iar la valoracin d e caracterstica d e o tro art cu lo (genrico) help.sap.com |
Однако можно […] help.sap.com | Грех эмбарго, […] help.sap.com |
T h e присвоение характеристического значения s c re en показывает характеристики […] настраиваемый объект, чтобы вы могли назначать им значения. help.sap.com | La pant all a d e valoracin m ues tra las caractersticas de u n ob jerable [… para poderle asignar valores. help.sap.com |
Используя autom в i c присвоение значения признака , y ou можно скопировать […] подробный текст, поддерживаемый для фазы или данных материала […] внесен в список материалов вашей технологической инструкции. help.sap.com | U tiliz and o l a valoracin de caracterstica au to mt ica, pu ede copiar […] el texto explicativo Actualizado for una fase o los […] данных актуальных материалов в списке материалов в инструкциях по процедурам. help.sap.com |
Если использовать это улучшение, то […] вызывается, когда выполняется окончательная проверка согласованности конфигурации, когда […] help.sap.com | Para utilizar esta ampiacin, […] sta se llama al realizar l a ltima v erificacin de consistencia en la […] help.sap.com |
Нет в принципе […] help.sap.com | En el maestro de artculos no existe […] help.sap.com |
скопируйте pla nn e d присвоение характеристического значения o f a nother (общий) […] Товар (соответствует комплектации значений из иерархии планирования). help.sap.com | cop ia r la valoracin d e caracterstica p la nifi cada d e otro […] artculo (genrico), es decir, extra er valores de la jerarqua de planificacin. help.sap.com |
Если вы используете настройку Запланированный / производственный заказ, вы можете использовать […] help.sap.com | Si se utiliza la opcin Orden previsional / de fabricacin, se pueden utilizar […] help.sap.com |
Использование — это ключ […] help.sap.com | Las utilizaciones son un […] help.sap.com |
Затем выполняется настройка […] help.sap.com | La configuracin se lleva a […] help.sap.com |
Для отображения t h e присвоение характеристического значения f o r партия, перейти к партии […] основная запись (Логистика help.sap.com | Пункт vi suali zar la valoracin de l a caracterstica d e u n l ote, al. se…] registro maestro de lote (Logstica ) help.sap.com |
T h e присвоение характеристического значения s c re en в варианте […] Конфигурация вызывается следующими прикладными компонентами R / 3 help.sap.com | Los siguientes components de aplicacin del sistema R / 3 […] различных вариантов help.sap.com |
Присвоение значения признака f o r эта характеристика выполняется […] автоматически при выборе партии. help.sap.com | L a valoracin de caracterstica para est a caracterstica s e ef ec ta automticamente […] durante alterminar los lotes. help.sap.com |
вы не можете выполнить pla nn e d присвоение значения признака f o r текущая статья. help.sap.com | no puede rea li zar valoraciones d e l as caractersticas pl anificadas par a el ar tculo actual. help.sap.com |
Выберите пункт меню […] help.sap.com | Выбор мужчин Cabecera […] help.sap.com |
Источники и источник […] help.sap.com | Fuentes y gestin de fuentes […] help.sap.com |
Если вставить символ для значений […] создать повторяющуюся группу около […] символ основной группы типа. help.sap.com | Si вставка […] siempre debe crear un grupo de repeticin […] acerca del smbolo de grupo Principal de tipos. help.sap.com |
передача […] help.sap.com | пересылка […] |
В действии вы назначаете этому полю значение, которое будет использоваться для конкретной конфигурации. […] help.sap.com | En una accin, asigne el valor a utilizar para una configuracin especfica a este […] help.sap.com |
Границы | Автоматическое распознавание характерной формы волны слуховой реакции ствола мозга на основе двунаправленной долгосрочной краткосрочной памяти
Введение
Слуховая реакция ствола мозга (ABR) — это глобальная нервная активность в центрах слухового ствола мозга, вызванная акустической стимуляцией.Он может наблюдать функциональное состояние слухового нерва и нижнего слухового центра, а также отражать проводящую способность ствола мозга по слуховым путям (1, 2). Учитывая, что нарушение слуха пациента может быть диагностировано без его активного сотрудничества, ABR стал одним из рутинных методов записи слуха взрослых (3–5). Форма волны ABR обычно имеет диапазон задержки между волнами, и ее потенциал в микровольтах записывается. Нормальный ABR обычно имеет пять видимых пиков, то есть волны I, II, III, IV и V.Волна V обычно появляется как самый большой пик в ABR. В клинической диагностике минимальная интенсивность звуковой стимуляции, способная вызвать распознанный ABR, определяется как порог ABR, который обычно зависит от волны V или волны III (6, 7). На рисунке 1 показаны аннотированные формы волны ABR, которые клинически в основном идентифицируются как волны I, III и V. Другие характерные волны обычно не отображаются четко из-за малой амплитуды, двухволнового слияния и шумовых помех. Таким образом, они редко используются в качестве основы для диагностики.
Рисунок 1 . Аннотированная форма волны ABR (данные легенды выбраны из наборов данных, применяемых в этой работе).
В клинической диагностике минимальная интенсивность стимуляции волны V обычно используется в качестве порога ABR. Иногда, когда волна III больше, чем волна V, порог ЧСС определяется по интенсивности стимуляции волны III (8). При определении очагов поражения можно судить о их местонахождении в соответствии с задержкой между волнами I, III и V и задержкой между волнами и бинауральными волнами (9).Кроме того, о типах глухоты пациента можно судить, наблюдая за характеристиками изменения латентности формы волны ABR и особой формой формы волны ABR у одного и того же пациента при разных уровнях стимуляции. Таким образом, порог ABR и задержка между волнами I, III и V, которые имеют большое значение в клинических приложениях, могут быть получены путем определения положения характерной волны ABR. Обычно потенциал, получаемый от каждой стимуляции, слабый. В клинических испытаниях необходимо выполнить несколько стимуляций, чтобы наложить, усреднить и получить относительно стабильные результаты формы волны.Этот процесс подвержен влиянию электрических помех, возникающих из-за паразитных миогенных потенциалов или артефактов движения. Кроме того, обычно необходимо выполнение нескольких тестов на пациентах и сравнение результатов, чтобы избежать неочевидных пиков, перекрывающихся пиков и ложных пиков, которые не только занимают много времени, но и подвержены ошибкам субъективного суждения. Таким образом, определение характеристик формы волны ABR и избежание помех, вызванных нечеткой дифференциацией, нечеткими характеристиками и аномальными формами волны, являются важными проблемами, которые необходимо срочно и правильно решить при клинической записи ABR.
Применение компьютерных технологий для оказания помощи в медицинской диагностике может эффективно уменьшить количество ошибок, вызванных повторяющейся работой и сложными характеристиками сигналов. Это направление исследований долгое время было важным для консультации по ABR (10). Например, Уилсон (11) обсудил взаимосвязь между ABR и дискретным вейвлет-преобразованием реконструированных форм волны, указав, что дискретное вейвлет-преобразование формы волны ABR может использоваться как эффективное частотно-временное представление обычного ABR, но с некоторыми ограничениями.Особенно в некоторых случаях восстановленная волна дискретного вейвлет-преобразования ABR отсутствует из-за инвариантности сдвига дискретного вейвлет-преобразования. Брэдли и Уилсон (12) дополнительно изучили метод использования производной оценки вейвлета для автоматического анализа ABR, что повысило точность идентификации основной волны до высокого уровня. Тем не менее, они также упомянули о необходимости дальнейших исследований эффективности распознавания формы волны аномальных субъектов, и ручная оценка аномальных форм волны все еще требуется в клинических условиях.Zhang et al. (13) предложили метод классификации ABR, который сочетал в себе вейвлет-преобразование и байесовскую сеть, чтобы уменьшить количество повторений стимулов и избежать нервного утомления испытуемого. Важные особенности извлекаются с помощью пороговой обработки изображения и вейвлет-преобразования. Впоследствии функции были применены в качестве переменных для классификации с использованием байесовских сетей. Экспериментальные результаты показывают, что данные ABR только со 128 повторяющимися стимуляциями могут обеспечить точность 84,17%. По сравнению с клиническим тестом, который обычно требует 2 000 повторений, эффективность обнаружения ABR значительно повышается.Однако волна I и волна V всегда удлиняются примерно на 0,1 мс и вызывают изменения диапазона волн. Следовательно, III – V / I – III будет неточным индикатором.
Таким образом, автоматическое распознавание форм волны ABR с помощью компьютерных методов может эффективно помочь клиницистам и аудиологам в интерпретации ABR. Это также снижает количество ошибок, вызванных субъективными факторами, интерференцией сложных сигналов и нагрузкой большого количества повторяющихся задач для медицинского персонала. В этом исследовании предлагается метод использования сети долговременной краткосрочной памяти (LSTM) для идентификации волн I, III и V в форме волны ABR и предлагается новая идея для распознавания характерных форм волны ABR нейронными сетями.Структура исследования организована следующим образом: экспериментальные данные и подробное описание предлагаемого метода представлены в разделе «Материалы и методы». В разделе «Результаты» представлены план эксперимента и соответствующие результаты. Наконец, в разделе «Обсуждение» подробно излагаются результаты этой работы.
Материалы и методы
Источник данных
Данные предоставлены отделением отоларингологии хирургии головы и шеи Китайской больницы общего профиля.Для измерения и сбора данных используется система тестирования вызванного потенциала SmartEP, разработанная американской компанией Smart Listening. На рисунке 2 показан процесс клинического сбора, где на рисунке 2а показано обезжиривание кожи для повышения проводимости; На рис. 2b показано положение электродов в области лба и мочки уха; На рис. 2с представлена диаграмма взаимного расположения предусилителя, электродов и вставных наушников. а на рис. 2d показаны детали предусилителя. Собранная форма волны сохраняется на сервере, рис. 2e, и ее можно наблюдать с помощью монитора.Шестьсот четырнадцать клинических стимулов щелчка. Данные ABR были собраны при интенсивности стимуляции 96 дБ нПС после 1024 повторных стимуляций, которые содержат 181 нормальный и 433 аномальный слух. Набор клинических данных включает 348 мужчин и 266 женщин в возрасте от 18 до 90 лет. Что касается структуры данных, данные содержат 1024 точки выборки в диапазоне от -12,78 до 12,80 мс со средним интервалом 0,025 мс между каждыми двумя точками выборки. Все данные были отмечены тремя клиническими аудиологами с характерными волнами: волна I, волна III и волна V, и прошли перекрестную проверку.Наконец, данные были случайным образом разделены на обучающие и тестовые наборы. Всего для обучения сетевой модели использовался 491 обучающий набор, а для окончательного теста точности распознавания использовалось 123 тестовых набора.
Рисунок 2 . Процесс сбора клинической информации о диагностике слуха ABR. (а) Обезжиривание кожи для повышения проводимости; (б) положение электродов на лбу и мочке уха; (c) диаграмма взаимного расположения предусилителя, электродов и вставных наушников; и (d) детали предусилителя.Собранная форма волны сохраняется на сервере (e) и может быть просмотрена с помощью монитора.
Обработка данных
В данной работе предлагается новый метод обработки данных. Для количественной оценки формы сигнала и точек меток были сгенерированы две матрицы 1 024 × 1 A и B в качестве последовательности классификации и метки, соответственно. представляет потенциал входных данных ABR. Положение серийного номера соответствует положению точки выборки данных ABR. B представляет собой не характерную (0) и характерную точки (1) соответственно. Таким образом, в соответствии с положением значения метки данных метки данные, которые соответствовали положению матрицы меток, были изменены на 1, чтобы соответствовать требованиям двоичной классификации всех точек выборки. Однако шум, создаваемый миогенным потенциалом, наблюдается в некоторых экспериментальных данных (рис. 3). В данных клинических испытаний ABR форма волны ABR имеет необычное увеличение в точке выборки в конце из-за колебаний характеристических волн VI и VII и результата внешних помех.Чтобы предотвратить помехи, вызванные аномальными данными, данные до 8 мс были выбраны равномерно, чтобы идентифицировать характерные волны.
Рисунок 3 . Аномальная форма волны ABR и метод квантования данных.
С другой стороны, начальная точка фактической стимуляции — 0 мс. Конечные входные данные потенциального значения и соответствующая обучающая метка сохранили только 321 точку дискретизации 0–8 мс, чтобы избежать вмешательства в обучение нейронной сети и уменьшить объем вычислений в процессе обучения нейронной сети.Таким образом, A и b f обновляются следующим образом:
{A (321) = {y1, y2, …, y321} TB (321) = {t1, t2, …, t321} T (1)
При фактической обработке значение функции потерь может легко достичь низкого уровня, и невозможно получить достаточную информацию, потому что отношение помеченного значения к немаркированному значению в 321 точке выборки составляет всего 3: 318. Информация, помеченная вручную, также может приводить к определенным ошибкам. Таким образом, в этом исследовании был принят метод увеличения положения точки идентификации в обучающей метке.Четыре точки (0,1 мс) до и после исходной точки маркировки были отмечены как характеристическая область, что расширяет диапазон маркировки характеристической формы волны.
Структура сети
LSTM — это рекуррентная нейронная сеть, улучшенная в основном на основе единицы временного шага путем добавления вывода ячеек памяти для переноса информации, которую необходимо передавать в течение длительного времени. Также добавлены три конструкции ворот. Эти структуры затвора используются для выбора сохранения значения ячейки памяти C t -1 , переданного с предыдущего временного шага, добавления новой информации в ячейку памяти V , а также прогнозирования и вывода информации, передаваемой посредством ячейку памяти и переходите к следующему временному шагу.
Рисунок 4 — схематическая диаграмма структуры LSTM. Во-первых, чтобы контролировать долю входной информации, сохраняемой ячейками памяти на предыдущем временном шаге, выход рассчитывается следующим образом:
ft = σ (Wfht-1 + Ufxt + bf) (2)
ч t -1 — значение скрытого состояния, переданное на предыдущем временном шаге; и W f ,… и b f — соответствующие веса и смещения.Функция активации обычно использует сигмовидную функцию для отображения значения активации между [0, 1]. Чтобы контролировать пропорцию информации, обновляемой в ячейке памяти, сначала была применена функция активации сигмоида для получения выходных данных i i . Затем для получения применяется функция активации tan h , и произведение двух используется в качестве информации для обновления ячейки памяти. i t и a t рассчитываются следующим образом:
это = σ (Wiht-1 + Uixt + bi) (3)
at = tanh (Вт-1 + Uaxt + ba) (4)
где W i , U i , b i , W a , a — веса и смещения.Наконец, ячейка памяти C t вычисляется до следующего временного шага с использованием уравнения (5):
Ct = Ct-1⊙ft + it⊙at (5)
, где ⊙ — произведение Адамара, которое указывает, что соответствующие позиции матрицы умножаются. t-yt) + (∂ht + 1∂ht) Tδht + 1 (9)
δCt = δCt + 1⊙ft + 1 + δht⊙ot⊙ (1-tanh3 (Ct)) (10)
В этой работе BiLSTM устанавливается как сетевая структура, позволяющая входной последовательности иметь двунаправленное соединение друг с другом (14).На рисунке 5 показано, что еще один уровень LSTM, который распространяется назад во времени, добавляется на основе однонаправленного прямого распространения LSTM во временной последовательности. Окончательный вывод определяется выводом двух уровней LSTM: прямого и обратного. По сравнению с односторонним LSTM, конечный результат избегает предсказания каждый раз, чтобы на него влиял только ввод предыдущего времени. Более того, он может лучше отражать информационные характеристики до и после каждой точки прогнозирования, тем самым делая более точные прогнозы.
Рисунок 5 . Принципиальная схема структуры BiLSTM.
Вейвлет-преобразование
В традиционном режиме вейвлет-преобразование является широко используемым методом в исследованиях выделения и распознавания ABR (15). При извлечении ABR с помощью вейвлет-преобразования можно добиться эффекта устранения шума путем выбора подробных компонентов конкретных частот для восстановления и для более плавной формы волны ABR. Также возможно получение относительно четких форм волны при уменьшении повторяющейся стимуляции.Обычно непрерывное вейвлет-преобразование определяется как (16):
WT (a, τ) = 1a∫-∞∞f (t) * ψ (t-τa) dt (11)
, где f ( t ) — сигнал во временной области, а часть 1aψ (t-τa) — это вейвлет-функция, которую также можно обозначить как ψ a , τ ( t ). Доступны две переменные, а именно масштаб a и перенос τ. Масштаб a применяется для управления расширением и сжатием вейвлет-функции, а величина переноса τ управляет перемещением вейвлет-функции.Масштаб a обратно пропорционален его эквивалентной частоте, которая определяется как φ ( t ). Полное вейвлет-разложение выглядит следующим образом:
f (t) = ∑k = -∞∞ckφ (t-k) + ∑k = -∞∞∑j = 0∞dj, kψ (2jt-k) (12)
, где c и d — коэффициенты соответствующей функции, j — параметр частотной области, который определяет частотные характеристики вейвлета, а k — параметр временной области, который управляет положением вейвлета. база во временной области.Хотя масштабные и вейвлет-функции сложны и имеют разные характеристики, процесс вейвлет-разложения можно рассматривать как использование фильтра нижних частот и фильтра верхних частот для разложения сигнала по частоте. Низкочастотные компоненты, разложенные на каждом уровне, называются приблизительными компонентами, а высокочастотные компоненты называются подробными компонентами. Таким образом, к восстановленной форме волны были применены приблизительные компоненты и подробные компоненты.
Результаты
Экспериментальная процедура
В этом исследовании были разработаны три серии экспериментов, а именно: (1) сравнение различных сетевых структур, (2) сравнительный эксперимент вейвлет-преобразования и (3) сравнительный эксперимент различных узлов скрытого слоя.На рисунке 6 показана экспериментальная блок-схема. Слой ввода последовательности использовался как входное значение потенциального значения 321 точки выборки, и данные передавались на несколько слоев LSTM или BiLSTM. Впоследствии был соединен полностью связанный слой. Вероятность классификации каждого момента времени рассчитывалась с использованием функции softmax. Наконец, классификационный слой был подключен. Функция кросс-энтропии (17) использовалась для вычисления функции потерь для каждого момента времени и общей функции потерь последовательности.Затем была классифицирована временная последовательность.
Рисунок 6 . Схема эксперимента.
В сравнительном эксперименте нескольких сетевых структур семь сетевых структур, а именно: (1) однослойный LSTM, (2) двухслойный LSTM, (3) однослойный BiLSTM, (4) двухслойный BiLSTM, (5 ) трехслойный BiLSTM, (6) четырехслойный BiLSTM и (7) пятислойный сетевой уровень BiLSTM. В сравнительном эксперименте с различными узлами скрытого слоя для обучения использовалась трехслойная двунаправленная сеть LSTM и применялось разное количество скрытых нейронов.В эксперименте использовались четыре группы с разным количеством скрытых нейронов: 64, 128, 256 и 512.
В сравнительном эксперименте с вейвлет-преобразованием все данные добавляли шум в качестве помехи. Для тестирования использовалось семь различных сетевых структур. Например, данные обучения, предварительно обработанные с помощью вейвлет-преобразования, использовались в качестве экспериментальной группы, а данные обучения, обученные с использованием исходных данных, использовались в качестве контрольной группы. В этом эксперименте данные ABR были разложены на шесть слоев, и приблизительные и подробные компоненты шестого слоя, четвертого, пятого и шестого слоев были сохранены для восстановления формы волны соответственно.Конфигурация параметров согласована. Сеть была обучена с помощью пяти K-кратной перекрестной проверки ( K = 9), и был проведен тест для получения среднего значения.
Выходные результаты представлены в форме «региона». На рисунке 7 представлена выходная визуализация, где кривая представляет собой исходный ABR, используемый для идентификации, а красные метки — это результаты классификации сетевого предсказания, уменьшенные в четыре раза. ABR первых 8 мс четко разделен на две разные метки.Часть с 1 — идентифицированный пик, а другая часть — идентифицированный характеристический непик. Постобработка определяется следующим образом: 20 точек выборки (0,5 мс) задаются в качестве порогового значения. Область в пределах 20 точек выборки между началом и концом является той же характерной областью волны. Наконец, среднее временное значение первой и последней точек вычисляется как временное значение распознанной характеристической волны. Подобные точки выборки рассчитываются для получения уникального значения характеристической волны.Наконец, степень точности распознавания рассчитывается в соответствии с определенным положением волны функции ABR.
Рисунок 7 . Маркировка функций на ABR, где (a) показывает вывод по режимам. (b) — результат постобработки.
Четыре результата распознавания данных ABR были выбраны случайным образом и представлены на рисунке 8. После постобработки выходные векторы моделей были преобразованы в характерные точки. Выявленные характерные точки почти идентичны тем, которые были выбраны с использованием методов ручной маркировки, что демонстрирует потенциальную полезность этого метода в клинических условиях.Даже в некоторых сложных данных ABR ручная аннотация обычно записывает несколько наборов данных для определения правильного пика (рис. 8d). Однако модель может напрямую и точно идентифицировать пик формы сигнала из одного сигнала (рис. 8h). Поэтому они также проверяют возможность предлагаемого метода. Чтобы лучше проверить точность распознавания, в этой работе было проведено количественное обсуждение различных сетевых структур, обработки вейвлет-преобразования и количества скрытых нейронов.Однако модель может также привести к некоторым ошибочным суждениям. Например, на рис. 9а показан неверный результат распознавания. Поскольку волна I и волна III формы волны неочевидны, невозможно получить достаточное количество точек непрерывной идентификации. Следовательно, после постобработки получается только относительно очевидная волна V (рисунок 9c). Кроме того, на рис. 9b представлен еще один неверный результат. В этом случае полученная ошибка волны I достигла 0,67 мс. Это потому, что модель оценила неправильную волну I (рис. 9d). Таким образом, в будущей работе улучшение способности модели анализировать сложные формы сигналов по-прежнему остается важным направлением.
Рисунок 8 . Результаты распознавания четырех данных, где (a – d) — ручные метки. Кроме того, (e – h) представляют собой выходные данные предлагаемой трехуровневой модели BiLSTM.
Рисунок 9 . Два результата распознавания ошибок, где (a, b) — ручные метки. Кроме того, (c, d) представляют собой выходные данные предлагаемой трехуровневой модели BiLSTM.
Сравнение нескольких сетевых структур
Обычно шкала ошибок 0.2 мс применяется как диапазон шкалы клинически отмеченных точек. Были протестированы три значения критерия для максимального допустимого значения ошибки (ME): -0,1, 0,15 и 0,2 мс. Результат прогнозирования считался приемлемым, если точка прогнозирования и точка, определенная вручную, находились в пределах диапазона критериев ME. Согласно количеству правильных точек прогноза r p и общему количеству отмеченных точек p n , показатель точности (ACC) рассчитывается с использованием r p / p n , как показано в уравнении (13):
В этом исследовании три шкалы ошибок (ME) равны 0.1, 0,15 и 0,2 мс были рассчитаны, соответственно, для дальнейшего изучения точности распознавания и других связанных законов. Величина потерь результатов обучения с разными сетевыми структурами и ACC при разных шкалах ошибок представлена в таблице 1.
Таблица 1 . Стоимость потерь и ACC каждой сетевой структуры.
На рисунке 10A показано распределение данных для визуального наблюдения корреляции с различными сетевыми структурами. Примечательно, что ACC сети BiLSTM выше, чем у сети LSTM.Кроме того, ACC однослойной сети BiLSTM и двухуровневой сети LSTM аналогичны. Причина в том, что двусторонняя сеть LSTM имеет структуру, аналогичную двухуровневой сети LSTM. Однако информация в сети BiLSTM имеет характеристики распространения в прямом и обратном направлениях, тогда как двухуровневая сеть LSTM распространяется только в прямой последовательности во времени. Это явление приводит к различиям в ACC между двумя моделями. Сети LSTM и BiLSTM увеличивают ACC с увеличением количества наложенных слоев.После того, как сеть BiLSTM достигнет трех уровней, ACC больше не будет значительно увеличиваться. Структура сети постепенно переходит в состояние переобучения и увеличивает вычислительную нагрузку из-за чрезмерных параметров. Таким образом, трехуровневая сеть BiLSTM — лучший выбор.
Рисунок 10. (A) метрики ACC с различными сетевыми структурами. В статистических результатах трехуровневая сеть BiLSTM достигла 92,91% и является самым высоким показателем среди всех сетей. Однослойный LSTM, имеющий самый низкий индекс, составляет примерно половину от него. (B) показателей ACC с различными скрытыми узлами, где 512 узлов заняли первое место, а 256 и 128 количества стояли на втором и третьем позициях. Кроме того, 64 узла заняли последнее место.
Эксперимент с вейвлет-преобразованием
При тестировании ACC вейвлет-преобразования данные ABR были разложены на шесть уровней. Кроме того, приблизительные компоненты шестого слоя и подробные компоненты четвертого, пятого и шестого слоев были сохранены для восстановления формы волны. На рисунке 11 показан пример результата, отфильтрованного с помощью вейвлет-преобразования.Кривая, обработанная вейвлет-преобразованием, становится более гладкой. Затем необработанные данные ABR служили контрольным экспериментом. В данной работе обнаружение и сравнение проводились на основе двух шкал ошибок 0,1 и 0,2 мс (таблица 2). Результаты распознавания ACC показаны на рисунке 12.
Рисунок 11 . Экземпляр результат вейвлет-преобразования, где (a) — исходные данные. В этом сигнале возникла очевидная интерференция. (б) получается после сглаживания.
Таблица 2 . ACC каждой сетевой структуры с исходными данными и данными вейвлет-преобразования.
Рисунок 12 . Влияние предварительной обработки вейвлет-преобразования на точность. wt представляет результаты, полученные с помощью предварительной обработки вейвлет-преобразования.
Распознавание Значения ACC предварительной обработки в сети LSTM с использованием вейвлет-преобразования немного выше, чем у контрольной группы. Однако они не так хороши, как в контрольной группе в сети BiLSTM.В частности, наибольшая разница ACC достигает 6,46% при расчете со шкалой ошибок 0,1 мс. Кроме того, разница уменьшается до <3% при расчете со шкалой ошибок 0,2 мс. Результаты показывают, что предварительная обработка вейвлет-преобразования не дает более высокого ACC за счет сглаживания кривых. Из-за вейвлет-разложения и реконструкции было создано небольшое отклонение в положении гребня волны. Некоторая информация была уничтожена в форме волны ABR; следовательно, это повлияло на результаты обучения и распознавания.Это означает, что сеть BiLSTM обладает помехоустойчивостью и может обрабатывать данные ABR низкого качества.
Сравнительные эксперименты с различными узлами скрытого слоя
Исходя из приведенных выше результатов, трехуровневая сеть BiLSTM является лучшим выбором. Результаты ACC с разными номерами скрытых узлов обсуждались в данной работе (Таблица 3). На рисунке 10B представлены результаты ACC с различными узлами скрытого слоя: 64, 128, 256 и 512. Очевидно, ACC распознавания увеличивается с увеличением количества скрытых узлов, поскольку достаточное количество параметров позволяет точно подобрать сеть.Кроме того, ACC шкалы ошибок 0,2 мс медленно увеличивается в процессе изменения 256–512 узлов и в основном насыщается. Учитывая стандарт точности в практических приложениях и временные затраты на обучение, которые могут быть вызваны увеличением количества скрытых узлов, сеть из 512 скрытых узлов является лучшим выбором.
Таблица 3 . ACC с различными узлами скрытого слоя.
Кроме того, в этой работе в основном обсуждается характерный процесс распознавания волн для щелчка ABR со стимулом 96 дБ нПС.Кроме того, можно получить только такие параметры, как задержка и интервал волны. В клинических применениях многие индикаторы все еще могут использоваться в качестве диагностической основы, например, взаимосвязь между потенциальными значениями стимулов разного размера, ответом и исчезновением волны V и изменением латентности между волнами каждой характеристической волны. Это также дает новую идею для последующей компьютерной диагностики и лечения ABR.
Обсуждение
В данной работе предлагается метод автоматического распознавания характеристических сигналов ABR с использованием сети BiLSTM.Основная цель — определить положение характерных волн I, III и V, которые помогают медицинскому персоналу получить соответствующие параметры клинических испытаний, такие как задержка между волнами и интервал между волнами. Процесс количественной оценки данных предназначен для анализа характерной формы волны ABR, включая область выбора потенциального сигнала и расширение положения метки. Оптимальная структура сетевой модели получается с помощью нескольких наборов сравнительных экспериментов. В 614 наборах клинически собранных экспериментов с формами волны ABR общее распознавание сетью характеристических волн показало ACC 92.91%.
Экспериментальные результаты показывают, что метод предлагает новую идею для идентификации характерных форм волны ABR и помогает профессионалам получать параметры межволновой задержки в формах волны ABR. Таким образом, компьютерный метод автоматической идентификации может получить более глубокую информацию, эффективно избежать субъективных оценок медицинского персонала в процессе ручной идентификации, уменьшить количество повторных стимуляций во время теста, а также избежать утомления зрения тестируемого человека.Из-за помехозащищенности предложенной сетевой модели она может эффективно уменьшить повторяющееся обнаружение пациентов. В процессе крупномасштабной идентификации среднее время обработки каждых данных с помощью этого метода составляет всего около 0,05 с, что намного быстрее, чем скорость ручной идентификации. Таким образом, он имеет большие преимущества в повторяемости работы.
Были предложены некоторые усилия для анализа формы волны ABR с использованием методов глубокого обучения. Например, Фаллата и Даджани (18) предложили новый метод обнаружения ABR на основе ИНС для сокращения времени обнаружения.Перед вычислением ИНС было обработано дискретное вейвлет-преобразование для извлечения характеристик ABR. Ожидалось, что сокращение времени записи будет способствовать применению этого метода измерения в клинической практике. Маккирни и Маккиннон (19) разделили данные ABR на четкий, неопределенный или отсутствие ответа. В своей работе они построили глубокую сверточную нейронную сеть и настроили ее для реализации классификации ABR. Результаты показали, что сеть может иметь клиническое применение при помощи клиницистам в классификации форм сигналов с целью оценки порога слышимости.В отличие от существующих работ, в этом исследовании был предложен новый метод обработки данных и создана сквозная модель глубокого обучения. Модель также может быть рассчитана напрямую без сложных математических преобразований, поэтому она дает новую идею для глубокого обучения в обработке сигналов.
Заявление о доступности данных
Оригинальные материалы, представленные в исследовании, включены в статью / дополнительные материалы, дальнейшие запросы можно направлять соответствующим авторам.
Заявление об этике
Исследования с участием людей были рассмотрены и одобрены этическим комитетом больницы общего профиля PLA. Письменное информированное согласие на участие в этом исследовании было предоставлено законным опекуном / ближайшими родственниками участников. Письменное информированное согласие было получено от человека (лиц) на публикацию любых потенциально идентифицируемых изображений или данных, включенных в эту статью.
Авторские взносы
CC и LZ: концептуализация и написание — подготовка первоначального проекта.CC: методология. XP: программное обеспечение и обработка данных. HQ, FX и WS: проверка. МС: формальный анализ. FJ: расследование. QW: ресурсы. RX и NY: написание — просмотр и редактирование. ЛЗ: визуализация. NY: надзор. ZW и XG: администрирование проекта. RX: привлечение финансирования. Все авторы прочитали и согласились с опубликованной версией рукописи.
Финансирование
Эта работа финансировалась Национальной программой ключевых исследований и разработок (2017YFB1002804 и 2016YFC0
4), Национальным фондом естественных наук Китая (61701022), Больницей общего профиля PLA (QNC19051), Проектом активного здравоохранения Министерства науки и технологий (2020YFC2004001). , Фонды фундаментальных исследований для центральных университетов (FRF-BD-20-11A) и Пекинская высшая дисциплина искусственного интеллекта в науке и технике Пекинского университета науки и технологий.
Конфликт интересов
Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.
Благодарности
Эта рукопись была выпущена в качестве препринта на сайте bioRxiv (20).
Список литературы
1. Марина С.А., Антонио Э.Ф., Тобиас Р. Индивидуальные различия в модуляции внимания слухового ствола мозга человека в ответ на речевую информацию о дефиците речи в шуме. Sci Rep. (2019) 9: 14131. DOI: 10.1038 / s41598-019-50773-1
PubMed Аннотация | CrossRef Полный текст | Google Scholar
2. Etard O, Kegler M, Braiman C, Frote AE, Reichenbach T. Расшифровка избирательного внимания к непрерывной речи из слуховой реакции ствола мозга человека. NeuroImage. (2019) 200: 1–11. DOI: 10.1016 / j.neuroimage.2019.06.029
PubMed Аннотация | CrossRef Полный текст | Google Scholar
3. Курихара Т., Игараси Ю., Кобай К., Мизобути Т., Йокота Х.Диагностика и предсказание прогноза энцефалита ствола мозга Бикерстаффа с использованием слухового ответа ствола мозга: отчет о случае. Acute Med Surg. (2020) 7: e517. DOI: 10.1002 / AMS2.517
PubMed Аннотация | CrossRef Полный текст | Google Scholar
4. Feng S, Li X, Luo Y, Li W, Wang Z, Jiang X. Характеристики и клиническое значение слуховой реакции ствола мозга при звоне в ушах с нормальными порогами слуха. Chin J Otol. (2019) 17: 209–13. DOI: 10.3969 / j.исн.1672-2922.2019.02.013
CrossRef Полный текст | Google Scholar
5. Jiang Y, Wang D, Liu Z, Tan J, Li G. Сравнение слуховых реакций ствола мозга, вызванных щелчком и свип-тоном у взрослых с нормальным слухом. In: , 2019 41-я ежегодная международная конференция IEEE Engineering in Medicine & Biology Society (EMBC) . Берлин: IEEE (2019). п. 5237–40.
PubMed Аннотация | Google Scholar
6. Цюй Л., Тао Л., Цзэн М. Анализ характеристик слуховой реакции ствола мозга у новорожденных с высоким риском разного гестационного возраста. Mater Child Health Care China. (2013) 28: 4322–4. DOI: 10.7620 / zgfybj.j.issn.1001–4411.2013.28.22
CrossRef Полный текст | Google Scholar
7. Сара М.К., Мэдсен Джеймс М., ХартКлаус ЭД. Точность усредненных оценок амплитуды и задержки ответа слухового ствола мозга. Int J Audiol. (2018) 57: 345–53. DOI: 10.1080 / 149
.2017.1381770
PubMed Аннотация | CrossRef Полный текст | Google Scholar
8. Льюис Дж. Д., Копун Дж., Нили С. Т., Шимид К. К., Горга М. П..Задержка волны V ответа слухового ствола мозга на выброс тонального сигнала в ушах с нормальным и слабослышащим слухом. J Acoust Soc Am. (2015) 138: 3210–9. DOI: 10.1121 / 1.4935516
PubMed Аннотация | CrossRef Полный текст | Google Scholar
9. Wang Y, Lan Y, Wang L, Yu K, Zhao W, Wang T. ABR в ранней диагностике и его прогнозе у пациентов с дизаудией после черепно-мозговой травмы. Prog Mod Biomed. (2016) 27: 5336–9.
Google Scholar
10.Крумбхольц К., Харди А.Дж., Бур Дж. Автоматическое извлечение латентных периодов и амплитуд слухового ствола мозга с помощью регистрации нелинейной кривой. Comput Methods Prog Biomed. (2020) 196: 105595. DOI: 10.1016 / j.cmpb.2020.105595
PubMed Аннотация | CrossRef Полный текст | Google Scholar
11. Wilson WJ. Взаимосвязь между слуховой реакцией ствола мозга и его реконструированными волновыми формами после дискретного вейвлет-преобразования. Clin Neurophysiol. (2004) 115: 1129–39. DOI: 10.1016 / j.clinph.2003.11.019
PubMed Аннотация | CrossRef Полный текст | Google Scholar
13. Чжан Р., Макаллистер Дж., Скотни Б., Макклин С., Хьюстон Г. Объединение вейвлет-анализа и байесовских сетей для классификации слуховой реакции ствола мозга. IEEE Trans Inform Technol Biomed. (2006) 10: 458–67. DOI: 10.1109 / TITB.2005.863865
PubMed Аннотация | CrossRef Полный текст | Google Scholar
14. Кросс Дж., Хуан Л.Пошаговый синтаксический анализ с минимальными функциями с использованием двунаправленного LSTM. В: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics . Берлин (2016) doi: 10.18653 / v1 / P16-2006
CrossRef Полный текст | Google Scholar
15. Сунь Y, Чен ZX. Метод быстрого извлечения слухового ответа ствола мозга на основе вейвлет-преобразования. Int Conf Wave Anal Patt Recogn. (2007) 4: 1862–4. DOI: 10.1109 / ICWAPR.2007.4421758
CrossRef Полный текст | Google Scholar
16.Рушайдин М.М., Саллех С.Х., Хафизи О, Махьяр Х., Арифф А.К. Обнаружение волны V с использованием непрерывного вейвлет-преобразования сигнала ответа слухового ствола мозга. Prog Electromag Res Symp. (2012) 2012: 1889–93.
Google Scholar
17. Наср Г.Е., Бадр Е.А., Джоун К. Функция кросс-энтропийной ошибки в нейронных сетях: прогнозирование спроса на бензин . Альберта, Калифорния: Исследовательское общество Флориды. (2002).
Google Scholar
18. Fallatah A, Dajani HR.Точное обнаружение речевых слуховых ответов ствола мозга с помощью метода ИНС на основе спектральных характеристик. Biomed Sign Process Control. (2018) 44: 307–13. DOI: 10.1016 / j.bspc.2018.05.007
CrossRef Полный текст | Google Scholar
20. Chen C, Zhan L, Pan XX, Wang ZL, Guo XY, Qin HD, et al. Автоматическое распознавание характерной формы волны слухового ответа ствола мозга на основе BiLSTM. bioRxiv. [Препринт] . (2020). DOI: 10.1101 / 2020.10.03.324665
CrossRef Полный текст | Google Scholar
Исследование и применение метода автоматического извлечения характерных элементов подводных каньонов на основе ручного наблюдения
Allen SE, Durrieu de Madron X (2009) Обзор роли подводных каньонов в глубоководном обмене с шельфом.Ocean Sci Discus 6 (2): 1369–1406
Статья
Google Scholar
Чен Ю.Л. (2006) Извлечение водной системы и многоуровневое разложение водной сети на основе DEM (дипломная работа). Юго-западный университет Цзяотун.
Ding WW, Li JB, Li J (2010) Механизм формирования подводного каньона на северном склоне Южно-Китайского моря. J Mar Sci 28 (11101): 26–31
Google Scholar
Dong HX, Zhang W, Gong ZH (2016) Исследование алгоритма автоматической экстракции водной системы на основе DEM.Geomat Technol Equip 18 (02): 33–34
Google Scholar
Фарре Дж. А., МакГрегор Б. А., Райан В., Робб Дж. (1983) Нарушение границы: переход от юношеской к зрелой фазе в эволюции подводного каньона, том 33. Специальная публикация SPEM, Broken Arrow, стр. 25–39
Книга
Google Scholar
Гарбрехт Дж., Марц Л.В. (1997) Автоматизированное упорядочивание каналов и индексация узлов для растровых сетей каналов.Comput Geo-Sci 23 (9): 901–906
Google Scholar
Хан XB, Li JG, Long JP и др. (2010) Прогресс исследований подводных каньонов в Китае. Mar Geol Front 26 (02): 41–48
Google Scholar
Харрис П.Т., Уайтуэй Т. (2011) Глобальное распределение крупных подводных каньонов: геоморфологические различия между активными и пассивными континентальными окраинами. Mar Geol 285 (1–4): 69–86
Статья
Google Scholar
He Y, Zhong GF, Wang LL et al (2014) Характеристики и возникновение оползней, связанных с подводным каньоном, в середине северного континентального склона Южно-Китайского моря.Mar Pet Geol 57: 546–560
Статья
Google Scholar
Hu YJ (2018) Исследование метода анализа гидрологических характеристик водосборов на основе ArcGIS. Геомат Спат Инф Технол 41 (01): 167–171
Google Scholar
Johnston EG (1975) Цифровое обнаружение ям, пиков, гребней и оврагов. IEEE Trans Syst Man Cybern 5 (4): 472–480
Статья
Google Scholar
Li L, Hao ZC (2003) Автоматическое извлечение характеристик водосбора из цифровых моделей рельефа.Adv Earth Sci 02: 251–256
Статья
Google Scholar
Li TG, Cao QY, Li AC et al (2003) Источник опускания: отложения на окраинах континентов. Adv Earth Sci 05: 713–721
Google Scholar
Li XS, Zhou QJ, Su TY et al (2016) Подводные каньоны, ограниченные склоном, в глубоководной зоне Байюнь, северная часть Южно-Китайского моря: различия в их современной морфологии.Mar Geophys Res 37 (2): 95–112
Статья
Google Scholar
Li XJ, Wang DW, Wu SG et al (2017) Геоморфология каньона Санша: идентификация и значение. Mar Geol Quat Geol 37 (03): 28–36
Google Scholar
Лю Л.Дж., Фу М.З., Ли Дж.Г. и др. (2014) Геологические опасности в зоне прокладки глубоких трубопроводов газового месторождения Ливань 3–1 в Южно-Китайском море. Adv Mar Sci 3202: 162–174
Google Scholar
Luan KX (2017) Метод определения конструкции подводного каньона и анализ характеристик северной части Южно-Китайского моря (дипломная работа).Первый институт океанографии, SOA
Martz LW, Garbrecht J (1998) Гидрологические приложения ГИС 3: растровые цифровые модели рельефа. Hydrol Process 12: 843–855
Статья
Google Scholar
Normandeau A, Lajeunesse P, St-Onge G (2015) Подводные каньоны и каналы в нижнем устье Святого Лаврентия (Восточная Канада): морфология, классификация и недавняя динамика отложений. Геоморфология 241: 1–18
Статья
Google Scholar
О’Каллаган Дж. Ф., Марк Д. М. (1984) Извлечение дренажных сетей из цифровых данных о высотах.Comput Vis Graphics Image Process 28: 323–344
Статья
Google Scholar
Paull CK, Caress DW, Ussler W., Lundsten E, Meiner JM (2011) Батиметрия с высоким разрешением осевых каналов в подводных каньонах Монтерей и Сокель, на шельфе центральной Калифорнии. Геосфера 7: 1077–1101
Статья
Google Scholar
Pratson LF, Ryan WBF, Mountain GS, Twichell DC (1994) Зарождение подводного каньона эродирующими вниз по склону потоками наносов: свидетельства в пластах позднего кайнозоя на континентальном склоне Нью-Джерси.Geol Soc Am Bull 106: 395–412
Статья
Google Scholar
Pratson LF, Nittrouer CA, Wiberg PL et al (2009) Эволюция морского ландшафта на обломочных континентальных шельфах и склонах. Осаждение континентальной окраины: от переноса наносов до стратиграфии последовательностей. Специальная публикация Международной ассоциации седиментологов 37. Blackwell Publishing, Лондон
Google Scholar
Shepard FP (1981) Подводные каньоны: множественные причины и длительное существование.Am Assoc Pet Geol Bull 65: 1062–1077
Google Scholar
Шепард Ф.П., Укроп РФ (1966) Подводные каньоны и другие морские долины. Рэнд МакНалли и Ко, Чикаго
Google Scholar
Soille P, Vogt J, Colombo R (2003) Вырезание и адаптивное обеспечение дренажа сетевых цифровых моделей рельефа. Водные ресурсы Res 39 (12): 1366
Статья
Google Scholar
Sun Y (2005) Исследование и реализация извлечения и визуализации информации о гидрологических характеристиках на основе DEM (дипломная работа).CNU (Capital Normal University), 2005
Sun CL, Wang JL (2008) Прогресс исследований автоматического извлечения и классификации водных систем на основе DEM. Прогресс Геогр 01: 118–124
Google Scholar
Усул Н., Пашаогуллари О. (2007) Влияние масштаба карты и размера сетки на гидрологическое моделирование. ГИС и дистанционное зондирование в гидрологии, водных ресурсах и окружающей среде, том 289. Публикации IAHS, плотина Три ущелья, стр. 91–100
Google Scholar
Yin SR, Wang LL, Guo YQ et al (2015) Морфология, характеристики осадочных пород и происхождение подводного каньона Донгша на северо-восточном континентальном склоне Южно-Китайского моря.Sci China Earth Sci 45 (3): 275–289
Google Scholar
Yoklavich GHG, Caillet GM, Sullivan DE et al (2000) Ассоциации местообитаний глубоководных морских окуней в подводном каньоне: пример естественного убежища. Fishery Bull 98 (7): 625–641
Google Scholar
Yu HX, Zhou YW (2001) Геоморфологические и геологические характеристики континентального шельфа на севере и западе Тайваня.Научный Китай (серия D) 6: 486–496
Google Scholar
Zhao YX, Liu BH, Li XS et al (2009) Тектоническая реакция различных типов подводных каньонов на континентальном склоне Восточно-Китайского моря. Adv Mar Sci 4: 460–468
Google Scholar
Чжу Л. (2013) Исследование геологических характеристик стихийных бедствий в зоне прокладки трубопровода газового месторождения Ливан 3-1 (дипломная работа). Первый институт океанографии, SOA
Zhu L, Fu MZ, Liu LJ et al (2014) Морфология каньона и отложения на северном склоне прогиба Байюнь.Mar Geol Quanternary Geol 34 (2): 1–9
Google Scholar
Получить предложение, запрос предложения, цену или купить
PowderPro A1 от Bettersize Instruments — это тестер характеристик порошка 14-в-1, который обеспечивает быстрые, простые и точные научные результаты испытаний, включая угол шпателя, угол падения, угол естественного откоса, утрамбованной плотности и объемной плотности, индекса текучести Карра и т. д. PowderPro A1 включает в себя несколько передовых технологий, интеллектуальное управление через соединение Wi-Fi, технологию измерения плотности с вращающимся нарезанием, трехмерную электромагнитную вибрацию и технологию обработки изображений.
Изображение предоставлено: Bettersize Instruments Ltd.
Этот новый тип прибора позволяет быстро, точно и легко количественно определять физические свойства порошков. PowderPro A1 — это интеллектуальный анализатор характеристик порошка, который является важным элементом оборудования, помогающим пользователям понимать и изучать порошковые материалы.
Предметы измерения и расчета
Изображение предоставлено: Bettersize Instruments Ltd.
Характеристики
Угол измерения с технологией обработки изображений
Для получения изображения кучи порошка реализована технология формирования изображений с помощью камеры с зарядовой связью (CCD) высокой четкости.Такие параметры, как угол шпателя, угол падения, угол естественного откоса и т. Д., Достигаются с хорошей воспроизводимостью и высокой точностью благодаря эксклюзивной технологии обработки изображений.
Компактная конструкция
PowderPro A1 можно использовать для достижения девяти количественных показателей, таких как угол шпателя, угол падения, угол естественного откоса, когезия, объемная плотность, диспергируемость, пустотность, утряска, размер сита и пять расчетных параметров, таких как разность углов, однородность, сжимаемость, индекс текучести, индекс текучести — все с помощью одного прибора.
Передача данных
Электронные весы подключены к прибору, и данные о весе могут фиксироваться системой управления для дополнительной обработки и расчета.
Вывод уникальных данных
Мини-принтер PowderPro A1 позволяет легко и эффективно распечатать данные измерений своевременно.
Передовая технология утряски
Плотность утряски достигается за счет идеального сочетания переменной частоты и технологии вращательной вибрации.Частоту вибрации от 50 до 300 раз в минуту можно постоянно регулировать; амплитуда колебаний может быть 3 или 14 мм. При возникновении вибрации цилиндр находится в состоянии равномерного вращения, что обеспечивает горизонтальную поверхность порошка и повышает точность считывания.
Техника автоматического управления
Полностью автоматическое компьютерное или мобильное управление гарантирует простое использование и быструю работу. Точные и надежные результаты могут быть достигнуты с помощью стандартной операционной процедуры (СОП).
Одно приложение. Несколько устройств
Приложение
Powder Tester для планшетов и смартфонов — единственное приложение, доступное на рынке характеристик порошка. Он был разработан, чтобы предоставить пользователям самый простой способ количественной оценки до 14 физических свойств их образцов.
Приложение простое и интуитивно понятное для использования на различных устройствах. Пользователям больше не потребуется руководство пользователя, чтобы начать измерение.
Программное обеспечение PowderPro также предоставляется для пользователей ПК, и оно так же просто, как приложение Powder Tester.
Изображение предоставлено: Bettersize Instruments Ltd.
Соответствие
- ASTM D6393-08 / D6393-14
- ISO 3953: 1993
- USP32-NF27 <616>
- EP7.0 07/2010: 20934E
Приложения
Инструмент находит применения в следующих областях:
Изображение предоставлено: Bettersize Instruments Ltd.
Характеристика транспортного средства — обзор
Введение
Исследователи человеческого фактора обычно сосредотачиваются на адекватности интерфейса между людьми-операторами и системами, за которые они несут ответственность.Однако производительность системы человек-машина также отражает другие факторы, такие как требования к миссии, ограничения окружающей среды, характеристики транспортного средства, компьютерная помощь и автоматизация, а также обучение пилотов. Таким образом, необходимо рассмотреть множество вопросов, чтобы оптимизировать роль «человеческого» фактора в сложных системах. Цель этой главы — рассмотреть многие факторы, влияющие на характеристики и рабочую нагрузку военных и гражданских пилотов вертолетов, и обсудить значительные недостатки в исследованиях, проектировании и эксплуатационных процедурах.
Ни для одного другого транспортного средства потребность в исследовании человеческого фактора не является более критичной или более сложной. Условия эксплуатации вертолетов простираются от гражданской системы управления воздушным движением до удаленных и опасных зон и от дневных операций в условиях визуального полета до ночных операций в неблагоприятных погодных условиях. Их миссии простираются от регулярных пассажирских перевозок до поисково-спасательных, медицинских эвакуаций, строительства, сельского хозяйства, правоохранительных органов и военных миссий. Вертолеты могут двигаться в любом направлении, оставаться неподвижными в воздухе, подниматься и снижаться вертикально, а также взлетать и приземляться практически в любом месте.Таким образом, их диапазон маневров и требования к управлению различаются шире, чем у самолетов с неподвижным крылом. Поскольку вертолеты могут работать на очень малых высотах, уклонение от местности, управление траекторией полета и навигация предъявляют к пилотам значительные визуальные требования. А поскольку вертолеты по своей природе нестабильны без систем автоматического управления полетом, они предъявляют значительные требования к восприятию и двигательной активности. Шум из кабины, вибрация, высокая температура и плохо спроектированные сиденья — это лишь некоторые из неудобств, с которыми сталкиваются пилоты.Недавние улучшения в датчиках, дисплеях, элементах управления и авионике сопровождались дополнительными требованиями для выполнения все более сложных задач в более опасных и сложных условиях, создавая новые проблемы человеческого фактора для конструкторов и пилотов.
Одним из стимулов для исследований человеческого фактора стало большое количество несчастных случаев, связанных с человеческой ошибкой. Например, более 70% авиационных происшествий в армейской авиации (Boley, 1986) и 64% несчастных случаев в гражданской авиации (Negrette, 1986) связаны с человеческими ошибками, включая неиспользование установленных процедур, неверную оценку скорости или расстояния, запоздалые или неправильные решения, плохая координация, невнимательность или неправильная концентрация внимания, дезориентация или неопытность (Waters & Domenic, 1980).Многие ошибки можно было бы избежать с помощью улучшенных дисплеев, расширенных систем управления или автоматизированных систем мониторинга и предупреждения. Еще одним стимулом для исследований человеческого фактора стало требование уменьшения численности экипажа, чтобы свести к минимуму возрастающие затраты на обучение и эксплуатацию. Стало ясно, что для выполнения операций с одним пилотом в любых условиях полета необходимо учитывать потребности человека в информации, возможности обработки и ограничения реагирования для разработки оптимальных интерфейсов между пилотом и транспортным средством и надлежащего делегирования ответственности между членами экипажа и автоматическими подсистемами.
Хотя требования к информации и управлению пилотами вертолетов отличаются от требований пилотов самолетов, многие вертолеты по-прежнему оснащены приборами, основанными на традициях использования самолетов. Это может помешать пилотам в полной мере использовать универсальность своего автомобиля. Процедуры управления воздушным движением и аэропорты предназначены для самолетов, а не для вертолетов, что еще больше усугубляет проблему. Однако человеческий фактор вертолетов получил лишь ограниченное внимание со стороны правительства, пользователей и производителей.
Развитие вертолетов всегда отставало от развития самолетов. Первоначально создание машины с достаточной подъемной силой и устойчивостью, которая давала бы полный контроль над пилотом, оказалось чрезвычайно сложной задачей. Лишь в начале 1920-х годов любой вертолет мог оставаться в воздухе, да и то ненадолго. К 1924 году будущее вертолетов выглядело настолько мрачным, что в армейском отчете предлагалось рассматривать их только в условиях чрезвычайной военной ситуации, когда жизнь пилота не имела большого значения (Lewis, 1985).В течение следующих 15 лет исследования были сосредоточены на автожирах, а не на настоящих винтокрылах. Лишь во время Второй мировой войны интерес к вертолетам снова вернулся. По мере того как в 1950-х и 1960-х годах были прояснены воздушные роли армии и ВВС, количество и универсальность военных вертолетов начали расти до войны во Вьетнаме (где они сыграли важную роль). Производство гражданских вертолетов также расширилось за тот же период. Основными движущими силами были морские разведка и строительство нефтяных месторождений, корпоративные и пригородные пассажирские перевозки, а также коммунальные услуги.Однако вертолеты по-прежнему могли выполнять дневные полеты при хорошей видимости (Bell Aircraft Corporation, 1956; Bell Helicopter Corporation, 1959.)
Многие из вертолетов, спроектированных и построенных между 1955 и 1965 годами, например UH-1 и CH-47. , все еще используются военными и гражданскими операторами; средний возраст армейских вертолетов к 1990 г. составит 20 лет (Lewis, 1985), а гражданские операторы (которые покупают излишки военной техники) могут использовать еще более старое оборудование. Поскольку большая часть исследований и разработок вертолетов была продиктована военными требованиями, и поскольку многие гражданские операторы используют вертолеты, изначально предназначенные для использования в военных целях, в этой главе основное внимание уделяется использованию и требованиям в военных целях.Кроме того, многие из выполняемых миссий и проблемы человеческого фактора схожи, а технологии, разработанные для удовлетворения военных требований, в конечном итоге проникают на гражданский рынок.
Первые крупные усилия по изучению человеческого фактора в вертолетах были проведены при совместном спонсорстве армии, флота и ВВС (Bell Aircraft Corporation, 1956). Цели состояли в том, чтобы определить необходимую пилотам информацию, оптимально распределить задачи между людьми-операторами и автоматическими подсистемами, а также разработать интерфейс человек-машина для выполнения всепогодных операций с одним пилотом на малой высоте в отдаленных районах с использованием автономной навигации и системы наведения.Хотя предварительные брифинги по этому проекту предполагали, что эти возможности будут доступны к 1965 году, те же требования предъявляются к подрядчикам, участвующим в создании самого современного вертолета армии 30 лет спустя, и их все еще сложно выполнить. Исследователи Bell определили визуальные подсказки, которые используют пилоты, воспроизвели часть этой информации в электронном виде для операций с ограниченной видимостью, разработали системы для точной навигации на низком уровне и улучшили и упростили управление вертолетом.К 1960 году они разработали первый на шлеме компьютерный дисплей для вертолетов, построили первый имитатор вертолета с шестью степенями свободы, основанный на движении, и проверили концепцию дисплея в полете с обычным и боковым рычагом управления. В ходе этой долгой и продуктивной программы были рассмотрены многие ключевые проблемы человеческого фактора и разработаны передовые концепции, которые только сейчас реализуются.
Армия недавно предложила разработать новое семейство легких вертолетов (LHX — легкий вертолет, экспериментальный).Вариантов должно было быть две: разведывательно-атакующая и утилитарная. Ожидается, что пилоты LHX будут выполнять миссии в удаленных и враждебных условиях, избегать препятствий и угроз, летая всего на несколько футов над землей, и использовать растительность и местность, чтобы избежать обнаружения врага при любых погодных условиях, включая туман, дождь, дым и снег. Пилоты должны управлять своим транспортным средством, ориентироваться, общаться и использовать оружие, системы обнаружения угроз и противодействия. «Боевой капитан» также должен координировать усилия команды пилотов.Первоначально армия поставила перед отраслью задачу предоставить быстрый, легкий и недорогой автомобиль, на котором один пилот мог бы выполнять все необходимые задачи. Однако отсутствие отработанных технологий побудило армию отложить разработку однопилотной версии.
Поскольку армия является крупнейшим пользователем вертолетов, LHX стимулировал значительный рост исследований и разработок; не существует вертолета, который мог бы выполнить все эти требования, даже с двумя пилотами. Стало ясно, что потребуются инновационные технологические решения.Кроме того, эти решения должны разрабатываться с учетом возможностей и ограничений пилотов в качестве определяющего фактора, поскольку именно их способности использовать технологию будут определять окончательный успех или неудачу машины.
Поднятые вопросы человеческого фактора не новы. Однако некоторые требования к полетам сейчас настолько экстремальны, учитывая цель операций с одним пилотом, что их необходимо решать. Например, некоторые операции будут выполняться вблизи земли, где естественные и искусственные препятствия представляют постоянную угрозу, требуя точных и быстрых управляющих движений и точных информационных дисплеев.Проблемы с управлением вертолетом преувеличены на малых высотах, а системы ночного видения могут не обеспечивать адекватных полей зрения или разрешения. Полеты на малых высотах уже предъявляют высокие требования к визуальным, временным, физическим и когнитивным функциям экипажам из двух пилотов; таким образом, одиночные пилоты могут столкнуться с неприемлемыми уровнями нагрузки без дополнительной помощи. Автоматизация, часто обеспечиваемая для снижения нагрузки на бригаду, может просто сместить источник требований с физической области на ментальную (Hart & Sheridan, 1984; Statler, 1984), а не уменьшить его.Хотя проблемы человеческого фактора в существующих вертолетах рассматриваются в следующих разделах, также рассматриваются решения и проблемы передовых технологий, поскольку они являются предметом значительных текущих исследований.
Связывание MIC с характеристикой класса
Введение: В этом документе описывается пошаговая процедура для поддержания связи между главной проверочной характеристикой и характеристикой класса.
Я часто видел, как люди боролись с увязкой MIC с характеристиками классификации партий.Обычно это требуется, когда организации или системе требуется, чтобы окончательные значения партии поступали из отдела качества. например В обрабатывающей промышленности готовый продукт обычно проверяется отделом качества и, таким образом, утверждается окончательная градация.
Есть несколько основных шагов, которые требуются для установки связи MIC с CC.
MIC можно разделить на качественные и количественные. Он аналогичен типу данных характеристики, то есть числовому и символьному форматам.
Я бы особо выделил качественную часть или формат символов, так как большинство проектов позже противодействуют этой части из-за отсутствия координации или чего-то еще среди ребят из PP и QM.
Используются следующие сокращения: Качественный = QL, Количественный = QT, Символьный формат = CH, Числовой формат = ЧИСЛО
- Связывание качественного MIC с форматом CHAR Характеристика
В модуле QM при создании QL MIC необходимо назначить каталог для записи значений во время записи результатов.Это отличается от присвоения предопределенных значений характеристике типа CH. Допустим, подготовлен каталог QUADEC. Теперь это необходимо назначить как для QL MIC, так и для характеристики CH, чтобы поддерживать связь.
1. Присвоение каталога CH «Решение». Используйте TCode CT04.
1.1 Начальная страница выглядит так,
1.2. Теперь щелкнув вкладку «Значения», вы перейдете на следующий экран. Здесь вы нажимаете «Проверка другого значения», чтобы увидеть окно. Вы выбираете символ каталога.Я хотел бы упомянуть здесь, что часто можно увидеть, что предопределенные значения присваиваются непосредственно характеристике CH, что позже создает проблемы при поддержании связи.
1.3. Как только вы выберете, система попросит вас назначить завод и соответствующий каталог. Введите завод и нажмите F4, чтобы увидеть доступный список каталогов. В данном случае я выбрал «QUADEC» для РЕШЕНИЯ
ЦБ.
1,4. После ввода завода и каталога нажмите «Сохранить», чтобы создать характеристику CH с требуемым значением
.
Теперь требование состоит в том, что всякий раз, когда специалист по контролю качества вводит решение по качеству во время записи результатов, он должен обновлять характеристику партии РЕШЕНИЕ.Для этого будет создан QL MIC QQUALITY.
2. Используйте Tcode QS21 и введите значения, как показано ниже, и нажмите Enter. РЕШЕНИЕ упоминается на вкладке характеристик класса, так как оно будет связано с MIC QQUALITY.
2.1 После того, как вы нажмете клавишу ввода, отобразится сообщение, указывающее на базовое поведение и атрибуты, взятые из характеристик. В основном это можно определить так: если характеристика класса связывания имеет тип CHAR, MIC не может быть создан с использованием количественного формата, а только с использованием качественного формата.
Введите еще раз, чтобы увидеть новое окно.
2.2. На этом экране значения по умолчанию и контрольные индикаторы заимствованы из CH DECISION (см. Выделение). MIC автоматически присвоено значение «Качественный», также устанавливается индикатор для каталога.
2.3 Щелкните по индикаторам управления, чтобы завершить необходимые настройки. Также посмотрите этот индикатор для «Charac. атрибуты выделены серым цветом и поэтому не могут быть изменены.
2.4 Сохраните другие контрольные индикаторы, и система перейдет к начальному экрану (экран 2.2). Здесь, если вы нажмете на вкладку «Каталог», вы увидите, что QUADEC —
уже назначено QL MIC QQUALITY (см. Выделение)
2.5 Сохраните микрофон, чтобы получить подтверждение.
Теперь в отделах, всякий раз, когда персонал QM вводит значения для QQUALITY и закрывает контрольную партию, это будет обновляться в признаке РЕШЕНИЕ в классификации партий.
- Связывание количественного MIC с форматом NUM Характеристика
Чтобы связать QT MIC с характеристикой NUM, процедура аналогична описанной выше.Единственное отличие состоит в том, что при сохранении контрольных индикаторов в QS21 система не позволит вам изменить следующие контрольные индикаторы,
- Нижний предел спецификации
- Верхний предел спецификации
- Подтвердить значения
- Единица измерения
- Сохранение ссылки после создания MIC и характеристики отдельно
Если MIC и Признак уже созданы в системе и связь не поддерживалась изначально, то же самое можно сделать следующим образом.
Перейдите к QS23, чтобы изменить MIC, и введите имя характеристики на вкладке характеристики класса.
Дополнительные функции,
- Между признаком класса и основным контрольным признаком может быть только отношение 1: 1 (то есть нельзя ссылаться на один и тот же признак класса в нескольких основных контрольных признаках)
- Контрольные показатели МИК автоматически устанавливаются в соответствии с характеристикой класса.
- Если характеристика CH с предопределенными значениями (без каталога) использовалась один раз, она не может быть каким-либо образом связана с QL MIC (насколько мне известно).
- Автоматическая оценка партии происходит на основе результатов проверки после ее завершения.
- Передача результатов проверки будет происходить только в том случае, если проверка выполняется в соответствии со спецификацией материалов или списками задач.
- Класс партии ведется в ракурсе классификации основной записи материала.