Закон Ома. Формула Закона Ома
Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.
Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.
Георг Симон Ом
Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.
Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.
Формула закона Ома записывается в следующем виде:
где
I – сила тока в проводнике, единица измерения силы тока — ампер [А];
U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];
R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом [Ом].
Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза
И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.
Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:
Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.
Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.
Где и когда можно применять закон Ома?
Нужна помощь в написании работы?
Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).
Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.
Значение Закона Ома
Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.
Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.
Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.
Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:
Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.
формулировка простыми словами, формула для первого, второго и третьего
Есть такие формулы и законы, которые люди узнают еще в школе, а помнят всю жизнь. Обычно это несложные уравнения, состоящие из двух-трех физических величин и объясняющие какие-то фундаментальные вещи в науке, основу основ. Закон Ома как раз такая штука.
Закон Ома: кто придумал, определение
Закон Ома — это основной закон электродинамики, который выводит взаимосвязь между ключевыми понятиями электрической цепи: силой тока, напряжением и сопротивлением.
Данную взаимозависимость выявил немецкий физик Георг Симон Ом в 1826 году. Несмотря на то, что этот закон является истинным законом природы, точность которого была многократно проверена и доказана позже, публикация работы Ома в 1827 году прошла незамеченной для научной общественности. И лишь в 1830-х гг., когда французский физик Пулье пришел к тем же самым выводам, что и Ом, работа немецкого ученого была оценена по достоинству.
Установление закономерностей между основными параметрами электроцепи имеет огромное значение для науки. Ведь оно позволило количественно измерить свойства электрического тока.
Источник: rusenergetics.ru
Формулировки и основные формулы
Закон Георга Ома формулируется так: сила тока в проводнике прямо пропорциональна напряжению в проводнике и обратно пропорциональна сопротивлению этого проводника.
Пояснения к закону:
- Чем выше напряжение в проводнике, тем выше будет и сила тока в этом проводнике.
- Чем выше сопротивление проводника, тем меньше будет сила тока в нем.
Обозначение основных параметров, характеризующих электроцепь, известны всем с уроков физики в школе:
- I — сила электротока;
- U — напряжение;
- R — сопротивление.
Объяснение закона Ома в классической теории
Формула закона, известная всем со школьных лет, выглядит так:
\(I=\frac UR\)
Из нее легко выводятся формулы для определения \(U\):
\(U\;=I\times R\)
и для определения \(R\):
\(R=\frac UI\)
Единицами измерения силы тока являются амперы, напряжения — вольты, сопротивление измеряется в омах.
Данный закон верен для линейного участка цепи, на котором зафиксировано стабильное сопротивление.
Источник: dzgo.ru
Закон Ома для полной (замкнутой) цепи
Замкнутой или полной называется такая электрическая цепь, по которой проходит электроток.
Описание формулы этого закона для полной цепи выглядит так:
\(I=\frac\epsilon{R+r}\)
где \(\epsilon\) — это электродвижущая сила или напряжение источника питания, которое не зависит от внешней цепи;
\(R\) — сопротивление внешней цепи;
\(r\) — внутреннее сопротивление источника.
Источник: multiurok.ru
Использование закона Ома при параллельном и последовательном соединении
При последовательном соединении элементы цепи подключаются друг за другом последовательно. Так как такая электрическая цепь является неразветвленной, сила тока на каждом ее участке будет одинаковая. Пример последовательного соединения — лампочки в новогодней гирлянде.
При последовательном соединении элементов основные параметры электроцепи рассчитываются следующим образом:
- Сила тока по формуле:
\(I=I_1=I_2=I_3\)
Где \(I\) — общая сила тока в электроцепи, \(I_1\) — сила тока первого участка, \(I_2\) — сила тока второго участка, \(I_3\) — сила тока третьего участка.
- Напряжение по формуле:
\(U=U_1+U_2+U_3\)
Где \(U\) — общее напряжение, \(U_1\) — напряжение первого участка, \(U_2\) — напряжение второго участка, \(U_3\) — напряжение третьего участка.
- Сопротивление согласно формуле:
\(R=R_1+R_2+R_3\)
Где \(R\) — общее сопротивление в цепи, \(R_1\) — сопротивление первого участка, \(R_2\) — сопротивление второго участка, \(R_3\) — сопротивление третьего участка.
Подключая элементы в цепь параллельно, получают разветвленную электрическую цепь. Примером такого соединения является стандартная разводка электричества по квартире, когда в комнате одновременно можно включить несколько предметов бытовой техники и верхнее освещение.
При параллельном соединении элементов основные параметры электроцепи рассчитываются следующим образом:
\(I=I_1+I_2+I_3\)
Где \(I\) — общая сила тока в электроцепи, \(I_1, I_2, I_3\) — сила тока первого, второго и третьего участков соответственно.
\(U=U_1=U_2+U_3\)
Где \(U\) — общее напряжение, \(U_1, U_2, U_3\) — напряжение первого, второго и третьего участков соответственно.
- Сопротивление:
\(R=\frac{R_1\times R_2\times R_3}{R_1+R_2+R_3}\)
Где \(R\) — общее сопротивление в цепи, \(R_1, R_2, R_3\) — сопротивление первого, второго и третьего участков соответственно.
Закон Ома для переменного и постоянного тока
Для цепи постоянного тока правильными будут уже озвученные нами взаимосвязи основных параметров электроцепи:
Источник: en.ppt-online.org
При подключении к электроцепи источника переменного тока, сила электротока в цепи будет определяться по формуле:
\(I=\frac UZ\)
где \(Z\) — полное сопротивление или импеданс, который состоит из активной \((R)\) и реактивных составляющих (\(X_C\) — сопротивление емкости и \(X_L\) — сопротивление индуктивности).
Реактивное сопротивление цепи зависит:
- от значений реактивных элементов,
- от частоты электротока;
- от формы тока в цепи.
Источник: fizikaotfizika.ru
Закон Ома для однородного и неоднородного участка цепи
Закон Ома для однородного участка электроцепи представляет собой классическое выражение зависимости силы от напряжения и сопротивления:
\(I=\frac UR\)
В этом случае основной характеристикой проводника является сопротивление. От внешнего вида проводника зависит, как выглядит его кристаллическая решетка и какое количество атомов примесей содержит. От проводника зависит поведение электронов, которые могут ускоряться или замедляться.
Поэтому \(R\) зависит от вида проводника, точнее, от его сечения, длины и материала и определяется по формуле:
\(R=p\times\left(\frac lS\right)\)
где \(p\) — удельное сопротивление, \( l\) — это длина проводника, а \(S\) — площадь его сечения.
Под неоднородным участком цепи постоянного тока подразумевается такой промежуток цепи, на который помимо электрических зарядов воздействуют другие силы.
Источник: grabachapter.com
Как можно было убедиться, закон, открытый Георгом Омом, прост только на первый взгляд. Разобраться во всех тонкостях самостоятельно под силу далеко не каждому. Если столкнулись с трудностями в учебе и сложными для понимания темами, обращайтесь за помощью к образовательному ресурсу Феникс.Хелп. Квалифицированные эксперты помогут сдать в срок самую сложную работу.
Закон Ома. Для цепей и тока. Формулы и применение
Георг Симон Ом начал свои исследования вдохновляясь знаменитым трудом Жана Батиста Фурье «Аналитическая теория тепла». В этой работе Фурье представлял тепловой поток между двумя точками как разницу температур, а изменение теплового потока связывал с его прохождением через препятствие неправильной формы из теплоизолирующего материала. Аналогично этому Ом обуславливал возникновение электрического тока разностью потенциалов.
История
Исходя из этого Ом стал экспериментировать с разными материалами проводника. Для того, чтобы определить их проводимость он подключал их последовательно и подгонял их длину таким образом, чтобы сила тока была одинаковой во всех случаях.
Важно при таких измерениях было подбирать проводники одного и того же диаметра. Ом, замеряя проводимость серебра и золота, получил результаты, которые по современным данным не отличаются точностью. Так, серебряный проводник у Ома проводил меньше электрического тока, чем золотой. Сам Ом объяснял это тем, что его проводник из серебра был покрыт маслом и из-за этого, по всей видимости, опыт не дал точных результатов.
Однако не только с этим были проблемы у физиков, которые в то время занимались подобными экспериментами с электричеством. Большие трудности с добычей чистых материалов без примесей для опытов, затруднения с калибровкой диаметра проводника искажали результаты тестов. Еще большая загвоздка состояла в том, что сила тока постоянно менялась во время испытаний, поскольку источником тока служили переменные химические элементы. В таких условиях Ом вывел логарифмическую зависимость силы тока от сопротивления провода.
Немногим позже немецкий физик Поггендорф, специализировавшийся на электрохимии, предложил Ому заменить химические элементы на термопару из висмута и меди. Ом начал свои эксперименты заново. В этот раз он пользовался термоэлектрическим устройством, работающем на эффекте Зеебека в качестве батареи. К нему он последовательно подключал 8 проводников из меди одного и того же диаметра, но различной длины. Чтобы измерить силу тока Ом подвешивал с помощью металлической нити над проводниками магнитную стрелку. Ток, шедший параллельно этой стрелке, смещал ее в сторону. Когда это происходило физик закручивал нить до тех пор, пока стрелка не возвращалась в исходное положение. Исходя из угла, на который закручивалась нить можно было судить о значении силы тока.
В результате нового эксперимента Ом пришел к формуле:
Х = a / b + l
Здесь X – интенсивность магнитного поля провода, l – длина провода, a – постоянная величина напряжения источника, b – постоянная сопротивления остальных элементов цепи.
Если обратиться к современным терминам для описания данной формулы, то мы получим, что Х – сила тока, а – ЭДС источника, b + l – общее сопротивление цепи.
Закон Ома для участка цепи
Закон Ома для отдельного участка цепи гласит: сила тока на участке цепи увеличивается при возрастании напряжения и уменьшается при возрастании сопротивления этого участка.
I = U / R
Исходя из этой формулы, мы можем решить, что сопротивление проводника зависит от разности потенциалов. С точки зрения математики, это правильно, но ложно с точки зрения физики. Эта формула применима только для расчета сопротивления на отдельном участке цепи.
Чтобы рассчитать сопротивление проводника, нужно перемножить его длину на удельное сопротивление его материала и разделить на площадь поперечного сечения.
Таким образом формула для расчета сопротивления проводника примет вид:
R = p ⋅ l / s
Закон Ома для полной цепи
Отличие закона Ома для полной цепи от закона Ома для участка цепи заключается в том, что теперь мы должны учитывать два вида сопротивления. Это «R» сопротивление всех компонентов системы и «r» внутреннее сопротивление источника электродвижущей силы. Формула таким образом приобретает вид:
I = U / R + r
Закон Ома для переменного тока
Переменный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление. Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением. Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).
Попробуем разобраться, в чем реальная разница между реактивным и активным сопротивлением в цепи с переменным током. Вы уже должны были понять, что значение напряжение и силы тока в такой цепи меняется со временем и имеют, грубо говоря, волновую форму.
Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида. И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее. Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.
Весь процесс происходит с определенной периодичностью.
Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.
На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие активного сопротивления от реактивного в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.
Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.
Формула для расчета падения напряжения на индуктивном сопротивлении:
U = I ⋅ ωL
Где L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).
Формула для расчета падения напряжения на емкостном сопротивлении:
U = I / ω ⋅ С
С – емкость реактивного сопротивления.
Эти две формулы – частные случаи закона Ома для переменных цепей.
Полный же будет выглядеть следующем образом:
I = U / Z
Здесь Z – полное сопротивление переменной цепи известное как импеданс.
Сфера применения
Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:
- Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
- В сверхпроводниках;
- Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
- В вакуумных и газовых радиолампах;
- В диодах и транзисторах.
Похожие темы:
Закон Ома для участка цепи
Закон Ома для участка цепи — это основной закон в электротехнике. Он устанавливает связь между током, сопротивлением и напряжением. С его помощью можно изучить и рассчитать электрические цепи. Важно не просто выучить закон Ома, а понять его, как он применяется на самом деле. Так как довольно часто происходят ошибки в его применении на практике, из-за не правильного его использования.
Закон Ома определение — ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.
Стоит поднять напряжение, проходящее по электро цепи, ток так же поднимется догнав напряжение. Подняв сопротивление в цепи, ток снизится во столько же раз, во сколько поднялось сопротивление. Это можно увидеть на простом примере, взять простую трубу и пустить через нее поток воды, чем выше давление тем сильнее поток воды, если же встречается сопротивление то поток воды значительно теряет свою скорость.
В математике принято считать: сопротивление проводника, в котором во время напряжения 1В протекает ток 1А — равняется 1Ом.
Закон Ома формула — расшифровывается как определение тока в амперах с помощью деления напряжения на сопротивление в омах.
I=U/R
Правильные вычисления по закону Ома будут только тогда , когда напряжение отражается в вольтах, сопротивление в Омах, ток в амперах. При использовании различных версий данных величин, следует их преобразовывать в нужные для вычисления величины.
Данный закон одинаков для всего участка цепи. В случае выяснения напряжения на конкретном участке, нужно будет брать размеры всех величин именно с этого участка.
Данный закон можно рассмотреть на примерах:
1)Определим ток в лампе с сопротивлением 2,5ОМ и напряжении 5В. Разделим 5 / 2,5 получим ток = 2А
2) Вычисляем, так же ток в лампе. с напряжением 500В и сопротивлением 0,5мОм (в Омах получается 500000). Разделим 500 / 500000 получим ток = 0,001А либо 1мА.
Когда ток и сопротивление известны, напряжение так же находят с помощью закона Ома. С помощью формулы:
U = IR
Из чего мы видим, напряжение в концах участка цепи ровно пропорционально току и сопротивлению. Так как увеличение тока без изменения сопротивления, возможно только при увеличения напряжения. Следовательно, постоянное сопротивление большему току, преследует большое напряжение. Если использовать постоянно одинаковый ток с разным сопротивлением, с большим сопротивлением нужно большее напряжение.
Вычисление напряжения можно рассмотреть на примере:
Вычислить напряжение с током = 5мАм (0,005А), сопротивление 10кОм (10000 Ом). Умножаем ток * напряжение = 50В.
Связь между током и напряжением называется — сопротивление. Увеличивается напряжение так же происходит и увеличение тока, ровно тоже происходит при уменьшении. Соотношение между напряжением и током = сопротивлению, которое не меняется. При рассмотрении двух участков с одинаковым током и разным напряжением, ясно, что в участке с большим напряжением, большее сопротивление. В случае же когда напряжение одинаково, а ток разный, то на участке где меньшее количество тока будет большее сопротивление.
Вычисление сопротивления можно рассмотреть на примере:
Найти сопротивление, имея напряжение 40В и ток 50мАм (0,05А). Поделим 40/0,05 сопротивление = 800 Ом.
Заметка: Интересуют двухуровневые натяжные потолки SATIN.BY. Перейдите по ссылке натяжной потолок (http://satin.by/natjazhnye-potolki.html) и узнайте подробнее.
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
формулы и определения / Блог / Справочник :: Бингоскул
Немецкий физик Георг Симон Ом (1787—1854) открыл основной закон электрической цепи.
Закон Ома для участка цепи:
Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.
- I — сила тока (в системе СИ измеряется — Ампер)
- Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
- Формула: I=\frac{U}{R}
- U — напряжение (в системе СИ измеряется — Вольт)
- Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.
- Формула: U=IR
- R — электрическое сопротивление (в системе СИ измеряется — Ом).
- Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
- Формула R=\frac{U}{I}
Определение единицы сопротивления — Ом
1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1 (Вольт) протекает ток 1 (Ампер).
Закон Ома для полной цепи
Определение: Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника
Формула I=\frac{\varepsilon}{R+r}
- \varepsilon — ЭДС источника напряжения, В;
- I — сила тока в цепи, А;
- R — сопротивление всех внешних элементов цепи, Ом;
- r — внутреннее сопротивление источника напряжения, Ом.
Как запомнить формулы закона Ома
Треугольник Ома поможет запомнить закон. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления.
.
- U — электрическое напряжение;
- I — сила тока;
- P — электрическая мощность;
- R — электрическое сопротивление
Смотри также:
Для закрепления своих знаний решай задания и варианты ЕГЭ по физике с ответами и пояснениями.
Закон Ома
В 1826 величайший немецкий физик Георг Симон Ом публикует свою работу «Определение закона, по которому металлы проводят контактное электричество», где дает формулировку знаменитому закону. Ученые того времени встретили враждебно публикации великого физика. И лишь после того, как другой ученый – Клод Пулье, пришел к тем же выводам опытным путем, закон Ома признали во всем мире.
Закон Ома – физическая закономерность, которая определяет взаимосвязь между током, напряжением и сопротивлением проводника. Он имеет две основные формы.
Закон Ома для участка цепи
Формулировка закона Ома для участка цепи – сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению.
Это простое выражение помогает на практике решать широчайший круг вопросов. Для лучшего запоминания решим задачу.
Задача 1.1
Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 0,5 мм2, если к концам провода приложено напряжение 12 B.
Задача простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.
Закон Ома для полной цепи
Формулировка закона Ома для полной цепи — сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи , где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.
Здесь могут возникнуть вопросы. Например, что такое ЭДС? Электродвижущая сила — это физическая величина, которая характеризует работу внешних сил в источнике ЭДС. К примеру, в обычной пальчиковой батарейке, ЭДС является химическая реакция, которая заставляет перемещаться заряды от одного полюса к другому. Само слово электродвижущая говорит о том, что эта сила двигает электричество, то есть заряд.
В каждом источнике присутствует внутреннее сопротивление r, оно зависит от параметров самого источника. В цепи также существует сопротивление R, оно зависит от параметров самой цепи.
Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.
Для закрепления материала, решим две задачи на формулу закона Ома для полной цепи.
Задача 2.1
Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.
Теперь решим задачу посложнее.
Задача 2.2
Источник ЭДС подключен к резистору сопротивлением 10 Ом с помощью медного провода длиной 1 м и площадью поперечного сечения 1 мм2. Найти силу тока, зная что ЭДС источника равно 12 В, а внутреннее сопротивление 1,9825 Ом.
Приступим.
Мнемоническая диаграмма
Для лучшего запоминания закона Ома существует мнемоническая диаграмма, благодаря которой можно всегда напомнить себе формулу. Пользоваться этой диаграммой очень просто. Достаточно закрыть искомую величину и две другие укажут, как её найти. Потренируйтесь, это может вам пригодится.
Успехов в изучении электричества! Рекомендуем прочесть статью — законы Кирхгофа.
Закон Ома
Закон Ома — физический закон, определяющий зависимость между электрическими величинами — напряжением, сопротивлением и током для проводников.
Впервые открыл и описал его в 1826 году немецкий физик Георг Ом, показавший (с помощью гальванометра) количественную связь между электродвижущей силой, электрическим током и свойствами проводника, как пропорциональную зависимость.
Впоследствии свойства проводника, способные противостоять электрическому току на основе этой зависимости,
стали называть электрическим сопротивлением (Resistance), обозначать в расчётах и на схемах буквой R и измерять в Омах в честь первооткрывателя.
Сам источник электрической энергии также обладает внутренним сопротивлением, которое принято обозначать буквой r.
Закон Ома для участка цепи
Со школьного курса физики всем хорошо известна классическая трактовка Закона Ома:
Сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.
I = U/R
Это значит, если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 Вольт, тогда величина тока I в проводнике будет равна 1/1 = 1 Ампер.
Отсюда следуют ещё два полезных соотношения:
Если в проводнике, сопротивлением 1 Ом, протекает ток 1 Ампер, значит на концах проводника напряжение 1 Вольт (падение напряжения).
U = IR
Если на концах проводника есть напряжение 1 Вольт и по нему протекает ток 1 Ампер, значит сопротивление проводника равно 1 Ом.
R = U/I
Вышеописанные формулы в таком виде могут быть применимы для переменного тока лишь в том случае, если цепь состоит только из активного сопротивления R.
Кроме того, следует помнить, что Закон Ома справедлив только для линейных элементов цепи.
Предлагается простой Онлайн-калькулятор для практических расчётов.
Закон Ома. Расчёт напряжения, сопротивления, тока, мощности.
После сброса ввести два любых известных параметра.
I=U/R; U=IR; R=U/I; |
Закон Ома для замкнутой цепи
Если к источнику питания подключить внешнюю цепь сопротивлением R, в цепи пойдёт ток с учётом внутреннего сопротивления источника:
I — Сила тока в цепи.
— Электродвижущая сила (ЭДС) — величина напряжения источника питания не зависящая от внешней цепи (без нагрузки).
Характеризуется потенциальной энергией источника.
r — Внутреннее сопротивление источника питания.
Для электродвижущей силы внешнеее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I = /(R+r) .
Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше:
U = IR.
Напряжение U, при подключении нагрузки R, всегда будет меньше чем ЭДС на величину произведения I*r, которую называют падением напряжения на внутреннем сопротивлении источника питания.
С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы.
По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника,
значит уменьшается внешнее напряжение U = — I*r.
Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U.
Если ток в цепи равен нулю, следовательно, = U. Цепь разомкнута, ЭДС источника равна напряжению на его выводах.
В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС ( ≈ U )
независимо от сопротивления внешней цепи R.
Такой источник питания называют источником напряжения.
Закон Ома для переменного тока
При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление.
В таком случае запись Закона Ома будет иметь вид:
I = U/Z
Здесь Z — полное (комплексное) сопротивление цепи — импеданс. В него входит активная R и реактивная X составляющие.
Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи.
Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс.
С учётом сдвига фаз φ, созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме:
— комплексная амплитуда тока.
= Iampe jφ
— комплексная амплитуда напряжения.
= Uampe jφ
— комплексное сопротивление. Импеданс.
φ — угол сдвига фаз между током и напряжением.
e — константа, основание натурального логарифма.
j — мнимая единица.
Iamp , Uamp — амплитудные значения синусоидального тока и напряжения.
Нелинейные элементы и цепи
Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников.
Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ). К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы.
Такие элементы и цепи, в которых они используются, называют нелинейными.
Похожие статьи: Постоянный ток. Переменный ток.
Замечания и предложения принимаются и приветствуются!
Что такое закон Ома? | Fluke
Закон Ома — это формула, используемая для расчета взаимосвязи между напряжением, током и сопротивлением в электрической цепи.
Для изучающих электронику закон Ома (E = IR) столь же фундаментально важен, как уравнение относительности Эйнштейна (E = mc²) для физиков.
E = I x R
Когда прописано, это означает напряжение = ток x сопротивление , или вольт = амперы x ом , или В = A x Ω .
Названный в честь немецкого физика Георга Ома (1789-1854), Закон Ома касается ключевых величин, действующих в цепях:
Количество | Закон Ома символ | Единица измерения (аббревиатура) | Роль в схемы | На случай, если вам интересно: |
---|---|---|---|---|
Напряжение | E | Вольт (В) | Давление, которое запускает поток электронов | E = электродвижущая сила (старый термин) |
Ток | I | Ампер, ампер (A) | Скорость потока электронов | I = интенсивность |
Сопротивление | R | Ом (Ом) | Ингибитор потока | Ω = греческая буква omega |
Если известны два из этих значений, технические специалисты могут перенастроить закон Ома, чтобы вычислить третье. Просто измените пирамиду следующим образом:
Если вы знаете напряжение (E) и ток (I) и хотите узнать сопротивление (R), вытяните X-образную скобку из R в пирамиде и вычислите оставшееся уравнение (см. Первое или дальнее слева, пирамида вверху).
Примечание: Сопротивление нельзя измерить в рабочей цепи, поэтому закон Ома особенно полезен, когда его нужно вычислить. Вместо того, чтобы отключать цепь для измерения сопротивления, технический специалист может определить R, используя вышеуказанный вариант закона Ома.
Теперь, если вы знаете напряжение (E) и сопротивление (R) и хотите узнать ток (I), вытяните X-I и вычислите оставшиеся два символа (см. Среднюю пирамиду выше).
И если вы знаете ток (I) и сопротивление (R) и хотите знать напряжение (E), умножьте нижние половины пирамиды (см. Третью или крайнюю правую пирамиду выше).
Попробуйте несколько примеров расчетов на основе простой последовательной схемы, которая включает только один источник напряжения (аккумулятор) и сопротивление (свет). В каждом примере известны два значения. Используйте закон Ома для вычисления третьего.
Пример 1: Напряжение (E) и сопротивление (R) известны.
Какой ток в цепи?
I = E / R = 12 В / 6 Ом = 2 А
Пример 2: Напряжение (E) и ток (I) известны.
Какое сопротивление создает лампа?
R = E / I = 24 В / 6 A = 4 Ом
Пример 3: Ток (I) и сопротивление (R) известны. Какое напряжение?
Какое напряжение в цепи?
E = I x R = (5A) (8Ω) = 40 В
Когда Ом опубликовал свою формулу в 1827 году, его ключевым выводом было то, что величина электрического тока, протекающего через проводник, прямо пропорциональна приложенному напряжению. в теме.Другими словами, требуется один вольт давления, чтобы протолкнуть один ампер тока через один ом сопротивления.
Что проверять с помощью закона Ома
Закон Ома можно использовать для проверки статических значений компонентов схемы, уровней тока, источников напряжения и падений напряжения. Если, например, измерительный прибор обнаруживает значение тока, превышающее нормальный, это может означать, что сопротивление уменьшилось или что напряжение увеличилось, вызывая ситуацию высокого напряжения. Это может указывать на проблему с питанием или цепью.
В цепях постоянного тока (dc) измерение тока ниже нормального может означать, что напряжение снизилось или сопротивление цепи увеличилось. Возможные причины повышенного сопротивления — плохие или неплотные соединения, коррозия и / или поврежденные компоненты.
Нагрузки в цепи потребляют электрический ток. Нагрузки могут быть любыми компонентами: небольшими электрическими устройствами, компьютерами, бытовой техникой или большим двигателем. На большинстве этих компонентов (нагрузок) есть паспортная табличка или информационная наклейка.На этих паспортных табличках указаны сертификаты безопасности и несколько номеров.
Технические специалисты обращаются к заводским табличкам на компонентах, чтобы узнать стандартные значения напряжения и тока. Во время тестирования, если технические специалисты обнаруживают, что обычные значения не регистрируются на их цифровых мультиметрах или токоизмерительных клещах, они могут использовать закон Ома, чтобы определить, какая часть цепи дает сбой, и, исходя из этого, определить, в чем может заключаться проблема.
Основы науки о схемах
Цепи, как и вся материя, состоят из атомов.Атомы состоят из субатомных частиц:
- Протонов (с положительным электрическим зарядом)
- Нейтронов (без заряда)
- Электронов (отрицательно заряженных)
Атомы остаются связанными силами притяжения между ядром атома и электронами в его внешняя оболочка. Под воздействием напряжения атомы в цепи начинают преобразовываться, и их компоненты проявляют потенциал притяжения, известный как разность потенциалов. Взаимно привлеченные свободные электроны движутся к протонам, создавая поток электронов (ток).Любой материал в цепи, ограничивающий этот поток, считается сопротивлением.
Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.
Статьи по теме
Что такое закон Ома — формульное уравнение »Электроника Примечания
Закон Ома — один из самых фундаментальных законов теории электричества. Формула или уравнение закона Ома связывает напряжение и ток со свойствами проводника, то есть его сопротивлением в цепи.
Resistance Tutorial:
Что такое сопротивление
Закон Ома
Омические и неомические проводники
Сопротивление лампы накаливания
Удельное сопротивление
Таблица удельного сопротивления для распространенных материалов
Температурный коэффициент сопротивления
Электрическая проводимость
Последовательные и параллельные резисторы
Таблица параллельных резисторов
Закон Ома — один из самых фундаментальных и важных законов, регулирующих электрические и электронные схемы.Он связывает ток, напряжение и сопротивление для линейного устройства, так что, если известны два, можно вычислить третье.
Поскольку ток, напряжение и сопротивление являются тремя основными величинами цепи, это означает, что закон Ома также чрезвычайно важен.
Закон Ома используется во всех областях электротехники и электроники. Он используется для расчета номинала резисторов, необходимых в схемах, а также может использоваться для определения тока, протекающего в цепи, где напряжение может быть легко измерено на известном резисторе, но более того, закон Ома используется в огромное количество вычислений во всех формах электрических и электронных схем — практически везде, где течет ток.
Открытие закона Ома
Существует математическая зависимость, связывающая ток, напряжение и сопротивление. Немецкий ученый по имени Георг Ом провел множество экспериментов, пытаясь показать связь между ними. В те дни, когда он проводил свои эксперименты, не было счетчиков в том виде, в каком мы их знаем сегодня.
Только после значительных усилий и со второй попытки ему удалось разработать то, что мы сегодня знаем как закон Ома.
Примечание Георга Ома:
Родившийся в Эрлангене, примерно в 50 милях к северу от Мюнхена в 1879 году, Георг Ом стал одним из тех, кто много исследовал новую науку, связанную с электричеством, обнаружив взаимосвязь между напряжением и током в проводнике — этот закон теперь назвал Закон Ома, отдавая должное проделанной им работе.
Подробнее о Георг Ом.
Что такое закон Ома?
Закон Ома описывает способ протекания тока через материал при приложении разных уровней напряжения. Некоторые материалы, такие как электрические провода, имеют небольшое сопротивление току, и этот тип материала называется проводником. Следовательно, если этот провод, например, проложить прямо напротив батареи, будет протекать большой ток.
В других случаях другой материал может препятствовать прохождению тока, но все же пропускать его. В электрических схемах эти компоненты часто называют резисторами. Однако другие материалы практически не пропускают ток, и эти материалы называются изоляторами.
Посмотрите наше видео о законе Ома
Ом посмотрел на то, как ток течет в различных материалах, и смог разработать свой закон, который мы теперь называем законом Ома.
Чтобы получить первое представление о том, что происходит, можно сравнить электрическую ситуацию с течением воды в трубе.Напряжение представлено давлением воды в трубе, ток представлен количеством воды, протекающей по трубе, и, наконец, сопротивление равно размеру трубы.
Можно представить, что чем шире труба, тем больше воды будет течь. Причина этого в том, что большему количеству воды легче течь через более широкую трубу, чем через более узкую — более узкая труба оказывает большее сопротивление потоку воды. Также, если в e-трубе больше давления, то по той же трубе будет течь больше воды.
Ом определил, что для обычных материалов удвоение напряжения удваивает ток, протекающий для данного компонента. Различные материалы или одни и те же материалы с разной формой будут иметь разные уровни сопротивления току.
Определение закона Ома
Закон Ома гласит, что ток, протекающий в цепи, прямо пропорционален приложенной разности потенциалов и обратно пропорционален сопротивлению в цепи.
Другими словами, удвоив напряжение в цепи, удвоится и ток. Однако если сопротивление увеличится вдвое, ток упадет вдвое.
В этом математическом соотношении единица сопротивления измеряется в Ом.
Формула закона Ома
Формула или уравнение закона Ома очень проста.
Закон Ома можно выразить в математической форме:
Где:
В = напряжение, выраженное в вольтах
I = ток, выраженный в амперах
R = сопротивление, выраженное в омах
Формулой можно управлять так, чтобы, если известны любые две величины, можно было бы вычислить третью.
Треугольник закона Ома
Чтобы помочь запомнить формулу, можно использовать треугольник с одной стороной, горизонтальной, и вершиной наверху в виде пирамиды. Иногда это называют треугольником закона Ома.
В верхнем углу треугольника закона Ома находится буква V, в левом углу — буква I, а в правом нижнем углу — R.
Чтобы использовать треугольник, закройте неизвестное количество, а затем вычислите его из двух других. Если они выстроены в линию, они умножаются, но если один находится поверх другого, их следует разделить.Другими словами, если необходимо рассчитать ток, напряжение делится на сопротивление, то есть V / R и так далее.
Если необходимо рассчитать напряжение, оно определяется путем умножения силы тока на сопротивление, т. Е. I x R.
Пример расчета закона Ома
Если на резистор 500 Ом подается напряжение 10 В, определите величину тока, который будет течь.
Глядя на треугольник закона Ома, ток неизвестен, а напряжение и сопротивление остаются известными значениями.
Таким образом, ток определяется делением напряжения на сопротивление.
I = VR = 10500 = 0,02 A = 20 мА
Пример 2
Аналогичным образом можно использовать закон Ома для определения сопротивления, если известны ток и напряжение. Возьмем, например, напряжение 10 вольт, а ток 0,1 А. Используя треугольник закона Ома, можно увидеть, что:
Пример 3
Наконец, другая комбинация состоит в том, что если сопротивление и ток известны, то можно рассчитать ожидаемое напряжение на сопротивлении.Возьмем, к примеру, расстояние 250 Ом, через которое протекает ток 0,1 А, тогда напряжение можно рассчитать следующим образом:
V = I R = 0,1 × 250 = 25 вольт
Проводники омические и неомические
Используя закон Ома, можно увидеть, что если бы напряжение и ток были нанесены на график для фиксированного резистора или отрезка провода и т. Д., То была бы прямая линия.
Видно, что удвоение напряжения удваивает ток, который проходит через конкретный элемент схемы.
График напряжения и тока для линейного сопротивления
На графике есть две линии, одна для более высокого сопротивления — эта требует приложения большего напряжения для данного протекающего тока. Соответственно, у него должно быть более высокое сопротивление. И наоборот, кривая для более низкого сопротивления показывает компонент, который требует приложения более низкого напряжения для данного тока.
Компоненты, имеющие прямую или прямую линию, подчиняются закону Ома и известны как омические проводники.Однако не все электрические электронные компоненты имеют прямолинейный график для напряжения и тока. По разным причинам они могут иметь разные вольт-амперные характеристики. Эти проводники часто называют неомическими.
Закон Ома — одно из самых основных понятий в области электротехники и электроники. Концепция элемента, имеющего определенное сопротивление, которое определяет количество тока, протекающего через него при определенном напряжении, является ключом к работе практически всех цепей.
Другие основные концепции электроники:
Напряжение
Текущий
Мощность
Сопротивление
Емкость
Индуктивность
Трансформеры
Децибел, дБ
Законы Кирхгофа
Q, добротность
РЧ шум
Вернуться в меню «Основные понятия электроники». . .
Что такое закон Ома? — Определение из Техопедии
Что означает закон Ома?
Закон Ома устанавливает взаимосвязь между напряжением, током и сопротивлением.Согласно этому закону, количество электричества, проходящего через проводник между двумя точками в цепи, прямо пропорционально напряжению в этих двух точках при определенной температуре.
Ом выразил свою идею в виде простого уравнения E = IR, которое описывает взаимосвязь тока, напряжения, тока и сопротивления. Согласно этому алгебраическому выражению, напряжение (E) в двух точках равно току (I), умноженному на сопротивление (R).
Закон Ома — очень полезный и простой инструмент для анализа электрических цепей.Он широко используется при исследовании электрических цепей, резистивных цепей, электроники, гидравлических аналогий, реактивных цепей с изменяющимися во времени сигналами, линейных приближений, температурных эффектов и теплопроводности.
Техопедия объясняет закон Ома
Закон Ома открыл немецкий физик Георг Симон Ом. Закон был опубликован в его статье 1827 года «Математические исследования гальванической цепи».
Материал, подчиняющийся закону Ома, называется линейным или омическим, потому что разность потенциалов, измеренная между двумя точками, изменяется линейно с электрическим током.Густав Кирхгоф переформулировал закон Ома как J = sE, где J — плотность тока в данном месте в материале, имеющем сопротивление, E — электрическое поле в этом конкретном месте, а s — проводимость, которая является параметром, который зависит от материал.
Закон Ома обобщен после множества экспериментов с материалами, которые доказали прямую связь тока с электрическим полем, связанным с материалами. Закон Ома не всегда выполняется. Эксперименты показали, что некоторые материалы ведут себя неомическим образом при приложении к ним слабого электрического поля.Раньше считалось, что закон Ома не будет неудачным в атомном масштабе. Но позже исследователи доказали, что закон Ома применим для кремниевых проводов, ширина которых составляет всего четыре атома, а высота — всего один атом.
Определение закона Ома
| DeepAI
Что такое закон Ома?
Закон
Ома гласит, что ток через проводник в двух точках прямо пропорционален напряжению при постоянном сопротивлении. Закон назван в честь немецкого физика Георга Ома, эксперименты которого легли в основу его основы.Закон Ома представлен уравнением I = V / R, где I — ток в амперах, V — напряжение, измеренное между двумя точками проводника, а R — сопротивление, определенное в Ом. Закон гласит, что сопротивление остается постоянным, независимо от силы тока. Закон Ома используется как общий принцип для понимания проводимости материалов в изменяющемся диапазоне электрических токов. Материалы можно определить как омические или неомические, в зависимости от того, соответствуют ли они нормам закона.
Применение закона Ома
Закон Ома иногда приводится в качестве примеров и обозначается в нескольких вариантах. Например, закон Ома можно определить как:
I = V / R
В = ИК
R = V / I
Взаимозаменяемость определений иногда отображается в виде тройного треугольника с буквой V наверху и обозначениями I и R внизу. Взаимозаменяемое определение отображается как:
Эти различные определения часто встречаются в процессе анализа схем.Анализ цепи — это напряжения и токи через каждый компонент в сети. Каждый компонент можно определить как омический или неомический.
Закон Ома и линейные приближения
Закон Ома можно визуализировать с помощью линейных функций. Если компонент действительно омический, его сопротивление не увеличится, независимо от увеличения или уменьшения напряжения. Короче говоря, отношение V к I постоянно, что приводит к прямой линии на графике. Если компонент неомический, то построенная линия может изгибаться, представляя непостоянное соотношение между током и напряжением.На графиках ниже показаны различия между омическими и неомическими компонентами.
Автор Sbyrnes321 — Собственная работа, CC0, https://commons.wikimedia.org/w/index.php?curid=17718257
Закон
Ома: определение и взаимосвязь между напряжением, током и сопротивлением — видео и стенограмма урока
Закон Ома
Взаимосвязь между напряжением, током и сопротивлением описывается законом Ома . Это уравнение, i = v / r , говорит нам, что ток, i , протекающий по цепи, прямо пропорционален напряжению, v , и обратно пропорционален сопротивлению, r .Другими словами, если мы увеличим напряжение, то увеличится и ток. Но, если увеличить сопротивление, то ток уменьшится. Мы увидели эти концепции в действии с садовым шлангом. Увеличение давления привело к увеличению потока, но изгиб шланга увеличил сопротивление, что привело к уменьшению потока.
Как написано здесь уравнение, было бы легко использовать закон Ома, чтобы вычислить ток, если бы мы знали напряжение и сопротивление.Но что, если бы мы вместо этого захотели вычислить напряжение или сопротивление? Один из способов сделать это — переставить члены уравнения для решения других параметров, но есть более простой способ. Приведенная выше диаграмма даст нам соответствующее уравнение для решения любого неизвестного параметра без использования алгебры. Чтобы использовать эту диаграмму, мы просто закрываем параметр, который пытаемся найти, чтобы получить правильное уравнение. Это станет более понятным, когда мы начнем его использовать, поэтому давайте рассмотрим несколько примеров.
Закон Ома в действии
Ниже представлена простая электрическая схема, которую мы будем использовать для выполнения наших примеров. Наш источник напряжения — это аккумулятор, подключенный к лампочке, которая обеспечивает сопротивление электрическому току. Для начала предположим, что наша батарея имеет напряжение 10 вольт, электрическая лампочка имеет сопротивление 20 Ом, и нам нужно вычислить ток, протекающий по цепи. Используя нашу диаграмму, мы закрываем параметр, который мы пытаемся найти, то есть ток, или i , и это оставляет нам напряжение v над сопротивлением r .Другими словами, чтобы найти ток, нам нужно разделить напряжение на сопротивление. Делая математику, 10 вольт, разделенные на 20 Ом, дают половину ампера тока, протекающего в цепи.
Теперь давайте увеличим напряжение, чтобы посмотреть, что происходит с током. Мы будем использовать ту же лампочку, но перейдем на 20-вольтовую батарею.Используя то же уравнение, что и раньше, мы разделим 20 вольт на 20 Ом, и мы получим 1 ампер тока. Как мы видим, удвоение напряжения привело к удвоению и тока. Это имеет смысл, когда мы думаем о садовом шланге. Если бы мы увеличили давление в шланге, можно было бы ожидать, что поток воды также увеличится. Всегда полезно перепроверить свою работу, спросив, соответствуют ли результаты тому, что вы ожидали.
Если бы мы увеличили сопротивление лампочки, что бы вы ожидали, что произойдет с током? Чтобы выяснить это, давайте заменим нашу существующую лампочку на другую с сопротивлением 40 Ом.Поскольку мы все еще ищем ток, мы используем то же уравнение, что и раньше. Разделив 20 вольт на 40 Ом, мы получим половину ампера тока. Этот результат говорит нам, что удвоение сопротивления уменьшило ток вдвое. Вы этого ожидали? Если вернуться к нашему шлангу, логично предположить, что перегиб в шланге уменьшит поток воды, точно так же, как увеличение сопротивления в цепи уменьшит ток.
До сих пор мы только рассчитали ток в цепи, но что, если бы кто-то поменял нашу лампочку, когда мы не смотрели, и нам нужно было вычислить сопротивление новой? Что ж, мы знаем, что напряжение нашей батареи составляет 20 вольт, и мы можем измерить ток в цепи с помощью инструмента, называемого амперметром, так что все, что осталось, — это выполнить некоторые вычисления.Используя нашу диаграмму, мы скрываем параметр, который мы пытаемся найти, а именно сопротивление, r . Схема теперь показывает нам, что нам нужно разделить напряжение на ток. Если наш амперметр измерил ток в 5 ампер, протекающий по цепи, то сопротивление будет равно 20 вольт, разделенным на 5 ампер, что составляет 4 Ом
Наконец, представьте, что кто-то заменил нашу батарею, и нам нужно выяснить ее напряжение.Процесс почти такой же. Мы знаем, что наша новая лампочка имеет сопротивление 4 Ом, и мы можем измерить ток в цепи с помощью амперметра. Используя диаграмму, мы покрываем напряжение v , которое говорит нам, что нам нужно умножить ток на сопротивление. Если бы амперметр измерил ток в 3 ампера, тогда напряжение было бы 3 ампера, умноженным на 4 Ом, что составляет 12 вольт. Вот и все. Зная любые два из трех параметров, мы всегда можем вычислить третий, используя закон Ома.
Резюме урока
Закон Ома определяет соотношение между напряжением, током и сопротивлением в электрической цепи: i = v / r . Ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Это означает, что увеличение напряжения приведет к увеличению тока, а увеличение сопротивления приведет к уменьшению тока. Зная любые два из трех параметров, мы можем вычислить третий, неизвестный параметр.Мы можем сделать это, переставив члены в уравнении закона Ома или используя диаграмму, приведенную выше в уроке. Скрытие параметра, который мы пытаемся найти, показывает нам соответствующее уравнение с использованием двух известных параметров.
Результаты обучения
По завершении этого урока вы сможете:
- Описывать взаимосвязь между напряжением, током и сопротивлением, используя закон Ома
- Напишите уравнение закона Ома
- Объясните, как можно найти любую из трех переменных в уравнении закона Ома, если вы знаете две другие
- Рассчитайте любую из трех переменных, используя уравнение закона Ома
Определение закона Ома в физике.
Примеры закона Ома в следующих темах:
Закон Ома
- Это важное соотношение известно как закон Ома .
- Это соотношение также называется законом Ома .
- Закон Ома (как и закон Гука ) не является универсальным.
- Многие вещества, для которых действует закон Ома , называются омическими.
- Два других устройства не подчиняются закону Ома .
Измерения тока и напряжения в цепях
- Согласно закону Ома , электрический ток I или движение заряда, протекающее через большинство веществ, прямо пропорционально приложенному к нему напряжению V.
- Закон Ома Следовательно, можно записать следующим образом:
- В частности, закон Ома утверждает, что R в этом отношении является постоянным, не зависящим от тока.
- Чтобы решить эту проблему, мы просто подставим указанные значения в закон Ом : I = 1,5 В / 5 Ом; I = 0,3 ампера.
- Если мы знаем ток и сопротивление, мы можем переставить уравнение Ома закон и решить для напряжения V:
Резисторы в цепях переменного тока
- В цепи с резистором и источником питания переменного тока все еще применяется закон Ома (V = IR).
- Закон Ома применяется как к цепям переменного тока, так и к цепям постоянного тока.
- Примените закон Ома для определения силы тока и напряжения в цепи переменного тока
Конденсаторы в цепях переменного тока: емкостное сопротивление и фазовые диаграммы
- Там мы использовали закон Ом (V = IR), чтобы получить соотношение между напряжением и током в цепях переменного тока.
- В этом и последующих Атомах мы обобщим закон для Ом, , , чтобы мы могли использовать его, даже если в цепи есть конденсаторы и катушки индуктивности.
- Поскольку это по-прежнему напряжение, деленное на ток (например, сопротивление), его единицей является Ом .
- Считается, что это эффективное сопротивление конденсатора переменному току, поэтому среднеквадратичный ток Irms в цепи, содержащей только конденсатор C, определяется другой версией закона Ома как $ I_ {rms} = \ frac {V_ {rms}} {X_C} $, где Vrms — действующее значение напряжения.
- Обратите внимание, что XC заменяет R в версии DC закона Ома .
Резисторы серии
- Использование закона Ома для расчета изменений напряжения в резисторах серии
- В соответствии с законом Ома, падение напряжения V на резисторе при протекании через него тока рассчитывается по формуле V = IR, где I — ток в амперах (A), а R — сопротивление в Ом (Ом).
- Краткое введение в анализ последовательной цепи и анализа последовательной цепи, включая Закон Кирхгофа по току (KCL) и Закон по напряжению Кирхгофа (KVL).
Параллельные резисторы
- Согласно закону Ома, токи, протекающие через отдельные резисторы, равны $ I_1 = \ frac {V} {R_1} $, $ I_2 = \ frac {V} {R_2} $ и $ I_3 = \ frac {V} {R_3} $.
- Цепь серии
RLC: на больших и малых частотах; Фазорная диаграмма
- Объединив закон Ом (Irms = Vrms / Z; Irms и Vrms — среднеквадратичные ток и напряжение) и выражение для импеданса Z из:
- Этот отклик имеет смысл, потому что на высоких частотах закон Ленца предполагает, что полное сопротивление катушки индуктивности будет большим.
Различные типы токов
- Ряд законов по электричеству применяется ко всем электрическим сетям.
- К ним относятся закон Ома , который обсуждался в модуле «Сопротивление и резисторы», законы тока и напряжения Кирхгофа , которые рассматриваются в модуле «Правила Кирхгофа».
- Два закона Кирхгофа вместе с вольт-амперной характеристикой (ВАХ) каждого электрического элемента полностью описывают цепь.
- Ток i, протекающий по цепи, определяется законом Ома .
Дроссели в цепях переменного тока: индуктивно-реактивные и фазовые диаграммы
- В цепи переменного тока с катушкой индуктивности напряжение на катушке индуктивности «ведет» ток в соответствии с законом Ленца .
- Среднеквадратичное значение тока Irms через индуктор L определяется версией закона Ом: $ I_ {rms} = \ frac {V_ {rms}} {X_L} $, где Vrms — среднеквадратичное напряжение на индукторе, а $ X_L = 2 \ pi \ nu L $, где $ \ nu $ — частота источника переменного напряжения в герцах.
- Поскольку катушка индуктивности препятствует прохождению тока, XL имеет единицы измерения Ом (1 H = 1 Ωs, так что частота, умноженная на индуктивность, имеет единицы (циклов / s) (Ωs) = Ω), что соответствует его роли в качестве эффективное сопротивление.
- Напряжение на катушке индуктивности «ведет» ток в соответствии с законом Ленца .
Введение и значение
- Схема Кирхгофа законы — это два уравнения, впервые опубликованные Густавом Кирхгофом в 1845 году.
- Кирхгоф, скорее, использовал работу Георга Ома в качестве основы для действующего закона Кирхгофа (KCL) и закона Кирхгофа напряжения (KVL).
- Закон Кирхгофа чрезвычайно важны для анализа замкнутых цепей.
- В заключение, законы Кирхгофа зависят от определенных условий.
- Закон напряжения является упрощением закона индукции Фарадея и основан на предположении, что в замкнутом контуре нет флуктуирующего магнитного поля.
Закон Ома
| Определение | Формула | Приложения
Определение закона Ома
Закон Ома гласит, что ток в электрической цепи пропорционален приложенному напряжению и обратно пропорционален его сопротивлению.
По мере увеличения напряжения в цепи (сопротивление остается постоянным) ток увеличивается на ту же величину. Следовательно, если напряжение удвоится, ток удвоится. Кроме того, величина тока в цепи обратно пропорциональна ее сопротивлению, когда напряжение остается неизменным.
Другими словами, если сопротивление в цепи увеличивается, величина тока уменьшается. Например, если сопротивление увеличивается в три раза, ток будет уменьшен до одной трети от своего первоначального значения (напряжение остается постоянным).
Формула закона Ома
Закон Ома удобно выразить следующим простым уравнением:
$ I (ампер) = \ frac {E \ text {} (вольт)} {R \ text {} (Ом )} \ text {} \ cdots \ text {} (1) $
С помощью простой алгебры уравнение (1) можно переформулировать в терминах сопротивления или напряжения следующим образом:
$ R = \ frac {E \ text { }} {I} \ text {} \ cdots \ text {} (2) $
$ E = IR \ text {} \ cdots \ text {(3)} $
Вот еще один способ выражения закона Ома:
Электрическое давление в один вольт на сопротивлении в один ом вызовет протекание тока в один ампер.
Закон Ома и нелинейные резисторы
Поскольку R является постоянным, уравнение (3) является уравнением прямой линии, по этой причине резистор называется линейным резистором. График зависимости v от I показан на рисунке 1, который представляет собой линию, проходящую через начало координат с наклоном R. Очевидно, что прямая линия — единственный возможный график, для которого отношение v к I является постоянным для всех i.
Рис.1: вольт-амперная характеристика линейного резистора
Резисторы, сопротивление которых не остается постоянным при различных токах на клеммах, известны как нелинейные резисторы.Для такого резистора сопротивление является функцией тока, протекающего в устройстве. Простым примером нелинейного резистора является лампа накаливания. Типичная вольт-амперная характеристика для этого устройства показана на рисунке 2, где мы видим, что график больше не является прямой линией. Поскольку R не является константой, анализ схемы, содержащей нелинейные резисторы, более труден.
Рис. 2: типичная вольт-амперная характеристика нелинейного резистора
На самом деле все практические резисторы нелинейны, потому что на электрические характеристики всех проводников влияют факторы окружающей среды, такие как температура.Однако многие материалы очень близки к идеальному линейному резистору в желаемой рабочей области.
Закон Ома: решение для тока
Простая электрическая цепь показана в графической форме на рисунке 3, так что вы можете увидеть физическое соотношение между несколькими компонентами. Вообще говоря, в работе с электроникой используются принципиальные схемы, а не графические схемы. Диаграмма, показанная на рисунке 4, схематически представляет собой графическое изображение на рисунке 3.
Рис.3: Графическая схема простой электрической цепи
Рис. 4: Принципиальная схема последовательной цепи
Соблюдайте полярность соединений амперметра на рисунке 4. Обратите внимание, что положительный полюс амперметра соединяется с положительным полюсом батареи , в то время как отрицательная клемма подключается к резистору: также обратите внимание, что амперметр подключен последовательно с резистором, так что весь ток в цепи должен проходить через него. Поскольку амперметры имеют очень низкое сопротивление, они существенно не увеличивают сопротивление цепи.Если бы амперметр был случайно подключен параллельно (параллельно) батарее или резистору, на мгновение протек бы очень большой ток, который, вероятно, повредил бы измеритель.
К аккумулятору подключен вольтметр для измерения напряжения аккумулятора. Поскольку вольтметры обычно представляют собой приборы с очень высоким сопротивлением, они не потребляют значительного количества тока от батареи. Соблюдайте полярность подключения вольтметра. Положительный вывод подключается к положительной клемме аккумулятора, а отрицательный вывод подключается к отрицательной клемме аккумулятора.Следует помнить очень важное правило: вольтметры всегда подключаются параллельно источнику напряжения или нагрузке, а амперметры всегда подключаются последовательно с цепью или нагрузкой.
Вот пример, иллюстрирующий, как можно использовать закон Ома для определения тока в последовательной цепи.
Закон Ома Пример 1
Определить ток в простой последовательной цепи, показанной на рисунке 4, по предоставленной информации?
Решение
Используйте формулу закона Ома для определения силы тока:
$ I \ text {=} \ frac {E \ text {}} {R} $
Подставьте известные значения в формулу:
$ I = \ frac {12 \ text {}} {3} = 4A $
Таким образом, 12 В, подключенное через сопротивление 3 Ом, дает ток 4 А через резистор.В этом случае амперметр покажет 4А.
Закон Ома: определение сопротивления
Сопротивление электрической цепи может быть легко определено с помощью формулы закона Ома, приведенной ранее, и решения для сопротивления следующим образом:
$ R = \ frac {E \ text { }} {I} \ text {} $
Эта формула говорит нам, что сопротивление в цепи обратно пропорционально величине тока. Если ток небольшой, сопротивление цепи должно быть большим, если предполагается, что напряжение остается постоянным.Следующий пример иллюстрирует использование этой формулы:
Закон Ома Пример 2
Ссылаясь на рисунок 5, определите омическое значение сопротивления нагрузки RL по приведенным данным.
Рис.5: Определение сопротивления в последовательной цепи
Решение
Используйте уравнение (2) и подставьте известные значения:
$ {{R} _ {L}} = \ frac {E \ text {}} {I} \ text {=} \ frac {10} {2} \ text {= 5} \ Omega \ text {} $
Цепь будет считаться схемой с относительно низким сопротивлением, поскольку ток 2А протекает только с Подано 10 В.
Закон Ома: решение для напряжения
Если сопротивление и ток цепи известны, легко вычислить величину приложенного напряжения. Мы используем формулу закона Ома и решаем для напряжения:
$ E = IR \ text {} $
Из этой формулы мы видим, что напряжение является произведением тока и сопротивления. Падение напряжения на сопротивлении или цепи будет напрямую зависеть от тока или сопротивления. Например, если ток через резистор удвоится, падение напряжения (IR-падение) удвоится.Или, если ток можно поддерживать на заданном уровне, но сопротивление удваивается, падение напряжения удваивается. В следующем примере показано, как рассчитать падение напряжения или IR.
Закон Ома Пример 3
Определите значение напряжения питания в цепи, показанной на рисунке 5, по предоставленной информации.
Рис.6: Расчет E, когда известны R и I
Решение
$ E = IR = 2 * 50 = 100 В $
Следовательно, из примера мы видим, что для этого требуется питание 100 В. подайте ток 2А через резистор 50 Ом.Можно сказать, что падение напряжения на резисторе составляет 100 В, то же самое, что и на питании. На амперметре не происходит падения ИК-излучения, поскольку его сопротивление принято равным нулю для всех практических целей.
Графическое представление закона Ома
Ранее мы узнали, что ток в цепи прямо пропорционален приложенному напряжению и обратно пропорционален сопротивлению. Если напряжение увеличится вдвое, ток увеличится в два раза при условии, что сопротивление останется постоянным.Эта линейная зависимость показана верхней диагональной прямой линией на рисунке 7, которая представляет собой график уравнения I = V / R для сопротивления 20 Ом. Обратите внимание, что напряжение отложено по горизонтальной оси, а ток — по вертикальной оси.
Рис. 7: Линейная зависимость между током и напряжением в цепи постоянного сопротивления
Если бы мы приняли сопротивление нагрузки 40, а не 20 Ом, результатом была бы диагональная линия R = 40 Ом. Если использовалось сопротивление менее 20 Ом, результирующая линия была бы круче, чем линия для нагрузки 20 Ом.Кривые на рисунке 7 показывают прямую пропорциональность между напряжением и током для различных значений сопротивления нагрузки.
Закон Ома Память AID
Закон Ома можно легко запомнить с помощью простого вспомогательного средства запоминания, показанного на рисунке 8. Закрыв одну из букв, вы получите расположение двух других в правой части формула определения стоимости перепечатанного письма.
- При наведении пальца на I дает E / R, указывая, что I = E / R.
- Закрытие буквы E оставляет IR, указывая, что E является продуктом IR.
- Точно так же, если R покрывается, E / I остается, что означает, что R равно E, деленному на I.
Рис.8: Вспомогательное средство для изучения закона Ома
Применение закона Ома
- Закон Ома полезен в линейных цепях для расчета напряжения, тока и сопротивления. Если мы знаем два из них
- Расчет мощности становится проще.
https: // www.youtube.com/watch?v=OGI-065RhFo
Проверьте свое понимание; ответьте на эти контрольные вопросы.
- Какова основная формула закона Ома? Каковы два вывода этой формулы?
- Какой ток течет в цепи с сопротивлением 100 В и сопротивлением 1000 Ом?
- Какое напряжение требуется для получения тока 2 А через 60 Ом?
- Какое сопротивление ограничит ток до 4 А в цепи с питанием 200 В?
- Сопротивление цепи остается прежним, но ток через резистор внезапно увеличивается втрое.