Асинхронные и синхронные электродвигатели | Статьи компании «Мир Привода»
Главным назначением данных агрегатов является преобразование электрической энергии в механическую, что позволяет задействовать массу различных механизмов и устройств.
Чтобы понять, чем отличается синхронный электродвигатель от асинхронного аналога, нужно иметь определенное представление о работе агрегатов. В основе лежит создание индукции магнитных полюсов посредством вращающегося ротора и неподвижного статора. Датчик положения ротора посылает все необходимые данные для регуляции в соответствии с фазами напряжения.
Главное различие асинхронных и синхронных электродвигателей заключается в устройстве ротора, который представляет собой постоянный или электрический магнит, а если быть точнее — в принципе создания полюсов:
- при помощи индукции;
- при помощи катушек или постоянных магнитов.
Преимущества и недостатки синхронных и асинхронных электродвигателей переменного тока:
- Синхронные модели — высокая надёжность и КПД, стабильная частота вращения, не зависящая от нагрузки, простота обслуживания. Минусом можно считать некоторую сложность запуска двигателя, а также необходимость питания обмотки постоянным током. В моделях некоторых производителей часто выходят из строя коллекторы и щётки.
- Асинхронные аналоги — низкое потребление энергии, простота конструкции, эксплуатация в бытовых приборах с использованием однофазного подключения. Главный минус заключается в больших тепловых потерях и сложности регулировки.
Конструктивные особенности
Стоит обратить внимание на конструктивные отличия синхронного электродвигателя и асинхронного двигателя.
В состав синхронной конструкции, которая используется и как двигатель, и как генератор, входят следующие детали:
- подшипниковый узел;
- сердечник;
- магниты, индуктор и якорь с обмоткой;
- втулка;
- стальная тарелка.
Стоит добавить, что некоторые новые модели обладают короткозамкнутой пусковой обмоткой, которая позволяет запускать агрегат в асинхронном режиме.
Асинхронные аналоги бывают двух типов (с короткозамкнутым и фазным ротором) и состоят из следующих деталей:
- сердечника и магнитопровода;
- вентилятора с кожухом;
- подшипника;
- клеммной коробки и тройной обмотки;
- контактных колец.
Данная разновидность обладает большей популярностью, поскольку позволяет регулировать частоту вращения вала с помощью реостатов.
Синхронный, асинхронный – какая разница?! — Электродвигатели для складского и подъемно-транспортного оборудования – Склад и техника
И. Станкевич
Обычно о том, какие электродвигатели стоят на том или ином оборудовании, его владельцы особенно не задумываются, но только до тех пор, пока они не выходят из строя. А уже первые «болезни» этих «скромных тружеников» вызывают коллапс необъятных потоков грузов. На склады России поступает много иностранного подъемно-транспортного оборудования, и читателям будет интересно узнать, какие существуют типы и исполнения электродвигателей, работающих в этих машинах и механизмах.
Электродвигатели – непременная составляющая подъемно-транспортного и автоматизированного оборудования: конвейеров, автоматизированных складов, штабелеров, упаковочных автоматов и иной складской техники. Обычно эти агрегаты подбирают для своего оборудования сами изготовители, но все чаще бывает так, что покупатели и владельцы машин сами могут выбирать электрические силовые агрегаты для нужд своего предприятия в зависимости, например, от специфики условий работы отдельных его участков. В некоторых случаях компании комплектуют электродвигателями одного типа технику на всех своих складах и предприятиях, чтобы за счет унификации процедур и запчастей сократить расходы на техобслуживание. Иногда электродвигатели выбирают по соображениям невысокой стоимости.
В складском и подъемно-транспортном оборудовании наиболее широко применяют электродвигатели пяти типов:
- электродвигатели постоянного тока с возбуждением от постоянного магнита;
- асинхронные электродвигатели переменного тока. Их применяют в оборудовании непрерывного цикла, например, в обычных конвейерах;
- серводвигатели (сервомоторы). Они работают в машинах, которые должны совершать точные движения, перемещать и позиционировать грузы на строго определенные места: в штабелерах, автоматических складских системах;
- линейные асинхронные двигатели. Используются в оборудовании, для которого важна прежде всего высокая скорость работы, например, в сортировочных машинах;
- мотор-ролики (или мотор-барабаны), т. е. ведущие герметичные ролики, внутри которых заключены небольшие электродвигатели и редукторы. Используются для привода конвейеров, работающих периодически. Раньше складское подъемно-транспортное оборудование оснащали электродвигателями постоянного тока с возбуждением от постоянных магнитов. В настоящее время машины и автоматы комплектуют асинхронными электродвигателями переменного тока, применение которых постоянно расширяется.
В чем преимущества асинхронных электродвигателей?
Асинхронные двигатели переменного тока проще и дешевле электродвигателей других типов, поэтому в настоящее время их применяют все чаще. При выборе асинхронного двигателя следует учитывать два фактора – к.п.д. преобразования энергии и тип исполнения агрегата.
К.п.д. В ряде стран законодательством установлена минимальная величина к.п.д. для электродвигателей приводов, однако многие производители изготавливают электродвигатели по более жестким стандартам Национальной ассоциации производителей электрооборудования США (NEMA). Если, выбирая электродвигатель, вы видите, что он соответствует стандарту NEMA Premium, то это гарантирует его высокий к.п.д., надежность и экономичность.
У электродвигателей обычного качества к.п.д. равен 75…85%, у агрегатов высшего качества – 85…95%. Как считают специалисты, агрегаты с высоким к.п.д. стоят намного дороже обычных, но если электродвигатель будет работать непрерывно, он окупится быстро. Кроме того, благодаря экономии энергии улучшается экологическая обстановка, на которую все больше обращают внимание в цивилизованных государствах.
Тип исполнения – важная характеристика при выборе электродвигателя. Существует пять основных исполнений асинхронных электродвигателей:
• ODP (Open drip proof) – «каплезащищенный электродвигатель открытого исполнения». Этот тип электродвигателей наиболее широко используют в промышленности. Они не оборудованы вентилятором и имеют проемы в корпусе, через которые внутрь может проникнуть грязь и влага, поэтому использовать такие электродвигатели рекомендуется только в закрытых помещениях;
• TEFC (Totally Enclosed Fan Cooled) – «закрытого типа с вентиляторным охлаждением». Эти двигатели оборудованы вентилятором, создающим поток воздуха через их корпус. Вентилятор герметизирован, и инородные частицы и жидкости не могут проникнуть в электродвигатель извне. Электродвигатели в исполнении TEFC часто применяют в конвейерах;
• TENV (Totally Enclosed Non-Ventilated Motor) – «закрытого типа без охлаждения». Эти электродвигатели также используются в подъемно-транспортном оборудовании складов, если есть внешний источник, создающий воздушный поток для охлаждения двигателя;
• TEBC (Totally Enclosed Blower-Cooled Motor) – «охлаждаемый обдувом». Эти двигатели комплектуют собственным вентилятором, но расположенным и управляемым снаружи. Электродвигатели типа TEBC обычно применяют в оборудовании высокой мощности: в подъемных кранах, лебедках и т. п. или в оборудовании, работающем с переменной скоростью, где электродвигатель иногда может работать с частотой вращения, близкой к нулю;
• EPFC (Explosion Proof Fan Cooled Motor) – «во взрывозащищенном исполнении с вентиляторным
охлаждением». Используются в условиях высокого содержания в воздухе горючих и взрывоопасных элементов, например, паров бензина, других нефтепродуктов, аммиака, угольной пыли и проч.
Возможности применения любого асинхронного электродвигателя расширяются благодаря использованию электропривода с частотным регулированием (VFD). Асинхронные электродвигатели традиционной конструкции работают с постоянной частотой. Электропривод с частотным регулированием позволяет менять скорость двигателя и всей машины. В складском подъемно-транспортном оборудовании электроприводы с частотным регулированием позволяют максимально увеличивать скорость в «пиковые» периоды работы и снижать в другое время, благодаря чему экономится энергия и средства.
Серводвигатели
Эти двигатели занимают свою особую нишу – они работают в оборудовании, где требуется точное регулирование положения и скорости движений. Эти устройства специально разработаны как электродвигатели с якорем малого диаметра, но развивающие высокий крутящий момент. Чем меньше якорь, тем меньше инерция и, следовательно, электродвигатель быстрее разгоняется, и машина работает быстрее.
Серводвигатели оснащают также системами управления по обратной связи: по сигналам тахометра, датчиков линейных перемещений и аналого-цифрового преобразователя (АЦП). Благодаря управлению по сигналам от этих приборов увеличивается точность движений и регулирования скорости машин. Серводвигатели применяют в оборудовании и системах, где требуется высокая точность движений: в роботизированном оборудовании, штабелерах и подобных складских машинах. Электродвигатели этого типа применяют также в оборудовании и системах, где необходима большая точность синхронизации – в машинах, выполняющих установку (позиционирование) грузов на стеллажах автоматизированных складов.
Линейные асинхронные электродвигатели
Линейные асинхронные электродвигатели – новинка в отрасли складского подъемно-транспортного оборудования. Они позволяют значительно увеличить скорость движений машин при замечательной их повторяемости и точности. Линейный асинхронный двигатель генерирует магнитное поле, которое перемещает ползун (пластину) в двигателе. Обычно ползун прикрепляется к объекту, который должен передвигаться магнитным полем: например, в сортировочных машинах ползун электродвигателя соединен с подвижным лотком распределителя.
В такой конструкции нет деталей, которые бы изнашивались. Линейные асинхронные электродвигатели обеспечивают точность движений до 0,0335 мм на 1 м перемещения, т. е. позволяют выполнять прецизионные работы. Насколько уникальна такая способность устройств, иллюстрирует тот факт, что толщина человеческого волоса составляет около 0,09 мм, т. е. в три раза больше! Скорость работы линейных асинхронных электродвигателей очень высокая – до 5 м/с, а следовательно, длительность рабочих циклов у них небольшая и производительность на высочайшем уровне. Скорость перемещения ползуна на разных отрезках в течение одного цикла можно менять, а можно задавать пошаговое перемещение – это очень полезное качество для некоторых автоматических машин.
Мотор-ролики
Линейные асинхронные электродвигатели – не единственная инновация в области электрических силовых агрегатов. В последнее время в конвейерах все шире стали применять мотор-ролики (MDR – Motor Driven Roller). Еще два года назад на выставке оборудования по транспортировке материалов и логистике ProMat в Чикаго лишь несколько фирм представили конвейеры с приводом от мотор-роликов, зато в экспозиции в январе 2007 г. в ассортименте почти каждой фирмы, предлагающей конвейеры, были модели с мотор-роликами.
В Соединенных Штатах конвейеры с приводом от мотор-роликов впервые использовала почтовая служба. Конструкция их проста. Внутри ведущего ролика устанавливается миниатюрный электродвигатель постоянного тока, работающий от напряжения 24 В, и редуктор. В обычных конвейерах один мотор-ролик приходится на 9 обычных роликов.
По словам специалистов, если конвейер перемещает грузы непрерывным потоком, привод от наружных электродвигателей более экономичен. Конвейеры с мотор-роликами рентабельны и используются в основном в тех случаях, когда надо накапливать поступающие грузы на конвейере, а затем перемещать их дальше либо когда требуется разделять поток грузов на группы и перемещать грузы группами.
У мотор-роликов целый «букет» преимуществ. Уровень шума от конвейеров, оснащенных мотор-роликами, значительно ниже, чем от обычных конвейеров. Они позволяют экономить энергию: не только благодаря более высокому к.п.д. мотор-роликов, но и потому, что конвейер работает только тогда, когда надо. Еще одно преимущество – более высокий уровень систем управления мотор-роликами. В настоящее время выпускаются конвейеры с мотор-роликами, развивающие скорость до 90 м/мин, а если поток грузов уменьшился, можно снизить скорость до 30 м/мин, уменьшив таким образом износ деталей конвейера и энергопотребление. Наконец, мотор-ролик практически не нуждается в техобслуживании. Поскольку он работает лишь тогда, когда надо, его ресурс продляется на годы. Когда электродвигатель выйдет из строя, мотор-ролик заменяют другим практически без остановки конвейера.
Разница асинхронного и синхронного двигателя
Электродвигатели можно разделить на две основные категории – синхронные и асинхронные (индукционные) двигатели. Эти два вида довольно сильно отличаются друг от друга. Разница уже видна в самих названиях. Отличить агрегаты можно по выбитому на шильдике количеству оборотов (если там не указан тип мотора), у ассинхронного мотора неокруглённое число (например, 950 об/мин), у синхронного округлённое (1000 об/мин).
Есть и другие важные различия, в этой статье мы рассмотрим наиболее показательные из них: конструктивные, рабочие и ценовые.
Различия в работе и стоимости
Любой двигатель состоит из двух элементов: неподвижного и вращающегося. Статор имеет осевые прорези — пазы, на дно которых укладываются токонесущие медные или алюминиевые проводки. У электродвигателя на валу крепится ротор с обмоткой возбуждения.
Принципиальным отличием между синхронными и асинхронными двигателями являются роторы, точнее, их исполнение.
У синхронных моделей при малых мощностях они представляют собой постоянные магниты.
Переменное напряжение подаётся на обмотку статора, ротор подключается к постоянному источнику питания. Проходящий по обмотке возбуждения постоянный ток наводит магнитное поле статора. Крутящий момент создаётся из-за угла запаздывания между полями. Ротор имеет такую же скорость, как и магнитное поле статора.
Агрегаты используются на практике и как генераторы и как двигатели.
Асинхронные модели – это достаточно недорогие двигатели, которые применяются часто и всюду. Они проще в конструктивном плане, несмотря на то, что неподвижные части в принципе у всех моторов похожи.
По обмотке статора пропускается переменный электроток, который взаимодействует с роторной обмоткой. Два поля вращаются с одинаковой скоростью в одном направлении, но не могут быть равными, иначе бы не создавалась индуцированная ЭДС и, тем более крутящийся момент. Это становится причиной возникновения индуцированного тока в обмотке роторе, направление которого согласно правилу Ленца таково, что он склонен противостоять причине своего производства, т. е. скорости скольжения.
Скорость вращения ротора не совпадает со скоростью магнитного поля, она всегда меньше. Таким образом, ротор пытается догнать скорость вращающегося магнитного поля и уменьшить относительную скорость.
Основные достоинства и недостатки
- Асинхронные агрегаты не требуют какого-либо дополнительного источника питания. Синхронным необходим дополнительный источник постоянного тока для подачи напряжения на обмотки.
- Синхронники обладают относительно невысокой чувствительностью к перепадам сетевого напряжения и стабильностью вращения вне зависимости от нагрузки.
- Индукционные двигатели не требуют наличия контактных колец, за исключением двигателей с фазным ротором, которые их имеют для плавного пуска или регулирования скорости. В синхронных двигателях больше уязвимых мест, так как используются контактные кольца со щетками. Следовательно, детали быстрее изнашиваются и контакт между ними ослабевает.
- Синхронники нуждаются во вспомогательных пусковых механизмах, так как не обладают функцией самопуска. Для индукционных электродвигателей, имеющих собственные пусковые моменты, такой механизм не требуется.
Какой агрегат лучше
В заключение нужно отметить, что говорить, якобы один мотор лучше другого, нельзя. Однако, асинхронные модели надежнее в эксплуатации, отличаются простотой конструкции. Если агрегаты не перегружать, то их длительным сроком службы пользователь может остаться довольным.
Достоинством синхронной модели является то, что можно легко установить высокий коэффициент мощности. Поэтому модель является гораздо более эффективной, но по цене она будет соответственно дороже. Машины применяются в системах с требуемой мощностью 100 кВт и более.
Чем асинхронные электродвигатели отличаются от синхронных
Самые распространённые электродвигатели — трёхфазные машины переменного тока. Они есть двух видов — асинхронные и синхронные. В этой статье рассказывается в чём сходство и различие между машинами обоих типов и область их применения.
Принцип действия и устройство электромашин разных типов
Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.
Устройство и принцип действия асинхронных электродвигателей
Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:
- Корпус с подшипниковыми щитами и лапами или фланцем.
- В корпусе находятся магнитопровод из железных пластин с обмотками. Этот магнитопровод носит название статор.
- Вал с подшипниками и магнитпроводом. Эта конструкция называется ротор. В электродвигателях с короткозамкнутым ротором в магнитопроводе находятся соединённые между собой алюминиевые стержни, эта конструкция носит название «беличья клетка». В машинах с фазным ротором вместо стержней намотаны обмотки.
В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».
Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.
Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.
Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 — синхронная скорость; · n2 — скорость вращения ротора.
Номинальная величи
на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.
В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.
Такие аппараты используются при тяжёлом пуске и в устройствах с регулировкой скорости, например, в мостовых кранах.
Принцип действия синхронных электродвигателей
Эти двигатели устроены сложнее и дороже асинхронных машин. Их достоинство в постоянной скорости вращения, не меняющейся при нагрузке.
Статор синхронной машины не отличается от асинхронной. Отличие в роторе. В отличие от асинхронного двигателя, вращение осуществляется за счёт взаимодействия вращающегося магнитного поля статора и постоянного поля ротора. Для его создания в роторе находятся электромагниты. Напряжение к катушкам подводится при помощи токосъёмных колец и графитных щёток.
Справка! В роторе синхронных машин малой мощности вместо электромагнитов установлены постоянные или просто магнитопровод имеет явновыраженные полюса. Скольжение, как в асинхронных машинах, отсутствует, и частота вращения определяется только частотой питающего напряжения.
Запуск электродвигателей
Асинхронные электрические машины мощностью до 30-50кВт запускаются прямой подачей электроэнергии. С двигателями большой мощности и синхронными машинами дело обстоит сложнее.
Пуск асинхронных двигателей большой мощности
Для запуска таких машин используются разные способы:
- Включение добавочных сопротивлений в цепь статора. Они ограничивают пусковой ток, а после разгона закорачиваются пускателем.
- В аппаратах, предназначенных для работы в сети с фазным напряжением 660 вольт обмотки в сети 380 вольт соединены треугольником. На время пуска они переключаются в звезду.
- В электромашинах с фазным ротором для запуска в цепь ротора включаются добавочные сопротивления. После разгона они закорачиваются.
- При наличии регулировки скорости, переключением обмоток или изменением частоты, двигатель включается на минимальные обороты. После начала вращения, обороты увеличиваются.
Пуск синхронных электромашин
В отличие от асинхронных машин, пуск которых производится взаимодействием поля статора и обмоток или беличьей клетки ротора, синхронную машину необходимо предварительно разогнать до скорости, близкой к синхронной.
- С помощью дополнительного асинхронного двигателя. Так запускаются машины с постоянными магнитами в роторе. При достижении скорости, близкой к синхронной, асинхронхронник отключается и подаётся напряжение в статор синхронного двигателя.
- Асинхронный пуск. В роторе, кроме электромагнита, находится «беличья клетка». С её помощью аппарат разгоняется, после чего в обмотку подаётся постоянное напряжение, и двигатель начинает работать в качестве синхронного.
- Обмотки ротора закорачиваются напрямую или через добавочное сопротивление. После разгона в них подаётся постоянное напряжение.
- При помощи ТПЧ (тиристорного преобразователя частоты) частота питающего напряжения и скорость вращения плавно поднимается до номинальной. Этот способ применяется в механизмах с регулировкой скорости.
Особенности и применение разных видов электродвигателей
У каждого типа двигателей есть достоинства и недостатки по сравнению с другими. Это определяет область их применения. Применение разных типов электромашин зависит от их особенностей конструкции и принципа действия.
Достоинства и использование асинхронных электродвигателей
Такие машины имеют достоинства перед синхронными аппаратами:
- простота конструкции и низкая цена; аппараты с фазным ротором позволяют регулировать скорость вращения и осуществлять плавный пуск без использования преобразователей частоты;
- большое разнообразие мощностей — от нескольких ватт до десятков киловатт.
Кроме достоинств есть недостатки:
- падение скорости вращения при росте нагрузки;
- более низкий КПД и большие габариты, чем у синхронных аппаратов той же мощности;
- кроме активной, такие аппараты потребляют реактивную (индуктивную) мощность, что ведёт к необходимости устанавливать компенсаторы или дополнительно оплачивать реактивную электроэнергию.
Используются такие машины практически везде, где необходимо приведение в движение механизма и есть трёхфазное напряжение 380 вольт.
Применение синхронных машин
- Регулировка путём изменения тока возбуждения cos φ. Это позволяет уменьшить ток потребления, габариты и сечение подводящего кабеля, а также увеличить КПД. Кроме того, такие аппараты используются в качестве компенсаторов реактивной мощности.
- Менее чувствительны к колебаниям напряжения и обладают большей перегрузочной способностью, особенно к ударным нагрузкам. Способность к превышению мощности повышается путём перевозбуждения обмоток ротора. Благодаря этому такие двигатели используются в экскаваторах, гильотинных ножницах и других подобных механизмах.
- Частота вращения не меняется при изменения нагрузки. Поэтому синхронные машины применяются в прецизионных станках в металлургии, машиностроении и деревообатывающей промышленности.
Синхронные электродвигатели
Заводы производители синхронных электродвигателей: Элсиб, WEG, VEM, Силовые машины — завод Реостат, ELSIB, Русэлпром
Серии двигателей: ДС, ДСЗ, СД2, СДН, СДНЗ, СДС, СДМ, СДВ, СДП, СДР, IE4, P21R, Wmagnet
Применение
Синхронный электродвигатель (СД) – это устройство, работающее в сети переменного тока. У синхронной машины частота вращения ротора соответствует частоте вращения магнитного поля. При выборе электродвигателя необходимо проконсультироваться с заводом производителем.
СД используются, где пуск и остановка происходят достаточно редко (конвейеры и т.д.), то есть двигатели работают круглосуточно достаточно долгое время. Работа в таких условиях объясняется тем, что синхронные двигатели работают с cos φ приближенном к 1, и могут выдавать реактивную мощность в сеть, в результате чего улучшается коэффициент мощности сети и снижается её потребление, что важно для предприятий.
Синхронные электродвигатели нашли широкое применение в металлургической и металлообрабатывающей промышленности, на объектах нефтедобычи, на насосных станциях городских водоканалов, в целлюлознобумажной промышленности и других отраслях.
Применение синхронных двигателей для привода:
- мощных вентиляторов
- мельниц
- конвейеров
- эксгаустеров
- компрессоров
- дробилок
Цена на синхронные электродвигатели зависит от типа двигателя, а также от:
- Параметров мощности
- Габарита двигателя(высоты оси вращения)
- Конструктивных особенностей
Преимущества синхронных электродвигателей:
- возможность регулирования реактивного тока
- скорость вращения стабильна при перегрузках и просадках, в пределах перегрузочной способности
- устойчивость к колебаниям сетевого напряжения, а также хорошая нагрузочная способность
Устройство синхронного двигателя
Принцип действия СД основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.
Синхронный электродвигатель состоит из двух основных частей:
- Статора (якорь) – в этой части двигателя расположены обмотки
- Ротора (индуктор) – в этой части СД устанавливают обмотку возбуждения или постоянные магниты.
Чем отличается синхронный электродвигатель от асинхронного? Главное отличие в роторе двигателя — синхронный двигатель имеет в наличии обмотки на якоре, а асинхронный не имеет.
Типы синхронных электродвигателей
Отличия асинхронных двигателей от синхронных
Применение электродвигателей в различных отраслях промышленности и быта широко распространено, в связи с экономичностью и простотой подключения и обслуживания. Для различных механизмов, применяются двигатели разной мощности и устройства. В этой статье рассмотрим, чем отличается синхронный двигатель от асинхронного, в каких механизмах они применяются и как правильно выбрать тип электрического мотора.
Асинхронные двигатели
Как и любые электрические двигатели, асинхронные моторы представляют собой устройства, которые создают крутящий момент при помощи преобразования электрического тока. Если говорить простыми словами, асинхронный двигатель – это электромотор с неравнозначной частотой вращения ротора и магнитного поля. Магнитное поле ротора в таких устройствах всегда вращается с меньшей частотой, чем поле статора.
Строение асинхронного двигателя в целом аналогично с синхронным. Он состоит из:
- Цилиндрического статора из металлических пластин с пазами для обмотки;
- Фазного либо короткозамкнутого ротора;
- Подвижных и неподвижных деталей корпуса, таких как вал, подшипники, вентилятор охлаждения, электрического оборудования.
Используется тип двигателя асинхронный в различных приводах как в промышленности, так и быту. Например, для обеспечения работы конвейеров, подъемных механизмов кранов и экскаваторов, деревообрабатывающих станков и других механизмов, как крупногабаритных, так и небольших бытовых.
Обслуживание и ремонт такого типа электромоторов не требует больших затрат, однако, для трансформации крутящего момента и понижения частоты вращения необходимо использовать редуктора различной сложности, часто с большим передаточным числом.
Синхронные двигатели
Основное отличие синхронного двигателя от асинхронного в том, что частота вращения магнитных полей при его работе совпадает, то есть является синхронной. Для синхронизации частот вращения используется дополнительный источник постоянного питания, что делает конструкцию синхронного электродвигателя сложнее и частично ограничивает сферу применения такого вида машин. Кроме того, работа такого типа двигателя возможна только с использованием частотного преобразователя.
В сфере применения, электродвигатели синхронные – это промышленные моторы большой мощности, которые используются в различных промышленных устройствах и оборудовании, где необходима повышенная мощность и возникают перегрузки.
Важной особенностью такого типа электромоторов является то, что при работе с перегрузкой устройство отдает часть реактивной мощности в сеть, что способствует повышению мощности, компенсирует падение мощности.
Синхронные двигатели бывают также таких типов:
- Гистерезисные двигатели используются в точных механизмах для создания вращения. Например, в звукозаписи, медицинском оборудовании, машиностроении
- Шаговые электродвигатели применяются в точных приборах и механизмах, таких как, например, станки с числовым программным обеспечением.
Преимущества и недостатки синхронных и асинхронных электродвигателей
Что бы определить, какой двигатель лучше синхронный или асинхронный, необходимо рассмотреть сферу применения этих устройств.
Асинхронные двигатели дешевле в производстве и не требуют дополнительного питания и устройства для запуска, в отличии от синхронных, поэтому, их использование более распространено. Кроме того, подключение и обслуживание таких двигателей также стоит дешевле, как и их производство.
Синхронные двигатели, кроме повышенной мощности, обладают еще одним важным преимуществом – возможностью генерации низкой частоты вращения без использования дополнительных передач в редукторах. При этом, мощность на выходном валу остается неизменной. Синхронный двигатель имеет повышенный коэффициент полезного действия, более полно трансформируя электрическую энергию в крутящий момент.
Однако, синхронные двигатели имеют и недостатки. Кроме того, что требуется дополнительное питание и оборудование запуска, в таком типе электродвигателей происходит быстрый износ подвижных токосъемных деталей, таких как щётки и контактные кольца. Для замены изношенного оборудования требуются средства, что еще более увеличивает стоимость использования синхронных моторов.
Кроме того, настройка и обслуживание синхронных двигателей имеет ряд особенностей и требует более глубоких знаний технических особенностей.
Какой тип двигателя выбрать
При выборе типа электрического двигателя следует учитывать такие факторы:
- Сферу применения и оборудование, которое приводится в движение электродвигателем;
- Стоимость оборудования и его обслуживания;
- Тип преобразующего редуктора, применяемого для понижения скорости вращения;
- Тип питания и электрической сети.
Учитывая эти факторы и принимая во внимание расчет механизма, можно подобрать тип двигателя, который будет обеспечивать бесперебойную работу устройства, максимально экономить электроэнергию и обеспечивать необходимую мощность.
При использовании любого вида электрических двигателей стоит помнить, что срок их службы зависит от соблюдение технического регламента при подключении, настройке и последующему обслуживанию такого оборудования. При нарушении технических требований электродвигатель выйдет из строя, несмотря на его преимущества и надежность.
Чем отличается синхронный двигатель от асинхронного для чайников кратко, простыми словами, сравнение по конструкции и принципу действия
Электрический двигатель — это устройство, обеспечивающее преобразование электрической энергии в механическую. Конструктивно агрегат состоит из статора (фиксирован) и ротора (вращается). Первый создает магнитный поток, а второй крутится под действием электродвижущей силы (ЭДС).
Отличие – кратко простыми словами
Если говорить кратко и простыми словами, синхронный и асинхронный двигателя отличаются конструкцией роторов. Внешне понять какой перед вам электродвигатель практически невозможно, за исключением наличия дополнительных ребер охлаждения у асинхронных электродвигателях.
В устройстве, работающем на синхронном принципе, на роторе предусмотрена обмотка с независимой подачей напряжения.
У асинхронного мотора ток на ротор не подается, а формируется с помощью магнитного статорного поля. При этом статоры обоих агрегатов идентичны по конструкции и несут аналогичную функцию — создание магнитного поля.
Дополнительно в синхронном двигателе магнитные поля статора и ротора взаимодействуют друг с другом и имеют равную скорость.
У асинхронных агрегатов в роторных пазах имеются короткозамкнутые пластинки из металла или контактные кольца, обеспечивающие разность магнитного поля роторного и статорного механизма на величину скольжения.
Несмотря на видимую простоту, разобраться с этим вопросом сразу вряд ли получится, поэтому рассмотрим вопрос более подробно. Поговорим об особенностях и отличиях асинхронных и синхронных машин.
Синхронный двигатель (СД)
Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.
Устройство
Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.
В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.
Конструктивно СД делятся на два типа по полюсам:
- Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
- Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.
Конструктивно роторы бывают разными устройством и по конструкции.
В частности, магниты бывают:
- Наружной установки.
- Встроенные.
Статор условно состоит из двух компонентов:
- Кожух.
- Сердечник с проводами.
Обмотка статорного механизма бывает двух видов:
- Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
- Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.
Форма электродвижущей силы электрического синхронного мотора бывает в виде:
- Трапеции. Характерна для устройств с явно выраженным полюсом.
- Синусоиды. Формируется за счет скоса наконечников на полюсах.
Если говорить в целом, синхронный мотор состоит из следующих элементов:
- узел с подшипниками;
- сердечник;
- втулка;
- магниты;
- якорь с обмоткой;
- втулка;
- «тарелка» из стали.
Принцип работы
Сначала к обмоткам возбуждения подводится ток постоянно величины. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.
Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.
Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.
С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.
Сфера применения
Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.
Эта особенность расширяет сферу его применения:
- энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
- машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
- прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.
Читайте также:
Преимущества и недостатки
После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.
Плюсы:
- Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
- Высокий КПД, достигающий 97-98%.
- Повышенная надежность, объясняемая большим воздушным зазором.
- Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
- Низкая чувствительность к изменению напряжения в сети.
Минусы:
- Более сложная конструкция и, соответственно, высокая стоимость изготовления.
- Трудности с пуском, ведь эля этого нужные специальные устройства: возбудитель, выпрямитель.
- Потребность в источнике постоянного тока.
- Применение только для механизмов, которым не нужно менять частоту вращения.
Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.
СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В
Асинхронный двигатель (АД)
Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.
Конструктивные особенности
Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.
Рассмотрим, из чего состоит асинхронный двигатель:
- сердечник;
- вентилятор с корпусом;
- подшипник;
- коробка с клеммами;
- тройная обмотка;
- контактные кольца.
С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.
Читайте также:
Принцип действия
В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.
Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.
Простыми словами, принцип действия можно разложить на несколько составляющих:
- При подаче напряжения в статоре создается магнитное поле.
- В роторе появляется ток, взаимодействующий с ЭДС статора.
- Роторный механизм вращается в том же направлении, но с отставанием (скольжением) размером от 1 до 8 процентов.
Сфера применения
Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.
Они часто применяются в бытовой аппаратуре:
- стиральных машинках;
- вентиляторе;
- вытяжке;
- бетономешалках;
- газонокосилках и т. д.
Также применяются они и в производстве, где подключаются к 3-фазной сети.
К этой категории относятся следующие механизмы:
- компрессоры;
- вентиляция;
- насосы;
- задвижки автоматического типа;
- краны и лебедки;
- станки для обработки дерева и т. д.
Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.
Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.
Трехфазный АИР 315S2 660В 160кВт 3000об/мин
Преимущества и недостатки
Электродвигатель асинхронного тип имеет слабые и сильные места, о которых необходимо помнить.
Преимущества:
- Простая конструкция, которая обусловлена трехфазной схемой подключения и простым принципом действия.
- Более низкая стоимость, по сравнению с синхронным аналогом.
- Возможность прямого пуска.
- Низкое потребление энергии, что делает двигатель более экономичным.
- Высокая степень надежности, благодаря упрощенной конструкции.
- Универсальность и возможность применения в сферах, где нет необходимости в поддержке частоты вращения, или имеет место схема управления с обратной связью.
- Возможность применения при подключении к одной фазе.
- Успешный самозапуск группы АД в случае потери и последующей подачи на них напряжения.
- Минимальные расходы на эксплуатацию. Все, что требуется — периодически чистить механизма от пыли и протягивать контактные соединения. При соблюдении требований производителей менять подшипники можно с периодичностью раз в 15-20 лет.
Недостатки:
- Наличие эффекта скольжения, обеспечивающего отставание вращения ротора от частоты вращения поля внутри механизма.
- Потери на тепло. Асинхронные моторы имеют свойство перегреваться, особенно при большой нагрузке. По этой причине корпус изделия делают ребристым для увеличения площади охлаждения (у СД такое применяется не на всех моделях). Дополнительно может устанавливаться вентилятор для обдува поверхности.
- Напряжение только на 220 В и выше. Из-за конструктивных особенностей такие электродвигатели не производятся для рабочего напряжения меньше 220 В. В качестве замены часто применяются гидро- или пневмоприводы.
- Небольшой КПД в момент пуска и высокая реактивность. По этой причине мотор может перегреваться уже при пуске. Это ограничивает количество пусков в определенный временной промежуток.
- Синхронная частота вращения не может быть больше 3000 об/мин, ведь в ином случае требуется использование турбированного привода или повышающего редуктора.
- Трудности регулирования устройств, которые приводятся в движение «синхронниками».
- Повышенный пусковой ток — одна из главных проблем асинхронных моторов, имеющих мощность свыше 10 кВт. В момент пуска токовая нагрузка может превышать номинальную в шесть-восемь раз и длиться до 5-10 секунд. По этой причине для «асинхронников» не рекомендуется прямое подключение.
- При появлении КЗ возле шин с работающим двигателем появляется подпитка тока.
- Чувствительность к изменениям напряжения. При отклонении этого параметра более, чем на 5% показатели электродвигателя отклоняются от номинальных. В случае снижения напряжения уменьшается момент АД.
Сравнение синхронного и асинхронного двигателей
В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.
Выделим базовые моменты:
- Ротору асинхронных моторов не требуется питание по току, а индукция на полюсах зависит от статорного магнитного поля.
- Обороты АД под нагрузкой отстают на 1-8% от скорости вращения поля статора. В СД количество оборотов одинаково.
- В «синхроннике» предусмотрена обмотка возбуждения.
- Конструктивно ротор СД представляет собой магнит: постоянный, электрический. У АД магнитное поле в роторном механизме наводится с помощью индукции.
- У синхронной машины нет пускового момента, поэтому для достижения синхронизации нужен асинхронный пуск.
- «Синхронники» применяются в случаях, когда необходимо обеспечить непрерывность производственного процесса и нет необходимости частого перезапуска. АД нужны там, где требуется большой пусковой момент и имеют место частые остановки.
- СД нуждается в дополнительном источнике тока.
- «Асинхронники» медленнее изнашиваются, ведь в их конструкции нет контактных колец со щетками.
- Для АД, как правило, характерно не круглое количество оборотов, а для СД — округленное.
Про реактивную мощность
Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.
Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения.
Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.
Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.
Читайте также:
Какой лучше
При сравнении асинхронного и синхронного электродвигателей трудно ответить, какой лучше. По конструкции и надежности выигрывает АД, который при умеренной нагрузке имеет более продолжительный срок службы. У СД щетки быстро изнашиваются, что требует их замены.
В остальном это два схожих по конструкции, но отличающихся по принципу действия механизма, имеющих индивидуальные сферы применения.
В чем разница между асинхронными и синхронными двигателями?
Загрузить статью в формате .PDF
Растущее значение энергоэффективности побудило производителей электродвигателей продвигать различные схемы, улучшающие характеристики электродвигателей. К сожалению, терминология, связанная с моторными технологиями, может сбивать с толку, отчасти потому, что несколько терминов иногда могут использоваться взаимозаменяемо для обозначения одной и той же базовой конфигурации двигателя. Среди классических примеров этого явления — асинхронные двигатели и асинхронные двигатели.
Все асинхронные двигатели являются асинхронными двигателями. Асинхронный характер работы асинхронного двигателя происходит из-за скольжения между скоростью вращения поля статора и несколько меньшей скоростью ротора. Более конкретное объяснение того, как возникает это проскальзывание, касается деталей внутреннего устройства двигателя.
Большинство современных асинхронных двигателей содержат вращающийся элемент (ротор), известный как беличья клетка. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов токопроводящими кольцами, которые электрически замыкают стержни вместе.Твердый сердечник ротора состоит из пакетов пластин электротехнической стали. В роторе меньше пазов, чем в статоре. Количество пазов ротора также должно быть нецелым числом, кратным пазам статора, чтобы предотвратить магнитную блокировку зубцов ротора и статора при запуске двигателя.
Также можно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не из короткозамкнутого ротора. Смысл этой конфигурации с фазным ротором состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель сначала начинает вращаться.Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо. Как только ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически становятся такими же, как у ротора с короткозамкнутым ротором.
Неподвижная часть обмоток двигателя называется якорем или статором. Обмотки статора подключаются к источнику переменного тока. Подача напряжения на статор вызывает прохождение тока в обмотках статора.Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.
Северный полюс статора индуцирует южный полюс ротора. Но полюс статора вращается при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила создается, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот.Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора. Поле ротора всегда на некоторую величину отстает от поля статора, поэтому он вращается со скоростью, несколько меньшей, чем у статора. Разница между ними называется скольжением.
Размер скольжения может быть разным. Это зависит, главным образом, от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора.
Несколько простых уравнений проясняют основные взаимосвязи.
Когда на статор изначально подается переменный ток, ротор неподвижен. Напряжение, индуцированное в роторе, имеет ту же частоту, что и на статоре. Когда ротор начинает вращаться, частота индуцированного в нем напряжения f r падает. Если f — частота напряжения статора, то скольжение, s, связывает эти два через f r = s f .Здесь s выражается в виде десятичной дроби.
Когда ротор неподвижен, ротор и статор фактически образуют трансформатор. Таким образом, напряжение E , индуцированное в роторе, определяется уравнением трансформатора
E = 4,44 f N № м
, где N = количество проводников под одним полюсом статора (обычно небольшое для двигателя с короткозамкнутым ротором) и № м = максимальный магнитный поток по Веберсу.Таким образом, напряжение E r , индуцируемое при вращении ротора, зависит от скольжения:
E r = 4,44 s f N Ñ „ m = s E
Описание синхронных двигателей
Синхронный двигатель имеет особую конструкцию ротора, которая позволяет ему вращаться с одинаковой скоростью, то есть синхронно, с полем статора. Одним из примеров синхронного двигателя является шаговый двигатель, широко используемый в приложениях, связанных с управлением положением.Однако недавние достижения в схемах управления мощностью привели к появлению конструкций синхронных двигателей, оптимизированных для использования в таких ситуациях с более высокой мощностью, как вентиляторы, нагнетатели и ведущие мосты внедорожных транспортных средств.
Существует два основных типа синхронных двигателей:
• Самовозбуждение — использует принципы, аналогичные принципам асинхронных двигателей, и
• С прямым возбуждением — обычно с постоянными магнитами, но не всегда
Самовозбуждающийся синхронный двигатель, также называемый реактивным электродвигателем с переключаемым сопротивлением, содержит ротор, отлитый из стали, который имеет выемки или зубья, называемые выступающими полюсами.Это выемки, которые позволяют ротору блокироваться и работать с той же скоростью, что и вращающееся магнитное поле.
Чтобы переместить ротор из одного положения в другое, схема должна последовательно переключать питание на последовательные обмотки / фазы статора аналогично тому, как это происходит в шаговом двигателе. Синхронный двигатель с прямым возбуждением можно называть разными именами. Обычные названия включают ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом.В этой конструкции используется ротор, содержащий постоянные магниты. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).
Постоянные магниты являются основными полюсами этой конструкции и предотвращают скольжение. Микропроцессор управляет последовательным переключением питания на обмотки статора в нужное время с помощью твердотельных переключателей, сводя к минимуму пульсации крутящего момента. Принцип действия всех этих типов синхронных двигателей в основном одинаков.Электроэнергия подается на катушки, намотанные на зубья статора, которые заставляют значительный магнитный поток пересекать воздушный зазор между ротором и статором. Поток течет перпендикулярно воздушному зазору. Если явный полюс ротора идеально совмещен с зубом статора, крутящий момент не создается. Если зуб ротора находится под некоторым углом к зубу статора, по крайней мере, часть магнитного потока пересекает зазор под углом, не перпендикулярным поверхностям зуба. Результатом является крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.
Еще один тип синхронного двигателя называется реактивным электродвигателем с переключаемым сопротивлением (SR).
Его ротор состоит из многослойных стальных пластин с рядом зубцов. Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них щелей. Таким образом, ротор не требует обмоток, редкоземельных материалов или магнитов.
В отличие от асинхронных двигателей, здесь нет стержней ротора, и, следовательно, в роторе отсутствует ток, создающий крутящий момент. Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, в которых роторы имеют проводники.Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора. Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен тому, как скорость регулируется током якоря в традиционном щеточном двигателе постоянного тока.
Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения скорости вращения двигателя.
Асинхронный двигатель и синхронный: в чем разница?
Все вращающиеся электродвигатели переменного и постоянного тока работают за счет взаимодействия двух магнитных полей. Один из них стационарный и (обычно) связан с внешним кожухом двигателя. Другой вращается и связан с вращающимся якорем двигателя (также называемым его ротором). Вращение вызвано взаимодействием двух полей.
В простом двигателе постоянного тока есть вращающееся магнитное поле, полярность которого меняется каждые пол-оборота с помощью комбинации щеточного коммутатора.Щетки — в основном проводящие углеродные стержни, которые касаются проводов на роторе при их вращении — также служат для подачи электрического тока во вращающийся якорь. В бесщеточном двигателе постоянного тока ситуация несколько иная. Вращающееся поле все еще меняется на противоположное, но посредством коммутации, которая происходит в электронном виде.
Асинхронный двигатель обладает уникальным качеством, заключающимся в отсутствии электрического соединения между неподвижной и вращающейся обмотками. Сетевой переменный ток подается на клеммы двигателя и питает неподвижные обмотки.
Все асинхронные двигатели являются асинхронными двигателями. Асинхронное название возникает из-за разницы между скоростью вращения поля статора и несколько меньшей скоростью ротора.
Ротор с короткозамкнутым ротором от асинхронного двигателя. Этот пример взят из небольшого вентилятора.
Большинство современных асинхронных двигателей имеют ротор в виде беличьей клетки. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов токопроводящими кольцами, которые электрически замыкают стержни вместе.Твердый сердечник ротора состоит из листов электротехнической стали.
Также можно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не из короткозамкнутого ротора. Это асинхронные двигатели с фазным ротором. Смысл конструкции состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель впервые начинает вращаться. Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо.Как только ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически становятся такими же, как у ротора с короткозамкнутым ротором.
Стационарная часть обмоток асинхронного двигателя (статор) подключается к источнику переменного тока. Подача напряжения на статор вызывает прохождение переменного тока в обмотках статора. Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.
Северный полюс статора индуцирует южный полюс ротора.Но положение полюса статора меняется при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс в роторе пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила создается, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот. Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора, потому что поле ротора всегда на некоторую величину отстает от поля статора.Это отставание заставляет ротор вращаться со скоростью, несколько меньшей, чем скорость поля статора. Разница между ними называется скольжением.
Размер скольжения может быть разным. Это зависит, главным образом, от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора. Скольжение в двигателе конструкции B составляет от 0,5% до 5%.
Когда двигатель остановлен, обмотки ротора и статора фактически являются первичной и вторичной обмотками трансформатора.Когда к статору изначально подается переменный ток, ротор не движется. Таким образом, индуцированное в роторе напряжение имеет ту же частоту, что и на статоре. Когда ротор начинает вращаться, частота индуцированного в нем напряжения f r падает. Если f — частота напряжения статора, то скольжение s связывает эти два значения через f r = sf. Здесь s выражается в виде десятичной дроби.
Поскольку асинхронный двигатель не имеет щеток, коллектора или подобных движущихся частей, его производство и обслуживание дешевле, чем другие типы двигателей.
Для сравнения, рассмотрим синхронный двигатель. Здесь ротор вращается с той же скоростью, то есть синхронно, с магнитным полем статора. Как и асинхронный двигатель, синхронный двигатель переменного тока также содержит статор и ротор. Обмотки статора также подключаются к сети переменного тока, как в асинхронном двигателе. Магнитное поле статора вращается синхронно с частотой сети.
Обмотка ротора синхронного двигателя может получать ток разными способами, но обычно не за счет индукции (за исключением некоторых конструкций, только для обеспечения пускового момента).Тот факт, что ротор вращается синхронно с частотой сети переменного тока, делает синхронный двигатель полезным для управления высокоточными часами.
Следует подчеркнуть, что ротор синхронного двигателя переменного тока вращается синхронно с целым числом циклов переменного тока. Это не то же самое, что сказать, что он вращается со скоростью, равной частоте сети. Частота вращения ротора двигателя, то есть синхронная скорость N, составляет:
.
N = 120 футов / P = 60 кадров
Где f — частота сети переменного тока в Гц, P — количество полюсов (на фазу), а p — количество пар полюсов на фазу.
Соответственно, чем больше полюсов, тем медленнее вращается синхронный двигатель. При равной мощности дороже построить более медленный двигатель. При 60 Гц:
- Двухполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 3600 об / мин.
- Четырехполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1800 об / мин.
- Шестиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1200 об / мин.
- Восьмиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 900 об / мин
- Десятиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 720 об / мин.
- Двенадцатиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 600 об / мин.
Промышленный синхронный двигатель. Синхронные двигатели переменного тока
малой мощности полезны там, где требуется точное время. Синхронные двигатели переменного тока высокой мощности, хотя и более дорогие, чем трехфазные асинхронные двигатели, обладают двумя дополнительными качествами. Несмотря на более высокую начальную стоимость, они могут окупиться в долгосрочной перспективе, поскольку они более энергоэффективны, чем другие типы двигателей. Во-вторых, иногда одновременно, они могут работать с опережающим или единичным коэффициентом мощности, поэтому один или несколько синхронных двигателей переменного тока могут обеспечивать коррекцию коэффициента мощности, а также выполнять полезную работу.
Существует несколько различных типов синхронных двигателей переменного тока. Обычно их классифицируют по способам создания магнитного поля. Двигатели с независимым возбуждением имеют магнитные полюса, питаемые от внешнего источника. Напротив, магнитные полюса возбуждаются самим двигателем в самовозбуждаемой (также иногда называемой невозбужденной и непосредственно возбужденной) машиной. Типы без возбуждения включают реактивные двигатели, двигатели с гистерезисом и двигатели с постоянными магнитами. Кроме того, существуют двигатели с возбуждением постоянным током.
Синхронные двигатели без возбуждения имеют стальные роторы. В процессе работы ротор намагничивается необходимыми магнитными полюсами аналогично тому, как это происходит в асинхронном двигателе. Но ротор вращается с той же скоростью и синхронно с вращающимся магнитным полем статора. Причина в том, что в роторе есть прорези. Двигатели запускаются как асинхронные. Когда они приближаются к синхронной скорости, прорези позволяют синхронному магнитному полю фиксироваться на роторе. Затем двигатель вращается с синхронной скоростью до тех пор, пока требуемый крутящий момент низкий.
В реактивном электродвигателе ротор имеет выступающие полюса, напоминающие отдельные зубцы. Ротора меньше, чем полюсов статора, что препятствует совмещению полюсов статора и ротора, и в этом случае вращения не будет. Реактивные двигатели не запускаются автоматически. По этой причине в ротор часто встраивают специальные обмотки (так называемые обмотки с короткозамкнутым ротором), поэтому реактивный двигатель запускается как асинхронный.
Гистерезисный двигатель использует широкую петлю гистерезиса в высококоэрцитивном роторе из кобальтовой стали.Из-за гистерезиса фаза намагничивания в роторе отстает от фазы вращающегося магнитного поля статора. Эта задержка создает крутящий момент. При синхронной скорости поля ротора и статора блокируются, обеспечивая непрерывное вращение. Одним из преимуществ гистерезисного двигателя является то, что он самозапускается.
Синхронный двигатель переменного тока с постоянными магнитами имеет постоянные магниты, встроенные в ротор. Последние лифты приводятся в действие этими двигателями, и коробка передач не требуется.
Пример двигателя с постоянными магнитами с электронной коммутацией, в данном случае от небольшого воздушного вентилятора.Этот стиль называется аутраннером, потому что ротор находится вне статора и встроен в лопасти вентилятора. Это четырехполюсный двигатель, о чем свидетельствуют четыре обмотки статора (внизу). Также виден датчик Холла, который обеспечивает часть электронной коммутации.
Синхронный двигатель с прямым возбуждением может называться различными именами, включая ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом. Ротор содержит постоянные магниты.Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).
Пример того, как на катушки двигателя постоянного тока подается питание в последовательности, которая приводит в движение ротор.
Компьютер контролирует последовательное включение питания обмоток статора в нужное время с помощью твердотельных переключателей. Питание подается на катушки, намотанные на зубья статора, и если выступающий полюс ротора идеально совмещен с зубом статора, крутящий момент не создается.Если зуб ротора находится под некоторым углом к зубу статора, по крайней мере некоторый магнитный поток пересекает зазор под углом, не перпендикулярным поверхностям зуба. В результате возникает крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.
Еще один тип синхронного двигателя — это реактивный двигатель с регулируемым сопротивлением (SR).
Его ротор состоит из многослойных стальных пластин с рядом зубцов.Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них пазов.
В отличие от асинхронных двигателей, здесь нет стержней ротора, и, следовательно, в роторе отсутствует ток, создающий крутящий момент. Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, в которых роторы имеют проводники.
Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора.Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен способу регулирования скорости с помощью тока якоря в традиционном щеточном двигателе постоянного тока.
Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения числа оборотов двигателя.
И, наконец, синхронный двигатель переменного тока с возбуждением постоянным током. Для создания магнитного поля требуется выпрямленный источник питания. Эти двигатели обычно имеют мощность, превышающую одну лошадиную силу.
Разница между синхронным двигателем и асинхронным двигателем
Двигатели переменного тока можно разделить на две основные категории — (i) синхронный двигатель и (ii) асинхронный двигатель . Асинхронный двигатель обычно называют асинхронным двигателем. Оба типа сильно отличаются друг от друга.Основные различия между синхронным двигателем и асинхронным двигателем обсуждаются ниже.
Конструктивная разница
- Синхронный двигатель : Статор имеет осевые пазы, которые представляют собой обмотку статора, намотанную на определенное количество полюсов. Обычно используется ротор с явнополюсным ротором, на котором установлена обмотка ротора. Обмотка ротора запитана постоянным током с помощью контактных колец. Также можно использовать ротор с постоянными магнитами.
Синхронный двигатель - Асинхронный двигатель : Обмотка статора аналогична обмотке синхронного двигателя.Он накручивается на определенное количество полюсов. Можно использовать ротор с короткозамкнутым ротором или ротор с обмоткой. В роторе с короткозамкнутым ротором стержни ротора постоянно замкнуты накоротко с концевыми кольцами. В роторе с намоткой обмотки также постоянно закорочены, поэтому контактные кольца не требуются.
Асинхронный двигатель
Разница в рабочем
- Синхронный двигатель : Полюса статора вращаются с синхронной скоростью (Нс) при питании от трехфазного источника питания.Ротор питается от источника постоянного тока. Во время пуска ротор необходимо вращать со скоростью, близкой к синхронной. В этом случае полюса ротора магнитно соединяются с вращающимися полюсами статора, и, таким образом, ротор начинает вращаться с синхронной скоростью.
- Синхронный двигатель всегда работает со скоростью, равной его синхронной скорости.
т.е. фактическая скорость = синхронная скорость
или N = Ns = 120f / P - Подробнее о работе синхронного двигателя здесь.
- Асинхронный двигатель : Когда на статор подается двух- или трехфазный источник переменного тока, создается вращающееся магнитное поле (RMF). Относительная скорость между вращающимся магнитным полем статора и ротором вызывает индуцированный ток в проводниках ротора. Ток ротора порождает поток ротора. Согласно закону Ленца, направление этого индуцированного тока таково, что он будет иметь тенденцию противодействовать причине его образования, то есть относительной скорости между RMF статора и ротором.Таким образом, ротор будет пытаться догнать RMF и снизить относительную скорость.
Прочие отличия
- Синхронным двигателям требуется дополнительный источник постоянного тока для питания обмотки ротора. Асинхронные двигатели не требуют дополнительного источника питания.
- Контактные кольца и щетки необходимы в синхронных двигателях, но не в асинхронных двигателях (за исключением асинхронного двигателя с обмоткой, в котором двигатели с контактным кольцом используются для добавления внешнего сопротивления обмотке ротора).
- Синхронным двигателям требуется дополнительный пусковой механизм для первоначального вращения ротора, близкого к синхронной скорости. В асинхронных двигателях пусковой механизм не требуется.
- Коэффициент мощности синхронного двигателя может быть отрегулирован на отстающий, единичный или опережающий, изменяя возбуждение, тогда как асинхронный двигатель всегда работает с отстающим коэффициентом мощности.
- Синхронные двигатели обычно более эффективны, чем асинхронные.
- Синхронные двигатели дороже.
В чем разница между синхронным и асинхронным двигателем PDF?
Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора.
Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей, чем синхронная скорость.
Асинхронный двигатель
переменного тока известен как асинхронный двигатель.
Синхронный двигатель не имеет скольжения.
В чем разница между синхронным и асинхронным двигателем?
Синхронный двигатель — это машина с двойным возбуждением, тогда как асинхронный двигатель — это машина с одним возбуждением.В случае синхронного двигателя его обмотка якоря питается от источника переменного тока, а его обмотка возбуждения — от источника постоянного тока, тогда как в случае асинхронного двигателя его обмотка статора питается от источника переменного тока.
Что означает асинхронный двигатель?
Асинхронный двигатель или асинхронный двигатель — это электродвигатель переменного тока, в котором электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора. Таким образом, асинхронный двигатель может быть изготовлен без электрических соединений с ротором.
Где используются синхронные двигатели?
Обычно синхронные двигатели используются в приложениях, где требуется точная и постоянная скорость. Эти двигатели с низким энергопотреблением включают в себя позиционирующие машины. Они также применяются в приводах роботов. В шаровых мельницах, часах, проигрывателях пластинок также используются синхронные двигатели.
Как отличить асинхронный двигатель?
Предлагаемый зажим · 63 секунды
Какой у меня двигатель? Некоторые подсказки к различению двигателя
YouTube
Начало предложенного ролика
Конец предложенного ролика
Почему он называется синхронным двигателем?
Следовательно, ротор вращается с той же скоростью, что и вращающееся магнитное поле.Это связано с тем, что двигатель называется синхронным двигателем. Это двигатель с постоянной скоростью, потому что, несмотря на увеличение нагрузки, двигатель работает с той же синхронной скоростью.
Какие типы двигателей?
К наиболее распространенным электродвигателям, используемым сегодня, относятся:
- Бесщеточные двигатели переменного тока. Бесщеточные двигатели переменного тока — одни из самых популярных в управлении движением.
- Щеточные двигатели постоянного тока. В щеточном двигателе постоянного тока ориентация щетки на статоре определяет ток.
- Бесщеточные двигатели постоянного тока.
- Прямой привод.
- Линейные двигатели.
- Серводвигатели.
- Шаговые двигатели.
Какие типы двигателей?
Основными типами являются двигатели постоянного и переменного тока, причем первые все чаще заменяются вторыми. Электродвигатели переменного тока бывают асинхронными или синхронными. После запуска синхронному двигателю требуется синхронизация с синхронной скоростью движущегося магнитного поля для всех нормальных условий крутящего момента.
Какой крутящий момент у мотора?
Крутящий момент — это сила поворота через радиус в единицах Нм в системе СИ и фунт-фут в британской системе мер. Крутящий момент, развиваемый асинхронным асинхронным двигателем, изменяется, когда двигатель ускоряется от нуля до максимальной рабочей скорости.
Почему мы используем синхронные двигатели?
Электростанции почти всегда используют синхронные генераторы, потому что важно поддерживать постоянную частоту, на которой подключен генератор.Приложения с низким энергопотреблением включают в себя позиционирующие машины, где требуется высокая точность, и приводы роботов. Сетевые синхронные двигатели используются для электрических часов.
Каковы преимущества синхронного двигателя?
Преимущество использования синхронного двигателя — возможность контролировать коэффициент мощности. Синхронный двигатель с избыточным возбуждением имеет опережающий коэффициент мощности и работает параллельно с асинхронными двигателями, тем самым улучшая коэффициент мощности системы. Скорость остается постоянной независимо от нагрузки в синхронных двигателях.
Какое основное применение синхронных двигателей?
Некоторые из типичных областей применения высокоскоростных синхронных двигателей — это такие приводы, как вентиляторы, нагнетатели, генераторы постоянного тока, линейные валы, центробежные насосы, компрессоры, поршневые насосы, резиновые и бумажные фабрики. Синхронные двигатели используются для регулирования напряжения на концах линий электропередачи.
Почему возбуждение всегда постоянное?
Для успешной работы генератора он должен выдавать синусоидальное переменное напряжение определенной частоты.Теперь возбуждение постоянным током создает электромагнит фиксированной полярности в поле, которое движется с постоянной скоростью от первичного двигателя. Таким образом, якорь статора создает почти синусоидальный переменный ток.
Как запускается асинхронный двигатель?
Запуск асинхронного двигателя. Когда источник питания подключен к статору трехфазного асинхронного двигателя, создается вращающееся магнитное поле, ротор начинает вращаться, и запускается асинхронный двигатель. Во время пуска скольжение двигателя равно единице, а пусковой ток очень велик.
Что такое квитанция?
Скольжение можно определить как разницу между скоростью потока (Нс) и скоростью ротора (Н). Скорость ротора асинхронного двигателя всегда меньше его синхронной скорости. Обычно выражается в процентах от синхронной скорости (Ns) и обозначается символом «S».
Как работает коммутатор?
Коммутатор — это поворотный электрический переключатель в некоторых типах электродвигателей и электрических генераторов, который периодически меняет направление тока между ротором и внешней цепью.Путем изменения направления тока во вращающихся обмотках каждые пол-оборота создается постоянная вращающая сила (крутящий момент).
Синхронные и асинхронные двигатели: обнаруживая разницу
Упрощенное разделение двигателей с дробной мощностью будет на AC, DC, бесщеточные и универсальные. Однако так же, как обувь можно разделить на рабочие ботинки, модельные туфли, кроссовки и т. Д., Каждая моторная категория имеет различные подгруппы. Например, двигатели переменного тока можно разделить на синхронные и асинхронные (также известные как асинхронные).
Хотя оба работают от источника переменного тока (хотя синхронный также использует постоянный ток), их создание, работа и использование сильно различаются.
Прежде чем разбивать обсуждение на две категории переменного тока, важно иметь в виду, что в типичном двигателе переменного тока (как более подробно объясняется в нашем блоге AC Motor Basics ) вращающееся магнитное поле создается статором, имеющим индуцирован входным током. Скорость этого поля определяется частотой источника питания и количеством полюсов машины и называется «синхронной скоростью» — или, скорее, скоростью, которая возникает одновременно.
Асинхронный двигатель
Когда люди говорят об асинхронных двигателях, они обычно имеют в виду асинхронные двигатели переменного тока. Самый распространенный тип, асинхронный двигатель переменного тока с короткозамкнутым ротором, обычно имеет неподвижную обмотку, называемую статором, а также ротор, сделанный из электротехнической стали, и токопроводящие стержни из алюминия или меди, закороченные на каждом конце.
Как указано выше, в статоре от источника переменного тока создается магнитное поле, которое, в свою очередь, индуцирует токи в токопроводящих шинах ротора.Этот эффект индукции домино приводит к притяжению вращающегося магнитного поля статора и индуцированного магнитного поля ротора. Простое уравнение может помочь проиллюстрировать это более ясно.
Источник переменного тока + статор = вращающееся магнитное поле # 1 (синхронная скорость)
Вращающееся магнитное поле №1 + Ротор = Вращающееся магнитное поле №2 (отставание от синхронной скорости)
Ротор, естественно, будет вращаться медленнее, чем синхронная скорость магнитного поля в статоре, но притяжение между статором и компонентами ротора заставляет их постоянно догонять (создавая крутящий момент).Разница между этими двумя скоростями называется скольжением и обычно выражается в процентах от синхронной скорости.
Магнитное поле # 1 (быстрее) — Магнитное поле # 2 (медленнее) = Скольжение
Синхронный двигатель
Как вы могли догадаться, у синхронного двигателя есть ротор, который вращается с той же скоростью, что и синхронная скорость. Это возможно, потому что синхронные двигатели основаны на частоте и не зависят от постоянства начального входного тока.
Подумайте о синхронных пловцах на соревнованиях по прыжкам в воду. Их движения полностью совпадают с движениями другого члена команды по плаванию — их начало, середина и точки входа потенциально идентичны.
Синхронные двигатели работают примерно так же. Однако, как потребовалось бы много времени, чтобы достичь этого уровня единообразия в их технике погружения, синхронные двигатели не могут обеспечить одинаковое вращение между магнитными полями ротора и статора только с начальным входным током.Мощность переменного тока индуцирует статор (как в типичном асинхронном двигателе), но затем он достигает точки запаздывания, мощность постоянного тока подается через возбудитель — устройство, которое подает ток намагничивания в двигатель для создания магнитного потока. Это позволяет увеличивать вращение и увязываться с синхронной скоростью, и, если не действуют экстремальные условия, эти скорости будут оставаться синхронизированными, что позволяет использовать функции высокой точности.
Это подводит нас к краткому описанию того, как различный состав двигателей переменного тока позволяет каждому поддерживать свою индивидуальную и разнообразную работу и использование.
Синхронный:
- Более высокая начальная стоимость
- Необходим возбудитель
- Для высокоточных приложений (например, часы или поворотный стол)
- Наиболее эффективен в крупных промышленных двигателях
- Зависит от частоты (более стабильно)
Индукция:
- Потенциально более высокие эксплуатационные расходы
- Особые элементы управления обычно не требуются
- Более распространенный; используется во многих повседневных применениях
- Наиболее эффективен в небольших приложениях
- Скорость разная по крутящему моменту
Как видите, асинхронные и синхронные двигатели, хотя оба они классифицируются как переменные, имеют довольно разные конструктивные и рабочие характеристики, при этом наличие скольжения является наиболее важным фактором.Из-за этого асинхронные двигатели обычно не могут поддерживать постоянную скорость в приложениях с переменным моментом нагрузки.
Синхронные двигатели
лучше всего служат своей цели в более крупных приложениях, тогда как Groschopp специализируется на двигателях с дробной мощностью, которые обычно не требуют атрибутов синхронного двигателя. Однако, если требуется постоянство синхронности, этот недостаток асинхронных двигателей переменного тока можно преодолеть с помощью частотно-регулируемого привода (VFD) или векторного привода.
Конструкция, работа, различия и применение
В электрических машинах, таких как двигатели, мы часто путаемся с типами двигателей, такими как синхронный двигатель, а также с асинхронным двигателем, с их областями применения. ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Эти двигатели используются в различных приложениях благодаря надежности, а также прочности. Как следует из названия, название этого двигателя происходит от того факта, что ротор в двигателе работает асинхронно с вращающимся магнитным полем. Итак, в этой статье дается обзор асинхронного двигателя, конструкции, принципа работы и т. Д.
Что такое асинхронный двигатель?
Определение: Электродвигатель, работающий с переменным током, известен как асинхронный двигатель. Этот двигатель в основном работает на индуцированном токе внутри ротора от вращающегося магнитного поля статора. В этой конструкции двигателя движение ротора не может быть синхронизировано через движущееся поле статора. Поле вращающегося статора этого двигателя может индуцировать ток в обмотках ротора. В свою очередь, этот ток будет создавать силу, толкающую ротор в направлении статора.В этом двигателе, поскольку ротор не совпадает по фазе со статором, создается крутящий момент.
Асинхронный двигатель
Это наиболее распространенный тип двигателя. В частности, в промышленности используется трехфазный асинхронный двигатель по таким причинам, как низкая стоимость, простота обслуживания и простота обслуживания. Характеристики этого двигателя хороши для сравнения с однофазным двигателем. Основная особенность этого мотора в том, что скорость не может быть изменена. Рабочая скорость этого двигателя в основном зависит от частоты источника питания, а также от номера.полюсов.
Конструкция асинхронного двигателя
В данной конструкции двигателя нет магнитов. В этой конструкции двигателя фазы могут быть соединены с катушками. Так что магнитное поле может быть создано. В этом двигателе ток внутри ротора может быть активирован за счет индуцированного напряжения вращающегося поля. Как только магнитное поле проходит через ротор, на роторе индуцируется напряжение. Потому что магнитное поле ротора может быть создано за счет магнитного поля статора.Обычно магнитное поле ротора движется асинхронно по направлению к магнитному полю статора или с задержкой во времени. Таким образом, задержка между двумя магнитными полями может быть известна как «проскальзывание».
Конструкция асинхронного двигателя
Работа асинхронного двигателя
Принцип работы этого двигателя почти такой же, как и у двигателя синхронного типа, за исключением внешнего возбудителя. Эти двигатели, также называемые асинхронными двигателями, работают по принципу электромагнитной индукции, когда ротор в этом двигателе не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока.У этих двигателей нет внешних устройств для стимуляции ротора внутри двигателя. Таким образом, скорость вращения ротора в основном зависит от нестабильной магнитной индукции.
Изменяющееся электромагнитное поле может вызвать вращение ротора с меньшей скоростью, чем магнитное поле статора. Когда скорость ротора, а также скорость магнитного поля внутри статора изменяется, эти двигатели называются асинхронными двигателями. Изменение скорости можно назвать скольжением.
Разница между синхронным и асинхронным двигателем
Разница между синхронным и асинхронным двигателем приведена в следующей таблице.
Функция | Синхронный двигатель | Асинхронный двигатель |
Определение | Это один из видов ротора статора и скорости вращения статора. скорость эквивалентна. N = NS = 120f / P | Это один из видов машин, в которых ротор вращается с меньшей скоростью по сравнению с синхронной скоростью. Н меньше, чем NS |
Тип | Типы синхронного: переменное сопротивление, бесщеточный, гистерезис и переключаемое сопротивление. | Асинхронный двигатель переменного тока также известен как асинхронный двигатель. |
Скольжение | Значение скольжения этого двигателя равно нулю | Значение скольжения этого двигателя не равно нулю |
Стоимость | Это дорого | Это дешевле |
КПД | Высокоэффективный | Низкий КПД |
Скорость | Скорость двигателя не зависит от неравенства нагрузки. | Скорость двигателя уменьшается при увеличении нагрузки. |
Электропитание | Электропитание может подаваться на ротор в двигателе | Ротор в этом двигателе не нуждается в токе. |
Самозапуск | Этот двигатель не самозапускается | Этот двигатель самозапускается |
Влияние крутящего момента | Как только приложенное напряжение изменится, это не повлияет на крутящий момент этого двигателя | Как только приложенное напряжение изменится, это повлияет на крутящий момент этого двигателя |
Коэффициент мощности | Коэффициент мощности может быть изменен после изменения возбуждения на основе запаздывания, единицы или опережения. | Он просто работает с запаздывающим коэффициентом мощности. |
Применения | Эти двигатели применяются в промышленности, на электростанциях и т. Д. Этот двигатель также используется в качестве регулятора напряжения | Эти двигатели применяются в вентиляторах, центробежных насосах, бумажных фабриках, воздуходувках, лифтах, компрессорах и текстильные фабрики и т. д. |
Преимущества
Асинхронный двигатель имеет следующие преимущества.
- Меньше затрат
- Простота обслуживания
- Высокая эффективность при работе с частичной нагрузкой
- Подходит для высоких скоростей вращения, что позволяет достигать высоких оборотов в секунду вместе с инверторами VECTOPOWER
Применения
Большинство двигатели, используемые в различных приложениях в мире, являются асинхронными.Приложения в основном включают следующее.
- Центробежные насосы
- Воздуходувки
- Вентиляторы
- Конвейеры
- Компрессоры
- Тяжелые краны
- Лифты
- Токарные станки
- Бумажные мельницы
4
- Почему асинхронный двигатель еще называют асинхронным двигателем?
Асинхронный двигатель зависит от индуцированного тока в роторе от вращающегося магнитного поля в статоре.
2). Какие бывают типы асинхронных двигателей?
Это однофазные и трехфазные двигатели
3). В чем главная особенность асинхронного двигателя?
Основной особенностью этого двигателя является то, что скорость не может изменяться.
4). Каков коэффициент мощности асинхронного двигателя?
Этот мотор работает просто на отстающей п.ф.
Итак, это все об асинхронном двигателе. Эти двигатели часто используются в 90% приложений по всему миру из-за высокой прочности и надежности.Эти двигатели используются в различных движущихся или вращающихся машинах, таких как лифты, вентиляторы, шлифовальные машины и т. Д. Вот вопрос к вам, каковы недостатки асинхронного двигателя?
Как работают асинхронные двигатели и синхронные двигатели с постоянными магнитами
Сегодня используются многие типы электродвигателей, но двумя наиболее важными являются асинхронный электродвигатель переменного тока и бесщеточный синхронный электродвигатель с постоянным магнитом (PM), также известный как бесщеточный серводвигатель постоянного или переменного тока. Эти два типа двигателей имеют разные конфигурации ротора и работают по-разному.Инструменты проектирования, такие как SPEED от CD-Adapco, помогают инженерам-разработчикам двигателей оптимизировать характеристики обоих типов быстрее и точнее, чем когда-либо прежде.
История
Мы проследим корни асинхронного двигателя переменного тока до изобретения Николы Тесла в 1883 году и трехфазного электродвигателя Михаила Доливо-Добровольского в 1888 году. Бесщеточный синхронный двигатель с постоянными магнитами имеет более недавнюю историю. Это началось в 1956 году, когда H.D. Брэилсфорд разработал гибридный ротор постоянного тока с пружинными контактами, которые вылетали, чтобы обеспечить истинную бесщеточную работу.
Следующее усовершенствование двигателя постоянного тока появилось в 1960 году в виде твердотельного устройства регулирования скорости. Последним изобретением стала разработка высокотемпературных устройств Холла для электронной коммутации в середине 1960-х годов. НАСА и правительство США сыграли важную роль в разработке бесщеточных двигателей с постоянными магнитами в 1960-х и 1970-х годах в рамках многих проектов, финансируемых государством.
Асинхронные двигатели переменного тока
Асинхронные двигатели бывают двух популярных типов: однофазные и трехфазные.Оба типа работают на переменном токе и создают вращающееся магнитное поле. На рис. 1 показано поперечное сечение асинхронного двигателя с внутренним ротором и внешним статором. В двигателях переменного тока используются медные или алюминиевые шины для ротора и медный магнитный провод в статоре в предписанных распределенных схемах намотки. На рисунке 1 также показаны 28 пазов ротора и 24 паза статора, одна из многих возможных комбинаций.
1. Если смотреть сверху вниз, то на разрезе асинхронного двигателя внутренний ротор показан синим цветом, а внешний статор — зеленым.(любезно предоставлено SPEED, CD-Adapco)Поле вращающегося тока статора индуцирует токи в закороченных медных или алюминиевых витках или стержнях ротора. Индуцированные магнитные поля взаимодействуют, вызывая движение ротора и вращение ротора, создавая как крутящий момент, так и скорость.
Наведенный ток ротора никогда не догоняет ток статора, и мы применяем слово «скольжение» для описания разности фаз между двумя токами. Скольжение увеличивается по мере увеличения нагрузки, создавая больший крутящий момент, пока уменьшающаяся скорость ротора не достигнет точки на кривой зависимости крутящего момента от скорости, где значение проскальзывания становится слишком большим, а скорость ротора падает до нулевой скорости или положения остановки.
Асинхронные двигатели переменного тока могут достигать достаточного крутящего момента при постоянном возбуждении переменного тока, пока он не достигнет точки отказа (рис. 2а) . Нелинейные характеристики крутящего момента и скорости возникают, когда привод работает с постоянным напряжением и частотой, например, 50 Гц или 60 Гц. Изменение сопротивления ротора R2 (конфигурация паза ротора) также влияет на выходную кривую крутящего момента двигателя. К сожалению, по мере увеличения пускового крутящего момента за счет увеличения сопротивления ротора R2 потери в меди увеличиваются, а энергоэффективность снижается.
2. Обладая высокими характеристиками, асинхронные двигатели переменного тока генерируют достаточный крутящий момент за счет постоянного возбуждения переменного тока. Нелинейные характеристики крутящего момента и скорости ускоряются, когда привод работает с постоянным напряжением и частотой, например, 50 Гц или 60 Гц (а). Эти кривые крутящий момент-скорость получены с изменяющейся частотой с шагом 6 Гц до 60 Гц. График показывает значительное улучшение крутящего момента частотно-регулируемого привода, начиная с 12 Гц (b). (любезно предоставлено SPEED’s Electric Machines manual by T.Дж. Э. Миллер и SPEED от CD-Adapco)При постоянной входной частоте 50 Гц или 60 Гц уровни тока статора остаются почти постоянными в нормальном участке развития крутящего момента нелинейной кривой крутящего момента-скорости. При достижении номинальной отметки происходит огромная трата энергии и эффективности. Пусковой крутящий момент обычно ниже номинального или аварийного крутящего момента, что требует некоторой помощи со стороны электронного привода для достижения номинального крутящего момента. Кривые асинхронного двигателя довольно нелинейны.
Важные разработки для асинхронных двигателей переменного тока, появившиеся в начале 1970-х годов, включают инверторный привод плюс ряд новых стратегий управления в диапазоне от вольт на герц (В / Гц) до векторного управления. Приводы с регулируемой частотой, использующие изменяющуюся входную частоту (привод В / Гц), значительно повышают энергоэффективность электродвигателя переменного тока в широком диапазоне скоростей и уменьшают внутренний нагрев, вызываемый обмоткой статора. На рисунке 2b показано семейство кривых крутящего момента-скорости с изменяющейся частотой с шагом 6 Гц до 60 Гц.Пусковой крутящий момент для частотно-регулируемого привода значительно улучшается по сравнению с постоянным приводом, начиная с 12 Гц.
Бесщеточные двигатели с постоянным током
Хотя двигатель с постоянными магнитами также является бесщеточным двигателем, наряду с асинхронным двигателем с короткозамкнутым ротором, взаимодействие между двумя вращающимися магнитными полями совершенно иное. На рисунке 3 показаны постоянные магниты, расположенные на роторе и статоре, удерживающем медную обмотку. На рисунке 3 также показан четырехполюсный ротор с ферритовыми или редкоземельными магнитами, расположенными на роторе, и конфигурация статора с 12 пазами.
3. На этой диаграмме поперечного сечения BLPM показаны ферритовые или редкоземельные постоянные магниты (красный / зеленый), расположенные на четырехполюсном роторе (синий) и статоре (зеленый). (любезно предоставлено SPEED’s Electric Machines manual by T.J.E. Miller)Обмотки статора включаются и выключаются в заданной последовательности, чтобы обеспечить непрерывное вращение в процессе, называемом электронной коммутацией. Магнитное поле в роторе синхронизировано с переключаемыми обмотками статора и связанным с ним магнитным полем статора.Кроме того, частота двигателя BLPM зависит от системы устройства Холла двигателя или эквивалентной частоты переключения ротора, определяемой положением ротора.
Можно измерить обратное электромагнитное поле двигателя (ЭДС), чтобы получить кривую зависимости крутящего момента от скорости при возбуждении от напряжения. На рис. 4 показан линейный характер кривой зависимости крутящего момента от скорости. Эта функция позволяет двигателю развивать пусковой крутящий момент в четыре раза выше, чем его номинальный крутящий момент для условий быстрого ускорения, в зависимости от насыщения магнитной цепи.
4. Двигатель BLPM генерирует линейный профиль крутящего момента-скорости в частотно-регулируемом приводе (VFD) и / или постоянный профиль зависимости крутящего момента от скорости в приводе с регулируемым током. Другими словами, крутящий момент двигателя BLMP является линейным представлением тока двигателя. (любезно предоставлено SPEED’s Electric Machines manual by T.J.E. Miller)Одним из выдающихся преимуществ двигателя BLPM является линейный характер кривой крутящего момента двигателя, когда магниты находятся на поверхности ротора.Более сложные конструкции скрывают магниты внутри конструкции ступицы ротора и изменяют форму кривой зависимости крутящего момента двигателя от скорости для достижения более широкого диапазона скоростей с постоянной мощностью. Кроме того, наиболее популярными конфигурациями двигателей BLPM являются конфигурации с обмоткой треугольником или звездой.
Различия между асинхронными асинхронными двигателями и двигателями BLPM
Существует два основных класса приложений в области точного управления движением: системы управления движением по скорости и по положению.Однофазные асинхронные двигатели переменного тока очень популярны для привода многих устройств с постоянной и переменной скоростью. Но необходимость значительного повышения энергоэффективности и энергоэффективности, особенно в насосах, вентиляторах и воздуходувках в коммерческих и промышленных приложениях, требует использования частотно-регулируемого привода (ЧРП) для улучшения крутящего момента и скорости вращения.
Асинхронные двигатели с инверторами с векторным управлением популярны для достижения более высокого КПД, особенно в приложениях с мощностью более 3 кВт, требующих широкого диапазона скоростей.Это экономичное решение с некоторыми интересными ограничениями.
Появившись примерно в 1982 году, первыми массовыми приложениями для двигателей BLPM были прецизионные драйверы шпинделя в жестких дисках с регулировкой скорости менее 0,1%. Самыми популярными на сегодняшний день приложениями являются сервомоторы на основе положения с устройствами обратной связи, резольверы или энкодеры.
Двигатели BLPM — это синхронные компоненты, которые питают соответствующие обмотки статора путем измерения положения ротора с помощью устройства обратной связи.Устройство обратной связи обеспечивает необходимую точность для точной и быстрой остановки двигателя в конечном положении. Двигатели BLPM создают гораздо больший пусковой или ускоряющий момент, чтобы почти самопроизвольно перемещаться из одного положения в другое. Типичное применение — это обработка стола фрезерного станка, когда детали необходимо очень быстро переместить в новое положение для дальнейшей обработки.
Что касается производительности, характеристики двигателя BLPM создают линейный профиль крутящего момента-скорости в частотно-регулируемом приводе и / или постоянный профиль крутящего момента в зависимости от скорости в приводе с регулируемым током (рис.4) . Ток нагрузки двигателя обеспечивает отличный метод прямого измерения его крутящей нагрузки для любого конкретного применения. По сути, крутящий момент двигателя — это линейное представление тока двигателя.
Выводы
Поскольку в роторе BLPM нет потерь тепла (I 2 R), он, по сути, демонстрирует более высокий КПД по мощности, чем асинхронный двигатель переменного тока. Если это правда, зачем вообще использовать асинхронный двигатель переменного тока? Почему асинхронный двигатель переменного тока так популярен в широком диапазоне приложений, основанных на скорости? Ответ довольно прост: это более экономичное решение, особенно в большинстве приложений с постоянной и регулируемой скоростью.