Реле контроля нагрузки, контроля мощности и cos φ
Реле контроля нагрузки позволяют контролировать различные варианты сбоя в работе промышленного оборудования, имеющего своим основным элементов двигатель или насос. Для этого реле контроля подключается в цепь питания электродвигателя, измеряет активную мощность или коэффициент мощности (cos φ) и осуществляет управляющее воздействие при выходе контролируемых значений за предустановленные пороги срабатывания.
Реле контроля мощности и коэффициента мощности cos φ не контролируют параметры цепи питания, как реле контроля фаз. Для вычисления активной мощности или коэффициента мощности необходимо измерить величину напряжения и ток по одной из фаз цепи питания электродвигателя, это может быть однофазная или трехфазная нагрузка. Выводы о работе и состоянии двигателя, делаются на основе контроля за показаниями изменения потребляемой мощности во время работы с помощью реле.
Варианты контроля нагрузки:
- Реле активной мощности — реле контроля потребляемой активной мощности однофазными и трехфазными нагрузками в сетях переменного тока, позволяют уверенно контролировать как ситуацию перегрузки, так и ситуацию недогрузки.
- Реле коэффициента мощности — реле контролирующее фазовое смещение между током и напряжением и анализирует cos-φ, что позволяет уверенно определять только ситуацию недогрузки или перегрузки, при существенном изменении коэффициента мощности в этом случае.
- Реле контроля тока позволяют уверенно определять только ситуацию перегрузки, во время скачка тока.
Как измерить коэффициент мощности:
Измерить коэффициент мощности можно косвенными методами.
В однофазной сети косинус фи можно определить по показаниям амперметра, вольтметра и ваттметра по формуле:
cos φ = P / (U х I),где
Р, U, I — показания приборов.
в цепи трехфазного тока
cos φ = Pw / (√3 х Uл х Iл)
где Pw — мощность всей системы, Uл, Iл — линейные напряжение и ток, измеренные вольтметром и амперметром.
В симметричной трехфазной цепи значение косинус фи можно определить из показаний двух ваттметров Pw1 и Pw2 по формуле:
Общая относительная погрешность рассмотренных методов равна сумме относительных погрешностей каждого прибора, поэтому точность косвенных методов невелика.
Численное значение косинус фи зависит от характера нагрузки. Если нагрузкой являются лампы накаливания и нагревательные приборы, то косинус фи = 1, если нагрузка содержит еще и асинхронные электродвигатели, то косинус фи < 1. При изменении нагрузки электродвигателя его косинус фи существенно изменяется (от 0,1 на холостом ходу до 0,86 — 0,87 при номинальной нагрузке), изменяется и косинус фи сетей.
Поэтому на практике в электрических сетях определяют так называемый средневзвешенный коэффициент мощности за какое-то определенное время, допустим, за сутки или месяц. Для этого в конце рассматриваемого периода снимают показания счетчиков активной и реактивной энергии Wa и Wv и определяют средневзвешенное значение коэффициента мощности по формуле:
Это значение средневзвешенного коэффициента мощности желательно иметь в электрических сетях равным 0,92 — 0,95.
Для измерения cos φ (косинуса фи) используют фазометры, позволяющие измерить непосредственно фазовый сдвиг между напряжением и током нагрузки.
Фазометр — электроизмерительный прибор, предназначенный для измерения углов сдвига фаз между двумя изменяющимися периодически электрическими колебаниями.
Электродинамические фазометры в которых неподвижная катушка включена последовательно с нагрузкой, а подвижные катушки — параллельно нагрузке, так, что ток одной из них отстает от напряжения на угол β1. Для этого последовательно с катушкой включена активно-индуктивная нагрузка, а ток другой опережает напряжение на некоторый угол β2, для чего включена активно-емкостная нагрузка, причем β1 + β2 = 90о
Угол отклонения стрелки такого прибора зависит только от значения косинуса фи.
Цифровые фазометры для измерения фазового сдвига между двумя напряжениями.
В цифровых фазометрах прямого преобразования для измерения фазового сдвига его преобразуют в интервал времени и измеряют последним. Исследуемые напряжения подают на два входа прибора, на цифровом отсчетном устройстве прибора снимают показания числа импульсов, поступающих на счетчик прибора за один период исследуемых напряжений, которое соответствует фазовому сдвигу в градусах (или в долях градуса).
Из щитовых приборов, предназначенных для измерения, наиболее простой фазометр типа Д31, который может работать в однофазных сетях переменного тока с частотой 50, 500, 1000, 2400, 8000 Гц. Класс точности 2,5. Пределы измерений косинуса фи от 0,5 емкостного фазового сдвига до 1 и от 1 до 0,5 индуктивного фазового сдвига. Фазометры включают через измерительные трансформаторы тока с вторичным током 5 А и измерительные трансформаторы напряжения с вторичным напряжением 100 В.
Для измерения косинуса фи в трехфазной сети при симметричной нагрузке можно применять щитовые фазометры типа Д301. Класс их точности 1,5. Последовательные цепи включают на ток 5 А непосредственно, а также через трансформатор тока, параллельные цепи включают непосредственно на 127, 220, 380 В, а также через измерительные трансформаторы напряжения.
Диапазоны измерения параметров реле:
Для двигателей небольшой мощности измерение параметров можно проводить напрямую в следующих диапазонах:
- диапазон измерения тока до 10А, двигатель до ~4. 7кВт
- диапазон измерения тока до 12А, двигатель до ~5.7кВт
- диапазон измерения тока до 16А, двигатель до ~7,5кВт
для расширения диапазона измерения используются трансформаторы тока.
Косинус фи
Косинус фи или другими словами Коэффициент мощности обозначается как — cos ϕ. Он показывает как переменный ток, проходя через определенные нагрузки, изменяется по фазе в отличие от начального напряжения. Коэффициент мощности = cos данного сдвига. Другими словами можно сказать — это cos угла между фазами тока и напряжения.
Так если к розетке в 220 В, подключить ток, который больше или меньше требуемой нагрузки. Получим повышенную мощность на внутреннем сопротивлении. То есть при использовании нестабильного напряжения электростанции, нужно больше затрат энергии. Излишек энергии сопровождается нагревом проводов.
Нагрузка имеет активную и реактивную составляющие. Активная тратится на совершаемую работу. Полная мощность включает в себя реактивную и активную нагрузку. Она равняется квадратному корню от слагаемых активной и реактивной мощности. Измеряется в Вольт-амтерах.
При активной нагрузке фазы тока и напряжения равны, а между фазами равняется нулю. Нам известно что cos 0 = 1. Следовательно, косинус фи = 1 либо 100 процентам.
В математике косинус фи можно обозначить как cos-угла, находящегося между векторов напряжения и тока. Из-за этого в sin напряжении и токе, совпадает косинус фи и cos-угла, отстающих фаз.
При использовании второй составляющей, а именно реактивной, бывает в некоторых случаях, указываются характерные названия нагрузок. Они бывают индуктивно- активные, а так же активно — емкостные. А коэффициент мощности называется, либо отстающий либо опережающий.
Когда напряжение синусоидальное, а ток наоборот нет и если отсутствует реактивная составляющая, косинус фи равняется доле гармоники тока в полной мощности, который равняется искажению тока.
Данный коэффициент, следует брать во внимание при создании электросети. Если он будет ниже чем требуется, это приведет к дополнительным потерям энергии. Так же если данный коэффициент рассчитать не верно , это приведет к излишнему употреблению энергии. Для того что бы этого не происходило, нужно воспользоваться в расчетах следующими формулами:
На деле получается что при включении в сеть без нагрузки, асинхронный двигатель покажет, что и ток и напряжение есть, но работа совершаться не может. При увеличении нагрузки коэффициент мощности будет увеличиваться и активная составляющая тоже.
Минус реактивной составляющей состоит в том, что она создает пустую нагрузку, как следствие идут потери.
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
Коэффициент мощности
Дата публикации: .
Категория: Электротехника.
Коэффициентом мощности, или «косинусом фи» (cos φ), цепи называется отношение активной мощности к полной мощности.
В общем случае активная мощность меньше полной мощности, то есть у этой дроби числитель меньше знаменателя, и поэтому коэффициент мощности меньше единицы.
Только в случае чисто активной нагрузки, когда вся мощность является активной мощностью, числитель и знаменатель этой дроби равны между собой, и поэтому коэффициент мощности равен единице.
Реактивная энергия потребляется нагрузкой и, если не принимать специальных мер, она будет загружать линию, идущую от генератора к нагрузке. Нельзя лишить реактивной энергии цепь, содержащую индуктивную нагрузку, но разгрузить генератор от реактивной мощности необходимо.
Чем большую часть полной мощности составляет активная мощность, тем меньше числитель отличается от знаменателя дроби и тем ближе коэффициент мощности к единице. Задача состоит в том, чтобы заставить протекать по линии к потребителю только минимально необходимую величину реактивной энергии.
Из треугольника мощностей (смотрите рисунок 1, в статье «Треугольник мощностей») получаем:
Cos φ, или коэффициент мощности, измеряется особым прибором фазометром.
Пример 1. Амперметр показывает ток 10 А, вольтметр – 120 В, ваттметр – 1 кВт. Определить cos φ потребителя.
S = I × U = 10 × 120 = 1200 ВА,
Пример 2. Определить активную мощность, отдаваемую генератором однофазного переменного тока в сеть, если вольтметр на щите генератора показывает 220 В, амперметр – 20 А и фазометр 0,8.
P = I × U × cos φ = 20 × 220 × 0,8 = 3520 Вт = 3,52 кВт.
Полная мощность.
S = I × U = 20 × 220 = 4400 ВА = 4,4 кВА.
Пример 3. Вольтметр, установленный на щитке электродвигателя показывает 120 В, амперметр – 450 А, ваттметр – 50 кВт. Определить z, r, xL, S, cos φ, Q.
Так как P = I2 × r, то
S = I × U = 450 × 120 = 54000 ВА = 54 кВА ,
Рисунок 1. Определение коэффициента мощности из треугольников сопротивлений, напряжений и мощностей |
Из построения треугольников сопротивлений, напряжений и мощностей для определенной цепи видно, что эти треугольники подобны один другому, так как их стороны пропорциональны. Из каждого треугольника можно найти «косинус фи» цепи, как показано на рисунке 1. Этим можно воспользоваться для решения самых разнообразных задач.
Пример 4. Определить z, xL, U, Uа, UL, S, P, Q, если I = 6 А, r = 3 Ом, cos φ = 0,8 и ток отстает от по фазе от напряжения.
Из треугольника сопротивлений известно, что
отсюда
U = I × z = 6 × 3,75 = 22,5 В .
Uа = I × r = 6 × 3 =18 В .
UL = I × xL = 6 × 2,24 = 13,45 В .
S = I × U = 6 × 22,5 = 135 ВА .
P = I2 × r = 36 × 3 = 108 Вт
или
P = I × U × cos φ = 6 × 22,5 × 0,8 = 108 Вт .
Q = I × UL = 6 × 13,45 = 81 вар
или
или
Q = I2 × xL = 62 × 2,24 = 81 вар .
Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.
Увеличение косинуса фи
Дата публикации: .
Категория: Электротехника.
Причины низкого «косинуса фи»
Недозагрузка электродвигателей переменного тока
При недозагрузке электродвигателя потребляемая им активная мощность уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.
Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет «косинус фи», равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.
Двигатели, работающие вхолостую, имеют «косинус фи», равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.
Неправильный выбор типа электродвигателя
Двигатели быстроходные и большой мощности имеют более высокий «косинус фи», чем тихоходные и маломощные двигатели. Двигатели закрытого типа имеют cos φ ниже, чем двигатели открытого типа. Двигатели, неправильно выбранные по типу, мощности и скорости, понижают cos φ.
Повышение напряжения в сети
В часы малых нагрузок, обеденных перерывов и тому подобного напряжение сети на предприятии увеличивается на несколько вольт. Это ведет к увеличению намагничивающего тока индивидуальных потребителей (реактивной составляющей их полного тока), что в свою очередь вызывает уменьшение cos φ предприятия.
Неправильный ремонт двигателя
При перемотке электродвигателей обмотчики вследствие неправильного подбора проводов иногда не заполняют пазы машины тем количеством проводников, которое было в фабричной обмотке. При работе такого двигателя, вышедшего из ремонта, увеличивается магнитный поток рассеяния, что приводит к уменьшению cos φ двигателя.
При сильном износе подшипников ротор двигателя может задевать при вращении за статор. Вместо того чтобы сменить подшипники, обслуживающий персонал иногда идет по неправильному и вредному пути и подвергает ротор обточке.
Увеличение воздушного зазора между ротором и статором вызывает увеличение намагничивающего тока и уменьшение cos φ двигателя.
Способы увеличения «косинуса фи»
Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ. К мерам увеличения cos φ относятся:
- Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
- Увеличение загрузки двигателей;
- Недопущение работы двигателей вхолостую продолжительное время;
- Правильный и высококачественный ремонт двигателей;
- Применение статических (то есть неподвижных, невращающихся) конденсаторов.
Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.
Подбирая величину емкости при параллельном соединении и емкости, можно добиться уменьшения угла сдвига фаз между напряжением и общим током при неизменной активной и реактивной мощности, потребляемой ветвью с индуктивностью. Этот угол можно сделать равным нулю. Тогда ток, текущий на общем участке цепи, будет иметь наименьшую величину и совпадать по фазе с напряжением сети.
Это явление называется компенсацией сдвига фаз и широко используется на практике.
По экономическим соображениям невыгодно доводить угол φ до нуля, практически целесообразно иметь cos φ = 0,9 – 0,95.
Рассмотрим расчет емкости конденсаторов, которые нужно включить параллельно индуктивной нагрузке, чтобы повысить cos φ до заданной величины.
На рисунке 1, а изображена схема включения индуктивной нагрузки в сеть переменного тока. Для увеличения коэффициента мощности параллельно потребителю включена батарея конденсаторов. Векторная диаграмма начинается с построения вектора напряжения U. Ток I1 вследствие индуктивного характера нагрузки отстает по фазе от напряжения сети на угол φ1. Необходимо уменьшить угол сдвига фаз между напряжением U и общим током до величины φ. Иначе говоря, увеличить коэффициент мощности от значения cos φ1 до значения cos φ.
Рисунок 1. Увеличение cos φ при помощи статических конденсаторов:
а – схема включения; б – векторная диаграмма
Отрезок ос, представляющий активную слагающую тока I1, равен:
ос = I1 × cos φ1 = оа × cos φ1 .
Пользуясь выражением мощности переменного тока
P = U × I × cos φ ,
отрезок ос выразим так:
Ток на общем участке цепи I равен геометрической сумме тока нагрузки I1 и тока конденсатора IC.
Из треугольника оас и овс имеем:
ас = ос × tg φ1 ;
bс = ос × tg φ .
Из диаграммы получаем:
ab = od – ac – bc = ос × tg φ1 – ос × tg φ = oc × (tg φ1 – tg φ) .
Так как
и ab = IC , то
Вместе с этим, как было указано выше,
IC = U × ω × C .
Следовательно,
Пример 1. Электрические двигатели шахты потребляют мощность 2000 кВт при напряжении 6 кВ и cos φ1 = 0,6. Требуется найти емкость конденсаторов, которую нужно подключить на шины установки, чтобы увеличить cos φ до 0,9 при f = 50 Гц.
Решение.
cos φ1 = 0,6; φ1 = 53°10’; tg φ1 = 1,335;
cos φ = 0,9; φ = 25°50’; tg φ = 0,484;
youtube.com/embed/a0-p8K0SZJ8?wmode=transparent» allowfullscreen=»»/>
Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.
Косинус Фи — новости АО «ВИЛЕД»
20.02.2017
Автор: ViLED
Не все знакомы с электротехникой и понимают, что такое косинус фи, на который все обращают внимание. В общем сегодня про косинусе фи. Коротко и доступно о запаздывании тока от напряжения при постоянном и переменном токе, а также почему это вредно электрическим сетям и потребителям.
Приятного просмотра!
Допустим у нас есть 2 провода, в одном из них есть потенциал, пока не важно положительный он или отрицательный, на другом — потенциал равен нулю. Это и есть тот самый ноль, который есть в розетке. Численную разницу между двумя потенциалами называют напряжением.
Как только мы замыкаем эти провода между собой, например подключив лампу накаливания, через нее начинает течь ток. Он нарастает до нужной величины очень быстро, но все же не мгновенно. Это нарастание длится какое-то время, прежде чем ток достигнет определенного значения.
Если подключить последовательно с лампочкой катушку с проводом, она же катушка индуктивности, то она сильно замедлит процесс этого самого нарастания тока. Получается так, что напряжение на лампочке уже есть, но ток в ней нарастает медленно, причина этому — воздействие витков катушки друг на друга.
Когда напряжение постоянное, как в батарейке, ток в катушке замедленно, но все-таки нарастет и остановится на одной величине. Когда переменное — напряжение меняется от положительного, до отрицательного. Это изменение на графике выглядит как волна, ее называют синусоидой. В случае с катушкой в сети переменного напряжение, напряжение постоянно меняясь, не дает току вырасти до установившего значения. И тут говорят о запаздывании тока от напряжения. И чем больше витков в катушке, тем больше это запаздывание.
Так при чем же тут косинус фи. При том, что это запаздывание измеряется углом поворота, где полный цикл волны напряжения это 360 градусов. Угол запаздывания, он же сдвиг, обозначают буквой фи, а значение косинуса этого угла, это и есть наш косинус фи. Чем больше ток запаздывает, тем меньше величина косинуса угла фи.
В качестве справки для любопытных: Сдвиг тока относительно напряжения — это фазовый сдвиг или фазовые искажения. Если к фазовым искажениям прибавить «неидеальность синусоиды напряжения», которая выражается как коэффициент нелинейных искажений (КНИ), то получится коэффициент мощности. Для упрощения, когда говорят коэффициент мощности, подразумевают лишь косинус фи, но стоит помнить, что в коэффициент мощности, помимо косинуса фи входят и нелинейные искажения.
Большое запаздывание тока, или низкий косинус фи — вредное явление. На потребителе это сказывается как увеличенное потребление электроэнергии, т.к. в электрической катушке теряется ее часть, не выполняя полезной работы. На электростанциях это также, негативно сказывается излишне нагружая генераторы и трансформаторы. На потребителях, т.е. нас в вами это сказывается как увеличение энергопотребления без увеличения полезной выполненной работы. В общем, это никому не нужно, ни поставщикам электроэнергии, ни потребителям. Но убрать катушку нельзя, она нужна для работы схемы. Приходится компенсировать ее негативный эффект, используя дополнительные компоненты, но это уже другая история.
Если подвести небольшой итог, то у всех нагревательных приборов, в том числе и ламп накаливания, косинус фи почти равен 1. Почти, т.к. ее спираль имеет витки, и маленькая катушка все-таки получается, но этим пренебрегают и принимают за единицу.
Спасибо за просмотр и не забудьте подписаться на канал.
Как измерить коэффициент мощности | Онлайн журнал электрика
Для измерения косинуса фи идеальнее всего иметь особые приборы, созданные для конкретного его измерения — фазометры.
Фазометр — это электроизмерительный прибор, созданный для измерения углов сдвига фаз между 2-мя изменяющимися временами электронными колебаниями.
Если таких устройств нет, то определять коэффициент мощности можно косвенным способом. К примеру, в однофазной сети косинус фи можно найти по свидетельствам амперметра, вольтметра и ваттметра:
cos фи = P / (U х I), где Р, U, I — показания устройств.
в цепи трехфазного тока cos фи = Pw / (√3 х Uл х Iл)
где Pw — мощность всей системы, Uл, Iл — линейные напряжение и ток, измеренные вольтметром и амперметром.
В симметричной трехфазной цепи значение косинус фи можно найти из показаний 2-ух ваттметров Pw1 и Pw2 по формуле:
Общая относительная погрешность рассмотренных способов равна сумме относительных погрешностей каждого прибора, потому точность косвенных способов невелика.
Численное значение косинус фи находится в зависимости от типа нагрузки. Если нагрузкой являются лампы накаливания и нагревательные приборы, то косинус фи = 1, если нагрузка содержит к тому же асинхронные электродвигатели, то косинус фи < 1. При изменении нагрузки электродвигателя его косинус фи значительно меняется (от 0,1 на холостом ходу до 0,86 — 0,87 при номинальной нагрузке), меняется и косинус фи сетей.
Потому на практике в электрических сетях определяют так называемый средневзвешенный коэффициент мощности за какое-то определенное время, допустим, за день либо месяц. Для этого в конце рассматриваемого периода снимают показания счетчиков активной и реактивной энергии Wa и Wv и определяют средневзвешенное значение коэффициента мощности по формуле:
Это значение средневзвешенного коэффициента мощности лучше иметь в электронных сетях равным 0,92 — 0,95.
Внедрение фазометра для измерения коэффициента мощности
Измерить конкретно фазовый сдвиг между напряжением и током нагрузки можно с помощью особых измерительных устройств — фазометров.
Наибольшее распространение получили фазометры электродинамической системы, в которых неподвижная катушка включена поочередно с нагрузкой, а подвижные катушки — параллельно нагрузке, так, что ток какой-то из них отстает от напряжения на угол β1. Для этого поочередно с катушкой включена активно-индуктивная нагрузка, а ток другой опережает напряжение на некий угол β2, зачем включена активно-емкостная нагрузка, при этом β1 + β2 = 90о
Рис. 1. Схема включения фазометра (а) и векторная диаграмма напряжений и токов (б).
Угол отличия стрелки такового прибора зависит только от значения косинуса фи.
Для измерения фазового сдвига между 2-мя напряжениями нередко используют цифровые фазометры. В цифровых фазометрах прямого преобразования для измерения фазового сдвига его конвертируют в интервал времени и определяют последний. Исследуемые напряжения подают на два входа прибора, на цифровом отсчетном устройстве прибора снимают показания числа импульсов, поступающих на счетчик прибора за один период исследуемых напряжений, которое соответствует фазовому сдвигу в градусах (либо в толиках градуса).
Из щитовых устройств, созданных для измерения, более обычный фазометр типа Д31, который может работать в однофазных сетях переменного тока с частотой 50, 500, 1000, 2400, 8000 Гц. Класс точности 2,5. Пределы измерений косинуса фи от 0,5 емкостного фазового сдвига до 1 и от 1 до 0,5 индуктивного фазового сдвига. Фазометры включают через измерительные трансформаторы тока с вторичным током 5 А и измерительные трансформаторы напряжения с вторичным напряжением 100 В.
Для измерения косинуса фи в трехфазной сети при симметричной нагрузке можно использовать щитовые фазометры типа Д301. Класс их точности 1,5. Поочередные цепи включают на ток 5 А конкретно, также через трансформатор тока, параллельные цепи включают конкретно на 127, 220, 380 В, также через измерительные трансформаторы напряжения.
Читайте также: закон об инвалидах 181 фз действующий на 2019-2020 год (льготы)
Что такое агрегат кВА
кВА — это киловольт-ампер. кВА — единица полной мощности, которая
блок питания.
1 кило вольт-ампер равен 1000 вольт-ампер:
1 кВА = 1000 ВА
1 кило вольт-ампер равен 1000 умноженному на 1 вольт умноженному на 1 ампер:
1кВА = 1000⋅1В⋅1А
кВА в вольт расчет
Полная мощность S в вольт-амперах (ВА) равна 1000-кратной полной мощности.
S в киловольт-амперах (кВА):
S (ВА) = 1000 × S (кВА)
кВА на расчет кВт
Реальная мощность P в киловаттах (кВт) равна полной мощности
S в киловольт-амперах (кВА), раз
коэффициент мощности PF:
P (кВт) = S (кВА)
× ПФ
кВА в ваттах в расчете
Реальная мощность P в ваттах (Вт) равна 1000-кратной полной мощности.
S в киловольт-амперах (кВА), раз
коэффициент мощности PF:
P (Ш) = 1000 × S (кВА)
× ПФ
кВА в амперах расчет
Формула для расчета однофазных кВА в амперы
Ток I в амперах в 1000 раз больше полной мощности.
S в киловольт-амперах, деленное на
напряжение V в вольтах:
I (A) = 1000 × S (кВА) / V (V)
3-фазная формула расчета от кВА до ампер Расчет при линейном напряжении
Фазный ток I в амперах (со сбалансированной нагрузкой) в 1000 раз больше полной мощности
S в киловольт-амперах, деленное на
корень квадратный из 3-кратного среднеквадратичного значения линейного напряжения V L-L в вольтах:
I (A) = 1000 × S (кВА) / ( √ 3
× В Л-Л (В) )
Расчет с линейным напряжением
Фазный ток I в амперах (со сбалансированной нагрузкой) в 1000 раз больше полной мощности
S в киловольт-амперах, деленное на
3-кратное среднеквадратичное напряжение между фазой и нейтралью В L-N в вольтах:
I (A) = 1000 × S (кВА) / (3
× В L-N (В) )
См. Также
electrics — определение — английский
Примеры предложений с «электрикой», память переводов
Giga-fren Во-первых, им будет дан четкий мандат на сотрудничество на европейском уровне в тесном сотрудничестве с Агентством по сотрудничеству регуляторов энергетики и Комиссией , чтобы обеспечить конкурентоспособные, безопасные и экологически устойчивые внутренние рынки электроэнергии и газа в Европейском Союзе, а также эффективное открытие рынков для всех потребителей и поставщиков.LASER-wikipedia2 Стремясь снизить потребление электроэнергии, министр топлива и энергетики Эмануэль Шинвелл полностью прекратил подачу электроэнергии в промышленность и сократил бытовую подачу электроэнергии до 19 часов в день по всей стране. производится с 1984 года (прототипы были доступны в начале 1980-х годов) .cordis Новые библиотеки моделей для электрических самолетов EURLex-2 Для целей 3A001.e.1.b. «вторичный элемент» — это «элемент», который предназначен для зарядки внешний источник электричества. EurLex-2 «(Невыполнение государством-членом обязательств — Шестая директива по НДС — Статья 12 (3) (a) и (b) — Поставки газа и электроэнергии, поставляемые по сетям общего пользования — Постоянная плата за сети снабжения — Пониженная ставка ) »Eurlex2019Сегнетоэлектрический материал способен сохранять электрическую поляризацию в отсутствие приложенного электрического поля. EurLex-2 В обоснование своего применения он указал, что изделие было поставлено своим клиентам для использования в основном в условиях, когда электрические соединения должны быть защищены от поражения электрическим током и / или влаги.Giga-fren • способствовать развитию эффективной конкуренции во всех сегментах экономики, особенно в сетевых отраслях, таких как электроэнергетика, газ и телекоммуникации.EurLex-23.1.2. Испытательное напряжение (я): напряжение (я) или диапазон (я) на выводах светодиодных источников света, для которых предназначены электрические и фотометрические характеристики светодиодных источников света, которые должны быть проверены. WikiMatrix изучал свет, излучаемый электрическими разрядами. через воздух и исследовали использование оксида азота для определения содержания кислорода в воздухе.патенты-wipoБеспроводная система зарядки для маломощных потребителей электроэнергииEurLex-2Защита от поражения электрическим токомWikiMatrix Затем ионы переносятся магнитными или электрическими полями к масс-анализатору. согласиться с тем, что по некоторым текущим расходам (например, газ, электричество, телефон и т. д.) соответствующие счета могут быть приняты во внимание для оплаты платежей после окончания календарного года, если они фактически оплачены конечным бенефициаром до последующего представления окончательное требование государства-члена (в течение шести месяцев).tmClassЭлектропреобразователи, преобразователи частоты EURLex-2Это не относится к двухдвигательным транспортным средствам, в которых одна из силовых установок электрическая, а другая — тепловая. в Жемчужной лагуне довольно сильный .OpenSubtitles2018.v3 Этот мальчик берет деньги на обеспечение электроэнергией..Eurlex2019Плоский прокат из других легированных сталей, не подвергнутый дальнейшей обработке, чем горячекатаный, шириной & lt; 600 мм, за исключением изделий из электротехнической кремнистой стали UN-2 Согласно базе данных Global Tracking Framework (GTF), все государства-члены ЕЭК имеют полный доступ к электроэнергии.Патенты-wipo Измерительная система также включает в себя емкостную систему, сконфигурированную для подачи одного или нескольких сигналов электрического поля к пациенту и определения емкостного сигнала. patnts-wipoМетод и устройство для определения требуемого крутящего момента для управления электрической машиной транспортного средства UN-2 5 мая правительство ответило на призыв Специального докладчика к незамедлительным действиям от 28 апреля в отношении отца Лино Себита и отца Хилари Бома, которые были арестованы и обвинены в совершении взрывов в Хартуме 30 июня 1998 года, направленных на жизненно важные гражданские объекты, включая электростанции и театр.eurlex-diff-2018-06-2029 В-третьих, что касается целей, преследуемых Директивой 2003/96, необходимо, прежде всего, отметить, что эта директива, предусматривая систему гармонизированного налогообложения энергетических продуктов и электроэнергии, стремится, как видно из изложений 2-5 и 24, способствовать бесперебойному функционированию внутреннего рынка в энергетическом секторе, избегая, в частности, искажений конкуренции (см., в частности, постановления от 3 апреля 2004, Kronos Titan и Rhein-Ruhr Beschichtungs-Service, C-43/13 и C-44/13, EU: C: 2014: 216, параграфы 31 и 33; от 2 июня 2016 года, ROZ-ŚWIT, C-418 / 14, EU: C: 2016: 400, параграф 32; и от 7 сентября 2017 года, Hüttenwerke Krupp Mannesmann, C ‐ 465/15, EU: C: 2017: 640, параграф 26).
Показаны страницы 1. Найдено 226 предложения с фразой electrics.Найдено за 2 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 1 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.
Определение реактивной мощности — Руководство по электрическому монтажу
Для большинства электрических нагрузок, таких как двигатели, ток I отстает от напряжения V на угол φ.
Если токи и напряжения являются идеально синусоидальными сигналами , для представления может использоваться векторная диаграмма.
На этой векторной диаграмме вектор тока можно разделить на две составляющие: одна в фазе с вектором напряжения (компонент I a ), вторая в квадратуре (отставание на 90 градусов) с вектором напряжения (составляющая I r ). См. Рис. L1.
I a называется активной составляющей тока.
I r называется реактивной составляющей тока.
Рис. L1 — Векторная диаграмма токов
Предыдущая диаграмма, составленная для токов, также применима к мощности путем умножения каждого тока на общее напряжение V.См. Рис. L2.
Таким образом, мы определяем:
- Полная мощность : S = V x I (кВА)
- Активная мощность : P = V x Ia (кВт)
- Реактивная мощность : Q = V x Ir (квар)
Рис. L2 — Векторная диаграмма мощности
На этой диаграмме мы видим, что:
- Коэффициент мощности : P / S = cos φ
Эта формула применима для синусоидального напряжения и тока. Вот почему коэффициент мощности затем обозначается как «Коэффициент мощности смещения» .{2}}
Коэффициент мощности, близкий к единице, означает, что полная мощность S минимальна. Это означает, что мощность электрического оборудования минимальна для передачи данной активной мощности P на нагрузку. Тогда реактивная мощность мала по сравнению с активной.
сила.
Низкое значение коэффициента мощности указывает на противоположное состояние.
Полезные формулы (для сбалансированных и почти сбалансированных нагрузок в 4-проводных системах):
- Активная мощность P (в кВт)
- Одна фаза (1 фаза и нейтраль): P = V.I.cos φ
- Однофазный (между фазами): P = U.I.cos φ
- Трехфазный (3 провода или 3 провода + нейтраль): P = √3.U.I.cos φ
- Реактивная мощность Q (в квар)
- Одна фаза (1 фаза и нейтраль): Q = V.I.sin φ
- Однофазный (между фазами): Q = U.I.sin φ
- Трехфазный (3 провода или 3 провода + нейтраль): Q = √3.U.I.sin φ
- Полная мощность S (в кВА)
- Одна фаза (1 фаза и нейтраль): S = V.Я
- Однофазный (между фазами): S = U.I
- Трехфазный (3 провода или 3 провода + нейтраль): S = √3.U.I
где:
В = Напряжение между фазой и нейтралью
U = Напряжение между фазами
I = Линейный ток
φ = Фазовый угол между векторами V и I.
Пример расчета мощности (см. Рис. L3)
Рис. L3 — Пример расчета активной и реактивной мощности
Тип цепи | Полная мощность S (кВА) | Активная мощность P (кВт) | Реактивная мощность Q (квар) | |
---|---|---|---|---|
Однофазный (фаза и нейтраль) | S = VI | P = VI cos φ | Q = VI sin φ | |
Однофазный (между фазами) | S = UI | P = UI cos φ | Q = UI sin φ | |
Пример: нагрузка 5 кВт, cos φ = 0.5 | 10 кВА | 5 кВт | 8,7 квар | |
Трехфазное 3-проводное или 3-проводное + нейтраль | S = 3 {\ displaystyle {\ sqrt {3}}} пользовательского интерфейса | P = 3 {\ displaystyle {\ sqrt {3}}} UI cos φ | Q = 3 {\ displaystyle {\ sqrt {3}}} грех пользовательского интерфейса φ | |
Пример | Двигатель Pn = 51 кВт | 65 кВА | 56 кВт | 33 квар |
cos φ = 0,86 | ||||
ρ = 0.91 (КПД двигателя) |
Расчеты для трехфазного примера, приведенного выше, следующие:
Pn = поставленная мощность на валу = 51 кВт
P = потребляемая активная мощность
P = Pnρ = 510,91 = 56 кВт {\ displaystyle P = {\ frac {Pn} {\ rho}} = {\ frac {51} {0.91}} = 56 \, кВт}
S = полная мощность
S = Pcosφ = 560,86 = 65 кВА {\ displaystyle S = {\ frac {P} {cos \ varphi}} = {\ frac {56} {0.86}} = 65 \, кВА}
Таким образом, при обращении к рис. L16 или использовании карманного калькулятора значение tan φ, соответствующее cos φ, равному 0.{2}}} = 33 \, квар}
Рис. L4 — Расчетная диаграмма мощности
Насколько точно работает Wi-Fi?
Скорее всего, вы используете сеть Wi-Fi, чтобы прочитать эту статью. Но что это за «волшебная» штука и как она работает?
Здесь мы кратко даем обзор Wi-Fi, исследуем его различные типы и обсуждаем его плюсы и минусы. Обратите внимание, что это не исчерпывающее руководство.
СВЯЗАННЫЙ: КАК WIFI 6 ПРЕДНАЗНАЧЕН ДЛЯ ПЕРЕВОЛЮЦИИ ИНТЕРНЕТА ВЕЩЕЙ
Как работают системы Wi-Fi?
Wi-Fi или Wireless Fidelity, если дать ему полное название, — это телекоммуникационная технология, использующая радиоволны для отправки и приема цифровых сигналов и, соответственно, данных.Сокращение Wi-Fi на самом деле является торговой маркой, которая была введена Wi-Fi Alliance для описания технологии, поскольку ее техническое название (IEEE 802.11) было сочтено слишком сложным для потребителей.
Интересно, что Wi-Fi как бренд принадлежит Wi-Fi Alliance, некоммерческой организации, которая способствует развитию технологий и продуктов Wi-Fi.
Wi-Fi, также известный как беспроводная локальная сеть (WLAN), технически известен как IEEE 801.11 технологий. Это набор стандартов для технологии, которые поддерживаются и выпускаются Институтом инженеров по электротехнике и электронике (IEEE), которые используются для реализации связи WLAN в выбранных диапазонах частот.
Wi-Fi в основном используется для обеспечения доступа в Интернет для всех и всех устройств, подключенных к сети Wi-Fi.
Самым большим преимуществом Wi-Fi по сравнению с более традиционными формами телекоммуникационного соединения является то, что он не требует подключения устройств с помощью проводов — отсюда и название.
Технология основана, как уже упоминалось, на передаче и приеме радиоволн, электромагнитных волн с частотами в диапазоне гигагерц.
Данные преобразуются маршрутизатором или беспроводным адаптером для отправки или приема радиоволн Wi-Fi. Когда этот закодированный радиосигнал принимается маршрутизатором или адаптером, он декодируется обратно в исходные данные.
Это двусторонний процесс, при котором беспроводной адаптер и маршрутизатор работают в тандеме для кодирования и декодирования радиосигналов Wi-Fi в мгновение ока для передачи данных между устройствами.
Частоты, используемые Wi-Fi, значительно отличаются от частот других «беспроводных» технологий, таких как автомобильные радиоприемники, портативные рации или сотовые телефоны. Например, автомобильные стереосистемы работают на частотах в килогерцовом или мегагерцовом диапазоне (AM и FM).
Герц, если вы не знаете, — это единица частоты — или временной интервал между каждым пиком / пиком в электромагнитной волне. Чем выше частота, тем ближе пики и впадины электромагнитных волн.
Для сравнения: 1 Гц составляет примерно 1 цикл в секунду или 1 секунду между каждым гребнем волны.
«Сравнивая морские волны с МГц и ГГц, эти волны движутся в воздухе со скоростью 1 миллион и 1 миллиард циклов в секунду! И для приема информации, содержащейся в этих волнах, ваш радиоприемник должен быть настроен на принимать волны определенной частоты.
Для Wi-Fi эта частота составляет 2,4 ГГц и 5 ГГц . Эти волны очень похожи на частоту вашей микроволновой печи! Ваша микроволновая печь использует 2,450 ГГц для разогрева пищи а ваш маршрутизатор использует 2.От 412 ГГц до 2,472 ГГц для передачи данных по Wi-Fi. Вот почему у некоторых людей со старыми или неисправными микроволновыми печами возникают проблемы с сигналом Wi-Fi, когда они пытаются приготовить попкорн ». — Scientific American.
Источник: Pixabay
Какие частоты используют сигналы Wi-Fi?
Как Ранее упоминалось, что сети Wi-Fi работают на частоте 2,4 или 5 ГГц . Обычно это адаптируется в зависимости от объема данных, отправляемых пользователем.
IEEE 802.11 устанавливает следующие стандарты для типов Wi-Fi: —
- 802.11a — это стандарт, используемый для обозначения использования частот 5 ГГц . Это позволяет передавать до 54 мегабит в секунду. Он использует сложную технику, известную как OFDM (мультиплексирование с ортогональным частотным разделением) для генерации беспроводного сигнала.
- 802.11b передает данные с частотой около 2,4 ГГц . Это «медленный» конец скорости передачи данных Wi-Fi, и обычно его достаточно для передачи около 11 мегабит в секунду.Он имеет радиус действия до 150 футов (46 метров) и сегодня в значительной степени избыточен.
- 802.11g передает данные также на 2,4 ГГц , но может разрешить передачу максимум 54 мегабит в секунду. Он использует тот же OFDM, что и 802.11b, и обратно совместим со старыми стандартами.
- Более свежий стандарт 802.11n , более новый стандарт, может передавать 140 мегабит (, хотя теоретически поддерживает скорость от до 450 Мбит / с) и работает на частоте 5 ГГц. Представленный в 2009 году, он также называется Wi-Fi 4. В этом стандартном использовании используется MIMO (несколько входов, несколько выходов), когда несколько передатчиков / приемников работают одновременно на одном или обоих концах канала.
- 802.11ac , или Wi-Fi 5, является одним из новейших в пакете и имеет скорость передачи данных от 433 Мбит / с до 1 гигабит в секунду. Он работает исключительно в диапазоне 5 ГГц и может поддерживать до восьми пространственных потоков. Он также использует технологию MIMO, представленную в 802.11н.
- 802.11ax (Wi-Fi 6) — это новейшая итерация, которая обещает изменить правила игры.
Плюсы и минусы Wi-Fi
У Wi-Fi есть ряд ключевых преимуществ и недостатков. К ним относятся, но не ограничиваются: —
Плюсы
- Повышенная эффективность — Более быстрое подключение обеспечивает быструю передачу данных.
- Доступ и доступность — Возможность общаться без проводов означает, что Wi-Fi обеспечивает очень удобный способ передачи данных.
- Гибкость — Работа в сети невероятно проста и универсальна. с помощью Wi-Fi.
- Экономия средств — Беспроводные сети обычно дешевле и проще в установке.
- Новые возможности — Wi-Fi позволил многим компаниям предложить новые возможности для своих сотрудников и клиентов. Например, доступ в Интернет в кафе, отелях, аэропортах и т. Д.
Минусы
- Безопасность — Wi-Fi более подвержен несанкционированному доступу, чем некоторые более традиционные сетевые методы.
- Проблемы при установке — Сигналы Wi-Fi могут прерываться, если многие пользователи подключены к другим источникам или присутствуют другие радиосигналы. Это может привести к ухудшению связи или даже к полной потере сигнала.
- Покрытие — Сети Wi-Fi часто страдают от «черных пятен», где сигнал недоступен. Обычно это связано с природой конструкции здания, например армированные сталью строительные материалы могут блокировать сигналы Wi-Fi.
- Скорость передачи — Передача данных может быть медленнее или менее эффективна, чем проводные решения.
Чем отличается Интернет от Wi-Fi?
Вы, наверное, уже разобрались с этим, но хотя термины иногда используются как синонимы, это совершенно разные вещи.