Большая Энциклопедия Нефти и Газа. Что служит индикатором вихревого электрического поля


Вихревое электрическое поле - Большая Энциклопедия Нефти и Газа, статья, страница 2

Вихревое электрическое поле

Cтраница 2

В этом случае вихревое электрическое поле везде имеет то же направление, что и скорость вращения. Поэтому оно либо раскручивает частицу, увеличивая Uj, либо тормозит ее. Первое имеет место при возрастании Я, второе - при убывании Я.  [16]

Подчеркнем, что вихревое электрическое поле при изменении магнитного поля существует независимо от того, имеется ли в этом месте замкнутый проводящий контур. Сам проводящий контур является лишь индикатором, обнаруживающим наличие вихревого электрического поля.  [17]

Силовые линии напряженности вихревого электрического поля могут замыкаться сами на себя. В частности, силовые линии вихревого электрического поля, возникающего при изменении магнитного поля, представляют собой замкнутые линии, которые охватывают линии переменного магнитного поля.  [18]

Чему равна циркуляция вихревого электрического поля.  [19]

Чему равна циркуляция вихревого электрического поля. Почему вводится понятие тока смещения. Что он собой по существу представляет.  [20]

Первое слагаемое обусловлено вихревым электрическим полем, второе - движением элементов контура.  [21]

Переменное магнитное поле порождает вихревое электрическое поле с замкнутыми линиями напряженности; Этот вывод был сделан Максвеллом при анализе явления электромагнитной индукции. Далее МаксвеЛл предположил, что аналогичным образом переменное электрическое поле порождает вихревое магнитное поле. Благодаря этим процессам электромагнитные t возмущения распространяются с конечной скоростью и существуют электромагнитные волны.  [22]

Уравнение (11.02) показывает что вихревое электрическое поле создается переменным во времени магнитным полем, то есть магнитным током смещения.  [23]

Изменение магнитного поля порождает вихревое электрическое поле.  [24]

Изменение магнитного поля порождает вихревое электрическое поле. Оказывается, что справедливо и обратное: изменяющееся во времени электрическое поле порождает магнитное поле.  [26]

Переменное магнитное поле образует вихревое электрическое поле, вихрями которого является скорость изменения магнитной индукции во времени, взятая с обратным знаком.  [27]

Это значит, что вихревое электрическое поле направлено противоположно отмеченному направлению обхода контура.  [29]

Что является причиной возникновения вихревого электрического поля. Чем оно отличается от электростатического поля.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Ответы@Mail.Ru: источник вихревого электрического поля

В 60-х годах XIX в. английский ученый Дж. Максвелл (1831-1879) обобщил экспериментально установленные законы электрического и магнитного полей и создал законченную единую теорию электромагнитного поля. Она позволяет решить основную задачу электродинамики: найти характеристики электромагнитного поля заданной системы электрических зарядов и токов. Согласно закону электромагнитной индукции Фарадея, всякое изменение магнитного поля во времени приводит к возникновению ЭДС индукции и появлению индукционного тока в проводниках, находящихся в этом магнитном поле. Многочисленные опыты показали, что ЭДС совершенно не зависит от проводника, его свойств (однородности, сопротивления) . Возникновение ЭДС электромагнитной индукции возможно и в неподвижном контуре, находящемся в переменном магнитном поле. Однако ЭДС в любой цепи обусловлена действием на носители тока сторонних сил неэлектростатического происхождения. Поэтому, прежде всего, возникает вопрос о природе сторонних сил в данном случае. Опыт показывает, что в случае электромагнитной индукции сторонние силы не связаны ни с тепловыми, ни с химическими процессами в контуре. Их возникновение также нельзя объяснить силой Лоренца, так как она на неподвижные заряды не действует. Следовательно, поле сторонних сил создается в самом пространстве, где происходит изменение магнитного поля и присутствие замкнутого проводника вовсе не обязательно: контур, в котором наводится ЭДС индукции, является лишь своего рода индикатором, обнаруживающим это поле. Максвелл выдвинул гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, циркуляция которого и является причиной возникновения ЭДС электромагнитной индукции в контуре: (5.1) Уравнение (5.1) называют вторым уравнением Максвелла. Смысл его заключается в том, что изменяющееся магнитное поле порождает вихревое электрическое, а последнее в свою очередь вызывает в окружающем диэлектрике или вакууме изменяющееся магнитное поле. Поскольку магнитное поле создается электрическим током, то, согласно Максвеллу, вихревое электрическое поле следует рассматривать как некоторый ток, который протекает как в диэлектрике, так и в вакууме. Максвелл назвал этот ток током смещения. Механизм тока смещения будет рассмотрен ниже. Подставив в (5.1) выражение для потока магнитной индукции, получим Если поверхность и контур неподвижны, то операции дифференцирования и интегрирования можно поменять местами. Следовательно, (5.2) где символ частной производной подчеркивает тот факт, что интеграл является функцией только от времени. Как рассматривалось ранее (см. 1.4), циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю, т. е. Сравнивая это выражение с (5.1), видим, что между полями и имеется принципиальное различие: циркуляция вектора не равна нулю, следовательно, электрическое поле, возбуждаемое переменным магнитным полем, как и само магнитное поле, является вихревым.

touch.otvet.mail.ru

Вихревое электрическое поле

Вихревое электрическое поле - это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.

Переменное магнитное поле порождает инду­цированное электрическое поле. Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.

   Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

   Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

   Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

   В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

   Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

   Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.

   Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами; 2) Силовые линии этого поля всегда замкнуты; 3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле( вихревое электр. поле )

1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты - потенциальное поле 2. силовые линии замкнуты - вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

infofiz.ru

Вихревое электрическое поле

Вихревое электрическое поле - это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.

Переменное магнитное поле порождает инду­цированное электрическое поле. Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.

   Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

   Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

   Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

   В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

   Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

   Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.

   Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами; 2) Силовые линии этого поля всегда замкнуты; 3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле( вихревое электр. поле )

1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты - потенциальное поле 2. силовые линии замкнуты - вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

infofiz.ru

Вихревое электрическое поле

Говоря о природе ЭДС индукции, мы связали ее возникновение с действием силы Лоренца на заряды в движущемся проводнике. Однако для покоящегося контура, расположенного в изменяющемся магнитном поле, такое объяснение является неприемлемым. Тем не менее, ЭДС индукции возникает!

Возникновение индукционного тока в замкнутом контуре при изменении магнитного потока, связанном с изменением внешнего поля обусловлено действием неких сторонних сил, которые не связаны ни с химическими превращениями в контуре, ни с магнитными силами. Поэтому будем считать, что в рассматриваемом случае ток в контуре возникает за счет действия электрического поля с напряженностью . В замкнутом контуре циркуляция этого поля дает величину ЭДС индукции:

. (20.33)

Поскольку , можно утверждать, что

. (20.34)

Поскольку рассматриваемый контур предполагается неподвижным, дифференцирование по времени можно поменять местами:

. (20.35)

По теореме Стокса

. (20.36)

Поэтому

. (20.37)

Поверхность интегрирования произвольна, поэтому должны быть равны подынтегральные выражения:

. (20.38)

Итак, ротор поля оказался не равным нулю, в отличие от электростатического поля. Поэтому называют вихревым электрическим полем.

Одна из важнейших идей Максвелла заключалась в том, что он предположил, что изменяющееся во времени магнитное поле создает в окружающем пространстве вихревое электрическое поле независимо от наличия в данной точке пространства проводящего контура. Контур, точнее протекание в нем индукционного тока, является только индикатором наличия вихревого электрического поля.

Наконец, отметим, что поскольку ротор электростатического поля всегда равен нулю, можно утверждать что всегда

. (20.39)

Похожие статьи:

poznayka.org

Вихревое электрическое поле

Вихревое электрическое поле - это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.

Переменное магнитное поле порождает инду­цированное электрическое поле. Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.

   Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

   Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

   Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

   В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

   Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

   Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.

   Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами; 2) Силовые линии этого поля всегда замкнуты; 3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

электростатическое поле

индукционное электрическое поле( вихревое электр. поле )

1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты - потенциальное поле 2. силовые линии замкнуты - вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

infofiz.ru

Установка для исследования вихревого электрического поля

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Лист электропроводящей бумаги уложен на планшет. Через отверстие в планшете проходит длинный соленоид. Одно из лекал, входящих в набор лекал, через его отверстие насажено на длинный соленоид и уложено на лист электропроводящей бумаги и зафиксировано фиксатором его положения. Общий контакт переключателя на два положения соединен с первым вводом вольтметра с большим входным сопротивлением. Неподвижный контакт закреплен на листе электропроводящей бумаги и соединен со вторым вводом вольтметра с большим входным сопротивлением. Зонд соединен с первым контактом переключателя. Витки индикаторной катушки охватывают длинный соленоид под планшетом. Первый вывод катушки соединен со вторым вводом вольтметра с большим входным сопротивлением, а второй вывод - со вторым контактом переключателя на два положения. Техническим результатом изобретения является моделирование циркуляции вектора вихревого электрического поля в разнообразных замкнутых контурах. 7 ил.

 

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме в высших и средних учебных заведениях по курсу физики для изучения и углубления знаний физических законов.

Известен учебный прибор для исследования электромагнитного поля (RU патент №2210815, 20.08.2003 Бюл. №23. Автор Ковнацкий В.К.). Он содержит два тороида, между ними создается однородное вихревое электрическое поле. С помощью этого прибора невозможно продемонстрировать плоскопараллельное электрическое поле и снять необходимые его характеристики.

Известен также учебный прибор по физике (RU патент №2133505, 20.07.1999 Бюл. №20. Автор Ковнацкий В.К.). Он содержит регистратор ЭДС и соленоид, подключенный к генератору гармонического напряжения. Этот прибор позволяет создать плоскопараллельное вихревое электрическое поле. Однако на нем невозможно построить сетку электрических и изопотенциальных линий этого поля, продемонстрировать неоднозначность его потенциала. Нельзя также на этом приборе экспериментально проверить теорему о циркуляции вектора напряженности электрического поля в, законы Ома и Джоуля-Ленца в дифференциальной форме в электропроводящей среде, расположенной в вихревом электрическом поле.

Наиболее близкой к предлагаемой установке является установка для исследования вихревого электрического поля (RU патент №2269823, 10.02.2006. Бюл.№4. Авторы: Белокопытов Р.А., Ковнацкий В.К., прототип фиг.1). Она содержит вольтметр с большим входным сопротивлением 9, планшет 2, генератор гармонического напряжения 3 и длинный соленоид 1, установленный перпендикулярно в центре планшета таким образом, что первая половина его находится над планшетом, а другая половина - под ним, и обмотка которого соединена с выходными клеммами генератора гармонического напряжения 3. Эта установка позволяет создать плоскопараллельное вихревое электрическое поле. На ней можно экспериментально проверить теорему о циркуляции вектора , закон Ома и Джоуля-Ленца в дифференциальной форме только в замкнутом круговом проводнике, расположенном в вихревом электрическом поле. Однако на этой установке невозможно продемонстрировать и построить сетку электрических и изопотенциальных линий этого поля в проводящей среде, например в виде электропроводящей бумаги. На этой установке нельзя определить циркуляцию вектора для произвольного замкнутого контура, охватывающего и не охватывающего длинный соленоид.

Техническим результатом изобретения является возможность моделирования циркуляции вектора вихревого электрического поля в разнообразных замкнутых контурах.

Указанный технический результат достигается тем, что в известную установку для исследования вихревого электрического поля, содержащую вольтметр с большим входным сопротивлением, планшет, генератор гармонического напряжения и длинный соленоид, установленный перпендикулярно в центре планшета таким образом, что первая половина его находится над планшетом, а другая половина - под ним, и обмотка которого соединена с выходными клеммами генератора гармонического напряжения, согласно изобретению, введены лист электропроводящей бумаги, уложенный на планшете, а через отверстие в нем проходит длинный соленоид, набор разнообразных лекал из диэлектрика с отверстиями и криволинейными кромками, причем, используемое лекало из набора лекал через его отверстие насажено на длинный соленоид и уложено на лист электропроводящей бумаги, фиксатор положения используемого лекала, переключатель на два положения, общий контакт которого соединен с первым вводом вольтметра с большим входным сопротивлением, неподвижный контакт, закрепленный на листе электропроводящей бумаги, и который соединен со вторым вводом вольтметра с большим входным сопротивлением, зонд, соединенный с первым контактом переключателя на два положения, индикаторная катушка, витки которой охватывают длинный соленоид под планшетом первый вывод ее соединен со вторым вводом вольтметра с большим входным сопротивлением, а второй вывод - со вторым контактом переключателя на два положения.

На фиг.1 изображен прототип; на фиг.2 - общий вид предлагаемой установки; на фиг.3-7 - чертежи, поясняющие принцип ее работы.

Предлагаемая установка (фиг.2) содержит: 1 - длинный соленоид; 2 - планшет; 3 - генератор гармонического напряжения; 4 - лист электропроводящей бумаги; 5 - набор разнообразных лекал из диэлектрика с отверстиями и криволинейными кромками с разметкой; 6 - используемое из набора лекало; 7 - фиксатор положения используемого лекала; 8 -индикаторная катушка; 9 - вольтметр с большим входным сопротивлением; 10 - зонд; 11 - неподвижный контакт; 12 - переключатель на два положения.

Рассмотрим теоретические положения, которые легли в основу предлагаемой установки. Пусть лист электропроводящей бумаги имеет отверстие, в которое вставлен длинный соленоид, питаемый переменным током. Изменяющееся во времени в длинном соленоиде магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле. На фиг.3 показано плоское вихревое электрическое поле длинного соленоида. Пунктирные линии изображают электрическое поле, а сплошные линии изопотенциальные линии. Под действием вихревого электрического поля в электропроводящей бумаге течет индукционный ток. Таким образом, в вихревом электрическом поле циркуляция вектора к вдоль замкнутой кривой равна электродвижущей силе, возникающей в проводящем контуре , совпадающим с этой кривой:

Из фиг.3 видно, что напряженность вихревого электрического поля одинакова во всех точках замкнутого кругового контура L, а вектор направлен по касательной к окружности с центром в точке 0, и совпадает с вектором . Тогда циркуляция вектора по замкнутому контуру L.

Сопоставляя выражения (1) и (2) получим, что напряженность электрического поля на расстоянии R от оси соленоида 0 определяется по следующему выражению:

Зная величину Е в электропроводящей бумаге, можно вычислить плотность тока j, определяемую законом Ома в дифференциальной форме, j=σE, а также удельную мощность тока Pуд, определяемую законом Джоуля-Ленца в дифференциальной форме: Pуд=σЕ2, где σ - удельная электрическая проводимость электропроводящей бумаги.

Для изменяющегося по гармоническому закону электрического поля с частотой ν можно определить плотность тока смещения в электропроводящей бумаге jсм=2πνε0E, где ε0 - электрическая постоянная.

Если использовать два одинарных зонда (фиг.3), один из которых установлен в произвольно выбранной «нулевой» точке (НТ), то можно построить несколько изопотенциальных линий (сплошные линии). Перемещая другой зонд (З) вокруг длинного соленоида по листу электропроводящей бумаги в одном направлении, будем наблюдать только увеличение потенциала и, обойдя вокруг длинного соленоида, обнаружим, что потенциал нулевой точки отличен от нуля. Так как в этом случае оба зонда касаются друг друга и соединительные провода образуют замкнутый виток, сцепленный с длинным соленоидом, то очевидно (фиг.4), что найденный потенциал будет равен циркуляции вектора по контуру, окружающему отверстие в листе: φ=ε. При дальнейшем перемещении зонда в том же направлении характер изменения потенциала сохраняется, причем, соединительный провод навивается на длинный соленоид. Сделав два полных оборота, обнаружим в нулевой точке потенциал 2ε. Соединительные провода в этом случае образуют вторичную обмотку из двух витков и т.д. Обнаруживается неоднозначность потенциала.

Для устранения этой неоднозначности потенциала нужно провести условную перегородку в виде меридиональной линии ОА, жирной линии, берущей начало на оси длинного соленоида и уходящей в бесконечность (фиг.3), то его плоское вихревое электрическое поле можно описать с помощью однозначного потенциала. Приняв за ноль значение потенциала на одной стороне условной перегородки (φ=0, фиг.3) будем иметь на другой ее стороне максимальный потенциал, φmax=ε. Промежуточные значения потенциала φ определяется углом θ между соответствующей меридиональной линией и «нулевой» стороной условной перегородки: φ=εθ/2π. Изопотенциальные линии, проведенные с постоянным интервалом потенциала, образуют при пересечении с силовыми линями сетку потенциального поля.

На предлагаемой установке циркуляция вектора определяем численным методом для разнообразных контуров обхода и сравниваем с циркуляцией вектора , полученной по точной формуле (1). Получим приближенную формулу для определения циркуляции вектора . В точке А (фиг.5) контура обхода L вектор направлен по касательной к силовой линии (пунктирная линия). Вектор контура направлен из точки А по направлению обхода контура L, тогда циркуляция вектора :

где El=Ecosα - проекция вектора на направление вектора α - угол между векторами и Проекция вектора на направление определяется по следующей формуле:

Перемещаясь в электрическом поле по замкнутому контуру L на одной части контура угол α≤90º, тогда проекция El будет положительной, а на другой части контура L при угле α>90º, проекция El будет отрицательной. Поэтому в формуле (5) знак минус можно опустить. Подставляя формулу (5) в выражение (4), получим:

Для определения циркуляции вектора численным методом заменим точную формулу (6) ее приближением:

где ∆φi - разность потенциалов между соседними точками: i=1, 2, …, N.

Таким образом, для определения циркуляции вектора численным методом необходимо измерить в N точках произвольного контура L потенциалы φi. Затем вычислить разности потенциалов между соседними точками и подставить их в формулу (7).

Для определения циркуляции вектора Е вихревого электрического поля численным методом по приближенной формуле (7) применяем заранее изготовленный, набор разнообразных лекал 5 из диэлектрика (например, из картона) с отверстием равным радиусу r длинного соленоида и криволинейными кромками, имитирующими разнообразные замкнутые контуры обхода L (фиг.2). Замкнутый контур лекал может либо охватывать длинный соленоид 1, либо не охватывать его.

Рассмотрим, как изготавливаются лекала для первого случая, когда контур L охватывает длинный соленоид. Пусть необходимо сделать N точек на контуре обхода L (фиг.6), тогда окружность вокруг отверстия в лекале делим на N равных углов θ. От центра отверстия проводим N радиальных линий до пересечения с контуром L и делаем цифровую разметку. Далее тонкую пластину из диэлектрика обрезаем по контуру обхода L или в полученных точках делаем отверстия для того, чтобы зондом 10 можно было касаться листа электропроводящей бумаги 4. Разность потенциалов ∆φi между соседними точками определяем по следующим формулам: ∆φ1=φ1; ∆φi=φi-φi-1; i=2, 3, …, N. Затем подставляем их в формулу (7).

Если контур обхода L не охватывает длинный соленоид, то лекала изготовляются следующим образом. Пусть необходимо сделать N точек на контуре обхода L (фиг.7), тогда изображаем угол θB, под которым виден контур обхода L с центра отверстия в лекале. Делим угол θB на N/2 равных углов θ. От центра отверстия проводим (N/2+1) радиальных линий до пересечения с контуром L и делаем цифровую разметку. Разности потенциалов ∆φi между соседними точками определяем в этом случае по следующим формулам: ∆φ1=φ1-φN; ∆φi=φi-φi-1; i=2, 3, …, N. Затем подставляем их в формулу (7).

Рассмотрим работу предлагаемой установки для исследования вихревого электрического поля (фиг.2). Она содержит длинный соленоид 1, установленный перпендикулярно в центре планшета 2 таким образом, что первая половина его находится над планшетом, а другая половина - под ним. Обмотка длинного соленоида 1 соединена с выходными клеммами генератора гармонического напряжения 3. По гармоническому закону будет изменяться магнитное поле в длинном соленоиде 1, которое, в свою очередь, возбуждает в окружающем пространстве вихревое электрическое поле. Индикатором этого поля является лист электропроводящей бумаги 4, уложенный на планшете 2, а через отверстие в нем проходит длинный соленоид 1.

В состав предлагаемой установки входит набор разнообразных лекал из диэлектрика с отверстиями и криволинейными кромками с разметкой 5. Эти лекала моделируют различные замкнутые контуры L на листе электропроводящей бумаги 4.

Используемое из набора лекало 6 может быть насажено через его отверстие на длинный соленоид 1 и уложено на лист электропроводящей бумаги 4. Замкнутый контур используемого из набора лекала 6 может либо охватывать длинный соленоид 1, либо не охватывать его. Для того чтобы используемое из набора лекало 6 не смещалось во время эксперимента, применяем фиксатор положения используемого лекала 7.

Индикатором вихревого электрического поля на предлагаемой установке является также индикаторная катушка 8. Она расположена под планшетом 1, а витки ее охватывают длинный соленоид 1. Циркуляция вектора вихревого электрического поля по замкнутому контуру L равна ЭДС электромагнитной индукции, наведенной в одном витке, и определяется по точной формуле (1). Несколько витков в индикаторной катушке позволяет получить усредненное, более точное значение ЭДС в одном витке. Измерение ЭДС, наведенной в индикаторной катушке 8, осуществляем с помощью вольтметра с большим входным сопротивлением 9.

При эксперименте используем численный метод определения циркуляции вектора по приближенной формуле (7). Для этого в окрестности точек на используемом из набора лекале 6 с помощью зонда 10 и вольтметра с большим входным сопротивлением 9 определяем на листе электропроводящей бумаги 4 потенциалы φi; i=1, 2, …, N. Замкнутая цепь, в которую включен вольтметр 9, обеспечивается неподвижным контактом 11. Он закреплен на листе электропроводящей бумаги 4, соединен с первым выводом индикаторной катушки 8 и вторым вводом вольтметра с большим входным сопротивлением 9.

Переключение вольтметра с большим входным сопротивлением 9 с индикаторной катушки 8 на зонд 10 осуществляем переключателем на два положения 12, общий контакт которого соединен с первым вводом вольтметра с большим входным сопротивлением 9. Первый контакт переключателя 12 соединен с зондом 10, а второй контакт переключателя - со вторым выводом индикаторной катушки 8.

Выберем из набора разнообразных лекал 5 лекало с контуром L в виде окружности. Установим переключатель 12 в первое положение (зонд-«3»), тогда вольтметр с большим входным сопротивлением 9 подключается к неподвижному контакту 11 и зонду 10. Прикасаясь зондом 10 в окрестности обозначенных точек кругового контура, измеряем потенциалы φi; i=1, 2, …, N и строим на документальном листе бумаги эквипотенциальные линии (сплошные линии). Перемещая зонд 10 по всем точкам кругового контура, убеждаемся в возрастании потенциала. В положении зонда 10, как показано на фиг.4, измеряем вольтметром с большим сопротивлением 9 величину ЭДС, наводимую в одном витке. Это и есть циркуляция вектора , определяемая по точной формуле (1). По формуле (3) определяем напряженность электрического поля и строим на том же документальном листе бумаги силовые линии (пунктирные линии).

В первом положении переключателя на два положения 12 (зонд-«3») определяем численным методом по формуле (7) циркуляцию вектора Е по различным контурам охватывающим и не охватывающим длинный соленоид.

Во втором положении переключателя на два положения 12 (индикаторная катушка - «ИК») вольтметр с большим входным сопротивлением 9 подключается к индикаторной катушке 8, на которой определяется значение ЭДС, индуцируемая в со витках. Результат разделим на со витков получим усредненное, более точное значение циркуляции вектора вдоль произвольного контура L, охватываемому длинный соленоид. Сравним результаты циркуляции вектора , полученные по приближенной и точной формулам.

Технико-экономическая эффективность предлагаемой установки заключается в том, что она обеспечивает повышение качества усвоения обучающими основных законов и явлений физики.

Предлагаемая установка реализована на кафедре физики ВКА им. А.Ф. Можайского и используется в учебном процессе на лабораторных работах по электричеству.

Установка для исследования вихревого электрического поля, содержащая вольтметр с большим входным сопротивлением, планшет, генератор гармонического напряжения и длинный соленоид, установленный перпендикулярно в центре планшета таким образом, что первая половина его находится над планшетом, а другая половина - под ним, и обмотка которого соединена с выходными клеммами генератора гармонического напряжения, отличающаяся тем, что в нее введены лист электропроводящей бумаги, уложенный на планшете, а через отверстие в нем проходит длинный соленоид, набор разнообразных лекал из диэлектрика с отверстиями и криволинейными кромками, причем, используемое лекало из набора лекал через его отверстие насажено на длинный соленоид и уложено на лист электропроводящей бумаги, фиксатор положения используемого лекала, переключатель на два положения, общий контакт которого соединен с первым вводом вольтметра с большим входным сопротивлением, неподвижный контакт, закрепленный на листе электропроводящей бумаги, и который соединен со вторым вводом вольтметра с большим входным сопротивлением, зонд, соединенный с первым контактом переключателя на два положения, индикаторная катушка, витки которой охватывают длинный соленоид под планшетом, первый вывод ее соединен со вторым вводом вольтметра с большим входным сопротивлением, а второй вывод - со вторым контактом переключателя на два положения.

www.findpatent.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.