19.08.2024

Ch4 газ: Метан — Википедия

Содержание

Метан ⚗️ структурная формула газа, строение, химические и физические свойства, получение и применение, с какими веществами реагирует углеводород

Краткая характеристика


Природный метан образуется при гниении останков живых организмов. В переводе с английского «methane» означает «болотный газ», так как чаще всего его обнаруживают в болотах и каменноугольных шахтах.


Почти 95% реагента появляется в результате биологических процессов. Пятая часть годовых выбросов газа в атмосферу приходится на коз и коров, в желудках которых живут бактерии, вырабатывающие метан. В атмосферу он попадает, когда рогатый скот выводит из организма продукты своей жизнедеятельности.


Другими источниками вещества являются:

  • термиты;
  • рис-сырец;
  • болотистые водоёмы;
  • фильтрация природного газа;
  • фотосинтез растений;
  • вулканы;
  • давно погибшие организмы.


Поскольку вещество обычно связано с живыми организмами, то учёные полагают, что его присутствие на планете указывает на наличие жизни. Так, когда этот газ был обнаружен в атмосферах Марса, специалисты начали тщательное изучение планеты именно на предмет существования живых организмов. Но дальнейшие исследования показали, что на удалённых планетах Солнечной системы метана значительно больше, хотя там он появился в результате химических реакций.


На Земле вещество просачивается через трещины в земной коре, находящиеся на океанском дне, в больших количествах выделяется во время горных разработок и при лесных пожарах. Кроме того, недавно учёными был обнаружен новый источник газа, который никогда ранее в таком ключе не рассматривался.

Физические качества


Метан представляет собой самый простой углеводород. Считается, что он имеет специфический запах, но это распространённое заблуждение. Чистый газ не имеет запаха, характерный аромат он приобретает благодаря специальным добавкам, которые добавляют в вещество для предупреждения о его утечке, ведь цвета химическое соединение также не имеет.


Кроме того, к физическим свойствам метана относятся:

  • Горение голубым пламенем.
  • Сгорание без выделения вредных продуктов.
  • Плохая растворимость в воде.
  • Он легче воздуха.
  • Основная составляющая природных, попутных нефтяных, рудничного и болотного газов.
  • Кипение при температуре -161 °C.
  • Замерзание при температуре -183 °C.
  • Молярная масса составляет 16,044 г/моль.
  • Плотность — 0,656 кг/м³.
  • При соединении с воздухом образуются взрывоопасные смеси.
  • В жидком виде представляет собой бесцветную жидкость без запаха.


Наиболее опасен метан, который выделяется во время подземных разработок полезных ископаемых, а также на фабриках, занимающихся переработкой и обогащением угля. Когда количество газа в воздухе достигает 5−6%, то он начинает гореть рядом с источниками тепла.


Если уровень вещества поднимается до 14−16%, то может произойти взрыв. При увеличении концентрации вещество горит при постоянном поступлении кислорода. Если же в этот момент количество метана начнёт снижаться, то результатом также может стать взрыв. При взрыве огонь, подпитываемый газом, движется со скоростью от 500 до 700 м/сек. Давление же вещества в этот момент в замкнутом пространстве составляет 1 Мн/м2.


При соприкосновении с источником тепла метан воспламеняется с небольшой задержкой. Это свойство вещества применяется при изготовлении предохранительных взрывчатых веществ и электрооборудования, безопасного при взрывах. На всех объектах, где существует опасность выброса метана, действуют правила техники безопасности «газовый режим».

Химические свойства


В химии формула метана — Ch5. Соединение плохо вступает в химические связи.


В обычных условиях оно не реагирует со следующими веществами:

  • концентрированные кислоты;
  • расплавленные и концентрированные щелочи;
  • щелочные металлические реагенты;
  • галогены;
  • перманганат калия;
  • дихромат калия в кислой среде.


При температуре около 200 °C и давлении от 30 до 90 атмосфер болотный газ окисляется, преобразуясь в муравьиную кислоту. Вещество образует соединения, называемые газовыми гидратами, которые часто встречаются в природе.


По своим химическим свойствам метан схож с другими реагентами, относящимися к алканам. А потому он вступает в такие химические реакции, как:

  • Конверсия в синтез-газ. Синтез-газ, который образуется в результате указанной реакции, используется для получения метанола, углеводородов и так далее.
  • Галогенирование. Такая реакция является цепной. При ней молекула брома или йода подвергается воздействию света и распадается на радикалы, которое затем атакуют молекулы метана. В результате от соединения отрывается атом водорода, а газ становится свободным метилом Ch4. Получившееся вещество сталкивается с молекулами брома или йода, которые разрушаются, образуя новые радикалы этих реагентов.
  • Нитрование.
  • Окисление или горение. Эта реакция происходит при избытке кислорода и описывается следующим уравнением: Ch5 + 2O2 → CO2 + 2h3O. В этом случае пламя имеет голубой цвет. Если кислорода недостаточно, то результатом реакции становится выработка не углекислого газа, а оксида углерода. Если же кислорода ещё меньше, то взаимодействие веществ приведёт к выделению мелкодисперсного углерода.
  • Сульфохлорирование.
  • Сульфоокисление.
  • Разложение.
  • Дегидрирование.
  • Каталитическое окисление. В подобных реакциях из болотного газа образуются карбоновые кислоты, спирты, альдегиды.

Получение в промышленности и лаборатории


В промышленных условиях вещество получают посредством нагревания углерода и водорода или синтеза водяного газа. Для того чтобы реакция протекала успешно, используют катализатор, обычно в этом качестве применяется никель. В США для добычи простейшего углеводорода используется специальная система, способная извлекать соединение из природного угля. Но также метан выделяется в виде подобного продукта при термической переработке нефти и нефтепродуктов, коксовании и гидрировании каменного угля.


В лаборатории для получения вещества применяются следующие методы:

  • Реакция гидроксида натрия с ацетатом натрия.
  • Взаимодействие карбида алюминия.
  • Нагревание натристой извести с уксусной кислотой. Для этой реакции необходима безводная среда, а потому в ней применяется гидроксид натрия, который является наименее гигроскопичным.


Болотный газ самый термически устойчивый углеводород, а потому он широко применяется и в быту, и в промышленности. Хлорирование вещества даёт возможность получения метилхлорида, метиленхлорида, хлороформа, четырёххлористого углерода. Результатом его неполного сгорания является сажа, Если метан каталитически окисляется, то получается формальдегид. А его реакция с серой приводит к образованию сероуглерода.


К важным методам получения ацетилена из простейшего углеводорода относятся:

  • термоокислительный крекинг,
  • электрокрекинг.


Газ также применяется для производства синильной кислоты. Кроме того, он даёт водород, необходимый для выработки водяного газа, который, в свою очередь, применяется для создания углеводородов, альдегидов и тому подобного. Кроме того, метан необходим при производстве нитрометана.


В настоящее время газ стал часто использоваться в качестве автомобильного топлива. Но его плотность в 1000 раз меньше плотности бензина, а потому, чтобы заправить автомобиль метаном на тот же объём, что и бензином, при равном давлении необходим соответствующий бак. В таком случае для обычной поездки потребовалось бы возить прицеп с топливом.


Учёные решили эту проблему, увеличив плотность газа до 200−250 атмосфер. Сжатое вещество закачивается в специальные баллоны, установленные на автомобилях особой конструкции.

Парниковый эффект


Метан является одним из газов, создающих на планете парниковый эффект. Чтобы измерить уровень его парниковой активности, необходимо принять за единицу меру воздействия на климат нашей планеты диоксида углерода. При таком соотношении влияние метана будет равно 23. Специалисты в области изучения парникового эффекта отмечают, что количество указанного газа в земной атмосфере значительно выросло за последние два столетия.


Объём метана в современной атмосфере в среднем составляет 1,8 части на миллион. Это количество в 200 раз меньше того же показателя углекислого газа. Необходимо отметить, что молекулы соединения рассеивают и удерживают теплоту, которую излучает нагретая солнцем планета, гораздо лучше, чем молекулы углекислого газа. И также необходимо отметить, что углеводород поглощает земное излучение в тех спектральных областях, которые свободно проходят через другие газовые соединения, создающие эффект парника.


Но тем не менее такие газы планете необходимы. Без двуокиси углерода, водяных паров, метана и других составляющих атмосферы температура на поверхности Земли была бы значительно ниже средних 15 градусов тепла.

Влияние на организм человека


Человек может отравиться, надышавшись метаном при аварии на производстве или из-за неправильного обращения с приборами, работающими на этом газе. Возможна такая ситуация и при длительном нахождении на болоте, в шахте. Если концентрация вещества в воздухе составляет 20 и более процентов, то отравление может быть очень тяжёлым, вплоть до летального исхода.


Работники химических производств, рудников и шахт подвержены другому способу отравления углеводородом. Зачастую эти люди на протяжении длительного времени регулярно вдыхают небольшие дозы вещества.


Кроме того, хроническая интоксикация может наступить из-за заболеваний кишечника, например, дисбактериоза. В таких случаях в организме больного метан образуется в повышенном количестве. Этот газ не станет причиной серьёзной интоксикации, но всё же он может вызвать в организме разные нарушения, привести к желудочно-кишечному дискомфорту и общему ухудшению самочувствия.


Отличить острое отравление метаном можно по следующим признакам:

  • головокружение;
  • шум в ушах;
  • сонливость;
  • общая слабость;
  • потеря координации;
  • нарушение речи;
  • резь в глазах;
  • слезотечение;
  • удушье;
  • усиленное сердцебиение;
  • понижение артериального давления;
  • тошнота;
  • приступы рвоты;
  • синюшность кожных покровов и слизистых оболочек.


Если отравление тяжёлое, то человек теряет сознание, у него начинаются судороги, за которыми следует кома. А также возможна остановка дыхания и сердцебиения.


Если отравление метаном является хроническим, то пострадавший страдает от частых головных болей, общего недомогания, низкого артериального давления и снижения работоспособности. Человек становится бледным и вялым, испытывает упадок сил. Гипотония может вызывать обмороки. И также возможно истощение нервной системы, которое выражается в повышенной раздражительности, нервозности и тому подобном.


Метан известен, как один из самых опасных газов. Он токсичен, горюч и взрывоопасен. Вещество не имеет ни цвета, ни запаха, а потому обнаружить его в воздухе крайне сложно. Чтобы не подвергать своё здоровье и жизнь опасности, следует внимательно относится к технике безопасности и соблюдать осторожность при работе или бытовом использовании метана.

Метан (СН4) — природный газ

Метан используется в процессе сварки, либо резки металла, в силу способности к горению.Его температура пламени (до 1200 градусов) пониже, чем у ацетилена, поэтому сварка таким газом наиболее подходит для алюминия, меди, её сплавов и чугуна.

Ch5 — основная составляющая природного газа, а значит и большая часть того, что используется в газовых плитах и других подобных конструкциях. Используется в качестве продукта хлорирования в огнетушителях.

Главное же его предназначение всё-таки являться топливом. Газ в этом плане набирает популярность, ибо использовать в этих целях метан экономичнее. Сейчас газ всё чаще используется в автомобилях в качестве горючего.

Метан — это природный газ образовавшийся в недрах земли при ана­эробном разложении органических веществ. Часто является попутным газом при добыче нефти. Основную часть природного газа составляет метан — до 98 %. В состав природного газа могут также входить более тяжёлые углеводороды: этан (СгНб), пропан (СзНв), бутан (С4Н10)- гомологи метана, а также другие не углеводородные вещества: водород (Нг), сероводород (h3S), углекислый газ (СОг), азот (N2), гелий (Не). Природный газ не имеет цвета и запаха. Чтобы мож­но было определить утечку по запаху, в газ добавляют небольшое количество меркаптанов, имеющих сильный неприятный запах.

Сам по себе метан не токсичен и не опасен для здоровья человека. Но при большом скоплении способен вытеснять кислород из воздуха, что может вызвать удушие.

Физико-химические свойства:

  • температура воспламенения в кислороде (Тв) — 650-750°С;
  • температура пламени при сгорании в технически чистом кислороде (Тпл) — 2200°С;
  • предел воспламенения в смеси: с воздухом — 5,0-15,0 %, с кислородом — 4,7-58,9 %;
  • максимальная скорость распространения пламени в смеси с кислородом — 3,3 м/с;
  • низшая теплотворная способность — 31400-37700 кДж/м3;
  • соотношение с кислородом (Р)- 1,7-2,1;
  • плотность при температуре 20°С и давлении 0,101 МПа — 0,68-0,9 кг/м3.

Химические свойства метана, формула, плотность, горение газа, молярная масса, применение в промышленности, термическое разложение, бромирование метана, строение молекулы

Метан химические свойства

Химические свойства метана ничем не отличаются от свойств, присущих всем веществам класса алканов. В школьном курсе химии метан изучают одним из первых веществ органики, так как он является одним из простейших представителей алканов.

В его составе один атом углерода и четыре атома водорода.

Формула метана и способы его получения

Молекулярная формула метанаСтруктурная формула метана

Сh5

Н

|

Н — С — Н

|

Н

 

Метан в больших количествах содержится в атмосфере. Мы не обращаем внимания на нахождение этого газа в воздухе, ведь на нашем организме это никак не отражается, а вот канарейки очень чувствительны к метану.

Когда-то они даже помогали шахтерам спускаться под землю. Когда процентное содержание метана изменялась, птицы переставали петь. Это служило сигналом для человека, что он спустился слишком глубоко и нужно подниматься наверх.

Метан химические свойства

Образуется метан в результате распада остатков живых организмов. Не случайно с английского methane переводится, как болотный газ, ведь он может быть обнаружен в заболоченных водоемах и каменноугольных шахтах.

Основным источником газа в агропромышленном комплексе является рогатый скот. Да, метан они выводят из организма вместе с остальными продуктами жизнедеятельности. Кстати, увеличение числа рогатого скота на планете может привести к разрушению озонового слоя, ведь метан с кислородом образуют взрывоопасную смесь.

Метан в промышленности можно получить с помощью нагревания углерода и водорода или синтеза водяного газа, все реакции протекают в присутствии катализатора, чаще всего никеля.

Метан химические свойства

В США разработана целая система по добыче метана, она способна извлечь до 80% газа из природного угля. На сегодняшний день мировые запасы метана оцениваются экспертами в 260 триллионов метров кубических! Даже запасы природного газа значительно меньше.

В лаборатории метан получают путем взаимодействия карбида алюминия (неорганическое соединение алюминия с углеродом) и воды. Также с помощью гидроксида натрия, вступающего в реакцию с ацетатом натрия, более известного как пищевая добавка Е262.

Физические свойства метана

Характеристика:

  1. Бесцветный газ, без запаха.
  2. Взрывоопасен.
  3. Нерастворим в воде.
  4. Температура кипения: -162oC, замерзания: -183°C.
  5. Молярная масса: 16,044 г/моль.
  6. Плотность: 0,656 кг/м³.

Химические свойства метана

Говоря о химических свойствах, выделяют те реакции, в которые вступает метан. Ниже они приведены вместе с формулами.

Горение метана

Как все органические вещества, метан горит. Можно заметить, что при горении образуется голубоватое пламя.

СН4 + 2O2 → СO2↑ + 2Н2O

Называется такая реакция – реакцией горения или полного окисления.

Замещение

Метан также реагирует с галогенами. Это химические элементы 17 группы в периодической таблице Менделеева. К ним относятся: фтор, хлор, бром, йод и астат. Реакция с галогенами называется – реакцией замещения или галогенирования. Такая реакция проходит только в присутствии света.

Хлорирование и бромирование

Если в качестве галогена используется хлор, то реакция будет называться – реакцией хлорирования. Если в качестве галогена выступает бром, то – бромирование, и так далее.

Ch5 + Cl2 → Ch4Cl + НСl

Ch5 + Br2 → Ch4Br + НBr

Хлорирование. Низшие алканы могут прохлорировать полностью.

Ch5 + Cl2 → Ch4Cl + НСl

Ch4Cl + Cl2 → Ch3Сl2 + НСl

Ch3Сl2+ Cl2 → CHCl3 + НСl

CHCl3 + Cl2 → CСl4 + НСl

Точно так же метан может полностью вступать в реакцию бромирования.

Ch5 + Br2 → Ch4Br + Н Br

Ch4Br + Br2 → Ch3Br2 + НBr

Ch3Br2 + Br2 → CHBr3 + НBr

CHBr3 + Br2 → CBr4 + НBr

С йодом такой реакции уже нет, а с фтором наоборот сопровождается быстрым взрывом.

Разложение

Так же этому углеводороду свойственна реакция разложения. Полное разложение:

СН4 → С + 2H₂

И неполное разложение:

2СН4 → С2Н2 + 3Н2

Реакция с кислотами

Метан реагирует с концентрированной серной кислотой. Реакция носит название сульфирования и происходит при небольшом нагревании.

2СН4 + Н2SО4 → СН3SО3Н + Н2О

Окисление

Как уже было сказано, Сh5 может полностью окисляться, но при недостатке кислорода возможно неполное окисление.

2СН4 + 3O2 → 2CO + 4Н2O

СН4 + О2 → С + 2Н2O

Помимо прочего для этого газа характерно каталитическое окисление. Оно происходит в присутствии катализатора. При разном соотношении моль вещества получаются разные конечные продукты реакции. В основном это:

  • спирты: 2СН4 + O2 → 2СO3OН
  • альдегиды: СН4 + O2 → НСОН + Н2O
  • карбоновые кислоты: 2СН4 + 3O2 → 2НСОOН + 2Н2O

Реакция протекает при температуре 1500°C. Данная реакция также носит название – крекинг – термическое разложение.

Нитрование метана

Существует также реакция нитрования или реакция Коновалова, названная в честь ученого, который доказал, что с предельными углеводородами действует разбавленная азотная кислота. Продукты реакции получили название – нитросоединения.

Ch5 + НNО3 → СН3NO2 + h3O

Реакция проводится при температуре 140-150°C.

Дегидрирование метана

Кроме того, для метана характерна реакция дегидрирования (разложения) – отцепление атомов водорода и получения ацетилена, в данном случае.

2CН4 → C2h3 + 3Н2

Применение метана

Метан, как и остальные предельные углеводороды, широко используется в повседневной жизни. Его применяют в производстве бензина, авиационного и дизельного топлива.

Используют в качестве базы для получения различного органического сырья на предприятиях. Также метан широко используется в медицине и косметологии.

Метан химические свойства

Метан применяют для получения синтетического каучука, красок и шин.

Атлеты используют так называемый жидкий метан для быстрого набора массы за короткий промежуток времени.

А при хлорировании метана образуется вещество, которое в дальнейшем используется для обезжиривания поверхностей или как компонент в средствах для снятия лака. Некоторое время продукт взаимодействия метана и хлора использовали в качестве наркоза.

Метан как газ и моторное топливо для автомобилей

Метан (компримированный природный газ, КПГ, сompressed natural gas, CNG) – горючий газ, который является основным компонентом природного газа. Газ метан практически не оставляет вредных продуктов сгорания.
Метан используется для газообеспечения населенных пунктов, но нас интересует его другое назначение, а именно – в качестве моторного топлива для автомобилей.

К сожалению плотность природного метана в тысячу раз ниже плотности бензина. Поэтому, если заправлять автомобиль метаном при атмосферном давлении, то для равного с бензином количества топлива понадобится бак в 1000 раз больше. Чтобы не возить огромный прицеп с топливом, необходимо увеличить плотность газа. Это можно достичь сжатием метана до 20-25 МПа (200-250 атмосфер). Для хранения газа в таком состоянии используются специальные баллоны, которые устанавливаются на автомобилях.

Заправки метана в России пока еще не совсем хорошо развиты, но развиваются довольно быстрыми темпами. Сеть АГНКС состоит уже более чем из 300 метановых заправок. Так что установка газа метана на автомобили сейчас не происходит массово из-за 3х факторов:
1) Сеть метановых заправок еще недостаточно развита.
2) Газовое оборудование для метана довольно-таки дорогое, в основном из-за баллонов, которые должны выдерживать давление 200 атмосфер.
3) Метановые баллоны несколько уменьшают грузоподъемность автомобиля, поэтому метановое ГБО чаще устанавливается на грузовые автомобили, такие как ЗИЛ, ГАЗон, ГАЗель.

Источники получения метана
Основной компонент природных (77-99 %), попутных нефтяных (31-90 %), рудничного и болотного газов (отсюда другие названия метана – болотный, или рудничный газ). Получается также при коксовании каменного угля, гидрировании угля.

Химические свойства метана
Метан горит бесцветным пламенем. С воздухом образует взрывоопасные смеси. Газ метан вступает с галогенами в реакции замещения (например, Ch5 + ЗС12 = СНС13+ ЗНС1).

Соединения включения
Метан образут соединения включения – газовые гидраты, широко распространенные в природе.

Применение метана
Сырьё для получения многих ценных продуктов химической промышленности – формальдегида, ацетилена, сероуглерода, хлороформа, синильной кислоты, сажи. Для получения водяного газа (Ch5 + Н2О = СО + ЗН2), Метан применяется как моторное топливо.

ПоказателиЗначение
Температура кипения метана-164,5°С
Температура плавления метана-182,5°С
Плотность метана по отношению к воздуху0,554 (20°С)
Теплота сгорания50,08 МДж/кг (11954 ккал/кг)
Цвет метанаотсутствует
Запах метанаотсутствует
Содержание в природных газах77-99%
Содержание в попутных нефтяных газах31-90%
Содержание в рудничных газах34-40%
Образование при термической переработке нефти и нефтепродуктов10-57%
Образование при коксовании и гидрировании каменного угля24-34%
Температура воспламенения метана650-750°С
Скорость взрывного горения метана500-700 м/сек
Давление газа при взрыве в замкнутом объёме

1 Мн/м2

Определение количества СПГ (м3) в одном баллоне объемом 50 л

Давление
газа в баллоне,
кгс/см2

Температура окружающей среды, °C

– 30

– 20

– 10

0

+ 10

+ 20

+ 30

+ 40

10

0,55

0,55

0,54

0,53

0,53

0,53

0,52

0,52

20

1,15

1,12

1,16

1,10

1,09

1,07

1,06

1,04

30

1,79

1,70

1,70

1,69

1,65

1,63

1,61

1,57

40

2.41

2,33

2,30

2,27

2,22

2,17

2,15

2,13

50

3,2

3,05

2,98

2,94

2,84

2,81

2,75

2,72

60

4,05

3,76

3,66

3,57

3,53

3,45

3,41

3,27

70

5,00

4,61

4,43

4,32

4,17

4,07

4,02

3,89

80

6,45

5,71

5,33

5,20

4,88

4,76

4,65

4,55

90

7,63

6,72

6,25

5,92

5,63

5,49

5,29

5,17

100

8,77

7,69

7,24

6,76

6,49

6,25

5,95

5,81

110

9,82

8,59

7,97

7,53

7,24

6,96

6,63

6,47

120

10,91

9,38

8,95

8,45

8,00

7,79

7,32

7,14

130

12,04

10,16

9,85

9,29

8,78

8,33

8,02

7,83

140

12,8

11,11

10,77

10,14

9,59

9,09

8,75

8,54

150

13,16

11,90

11,36

10,87

10,27

9,74

9,38

9,15

160

13,79

12,50

12,12

11,43

11,11

10,39

10,13

9,76

170

13,93

13,28

12,69

11,81

11,49

10,90

10,63

10,37

180

14.29

13,64

13,24

12,50

12,00

11,54

11,25

10,98

190

14,62

14,18

13,57

12,84

12,50

12,03

11,59

11,18

200

14,93

14,29

13,81

12,99

12,66

12,50

12,19

11,63

Использованы материалы из книги “Газобаллонные автомобили: Справочник / А. И. Морев, В. И. Ерохов, Б. А. Бекетов и др. – М.: Транспорт, 1992.”

 

Смотрите также

Метан – Уикипедия

Метанът е химично съединение с химична формула Ch5{\displaystyle {\ce {Ch5}}}. Това е най-простият алкан. Ъгълът между атомите на метана е 109,5 градуса.

Това е най-простият наситен въглеводород. Той е безцветен газ без миризма с температура на топене -182,5 °C и температура на кипене -161,5 °C. При -11 °C под значително налягане се втечнява. Той е основна съставка на природния газ, съпътстващ нефта или намиращ се в газови находища, и се образува при приблизително същите геоложки процеси както нефта. Метан се образува и при разлагане на растителни материали в отсъствието на кислород в блатисти места, поради което се нарича още и блатен газ. Среща се и в каменовъглените мини, където е известен като газ гризу или рудничен газ. Промишлено се получава при прекарването на един обем СО и три обема Н2 над фино раздробен никелов катализатор при атмосферно налягане и температура 200 – 300 °C. Освен на Земята, метан е открит и на други планети в Слънчевата система.

Горенето на метана в присъствието на кислород води до образуването на въглероден двуокис и вода. Големите залежи на природен газ правят метана привлекателен като гориво. Въпреки това, тъй като той е газ, при нормална температура и налягане метанът трудно може да се транспортира от неговия източник. Най-често се транспортира под налягане по тръбопроводи или в специални танкери, където природният газ е втечнен под високо налягане и ниска температура; понякога се транспортира и нагнетен в бутилки под налягане.

Химически метанът е сравнително инертно съединение, но с хлора реагира с взрив при нормална температура, а при ниски температури се получава метилхлорид. При смесване с въздух в известни пропорции образува взривоопасна смес, особено в затворени помещения (напр. мини, жилища). Използва се при производството на метилхлорид, метиленхлорид, водород, амоняк, при получаването на сажди. Използва се и като гориво, предимно в котли, но също и в двигатели с вътрешно горене (с искрово запалване и дизелови, в турбини).

Метан е също и търговско наименование на природния газ, тъй като предлаганият в търговската мрежа природен газ се състои над 90% от наситения въглеводород.

  • Двуизмерно изображение

  • Триизмерно изображение

Метанът е открит и изолиран от Алесандро Волта между 1776 г. и 1778 г., когато е изследван блатен газ от езерото Лаго Маджоре.

Метанът е един от основните парникови газове. Времето му на живот в атмосферата е около 10 години, като най-често влиза в реакция с хидроксилни радикали, вследствие на което се получава въглероден двуокис и вода.

Метанът оказва влияние и на разграждането на озоновия слой.

ФормулаМоларна масаПлътностТочка на топенеТочка на кипенеРазтворимост във водаПламна температураКГВ
CH416.042 g/mol0.717 kg/m3 (газ, 0 °C)
416 kg/m3 (течност)
-182.5 °C-161.6 °C35 mg/L (17 °C)-188 °C5 – 15 обемни %

Наличието на метан в атмосферата на земята през 1998 г. е 1745 части на милиард (ppb), в сравнение със 700 ppb през 1750 г. До 2008 г. обаче съдържанието на метан в атмосферата е останало на нива от 1998 г. насам – около 1800 ppb. До 2010 г. нивото на метана в атмосферата е най-ниско в Арктика, с измерени стойности около 1850 ppb. Това е най-високото регистрирано ниво от 400 хиляди години. Исторически концентрацията метан в атмосферата на света варира между 300 и 400 ppb по време на ледниковия период и между 600 – 700 ppb през топлите междуледникови периоди.

Метанът е основният компонент на природния газ, около 87% от неговия обем. При стайна температура и нормално налягане, метанът е без цвят и мирис; миризмата характерна за природния газ, който се използва в домовете е изкуствена мярка за безопасност, причинена от добавяне на „ароматизатори“, често метанетиол или етанетиол. Метанът е с температура на кипене от -161 °C при налягане от една атмосфера. Като газ е запалим в тесен диапазон от концентрации (5 – 15 обемни %) с въздуха.

Опасност за човешкото здраве[редактиране | редактиране на кода]

Метанът не е токсичен, но е изключително запалим и може да образува взривоопасни смеси с въздуха. Метанът бурно реагира с окислители, халогени, както и някои халоген-съдържащи съединения. Метанът може да предизвика задушаване, измествайки кислорода от въздуха в затворено пространство. Задушаване може да възникне, ако концентрацията на кислород спадне под 19,5%.

Химически реакции на метана[редактиране | редактиране на кода]

Основните химически реакции с метан са горене и халогениране. Като цяло реакциите с метан са трудни за контролиране. Трудно е да се постигне например частично окисление на метанол, тъй като реакцията обикновено прогресира до въглероден двуокис и вода.

Горене[редактиране | редактиране на кода]

Горенето на метана протича на няколко етапа:

Първоначално се образува формалдехид (HCHO или H2CO). Формалдехидът освобождава радикали HCO, които след това се превръщат във въглероден оксид (CO). Процесът се нарича оксидативна пиролиза:

Ch5+O2⟶CO+h3+h3O{\displaystyle {\ce {Ch5 + O2 -> CO + h3 + h3O}}}

След оксидативната пиролиза, H2 се окислява като се образува H2O и се освобождава топлина. Това се случва много бързо, обикновено значително по-малко от една милисекунда.

2h3+O2⟶2h3O{\displaystyle {\ce {2h3 + O2 -> 2h3O}}}

На последно място, CO се окислява до CO2 и освобождава още топлина. Този процес като цяло е по-бавен от предишните химични, и обикновено изисква няколко милисекунди, за да се приключи.

2CO+O2⟶2CO2{\displaystyle {\ce {2CO + O2 -> 2CO2}}}

В резултат на горното е следната обща формула:

Ch5(g)+2O2(g)⟶CO2(g)+2h3O(l)+891kJ/mol{\displaystyle {\ce {Ch5(g) + 2O2(g) -> CO2(g) + 2h3O(l) + 891 kJ/mol}}} (при стандартни условия),

където в скоби „g“ означава газообразно състояние и в скоби „l“ означава течна форма.

Изместване на водород от молекулата[редактиране | редактиране на кода]

Ковалентната връзка въглерод-водород в метана е сред най-силните от всички въглеводороди и поради това използването му като изходна суровина химически е ограничено. Въпреки здравата C-H облигациия, Ch5 все още е основната суровина за производството на водород в риформинг с водна пара. Търсенето на катализатори, които могат да улеснят разкъсването на C-H връзката на метана и други алкани е в областта на научните изследвания с голямо стопанско значение.

Реакции с халогени[редактиране | редактиране на кода]

Метанът реагира с всички халогени при подходящи условия по следния начин:

Ch5+X2⟶Ch4X+HX{\displaystyle {\ce {Ch5 + X2 -> Ch4X + HX}}}

където Х са халогените: хлор (Cl), бром (Br), или йод (I). С флуор (F) се изместват всички водородни атоми. Получава се тетрафлуорометан (CF4) и се отделя флуороводород (HF). Този процес се нарича халогениране. Когато X е Cl, реакцията притича по следния начин:

1. Формиране на радикали:

Cl2→△UV2Cl⋅−239kJ{\displaystyle {\ce {Cl2->[UV][\triangle ]2Cl{.}-239kJ}}}

Необходимата енергия се получава от въздействието на ултравиолетови лъчи или загряване.

2. Замяна на радикалите:

Ch5+Cl⋅⟶Ch4⋅+HCl+14kJ{\displaystyle {\ce {Ch5 + Cl. -> Ch4{.}+ HCl + 14 kJ}}}

Ch4⋅+Cl2⟶Ch4Cl+Cl⋅+100kJ{\displaystyle {\ce {Ch4{.}+ Cl2 -> Ch4Cl + Cl. + 100 kJ}}}

3. Унищожаване на радикалите:

2Cl⋅+Cl2+239kJ{\displaystyle {\ce {2Cl{.}+ Cl2 + 239 kJ}}}

Ch4⋅+Cl⋅⟶Ch4Cl+339kJ{\displaystyle {\ce {Ch4{.}+ Cl. -> Ch4Cl + 339 kJ}}}

2Ch4⋅⟶Ch4Ch4+347kJ{\displaystyle {\ce {2Ch4{.}-> Ch4Ch4 + 347 kJ}}}

Гориво[редактиране | редактиране на кода]

Метанът е важен за производството на електричество чрез изгаряне като гориво в газова турбина или парен котел. В сравнение с други въглеводородни горива, изгарянето на метан произвежда по-малко въглероден диоксид за всяка единица произведена топлина. Около 891 kJ/mol е топлината произведена от горенето на метана. Тя е по-малко, отколкото при горенето на всеки друг въглеводород, но отношението от топлината на изгаряне (891 kJ/mol) към молекулна маса (16.0 g/mol) показва, че метанът, който е най-простият въглеводород, произвежда повече топлина за единица тегло (55.7 kJ/g) в сравнение с други сложни въглеводороди. Много градове са газифицирани и метанът се ползва за битови нужди. В този си вид е познат като природен газ и се счита, че енергийното съдържание е 39 мегаджаула на кубичен метър.

Метан под формата на компресиран природен газ се използва като гориво на превозните средства и по този начин те са по-екологично чисти, в сравнение с другите изкопаеми горива като бензин и дизелово гориво.

Понастоящем се провеждат изпитания за потенциала на метана като ракетно гориво. Едно от предимствата на метана е, че той е широко разпространен в много части на Слънчевата система и би могъл да бъде събиран на място, осигурявайки гориво за двупосочно пътуване.

Индустриална употреба[редактиране | редактиране на кода]

Метанът се използва в промишлени химически процеси. Той е изходна суровина за производството на водород, метанол, оцетна киселина, оцетен анхидрид. За целта метанът се превръща в смес от въглероден окис и водород чрез риформинг с водна пара. В този процес метанът и парата реагират чрез никелов катализатор при висока температура (700 – 1100 °C).

Ch5+h3O→700−1100oCNiCO+3h3{\displaystyle {\ce {Ch5 + h3O ->[Ni][700-1100^oC] CO + 3h3}}}

CO+h3O⟶CO2+h3{\displaystyle {\ce {CO + h3O -> CO2 + h3}}}

Също така метанът е изходна суровина за производството на ацетилен (при преминаване на метан през електрическа дъга) и хлорметани (хлорметан, дихлорометан, хлороформ и тетрахлорметан). Последните се получават чрез реакция на метана с хлора. Въпреки това, използването на тези химикали намалява. Ацетиленът се заменя с по-евтини заместители, а използването на хлорметаните намалява поради здравословни и екологични проблеми.

Като част от природния газ[редактиране | редактиране на кода]

Основният източник на метан е добивът от геоложки находища, известни като находищата на природен газ. Обикновено там метанът е смесен с други въглеводородни горива и понякога придружен с хелий и азот. Метанът също се произвежда в значителни количества от гниещи органични отпадъци в депа за битови отпадъци.

Алтернативни източници[редактиране | редактиране на кода]

Отделно от газовите находища, алтернативен метод за получаване на метан е чрез производство на биогаз, генериран от ферментация на органични вещества, включително животински тор, утайки от отпадъчни води, твърди битови отпадъци или други биоразградими суровини при анаеробни условия. Метановите хидрати/клатрати (ледена комбинация от метан и вода на дъното на морето, открити в големи количества), са потенциален бъдещ източник на метан.

Промишлено метан може да бъде произведен от въглероден диоксид и водород или въглероден окис и водород чрез химични реакции по метода на Сабатиер или на Фишер-Тропс (макар че Фишер-Тропс обикновено се използва за производството на по-дълги въглеводородни вериги от тази на метана).

Метан е открит или се смята, че съществува на няколко места в Слънчевата система. В повечето случаи се смята, че е бил създаден от абиотични процеси. Възможни изключения са Марс и Титан.

  • Луна – открити са следи от изпускане на повърхността;
  • Марс – атмосферата съдържа 10 ppb метан. През януари 2009 г. бе обявено, че учени са открили, че планетата изпуска метан в атмосферата в определени области. Това накара някои учени да спекулират, че това може да е знак за биологична активност под повърхността;
  • Юпитер – атмосферата му съдържа около 0,3% метан;
  • Сатурн – атмосферата съдържа около 0,4% метан;
    • Япет
    • Титан – атмосферата му съдържа 1,6% метан. На повърхността му има хиляди метанови езера и течащи реки. В горните слоеве на атмосферата метанът се превръща в по-сложни молекули, включително и ацетилен. Това е процес, при който се произвежда и молекулярен водород. Има данни, че ацетиленът и водородът се превръщат в метан в близост до повърхността. Това предполага наличието или на екзотичен катализатор, или на непозната форма на метаногенен живот;
    • Енцелад – атмосферата съдържа 1,7% метан;
  • Уран – атмосферата съдържа 2,3% метан;
    • Ариел – метан се смята за съставна част на повърхността лед Ариел;
    • Миранда
    • Оберон – около 20% от повърхностния лед на Оберон е съставен от метан, свързан с въглерод/азотни съединения;
    • Титания – около 20% от повърхностния лед на Титания се състои от метан, свързан с органични съединения;
    • Умбриел – метан е основен елемент в повърхностния лед на Умбриел;
  • Нептун – атмосферата съдържа 1,6% метан;
    • Тритон – Тритон има разредена атмосфера от азот с малки количества метан в близост до повърхността;
  • Плутон – спектроскопски анализ на повърхността на Плутон показва, че тя съдържа следи от метан. През 2015 г. сондата Нови хоризонти заснема ледени полета от замръзнал метан на повърхността;
    • Харон – смята се, че метанът присъства на Харон, но това не е напълно потвърдено;
  • Ерида – инфрачервена светлина от обекта подсказва за наличие на лед от метан;
  • Халеевата комета
  • Комета Хиакутаке – наземните наблюдения показват наличие етан и метан в кометата;
  • Извънслънчева планетата HD 189733b – Това е първото откриване на органично съединение на планета извън Слънчевата система. Произходът е неизвестен, тъй като високата температура на планетата (700 °C) обикновено благоприятства за образуването на въглероден окис вместо метан;
  • Междузвездни облаци


Общомедия разполага с мултимедийно съдържание за

Плотность газов при нормальных условиях (Таблица)

Газы

Формула

Плотность при нормальных условиях ρ, кг/м3

Азот

N2

1,2505

Аммиак

NH3

0,7714

Аргон

Ar

1,7839

Ацетилен

C2H2

1,1709

Ацетон

C3H6O

2,595

Бор фтористый

BF3

2,99

Бромистый водород

HBr

3,664

Н-бутан

C4H10

2,703

Изо-бутан

C4H10

2,668

Н-бутиловый спирт

C4H10O

3,244

Вода

H2O

0,768

Водород

H2

0,08987

Воздух (сухой)

1,2928

Н-гексан

C6H14

3,845

Гелий

He

0,1785

Н-гептан

C7H16

4,459

Германия тетрагидрид

GeH4

3,42

Двуокись углерода

CO2

1,9768

Н-декан

C10H22

6,35

Диметиламин

(CH3)2NH

1,966*

Дифтордихлорметан

CF2Cl2

5,51

Дифенил

C12H10

6,89

Дифениловый эфир

C12H10O

7,54

Дихлорметан

CH2Cl2 

3,79

Диэтиловый эфир

C4H10

3,30

Закись азота

N2

1,978

Йодистый водород

HI

5,789

Кислород

O2 

1,42895

Кремний фтористый

SiF4

4,9605

Кремний гексагидрид

Si2H5

2,85

Кремний тетрагидрид

SiH4

1,44

Криптон

Kr 

3,74

Ксенон

Xe 

5,89

Метан

CH4 

0,7168

Метиламин

CH5

1,388

Метиловый спирт

CH4

1,426

Мышьяк фтористый

AsF5

7,71

Неон

Ne 

0,8999

Нитрозилфторид

NOF

2,176*

Нитрозилхлорид

NOCl 

2,9919

Озон

O3

2,22

Окись азота

NO 

1,3402

Окись углерода

CO 

1,25

Н-октан

C8H18 

5,03

Н-пентан

C5H12   (CH3(CH2)3СН3)

3,457

Изо-пентан

C5H12   (СН3)2СНСН2СН3

3,22

Пропан

C3H8 

2,0037

Пропилен

C3H6 

1,915

Радон

Rn

9,73

Силан диметил

SiH2(CH3)2

2,73

Силан метил

SiH3CH3

2,08

Силан хлористый

SiH3Cl

3,03

Cилан трифтористый

SiHF3

3,89

Стибин (15°С, 754 мм.рт.ст.)

SbH3

5,30

Селеновая кислота

H2Se

3,6643

Сернистый газ

SO2 

2,9263

Сернистый ангидрид

SO3 

3,575

Сероводород

H2

1,5392

Сероокись углерода

COS

2,72

Сульфурил фтористый

SO2F2

3,72*

Триметиламин

(CH3)3N

2,58*

Триметилбор

(CH3)3B

2,52

Фосфористый водород

PH3 

1,53

Фосфор фтористый

PF3

3,907*

Фосфор оксифторид

POF3

4,8

Фосфор пентафторид

PF5

5,81

Фреон-11

CF3CI 

6,13

Фреон-12 (дифтордихлорметан)

CF2CI2 

5,51

Фреон-13

CFCI3 

5,11

Фтор

F2 

1,695

Фтористый кремний

SiF4 

4,6905

Фтористый метил

CH3

1,545

Фторокись азота

NO2F

2,9

Хлор

Cl2 

3,22

Хлор двуокись

ClO2

3,09*

Хлор окись

Cl2O

3,89*

Хлористый водород

HCl 

1,6391

Хлористый метил (метилхлорид)

CH3Cl 

2,307

Хлористый этил

C2H5Cl 

2,88 

Хлороформ

CHCl3 

5,283

Хлорокись азота

NO2Cl 

2,57

Циан, дициан

C2N2

2,765 (2,335*)

Цианистая кислота

HCN 

1,205

Этан

C2H6 

1,356

Этиламин

C2H7

2,0141

Этилен

C2H4

1,2605

Этиловый спирт

C2H6

2,043

Молярная масса некоторых газов значения (Таблица)

Молярная масса газа (или вещества) — это отношение массы газа к количеству молей этого газа, то есть масса одного моля газа (вещества).

В системе СИ молярная масса выражается в кг/моль (или г/моль), обозначают обычно буквой M.

Название газа и его химическая формула

Молярная масса, г/моль

Азот (N2)

28,016

Аммиак (NH3)

17,031

Аргон (Ar)

39,944

Ацетилен (C2H2)

26,04

Ацетон (C3H6O)

58,08

Н-бутан (C4h20)

58,12

Изо-бутан ( C4HJ0)

58,12

Н-бутиловый спирт ( C4HJ0O)

74,12

Вода (H2O)

18,016

Водород (h3)

2,0156

Воздух (сухой)

28,96

Н-гексан (C6HJ4)

86,17

Гелий (He)

4,003

Н-гептан (C7HJ6)

100,19

Двуокись углерода (CO2)

44,01

Н-декан ( C10h32)

142,30

Дифенил ( C12h20)

154,08

Дифениловый эфир ( CJ2H10O)

168,8

Дихлорметан ( CH2Cl2)

84,94

Диэтиловый эфир (C4H10O)

74,12

Закись азота (N2O)

44,016

Йодистый водород (HJ)

127,93

Кислород (O2)

32,00

Криптон (Kr)

83,7

Ксенон (Xe)

131,3

Метан (CH4)

16,04

Метиламин (CH5N)

31,06

Метиловый спирт (CH4O)

32,04

Неон (Ne)

20,183

Нитрозилхлорид (NOCl)

65,465

Озон (O3)

48,00

Окись азота (NO)

30,008

Окись углерода (CO)

28,01

Н-октан ( C8H18)

114,22

Н-пентан ( C5H12)

72,14

Изо-пентан ( C5H12)

72,14

Пропан ( C3H8)

44,09

Пропилен ( C3H6)

42,08

Селеновая кислота (H2Se)

80,968

Сернистый газ (SO2)

64,06

Сернистый ангидрид (SO3)

80,06

Сероводород (H2S)

34,08

Фосфористый водород (PH3)

34,04

Фреон 11 (CF3CI)

137,40

Фреон-12 (CF2CI2)

120,92

Фреон-13 (CFCI3)

114,47

Фтор (F2)

38,00

Фтористый кремний (SiF4)

104,06

Фтористый метил (CH3F)

34,03

Хлор (Cl2)

70,914

Хлористый водород (HCl)

36,465

Хлористый метил (CH3Cl)

50,49

Хлороформ (CHCl3)

119,39

Циан (C2N2)

52,04

Цианистая кислота (HCN)

27,026

Этан (C2H6)

30,07

Этиламин (C2H7N)

45,08

Этилен (C2h5)

28,05

Этиловый спирт (C2H6O)

46,07

Хлористый этил (C2H5Cl)

64,52

 

Газ

Ч5, Продам газ метан

100 долларов США.00–150 долларов США

/ Кусок
| 100 шт. / Шт. (Минимальный заказ)

Время выполнения заказа:
Количество (шт.) 1–500 > 500
Приблиз.Срок (дни) 20 Торг

.

метана | Определение, свойства, использование и факты

Метан , бесцветный газ без запаха, который часто встречается в природе и является продуктом определенной деятельности человека. Метан — простейший член парафинового ряда углеводородов и один из самых сильных парниковых газов. Его химическая формула — CH 4 .

метановый цикл Encyclopdia Britannica, Inc.

Британская викторина

Ветер и воздух: факт или вымысел?

Муссоны — это результат встречи тепла и холода.

Химические свойства метана

Метан легче воздуха, его удельный вес составляет 0,554. Он слабо растворяется в воде. Легко горит на воздухе, образуя углекислый газ и водяной пар; пламя бледное, слегка яркое и очень горячее. Точка кипения метана составляет -162 ° C (-259,6 ° F), а точка плавления -182,5 ° C (-296,5 ° F). Метан в целом очень стабилен, но смеси метана и воздуха с содержанием метана от 5 до 14 процентов по объему взрывоопасны.Взрывы таких смесей часто случаются на угольных шахтах и ​​угольных шахтах и ​​являются причиной многих аварий на шахтах.

структура метана Тетраэдрическая структура метана (CH 4 ) объясняется в теории VSEPR (валентная оболочка-электронная пара отталкивания) молекулярной формы, предполагая, что четыре пары связывающих электронов (представленные серыми облаками) ) занимают позиции, минимизирующие их взаимное отталкивание. Encyclopædia Britannica, Inc.

Источники метана

В природе метан образуется в результате анаэробного бактериального разложения растительного вещества под водой (где его иногда называют болотным газом или болотным газом).Водно-болотные угодья являются основным естественным источником производимого таким образом метана. Другие важные природные источники метана включают термитов (в результате процессов пищеварения), вулканы, жерла на дне океана и отложения гидрата метана, которые встречаются вдоль окраин континентов и под антарктическими льдами и арктической вечной мерзлотой. Метан также является основным компонентом природного газа, который содержит от 50 до 90 процентов метана (в зависимости от источника) и встречается как компонент горючего газа (горючего газа) вдоль угольных пластов.

химическая структура метана Тетраэдрическая геометрия метана: (A) модель стержня и шара и (B) диаграмма, показывающая валентные углы и расстояния. (Простые связи обозначают связи в плоскости изображения; клин и пунктир обозначают связи, направленные к зрителю и от него, соответственно.) Encyclopædia Britannica, Inc.

Производство и сжигание природного газа и угля являются основными антропогенными факторами. (связанные с человеком) источники метана. Такие виды деятельности, как добыча и переработка природного газа и разрушающая перегонка битуминозного угля при производстве угольного и коксового газа, приводят к выбросу значительных количеств метана в атмосферу.Другая деятельность человека, связанная с производством метана, включает сжигание биомассы, животноводство и управление отходами (где бактерии производят метан, разлагая отстой в очистных сооружениях и разлагающиеся вещества на свалках).

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской.
Подпишитесь сегодня

Использование метана

Метан — важный источник водорода и некоторых органических химикатов. Метан реагирует с паром при высоких температурах с образованием окиси углерода и водорода; последний используется при производстве аммиака для удобрений и взрывчатых веществ.Другие ценные химические вещества, полученные из метана, включают метанол, хлороформ, четыреххлористый углерод и нитрометан. При неполном сгорании метана образуется технический углерод, который широко используется в качестве армирующего агента в резине, используемой для автомобильных шин.

Роль как парниковый газ

Метан, который производится и выбрасывается в атмосферу, поглощается стоками метана, которые включают почву и процесс окисления метана в тропосфере (нижний уровень атмосферы).Большая часть метана, производимого естественным путем, компенсируется его поглощением в естественных стоках. Однако антропогенное производство метана может вызвать более быстрое увеличение концентрации метана, чем оно компенсируется стоками. С 2007 года концентрация метана в атмосфере Земли увеличивалась на 6,8–10 частей на миллиард (ppb) в год. К 2020 году содержание метана в атмосфере достигло 1873,5 частей на миллиард, что примерно в два-три раза выше, чем доиндустриальные уровни, которые колебались на уровне 600-700 частей на миллиард.

Повышенная концентрация метана в атмосфере способствует парниковому эффекту, в результате чего парниковые газы (особенно углекислый газ, метан и водяной пар) поглощают инфракрасное излучение (чистую тепловую энергию) и переизлучают его обратно на поверхность Земли, потенциально задерживая тепло и производя существенные изменения климата.Повышенное содержание метана в атмосфере также косвенно увеличивает парниковый эффект. Например, при окислении метана гидроксильные радикалы (OH ) удаляют метан, вступая с ним в реакцию с образованием диоксида углерода и водяного пара, а по мере увеличения концентрации атмосферного метана концентрации гидроксильных радикалов уменьшаются, эффективно продлевая время жизни метана в атмосфере .

The Editors of Encyclopaedia Britannica Эта статья была недавно отредактирована и обновлена ​​редактором Джоном П. Рафферти.

Узнайте больше в этих связанных статьях Britannica:

  • глобальное потепление: метан

    Метан (CH 4 ) — второй по значимости парниковый газ. CH 4 более мощный, чем CO 2 , потому что радиационное воздействие, производимое на одну молекулу, больше.Кроме того, инфракрасное окно менее насыщено в диапазоне длин волн излучения, поглощаемого CH 4 , поэтому больше…

  • парниковый газ: метан

    Метан (CH 4 ) — второй по значимости парниковый газ.CH 4 более мощный, чем CO 2 , потому что радиационное воздействие, производимое на одну молекулу, больше. Кроме того, инфракрасное окно менее насыщено в диапазоне длин волн излучения, поглощаемого CH 4 , поэтому больше…

  • Климат: Климат и жизнь

    … пар, двуокись углерода, окись углерода, метан, озон, двуокись азота, азотная кислота, аммиак и ионы аммония, закись азота, двуокись серы, сероводород, сульфид карбонила, диметилсульфид и сложный набор неметановых углеводородов.Из них…

.

Лаборатория глобального мониторинга — Парниковые газы углеродного цикла

В таблице обобщены годовые приросты атмосферного CH 4 на основе глобально усредненных данных о морской поверхности.

Годовое увеличение атмосферного CH 4 в данном году — это увеличение его содержания (мольная доля) с 1 января этого года до 1 января следующего года после удаления сезонного цикла (как показано черным линии на рисунке выше).Он представляет собой сумму всех CH 4 , добавленных в атмосферу и удаленных из нее в течение года в результате деятельности человека и природных процессов. Наша первая предварительная оценка годового прироста в конкретном году производится в апреле следующего года с использованием имеющихся данных за предыдущий год. Важно понимать, что первоначальная апрельская оценка годового прироста, вероятно, значительно изменится по мере добавления в анализ дополнительных данных. Эта оценка будет обновлена ​​в последующие месяцы по мере того, как будет измерено больше проб для CH 4 и будет включено в анализ.К осени следующего года годовой прирост обычно приближается к «окончательному» значению.

Оценки глобальной средней численности CH 4 (среднемесячные и годовые средние значения) и годового прироста обновляются каждый месяц по мере того, как в Боулдер возвращаются новые пробы, измеренные для CH 4 и добавленные в анализ. . Добавление новых, более свежих данных повышает точность первоначальной оценки за счет увеличения пространственной плотности данных и устранения «конечных эффектов» используемых процедур подбора кривой.Мы исследовали влияние добавления новых данных на параметры, представленные здесь, и сводка результатов приводится ниже:

Первоначальные оценки годового прироста CH 4 , сделанные в апреле за предыдущий год, смещены по сравнению с последующими оценками с использованием дополнительных данных. Среднее смещение первоначальной оценки составляет + 1 ± 0,8 частей на миллиард -1 в год (показано 1 стандартное отклонение). В течение следующих нескольких месяцев среднее смещение медленно уменьшается, пока к июлю или августу оно не станет незначительным.Однако в любой год смещение в первоначальной оценке годового прироста может быть намного больше, чем в среднем, со смещением до ± 3 ppb в год -1 ; то есть он может быть положительным или отрицательным. Другими словами, до конца года смещение годового прироста может быть намного больше, чем неопределенность, сообщаемая на основе метода бутстрапа, описанного ниже.

Поведение начальных среднегодовых и среднемесячных средних значений аналогично (см. Ссылки на файлы ниже). Для среднемесячного значения CH 4 начальное значение обычно слишком велико, вплоть до 7.6 частей на миллиард

Расчетная неопределенность глобального годового увеличения CH 4 варьируется от года к году. Он оценивается с использованием двух терминов. Первый — это метод «начальной загрузки» (повторной выборки), который изменяет сайты в нашей сети. Каждая бутстрапная реализация сети строится путем случайного выбора участков с реституцией из существующих участков морского пограничного слоя в совместной глобальной сети отбора проб воздуха NOAA / GML (Dlugokencky et al., 1994). Каждый член ансамбля сетей имеет такое же количество сайтов, что и реальная сеть, но некоторые сайты отсутствуют, а другие представлены более одного раза.Дополнительным условием является наличие по крайней мере одного участка из высоких южных широт, одного из тропиков и одного из высоких северных широт, потому что мы всегда поддерживали широкое покрытие широт в реальной сети. Пробелы в временных данных на отдельных сайтах присутствуют в сетях начальной загрузки. Второй член — это метод Монте-Карло, который случайным образом изменяет данные для учета неопределенности измерения. Модификации основаны на оценке случайной неопределенности измерений, и она изменяется со временем.В обоих случаях создается 100 глобально усредненных временных рядов. Мы вычисляем среднее значение и стандартное отклонение для каждого годового увеличения от членов ансамбля, и одно стандартное отклонение от двух членов (сетевого и аналитического) берется в квадратуре, чтобы получить сообщаемую неопределенность на каждом временном шаге. Как упоминалось ранее, смещение в наших первых оценках годового прироста, среднемесячного и среднегодового значений может быть значительно больше заявленной неопределенности.

.

Лаборатория глобального мониторинга — Парниковые газы углеродного цикла

CarbonTracker-CH 4

Добро пожаловать! Это первый выпуск продукта NOAA CarbonTracker-CH 4 Data Assimilation.

Он был разработан в качестве сопутствующего продукта к программе NOAA CarbonTracker для CO 2 с целью получения количественных оценок выбросов метана в атмосферу из естественных и антропогенных источников для Северной Америки и остального мира.Оценка выбросов CarbonTracker-CH 4 согласуется с наблюдаемыми моделями выбросов CH 4 в атмосфере.

ch5 movie

CarbonTracker CH 4 Среднее по столбцу CH 4 за июль-август 2007 года. Теплые цвета показывают высокие концентрации CH 4 в атмосфере, а холодные цвета показывают низкие концентрации. Эта последовательность показывает относительно большие выбросы из водно-болотных угодий в Западной Сибири и выбросы из антропогенных и естественных источников в Индии и Азии.Возникающие в результате высокие воздушные массы CH 4 затем перемещаются погодными системами, чтобы сформировать модели, показанные на этой анимации. [Подробнее о фильмах CH 4 ]

Метан играет важную роль в химическом составе и радиационных свойствах атмосферы. С потенциалом глобального потепления 28 на 100-летнем горизонте метан является мощным парниковым газом (IPCC, AR5). Атмосферный метан имеет время жизни около десяти лет и в конечном итоге окисляется до CO 2 .Это один из парниковых газов, на который распространяется Киотский протокол, и в будущем он вполне может регулироваться Соединенными Штатами. Контроль за выбросами метана также влияет на качество воздуха, поскольку окисление CH 4 приводит к образованию тропосферного озона в загрязненной окружающей среде.

Самым крупным естественным источником метана является производство микробов во влажных анаэробных средах , таких как болота, болота, торфяники и другие водно-болотные экосистемы. Меньшие количества метана выделяются в результате пожаров, океанов и кишечной ферментации термитов и диких животных.Кроме того, метан в относительно небольших количествах выбрасывается из геологических источников, таких как просачивание, клатраты, грязевые вулканы и геотермальные системы. Антропогенные источники метана связаны с широким спектром деятельности человека, от производства продуктов питания (рис и животноводство) до добычи энергии (добыча угля, утечки, связанные с бурением нефтяных и газовых скважин) до удаления отходов (свалки, сточные воды, отходы животноводства).

Возможность увеличения выбросов CH 4 в будущем — это процесс обратной связи с климатом, который важно понимать. Считается, что большие запасы углерода присутствуют в мерзлых почвах и вечной мерзлоте Арктики, и повышенное разложение этого углерода по мере потепления климата может стать большим источником как атмосферного метана, так и углекислого газа. Такие системы, как CarbonTracker-CH 4 , которые объединяют долгосрочные наблюдения с наилучшими возможными моделями выбросов и атмосферного переноса, помогают в понимании, отслеживании и прогнозировании климатических обратных связей, связанных с выбросами парниковых газов.

Другие CarbonTrackers
CarbonTracker — это вклад NOAA в Североамериканскую углеродную программу

.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *