26.06.2024

Что является заземляющим контуром: Вопрос: Что является заземляющим контуром? : Смотреть ответ

Содержание

как работает контур, зачем заземлять объекты, защитное и рабочее

Как бытовые приборы, так и мощные заводские агрегаты являются электропотребителями. Их использование должно быть не только удобным, но и безопасным. Именно поэтому любые электрические сети, или потребители, должны иметь заземление — оно помогает не только защитить электроустановку от поломки, но иногда и спасти человеческую жизнь.

Устройства заземления и их виды

Одним из главных элементов электрических сетей является заземление.

Профессиональное определение заземления гласит, что это преднамеренное электросоединение сети, оборудования или электроустановки с заземляющим устройством, которое позволяет обеспечить защиту человека и животных от опасных токов прикосновения, снижающихся заземлением.

В простых словах, это проводник, соединённый с одной стороны с частями оборудования, которые не должны находиться под напряжением, а с другой — с элементом, выполняющим функцию заземлителя. В случае когда корпус непредвиденно попадает под напряжение, такая система отводит токи в землю, а прикоснувшийся к прибору человек не получит повреждений.

В зависимости от назначения, существуют два вида контуров заземления: защитный и рабочий. Каждый из них несёт определённую функцию. Защитное заземление предназначено для защиты людей от поражения электрическим током. Рабочее же обеспечивает безопасное функционирование оборудования, хотя в некоторых случаях способно выполнять роль защитного.

Заземлитель чаще выполняется из трёх железных прутов, полностью вбитых в почву и соединенных между собой металлическими полосами, в виде треугольника с равными сторонами. А чтобы от заземлителя не приходилось тянуть заземляющий проводник к каждой установке, используют аналогичные полосы, выполняющие роль шины, которая проходит по всему зданию или сооружению — уже от неё можно подключать заземления к оборудованию.

От шины до потребителя проходит проводник, значительно меньший по сечению, нежели рабочие кабели, и маркированный жёлтым или жёлто-зелёным цветом. Он подключается к корпусам электроустановок или к клеммам, которые впоследствии будут соединены через вилку с заземляющим проводом электроприбора.

Защитный заземляющий контур

В случае пробоя защитное заземление вполне способно выполнить роль рабочего, а также может спасти оборудование при попадании молнии — естественно, если существует громоотвод. Однако основная задача защитного контура заключается всё же в защите людей от повреждения электрическим током.

Рабочее, или функциональное заземление

Рабочее заземление часто называют функциональным, и предназначено оно в первую очередь для защиты и сохранения работоспособности оборудования. Преимущественно оно используется для трёхфазных сетей и рассчитано на понижение напряжения до безопасных величин в случае пробоя на корпус. Это позволяет сохранить оборудование и приборы, не нарушив их функциональность.

Если таким образом заземлено оборудование с напряжением до 1 кВ, то необходимо использовать изолированную нейтраль. Если значение напряжения выше 1 кВ, то нейтраль допускается любая.

При необходимости функциональное заземление способно выполнять роль защитного. Таким образом, при правильно работающем заземлении ток или напряжение становятся безопасными для человеческой жизни.

Требования безопасности

Так как заземление выполняет важную роль в обеспечении безопасности, она должна соответствовать определённым требованиям, которые оговорены в ПУЭ:

  • Заземлению подвергаются все без исключения электроустановки, включая дверцы электрощитов и шкафов.
  • Заземляющее устройство не должно превышать 4 Ом с заземляющей нейтралью.
  • Обязательно применение систем уравнивания потенциалов.

Относиться к требованиям ПУЭ нужно со всей серьёзностью, так как это может спасти жизнь, в случае опасности. Ведь удар электрическим током, за счёт слишком низкого сопротивления подошвы обуви и пола, является смертельно опасным.

Причины удара током

Человека может ударить электрическим током в самых обычных повседневных ситуациях:

  1. Во время работы стиральной машинки иногда можно почувствовать лёгкое пощипывание. Иногда удары могут быть значительно сильнее. Это и есть воздействие электричества на человека.
  2. Находясь в ванной и дотронувшись до металлических частей крана, можно ощутить слабое пощипывание и даже сильные мурашки внутри пальцев.

В обоих случаях незаземлённые предметы могут пропускать через себя ток, то есть заряженные частицы, которые, в зависимости от силы и напряжения, могут проявляться в виде покалывания или сильных ударов, сопровождающихся мышечными судорогами.

Понятно, что это крайне опасно — в крайних случаях от удара током возможны паралич и остановка сердца. Однако избежать подобных инцидентов можно достаточно просто — заземлив ванную или машинку. В таком случае ток, попавший на корпус, будет уходить по заземляющему проводнику в землю.

Как действуют заземлители

Почему же ток уходит в землю по заземляющему контуру?

В качестве «подопытного» можно взять всё ту же стиральную машинку. Со временем любой провод может надломиться, потерять изоляцию или получить пробой на корпус из-за микротрещины. Рано или поздно ток начнёт попадать на металлическое основание прибора.

Если не трогать машинку, то человеку ничего не угрожает. Но стоит прикоснуться к корпусу, и, в случае отсутствия заземления, можно почувствовать всю мощь электричества на себе.

А всё дело в том, что несмотря на обувь и пол, человеческое тело имеет (хоть и малый) контакт с землёй. Следовательно, не имея заземляющего провода, ток будет проходить через человека и уходить в землю. А так как фазный провод имеет потенциал выше земельного, то тело становится отличным проводником с собственным сопротивлением. В итоге проходящий через нас ток вызывает те же физические свойства, что и в любом другом проводнике.

Наличие заземления, а для надёжности — еще и установка УЗО, заставляет опасный потенциал притягиваться к безопасному потенциалу земли. В результате напряжение перетекает прямо в заземлитель.

Применение УЗО и дифавтоматов

Заземляющие системы вполне способны справиться со своей задачей — защитить человека или оборудование. Но, являясь простыми проводниками, они могут повреждаться и переставать выполнять свою функцию.

В качестве дополнительной защиты и подстраховки принято использовать УЗО, или дифавтоматы. УЗО расшифровывается как устройство защитного отключения, а дифавтомат — как дифференциальный автоматический выключатель. По сути, это УЗО и простой автомат в одном корпусе, что заметно снижает занимаемое защитным оборудованием место в распределительном шкафу или щитке.

УЗО реагирует на ток утечки. То есть если оно заметит, что часть электричества уходит на землю, то сразу же сработает, отключив поступление питания, обезопасив всю линию. В зависимости от чувствительности, установленной производителем, срабатывать УЗО может по-разному:

  • Слишком чувствительное и срабатывать будет часто, даже при минимальной утечке, что не всегда удобно.
  • Чересчур грубое УЗО нужно устанавливать лишь когда это целесообразно, так как оно может не сработать в нужный момент.

Исходя из условий использования, составляется проект, согласно которому и нужно подбирать защитные устройства.

УЗО спасёт жизнь человеку, даже если отсутствует заземление — оно мгновенно сработает, если человек дотронется до части прибора, находящейся под напряжением.

Контур заземления | Заметки электрика

Здравствуйте, дорогие гости сайта «Заметки электрика».

Сегодня я расскажу Вам про контур заземления, для чего он необходим и как правильно выполнить его монтаж своими руками.

Покупая дачные участки для строительства домов и коттеджей, мы должны получить разрешение от энергоснабжающей организации на присоединение определенной мощности. И на данном этапе практически у всех возникает проблема с электромонтажом контура заземления, т.к. в технических условиях на электроснабжение дома он обязателен.

Также он необходим при реконструкции старой электропроводки. Более подробно об организации электропроводки в своем доме читайте в статье: электропроводка в деревянном доме.

Что такое контур заземления?

Для начала давайте разберемся, что такое заземление?

Заземление — это ЗУ (заземляющее устройство), предназначенное для электрического соединения с «землей» различных заземляемых частей электрооборудования.

Для каждой системы заземления (TN-C, TN-C-S, TN-S, TT и IT) существуют свои требования к сопротивлению заземляющего устройства (переходите по ссылкам соответствующих систем заземления и знакомьтесь).

Сопротивление ЗУ очень сильно зависит от:

  • типа грунта
  • структуры грунта
  • состояния грунта
  • глубины залегания электродов
  • количества электродов
  • свойств электродов

Контур заземления — это и есть, соединенные между собой, горизонтальные и вертикальные электроды, которые заложены на определенной глубине в грунте Вашего участка.

Все вышеописанные свойства грунта определяются его сопротивлением растекания тока. И чем это сопротивление меньше, тем лучше для монтажа контура заземления.

Грунты, идеально подходящие для монтажа контура заземления:

  • торф
  • суглинок
  • глина с высокой влажностью

Грунты, подходящие для монтажа контура заземления

Грунты, не подходящие для монтажа контура заземления:

Грунты, не подходящие для монтажа контура заземления

В зависимости от условий окружающей среды, даже один и тот же тип грунта может иметь разные свойства.

Поэтому производить монтаж контура заземления необходимо осознанно, а выбор количества и длины заземляющих электродов рассматривать по конкретному случаю.

В данной статье я опишу Вам самый распространенный и простой способ монтажа контура заземления. Существуют и более современные способы, например, модульно-штырьевая система заземления. Но к ним мы вернемся в других моих статьях. Чтобы не пропустить новые выпуски статей, подпишитесь.

 

Подготовка

Выбираем место для установки и монтажа заземляющего устройства.

Рекомендую выбирать место для заземления вблизи вводного распределительного устройства (сборки) Вашего дома. 

Согласно ПУЭ (п.1.7.111), искусственные вертикальные и горизонтальные заземлители (электроды) должны быть либо медными, либо из черной или оцинкованной стали. Также их поверхность не должна быть окрашена.

Вот таблица (ПУЭ, табл.1.7.4) рекомендуемых размеров вертикальных и горизонтальных заземлителей (электродов) и заземляющих проводников для прокладки в земле:

В качестве вертикальных и горизонтальных заземлителей (электродов) мы используем:

  • стальной уголок размером 50х50х5 (мм) с поперечным сечением 480 (кв. мм)
  • стальную полосу размером 40х4 (мм) с поперечным сечением 160 (кв.мм)

Материалы для контура заземления

Вот мои заготовки материала для монтажа контура заземления для повторного заземления PEN-проводника жилого многоквартирного дома и дальнейшего его разделения: на защитный проводник РЕ и нулевой рабочий проводник N.

 

Монтаж контура заземления

Теперь нам необходимо взять лопату и выкопать траншею в виде треугольника с размерами (3 х 3 х 3) метра. Можно выкопать траншею в виде прямой линии длиной порядка 4-5 метров. Последнее время мы именно так и делаем.

Ширина траншеи составляет 0,3-0,5 метра, а глубина 0,5-0,8 метра.

Траншея для контура заземления

В вершины данного треугольника забиваем кувалдой стальной уголок (вертикальные заземлители) длиной 2,5-3 метра. Вместо кувалды можно использовать специальные буры. Если траншея у Вас выкопана в виде прямой линии, то забиваем вертикальные электроды в количестве 4-5 штук через каждый метр.

Чтобы легче забивать стальные уголки в землю, заострите их концы болгаркой.

Забиваем стальные уголки (вертикальные электроды) не полностью, а оставляем около 20 (см). Затем с помощью сварочного аппарата привариваем к нашим стальным уголкам по периметру треугольника или прямой линии горизонтальную стальную полосу, идущую в силовой электрический щиток на шину РЕ (ГЗШ).

Проводник, который соединяет заземляющее устройство с заземляющей частью электроустановки (вводным распределительным устройством или сборкой), называется заземляющим.

В нашем примере в качестве заземляющего проводника применяется стальная полоса размерами 40 х 4 (мм), что удовлетворяет требованиям ПУЭ.

В итоге у нас получается вот такая конструкция (схема). Кстати забыл сказать, что места сварки нужно обработать антикоррозийным составом, например, битумом, а траншею закопать однородным грунтом.

Далее стальную полосу прокладываем до шины РЕ (ГЗШ). Вот фотография для наглядности.

Можно сделать и по-другому, воспользовавшись ПУЭ, п.1.7.117. Выводим из земли горизонтальный заземляющий проводник в виде стальной полосы, а к нему с помощью болтового соединения подключаем проводник, который прокладываем до шины РЕ (ГЗШ):

  • медный сечением не менее 10 кв.мм
  • алюминиевый сечением не менее 16 кв.мм
  • стальной сечением не менее 75 кв.мм

Я использовал заземляющий проводник из медной шины.

Окончание работ

После монтажа необходимо произвести замер его сопротивления. Как сделать это самостоятельно — читайте в статье замер контура заземления (заземляющего устройства).

P.S. В завершении хотелось бы Вам напомнить, что правильное и качественное заземление является Вашей защитой от поражения электрическим током.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Как правильно сделать контур заземления в частном доме своими руками


Мечтая о беззаботной жизни в уютном частном доме, многие совершенно забывают о банальных мерах безопасности. Это касается не только охранных систем, но и более важных конструкций, таких как громоотвод и заземление.


Главная проблема в том, что эти вещи кажутся обыденными, или наоборот абсолютно ненужными. Большинство новоиспеченных владельцев частных домов абсолютно не уделяют внимание этому вопросу, сталкиваясь с регулярными поломками бытовой техники и электроники.


Организация правильного заземления в электросети частного дома — это не потребность, это необходимость. Такая система позволяет обезопасить процесс пользования бытовыми электроприборами, и в то же время уберечь вас от колоссальных трат в случае их поломки из-за коротких замыканий и скачков напряжения.



Хотя сами контуры представляют собой вполне понятные конструкции, есть очень много нюансов, включая расчетные требования под каждый вид жилых домов. Именно поэтому мы вам расскажем не только как правильно сделать контур заземления, но и как выполнить расчеты, подготовиться к процедуре материально, подобрать необходимый инструмент.

Особенности и принципы работы заземления


Предназначение и задачи контура заземления вполне способны охарактеризовать и саму конструкцию.


Заземление — это соединение из всех элементов и «участников» электросети с заземляющим контуром, позволяющим при возникновении токов утечки безопасно отвести их в землю.


Повреждение изоляции, короткие замыкания, и практически любые другие неприятности, которые только могут возникнуть в процессе эксплуатации приборов, могут быть нивелированы за счет правильно смонтированного контура заземления.


Простыми словами — при повреждениях электропроводки электрический тока не причинит вреда вам и вашим близким.


Главная опасность коротких замыканий в том, что они не только выводят из строя электроприборы, весь накопившийся потенциал при первой же возможности будет передан проводнику, которым в случае прикосновения к оголенным проводам является именно человек. Заземление и призвано взять на себя задачу по безопасному отводу электричества в грунт при поломках в электросети.


Нужно ли вообще заземление в частных домах


Как и говорилось выше, заземляющий контур является отличной мерой безопасности для домовладельцев. Но действительно ли нужно заземление в частных домах? Сейчас всё объясним как с точки зрения безопасности, так и исходя из требований законодательных актов.


Заземление не является идеальным средством защиты от поражения электрическим током, поскольку не все конструкции способы отвести большое количество энергии практически мгновенно. Несмотря на это, даже уменьшение накопленного потенциала позволяет существенно снизить силу поражения электрическим током. В критических ситуациях это позволяет избежать массы неприятностей, включая летальный исход.


Кроме практической необходимости, стоит учесть и требования законодательных норм, которые вполне понятны и прозрачны.


Согласно ГОСТ, СНиП и ПУЭ все жилые помещения обязаны быть оборудованными подобными системами защиты. Нижним порогом в требованиях для монтажа таких контуров является электроснабжение переменным током от 100 Вольт и более 40 Вт.


Таким образом 90% всех бытовых сетей в нашей стране должны оборудоваться подобными узлами для обеспечения защиты домовладельцев от травматизма.


Также контур заземления является одной из эффективных мер пожарной безопасности. Небольшие очаги возгорания, или большие пожары, приносят намного больше убытков, чем стоимость установки заземления, поэтому стоит обязательно оборудовать собственный дом подобной конструкции.


Интересный факт — отсутствие заземления в частном доме может негативно сказываться на качестве мобильной связи. Незаземленная электросеть создает массу помех для практически любой электроники, поэтому многие задаются этим вопросом лишь после того, как сталкиваются с помехами в работе оборудования.


Также стоит учесть — хотя система заземления и громоотвод имеют схожие принципы действия, контуры этих систем ни в коем случае не должны кольцеваться. В случае с ударом молнии, такой ход может привести к еще более негативным последствиям. Мощнейший электрический разряд попросту уничтожит всю электронику, а также в результате способен создать очаг возгорания внутри или снаружи дома.

Правила, нормы и базовые требования ПУЭ


Настало время познакомиться с основными требованиями к системам заземления в частных домах. Главный параметр — сопротивление контура, которое определяет надежность и эффективность системы.


Чем меньше сопротивление заземляющих устройств — тем выше их надежность.


Закон Ома гласит — сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.


Таким образом чем меньше сопротивлении, тем больше вероятность срабатывания заземляющего контура.


Для большинства жилых домов с электросетями 380В и 220В, сопротивление не должно превышать 30 Ом. При этом если дом оснащен газовым котлом, то сопротивление не должно превышать уже 10 Ом.


Правила Устройства Электроустановок (ПУЭ) определяют, что каждый жилой объект в черте города обязан оснащаться специальными мерами защиты от опасных напряжений. Речь идет именно о металлических контурах заземления, которые гарантируют защиту проживающих от поражения током.


Глава 1.7, часть 1, пункт 1.7.72 ПЭУ гласит — размеры металлических элементов подбираются с учетом окончательного показателя сопротивления (упоминалось выше), при этом параметры каждого элемента конструкции могут отличаться по своим характеристикам.


Минимальные требования к размерам всё же жестко определены:

  • Соединительная полоса — не менее 12×4 мм (сечение не менее 48 кв.мм).
  • Штыри (металлический уголок) — толщина металла не менее 4 мм.
  • Круглые арматурные штыри — площадь сечения не менее 10 кв.мм.
  • Металлические трубы — толщина стенки не менее 3,5 мм.


На первый взгляд вся эта информация может показаться слишком сложной и даже ненужной. Тем не менее данные о характеристиках заземляющего контура и используемом на участке оборудовании позволит защитить жильцов и животных, предотвратив перегрузку сетей.

Технические требования к сопротивлению заземляющих контуров


С теорией разобрались, можно переходить и разбору технической составляющей данного вопроса. Для частных домов предварительно стоит изучить главу 1.7 ПЭУ, которая регламентирует монтаж контуров заземления в сетях до 1000В. Именно в эту категорию входят все жилые частные дома, поэтому при подборе компонентов нужно руководствоваться именно этим стандартом.


В соответствии с этим документом сопротивление может достигать нескольких показателей:

  • До 0. 5 Ом для электроустановок напряжением свыше 1000 Вольт с большими токами замыкания на землю (более 500 А).
  • До 4 Ом для установок до 1000 Вольт (нужная нам категория частных домов, дач, коттеджей).
  • Не более 10 Ом для электроустановок с напряжением свыше 1000 В и маленькими токами замыкания на землю.
  • Не более 10 Ом, если общая суммарная мощность электроустановок не превышает 100 кВА.


Вот так и выглядит нормативная документация, позволяющая подобрать правильные параметры контуров заземления при подборе материалов и компонентов для их монтажа. Теперь же перейдем к изучению сами конструкций, позволяющих эффективно отводить большие токи замыкания в землю.

Разновидности контуров и схемы заземления


Скорость отвода тока в землю напрямую зависит от эффективности самой системы. Заземления конструктивно очень схожи с громоотводами, поскольку выполняют одну и ту же задачу, но это касается и технической составляющей.


Чем больше электродов будут одновременно отводить электрический заряд, тем меньше времени потребуется для этого.


Существует три типа заземления:

  • Модульно-штыревая — наиболее простой вид контуров, представляющий собой аналог громоотвода в виде одиночного электрода, уходящего вглубь земли. Из-за малой эффективности и узкого применения из-за отличий в твердости грунтов, практически не применяется. Несмотря на это, данный вариант намного эффективнее, чем полное отсутствие заземления в доме или на даче.
  • Линейный — компромиссное решение, поскольку эффективность разомкнутого контура значительно ниже замкнутых. Тем не менее в случае отсутствия необходимого количества пространства, линейный контур может здорово спасти ситуацию. Технически он представляет цепочку электродов, расположенных на одной линии, или по кругу на расстоянии 1-1,5 единицы относительно длины электрода. Для большей эффективности придется увеличить точек отвода.
  • Замкнутый контур (треугольник) — наиболее эффективный метод защиты от замыканий и перепадов напряжения в сети. Замкнутый треугольник позволяет быстро и эффективно отвести большой ток утечки без необходимости углубления электродов на большую глубину. Жесткое соединение штырей позволяет существенно повысить качество и эффективность контура, при этом схема позволяет существенно снизить затраты на установку.


Давайте разберем именно последний вариант, поскольку рекомендуется использовать именно этот вариант в частных жилых домах, дачах или коттеджах.


Конструкция достаточно проста, вам понадобится:

  • Три заостренных прута равной длины — 2-3 метра.
  • Три соединительных полосы равной длины — 1,2-1,5 метра.


Эти компоненты соединяются в равноугольный треугольник, из каждой вершины которого отходит по одному штырю. Для соединения лучше всего использовать электросварку, которая превратит все компоненты в надежный монолитный контур заземления.


Необходимые параметры каждого элемента мы рассматривали в начале этой статьи, поэтому сейчас стоит упомянуть о глубине и размерах треугольника.


Минимальное заглубление составляет 0,5 метра, при этом по возможности стоит увеличить этот параметр. Длина штырей находится в пределах 2-3 метров, при этом расстояние между ними в готовой конструкции варьируется от 1,2 м до 1,5 метра, на ваше усмотрение.


Вкапывать такой контур стоит в любом удобном месте недалеко от жилого дома на глубину, указанную выше. Если же вы жестко ограничены в площади участка, стоит обратить внимание на другие схемы заземлений. Помните — малоэффективное заземление лучше, чем его полное отсутствие.

Монтаж заземления в частном доме своими руками


Приступаем непосредственно к процессу установки заземлительного контура на участке.


Чтобы сделать контур заземления своими руками вам понадобятся:

  • УШМ для резки и зачистки швов.
  • Гаечные ключи М12 и М14.
  • Штыковая лопата для рытья траншеи до места установки контура.
  • Кувалда для заглубления токоподводящих штырей.
  • Сварочный аппарат для сборки конструкции.


Кроме этого, в зависимости от почвы, вам может понадобится лом или перфоратор. Они могут пригодится в момент, когда вы наткнетесь на камень при рытье траншей.


Теперь уделим ещё несколько слов комплекту материалов для изготовления контура заземления.


Список необходимых материалов:

  • Металлический уголок 50×50 мм с толщиной металла 5 мм — 3 отрезка по 3 метра.
  • Стальная полоса 40 мм толщиной 4 мм — 12 метров (для одной точки заземления).
  • Болты М12 или М14 с шайбами и гайками — 2 шт.
  • Медный проводник для отвода контура от здания — медный кабель сечением 6-10 кв.мм.


Не стоит использовать в качестве заземлителей рифленую арматуру или круглую сталь диаметром менее 10 мм. Минимальные требования для заземлителя является уголок 40x40x5 ммили стальной круг диаметром от 14 мм.


Все перечисленное позволит собрать качественный и надежный заземляющий контур, который обезопасит ваших близких, и весь дом, от неприятностей с электричеством.



Перед заглублением штырей, стоит заострить один из их краев, оптимальным вариантом будет угол не менее 30 градусов. Так уголок будет намного проще заглубить в грунт.

Приступаем непосредственно к земляным работам.


Чтобы упростить вбивание штырей, можно создать три вертикальных отверстия при помощи бура, и лишь после этого вбивать заземлители в землю. Не забывайте, что вся конструкция должна быть заглублена в грунт на 0,5 метра, соответственно все параметры нужно рассчитывать начиная с этой глубины, а не поверхности земли.


После забивания штырей можно заняться свариванием всех компонентов в монолитную конструкцию. Благодаря одинаковой длине отрезков стальной полосы, у вас в любом случае получиться равнобедренный треугольник. Не забудьте расположить его так, чтобы одна из вершин «указывала» на сам дом, именно от неё нужно отвести оставшуюся полосу для связки с проводкой дома.


Также дадим вам несколько советов — лучше всего покупать материалы с запасом, исходя из максимально указанной выше длины. Это позволит перестраховать себя, при этом штыри в процессе забивания могут деформироваться, и соответственно уменьшить свою длину. Также стоит поступить и с металлической полосой, поскольку при сваривании или обрезке размеры могут измениться.

Готовые комплекты или ручная сборка?


У многих владельцев, решивших сделать контур заземления своими руками может возникнуть резонный вопрос — не проще ли воспользоваться готовыми комплектами заземления?


Нет, не проще, точнее не всегда проще, а иногда и дороже. Готовые комплекты являются компромиссным решением, поскольку с экономией времени вы получаете более высокую стоимость, при этом не всегда надлежащее качество материалов.


В большинстве магазинов продают модульные или линейные контуры, которые сравнительно дешевле, но при этом не всегда обеспечивают должного качества проводимости электричества.


Самостоятельно подобрав и соединив все компоненты вы будете на 100% уверены в качестве заземляющего контура, соответственно и в безопасности всего дома. Но не стоит отказываться от готовых комплектов — они прекрасно подойдут для обустройства небольшой дачи или коттеджа, гаражей и подсобных помещений, оборудованных электросетью.


Перед тем как вы закопаете всю конструкцию, необходимо выполнить окрашивание видимой части контура для надежной защиты от коррозии. Лучше всего зачистить всю плоскость элементов, поскольку некачественная подготовка перед покраской приведет к ускоренной коррозии металла.


После выполнения всех монтажных работ вам необходимо зарыть траншеи. Еще один совет — перед закапыванием можно залить свежий грунт соляным раствором, который повышает проводимость контура. Чтобы его приготовить руководствуйтесь пропорцией 2-3 кг соли на 10 литров воды. После нужно тщательно утрамбовать почву для лучшего контакта с контуром, малая плотность негативно сказывается на показателях сопротивления грунта.

Нюансы и подводные камни в использовании контура заземления


Как бы хорошо вы не произвели расчеты количества и качества материалов, есть нюансы, которые не зависят от них, но об этом должен знать каждый домовладелец.


В первую очередь речь идет о сопротивлении самого грунта, ведь оно разнится, в зависимости от его характеристик. Например сопротивление торфа составляет всего 20 Ом на 1 куб.м, а вот показатели песка могут достигать 1000 Ом на 1 куб.метр. Чернозем и глина практически не отличаются по своим характеристикам, их сопротивление на 1 куб. метр составляет 50 Ом и 60 Ом соответственно.


Также на уровень сопротивления влияет глубина водного горизонта, чем ближе он к поверхности, тем меньше сопротивление грунта. Обязательно учтите какой именно тип грунта в вашем регионе, и определите хотя бы приблизительные показатели сопротивления, так вы будете уверены в качестве работы заземления.


Итак, мы разобрали все важные особенности и требования к заземляющим контурам для частных домов. Если вы не знали как правильно сделать контур заземления, здесь рассмотрены все схемы, особенности и специфика процесса монтажа подобных систем.


Как проверить контур заземления после установки?


Все описанные ниже действия нужно проводить перед засыпкой траншей, поэтому не стоит спешить, повторная проверка позволить быть ещё более уверенным в надежности конструкции.


В первую очередь проведите визуальный осмотр:

  • Проверьте места соединения элементов на качество сварки, а также наличие трещин.
  • Исследуйте отсутствие следов повреждения соединительного провода и металлической полосы.
  • Осмотрите качество окрашивания элементов, при необходимости исправьте поврежденные места.


По такому же принципу необходимо проводить ежегодный контроль состояния контура заземления частного дома. Благодаря этому он будет работать долгие годы, без необходимости замены элементов.


Кроме этого, стоит уделять внимание и периодическим проверкам физических показателей контура, таких как сопротивление. ПЭУ гласит, что общее сопротивление всех повторных заземлений в любое время года не должно превышать 10 и 20 Ом для сетей с напряжением 380 В и 220 В соответственно. При этих же напряжениях сопротивление каждого отдельного элемента заземления не должно превышать 30 Ом и 60 Ом для сетей 380 В и 220 В соответственно.


Обязательно помните — кроме соответствия техническим параметрам, заземляющий контур должен соответствовать всем требованиям стандартов ГОСТ и ПЭУ, регламентирующих этот вопрос. Только полное их соблюдение позволит быть уверенным в работе заземления для частного дома на 100%.

Финальная стадия — ввод заземления в дом


Хотя все уличные работы по организации заземляющего контура мы уже разобрали, нужно еще подумать о соединении электропроводки и контура заземления.


Для соединения нужно использовать такую же шину, как и для соединения проводников. Лучше всего постараться «дотянуть» металлическую шину прямо к электрощитку, но если это не удастся, стоит сделать это хотя бы с наружной стороны дома, и после соединить при помощи медного провода сечением 6-10 мм2.


Если вам кажется что всё настолько просто, не забывайте о том что есть несколько схем подключения — TN-C-S и TN-S.


Схема TN-S — наиболее современный и надежный тип электропроводки. Такая схема совместима с трансформаторами с глухозаземленной нейтралью, при этом проводники N и PE разделены на протяжении всей линии от подстанции до потребителя. Этот вариант подразумевает использование пятижильного кабеля, благодаря чему обеспечивается максимальная эффективность и безопасность.


Схема TN-C-S — отличный вариант организации заземления на временной основе. Исходя из этой схемы, нейтральная жила N пересекается с проводником PE, при этом в таком случае необходимо несколько точек заземления. От подстанции проводится общий провод PEN, который на подводе к жилому дому разделяется на PE и N. Чаще всего подобные схемы применяются на участках новостроя, или при отсутствии современной электросети в регионе. В последнем случае необходимо дождаться проведения полноценной пятижильной системы службами электросетей.


Главным недостатком второго варианта является необходимость прокладки проводки трехжильным кабелем, который впоследствии всё равно придется заменить более надежным пятижильным. Также при необходимости подключения трёхфазной сети 380В необходимо использовать всё тот же пятижильный кабель. Исходя из всего этого выходит что затраты на монтаж проводки по этой схеме является экономически невыгодным.


Если изначально позаботиться о прокладке правильного типа проводки, внедрение заземления не станет для вас проблемой. Кроме этого, применение пятижильной линии позволит существенно сэкономить, поскольку вам не придется повторно заниматься прокладкой электросетей в собственном доме.

Оцените материал:

Контур защитного заземления. Схема, фото, пояснения


Автор Alexey На чтение 7 мин. Просмотров 2.5k. Опубликовано
Обновлено

Контуром заземления называют находящееся в земле соединение горизонтальных и вертикальных заземлителей (электродов).

Совокупность помещённых в грунт электродов и заземляющего провода, который соединяет данный контур и главную заземляющую шину (ГЗШ) являет собой заземляющее устройство (ЗУ). Важнейшей характеристикой ЗУ является переходное сопротивление (металлосвязь) и сопротивление контура растеканию токов в земле.

От качества выполненных работ зависит заземление каждой розетки в доме и надёжность молниезащиты.

Расчет контура

Сопротивление контура заземления зависит от:

  •  параметров заземлителей: длины, площади контакта, количества электродов, расстояния между ними;
  •  длины соединяющих заземлители проводников;
  •  удельного сопротивления грунтов;
  •  влажности почвы;
  •  солёности грунта;
  •  температуры времени года;

Чтобы правильно выполнить все расчеты, необходимо иметь инженерное образование, и разобрать множество формул.

Из практического опыта известно, что ни одна из методик расчета не учитывает в полной мере все факторы, поэтому после выполнения работ результаты измерений практически всегда неожиданны. Поэтому часто пользуются типичным проектом, проверяя соответствие параметров у готового контура.

Естественно, что в отношении контура заземления для электростанции или большого производства расчеты обязательны, но для бытового использования можно выбрать подходящую схему заземляющего устройства и качественно её воплотить в металле, правильно выбрав место установки.

Даже без произведения расчётов из таблицы можно понять, какой тип грунта будет лучше всего для заземляющего устройства.

Как правило, в частном секторе для заземления используют одноконтурную схему, которая состоит из трёх вертикальных штырей, труб или уголков, соединённых между собой стальными полосами.

Использование одноконтурного заземления для частного дома

Соединение электродов в заземляющем устройстве выполняется в виде горизонтального равностороннего треугольника с вертикальными заземлителями, находящимися на его вершинах.

Типичная схема заземления небольшого частного дома

Такой проект заземляющего контура подходит для большинства небольших коттеджей и дачных домиков, получаемых однофазное энергоснабжение, выполненное по схеме TN-С-S, с повторным заземлением и разделением совмещённого нулевого провода PEN системы TN-С.

Но намного более надёжной будет схема с несколькими контурами, из-за того, что в одном месте свойства грунта могут измениться, он может высохнуть в жару, или промёрзнуть зимой, также вследствие проведённых рядом земляных работ могут измениться подземные водяные потоки.

Схема двойного контура зземления

Наиболее лучшей схемой традиционного заземляющего контура является кольцевая, или прямоугольная, обустроенная вокруг дома.

Заземление сделанное по периметру , самое надежное

Внутренний контур является ГЗШ и обеспечивает более рациональное подключение защитного провода PE к розеткам и корпусам электрооборудования. Для обустройства внешнего контура необходимо отойти от здания на расстояние не менее полторы – двух метров. Такую же схему используют для контура заземления трансформаторной подстанции.

Схема заземления Трансформаторного пункта

Для более сложных зданий горизонтальные заземлители прокладывают по периметру фундамента, на отдалении, требующемся, чтобы не вызвать осадку грунта при земляных работах.

Также применяют контур заземления в виде сетки.

Земляные работы

Поскольку контур заземления прокладывается в земле, то без земляных работ не обойтись.

Копают траншеи или яму глубиной ниже полуметра, вбивают в дно вертикальные электроды и прокладывают горизонтальные заземлители также по дну, соединяя в единый контур.

Контур заземления по типу треугольника по вершинам вбиты вертикальные заземлители

 

Засыпают траншею однородным грунтом без камней и мусора, утрамбовывая. Часто при прокладке вводной подземной линии электропередач, чтобы сэкономить на земляных работах, прокладывают горизонтальный линейный заземлитель в данной траншее, с установкой вертикальных электродов.

Зазыпка контура заземления и вывод на шину РЕ

В данном случае необходимо будет поверх установленного заземляющего контура насыпать подушку из грунта, плотно утрамбовав, после чего насыпают прослойку из песка, для прокладки кабеля. Самое главное при данных обстоятельствах проследить, чтобы выступающие части заземлителей не соприкасались и не повредили кабель.

Независимо от типа ЗУ, его установка должна производиться ниже точки промерзания грунта, из-за того, что замерзшая вода в почве в виде льда перестаёт быть проводником, и заземление теряет эффективность.

Установка Заземляющего контура ниже точки промерзания грунта и в скале

Данное обстоятельство не имеет никакого значения в случае применения глубинных заземлителей, которые устанавливаются в скважинах на значительную глубину 20-50 м.

Материалы заземлителей и заземляющего проводника

Применяют для электродов стальной металлопрокат, или медные проводники. Не допускается применение алюминия в качестве электродов. Использовать алюминиевый кабель в качестве заземляющего проводника допускается лишь в изоляции, защищающей жилу от коррозии, но в этом случае придётся уделить повышенное внимание герметизации болтового соединения.

Для соединения электродов применяют тот же вид металлопроката, что и при сборке заземлителей.

Использование заземлителей, покрытых медью.
В данной таблице не указан сравнительно новый, инновационный материал для заземлителей –омеднённые прутки, покрытые тонким слоем (0,275 мм) меди.

стальной пруток покрытый медью для вертикального заземлителя

Для данного материала следует применять параметры, указанные для оцинкованной стали.

Выпускаются такие заземлители в виде комплектов для быстрого монтажа заземляющего устройства.

Примечательно, что с их помощью можно монтировать глубинные заземлители без бурения скважин – на первый штырь навинчивается острый наконечник, который облегчает прохождение электрода в грунт.

При помощи соединительной муфты прикручивается ударопрочная головка, Не дающая металлу и резьбовому соединению разрушаться при ударах.

По мере углубления, головку отвинчивают, вкручивают новый стержень, на него прикручивают другую муфту, снова присоединяют головку и продолжают процесс забивания модульного заземлителя до требуемой глубины.

Часто для облегчения работ, вместо кувалды используют вибромолот. К последнему штырю крепят заземляющий провод или горизонтальный заземлитель, прокладываемый в виде полосы, покрытой медью, при помощи специального хомута.

Модульная установка заземляющего контура

Такой монтаж позволяет обойтись без сварочных работ, производится достаточно быстро. Минусом может быть недобросовестная затяжка болтов, поэтому в месте крепежа будет не лишним предусмотреть небольшие колодцы для проведения технологического осмотра и подтяжки соединений.

Схема контура модульного заземляющего контура

Контур заземления из стального металлопроката

Наиболее подходящим видом проката в качестве материала для вертикальных заземлителей будет уголок или труба (круглая или профильная). Для облегчения забивания уголок или трубу надрезают под углом 30-45º.

заостренный уголок для вертикального заземлителя

Больший угол затруднит прохождение плотных слоёв грунта, а при меньшем возможно загибания металла на кончике. Забивают заземлители в дно траншеи или ямы при помощи кувалды или вибромолота. Металл от ударов кувалды неизбежно расклепается, но это не страшно – главное хорошо проварить место соединения вертикального и горизонтального заземлителя.

Вибромолот для забивания вертикального заземлителя

Проверка контура заземления

Проверяют сварные швы, простукивая их молотом, а затяжку гаек при помощи ключа. Измерять сопротивление должны производить специалисты лицензированной электрической лаборатории, они же выдадут акт.

В системе TT чем меньше сопротивление, тем лучше, но в отношении TN-С-S не стоит, чтобы сопротивление было меньше чем у трансформаторной подстанции – 4 Ом, иначе вся нагрузка на заземление воздушной линии ляжет на данный домашний контур.

Оборудование для измерений слишком дорого, поэтому существует народный метод – в идеале контур должен обеспечивать работу домашних электроприборов на максимально возможном для автомата токе. Для этого один провод от переносной розетки подключат к фазе, а другой к контуру заземления, и в розетку включают нагрузку.

На практике контур считается хорошим, если подключаемый между фазой и заземлением электронагревательный прибор мощностью 2 кВт будет исправно работать, и падение напряжения между фазой и заземлением будет не больше 10 В. Но надо быть очень осторожным, проводя такие манипуляции и не находиться в этот момент вблизи контура.

Контур заземления

Конструкции и размеры контура заземления дома:

Контур заземления представляет собой конструкцию, состоящую из соединённых друг с другом и проложенных в земле заземлителей.



Ориентировочные размеры при устновке в грунт вертикального заземлителя.


Заземлители, выполняя монтаж, устанавливают в ряд или в виде тругольника, квадрата, прямоугольника и т.п., исходя из требований и наличия площади для монтажа. В грунтах с большим удельным сопротивлением один заземлитель [даже глубинный] — может имеет большое сопротивление и для получения требуемой меньшей величины сопротивления растеканию тока приходится устраивать
заземление из нескольких, соединённых между собой, единичных заземлителей, включенных параллельно.
Такой контур заземления называется многоэлектродным.

Токи, растекающиеся с параллельно соединенных одиночных заземлителей, оказывают взаимное влияние, возрастает общее сопротивление заземляющего контура, которое тем больше, чем ближе расположены вертикальные заземлители друг к другу. Поэтому расстояние между вертикальными заземлителями должно быть не менее их длины.



Верхние слои грунта подвержены значительным изменениям влажности. Вследствие этого сопротивление контура будет тем стабильнее, чем глубже он расположен в грунте.

Для уменьшения влияния климатических условий на сопротивление заземления верхнюю часть заземлителя размещают в грунте на глубину не менее 0,7 метра.
Контур устанавливается с меньшими затратами, где грунт имеет низкое удельное сопротивление, эффективность заземления при правильном расчёте выборе его расположения может быть повышена в несколько раз.

Материалы для заземления:

Материалы для контура заземления должны выбираться с учетом защиты от коррозии, соответствующих термических и механических воздействий, эти значения указаны в нормативных документах

Заземлители и проводники, проложенные в земле, должны иметь размеры не менее приведенных в табл. 1.7.4.(ПУЭ)


Дополнения к ПУЭ — это перечень и требования для материалов с антикоррозионными покрытиями ( для омеднённой и нержавеющей стали) —



Указаны в ГОСТ Р 50571.5.54-2013 «Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов.»

Виды контуров заземления:


В зависимости от назначения контура заземления, используемой площади и удельного сопротивленя грунта — заземлители, для контура, могут устанавливаться различных видов — некоторые из них:

— Кольцевой контур заземления — чаще всего монтаж производится плоским проводником(полоса). Важный момент — полоса в траншее должна укладываться на ребро. Кольцевой заземлитель является
заземлителем поверхности, который должен быть проложен в виде замкнутого кольца на расстоянии 1,0 м и на глубине 0,5/0,7 м в
земле вокруг фундамента дома.

— Многоэлектродный контур заземления — это совмещённый монтаж горизонтального и вертикальных заземлителей, чаще всего выполняется в виде треугольника, а при необходимости — с большим количеством электродов.

Для монтажа «треугольника» или контура с большим числом вертикальных заземлителей, могут использоваться модульные электроды — установка выполняется сборным вертикальным стержнем, который поэтапно наращивается и забивается электроинстументом с большой ударной силой на требуемую глубину с одной точки. Такие заземлители в зависимости от вида
почвы могут прокладываться в
земле вручную или с помощью
соответствующих электрических,
бензиновых или пневматических
молотов.

Сопротивление контура заземления частного дома:

Электросеть загородного частного дома относится к электроустановкам напряжением до 1кВ (1000 Вольт), соответственно сопротивление заземляющего контура не должно превышать допустимые параметры.

Значения сопротивления заземляющих устройств для каждого вида электроустановок должны удовлетворять значениям, приведенным в соответствующих главах Правил(ПУЭ) и таблице 1.8.38.

Наибольшие допустимые значения сопротивлений заземляющих устройств(ПУЭ)

Расчёт контура заземления:

Чтобы правильно произвести расчет- длину и количество заземлителей, входящих в будущую конструкцию контура, нужно знать знать максимальное значение удельного сопротивления слоя грунта на глубине, приблизительно в три раза превышающей глубину закладки заземлителя. Это значение определяется путем измерений удельного сопротивления грунта в месте устройства заземления с учетом коэффициентов влажности.

Если взять значение удельного сопротивления грунта из таблиц(как чаще всего это делают при проектировании в офисе и не выезжая на место строительства), то после монтажа такого контура заземления — расчетное значение может не совпасть с измеренным после выполнения работ..


Поэтому часто в проектах заземления указывают, что если значение сопротивления установленного контура будет превышать допустимое, следует увеличить количество заземлителей, т.е. увеличить объём работ, соответсвенно увеличивается заложенная в смете цена.

Для заземления газового котла расчетное сопротивление не должно превышать 10 Ом.

Подключение контура заземления к электросети дома:

Следует иметь в виду, что только монтажа и подключения контура заземления — не достаточно для обеспечения электробезопасности, например дачи или частного дома и т.п. Для этого, должны быть соблюдены требования к электроустановкам указанные в гавах ПУЭ:


Глава 1. 7. «Заземление и защитные меры электробезопасности»


Глава 7.1. «Электроустановки жилых, общественных, административных и бытовых зданий»


Эти требования являются взаимосвязанными и их частичное выполнение может привести к непредсказуемым последствиям, как для электро, так и пожарной безопасности..

Чтобы произвести монтаж и подключение заземления, нужно обладать знаниями по устройству электроустановок и нормативных документов.

Если при монтаже самой конструкции контура своими руками проблем особо не возникает, то при проверке сопротивления и подключении заземляющего устройства в электросеть дома, часто совершаются ошибки.

Когда нет ответа на часть из многих существенных вопросов, неоходимых для монтажа и подключения контура заземления — например:
— Чем отличается система заземления ТТ от системы заземления TN(три типа)?

— Почему эксплуатация электросети дома с системой заземления ТТ без УЗО — запрещена?

— Какая система заземления будет применяться в вашем доме?

— Почему сопротивление растеканиЮ тока является основным показателем качества контура заземления и как оно проверяется во время монтажа?


— и т. п.



В этом случае, чтобы не совершать ошибок, следует изучить правила.


Проверка:

Основной критерий качества установленного контура заземления для частного дома (и не только) — это сопротивление растеканию тока, точное значение которого возможно узнать только после поверки измерительным прибором.


Производить замеры нужно в обязательном порядке и сопротивление заземления должно соответствовать нормативам. Но чаще всего владельцы загородных частных домов при самостоятельном монтаже(или нанятые работники), пренебрегают замерами, без которых нельзя оценить в полной мере качество установленного заземляющего устройства.


При профессиональном монтаже, после установки выполняются приемо-сдаточные испытания согласно ПУЭ и выдаётся электроизмерительной лабораторией протокол. В дальнейшем, измерение сопротивления растеканию тока заземляющих устройств должно производиться в сроки, установленные ПТЭЭП, а также после каждого капитального ремонта.

Периодичность проверки в полном объеме производится не реже 1 раза в 12 лет.

Проверка коррозионного состояния элементов, находящихся в земле:

Локальные коррозионные повреждения в земле выявляются при осмотрах со вскрытием грунта.
Если элементы конструкции выполнены из чёрного металла (уголков, труб, полосы и т.п.), то самыми уязвимыми для коррозии являются сварные соединения и такие места проверяются в первую очередь.


Контур заземления для молниезащиты III Категории.

Молниезащита III Категории (РД 34.21.122-87)

2.26…..каждый токоотвод молниеприемников должен быть присоединен к заземлителю, состоящему минимум из двух вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом длиной не менее 5 м;



…….Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки, указанным в гл. 1.7 ПУЭ.

Из этого следует, что для электорустановки и молниезащиты дома устанавливается общий контур заземления.

Как правильно сделать контур заземления в частном доме своими руками

8 декабря 2020

Мечтая о беззаботной жизни в уютном частном доме, многие совершенно забывают о банальных мерах безопасности. Это касается не только охранных систем, но и более важных конструкций, таких как громоотвод и заземление.

Главная проблема в том, что эти вещи кажутся обыденными, или наоборот абсолютно ненужными. Большинство новоиспеченных владельцев частных домов абсолютно не уделяют внимание этому вопросу, сталкиваясь с регулярными поломками бытовой техники и электроники.

Организация правильного заземления в электросети частного дома — это не потребность, это необходимость. Такая система позволяет обезопасить процесс пользования бытовыми электроприборами, и в то же время уберечь вас от колоссальных трат в случае их поломки из-за коротких замыканий и скачков напряжения.

Хотя сами контуры представляют собой вполне понятные конструкции, есть очень много нюансов, включая расчетные требования под каждый вид жилых домов. Именно поэтому мы вам расскажем не только как правильно сделать контур заземления, но и как выполнить расчеты, подготовиться к процедуре материально, подобрать необходимый инструмент.

Особенности и принципы работы заземления

Предназначение и задачи контура заземления вполне способны охарактеризовать и саму конструкцию.

Заземление — это соединение из всех элементов и «участников» электросети с заземляющим контуром, позволяющим при возникновении токов утечки безопасно отвести их в землю.

Повреждение изоляции, короткие замыкания, и практически любые другие неприятности, которые только могут возникнуть в процессе эксплуатации приборов, могут быть нивелированы за счет правильно смонтированного контура заземления.

Простыми словами — при повреждениях электропроводки электрический тока не причинит вреда вам и вашим близким.

Главная опасность коротких замыканий в том, что они не только выводят из строя электроприборы, весь накопившийся потенциал при первой же возможности будет передан проводнику, которым в случае прикосновения к оголенным проводам является именно человек. Заземление и призвано взять на себя задачу по безопасному отводу электричества в грунт при поломках в электросети.

Схемы подключения

К наиболее распространенным схемам подключения относятся замкнутая треугольная и линейная. Замкнутая система более стабильна в работе, поскольку даже при повреждении одного из горизонтальных заземлителей она продолжит выполнять свою функцию. Линейная в этом смысле проигрывает замкнутой конструкции. Она перестает работать, если повреждена перемычка.

Помимо линейной и треугольной конструкции, могут изготавливаться овальные и прямоугольные защитные устройства, но они менее популярны.

Нужно ли вообще заземление в частных домах

Как и говорилось выше, заземляющий контур является отличной мерой безопасности для домовладельцев. Но действительно ли нужно заземление в частных домах? Сейчас всё объясним как с точки зрения безопасности, так и исходя из требований законодательных актов.

Заземление не является идеальным средством защиты от поражения электрическим током, поскольку не все конструкции способы отвести большое количество энергии практически мгновенно. Несмотря на это, даже уменьшение накопленного потенциала позволяет существенно снизить силу поражения электрическим током. В критических ситуациях это позволяет избежать массы неприятностей, включая летальный исход.

Кроме практической необходимости, стоит учесть и требования законодательных норм, которые вполне понятны и прозрачны.

Согласно ГОСТ, СНиП и ПУЭ все жилые помещения обязаны быть оборудованными подобными системами защиты. Нижним порогом в требованиях для монтажа таких контуров является электроснабжение переменным током от 100 Вольт и более 40 Вт.

Таким образом 90% всех бытовых сетей в нашей стране должны оборудоваться подобными узлами для обеспечения защиты домовладельцев от травматизма.

Также контур заземления является одной из эффективных мер пожарной безопасности. Небольшие очаги возгорания, или большие пожары, приносят намного больше убытков, чем стоимость установки заземления, поэтому стоит обязательно оборудовать собственный дом подобной конструкции.

Интересный факт — отсутствие заземления в частном доме может негативно сказываться на качестве мобильной связи. Незаземленная электросеть создает массу помех для практически любой электроники, поэтому многие задаются этим вопросом лишь после того, как сталкиваются с помехами в работе оборудования.

Также стоит учесть — хотя система заземления и громоотвод имеют схожие принципы действия, контуры этих систем ни в коем случае не должны кольцеваться. В случае с ударом молнии, такой ход может привести к еще более негативным последствиям. Мощнейший электрический разряд попросту уничтожит всю электронику, а также в результате способен создать очаг возгорания внутри или снаружи дома.

Ошибки при монтаже

Если монтаж заземления частного дома осуществляется непрофессионалами, есть риск возникновения технических ошибок, снижающих эффективность системы. Мы перечислим наиболее распространенные ошибки, предотвратив которые вы обеспечите энергетическую безопасность вашего дома:

  • Электроды нельзя красить, иначе они утратят способность передавать ток в землю.
  • Шину нельзя крепить болтами, т.к. коррозия быстро разрушит контакты.
  • Не рекомендуется размещать систему заземления далеко от дома – расстояние существенно увеличивает сопротивление.
  • Если использовать тонкие электроды, со временем коррозия снизит проводимость металла.
  • Нельзя соединять между собой медные и алюминиевые проводники, из-за чего в месте крепления возникнет контактная коррозия.

Если в конструкции возникают нарушения, заземление теряет свою эффективность. Учитывая, что неэффективный контур перестает проводить ток, защищенность от замыканий резко снижается. Из-за этого заземление частного дома оказывается в уязвимом состоянии, что может вызвать серьезные осложнения, если произойдет крупное замыкание. Именно поэтому при возникновении неполадок в контуре, их нужно незамедлительно устранять.

Правила, нормы и базовые требования ПУЭ

Настало время познакомиться с основными требованиями к системам заземления в частных домах. Главный параметр — сопротивление контура, которое определяет надежность и эффективность системы.

Чем меньше сопротивление заземляющих устройств — тем выше их надежность.

Закон Ома гласит — сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Таким образом чем меньше сопротивлении, тем больше вероятность срабатывания заземляющего контура.

Для большинства жилых домов с электросетями 380В и 220В, сопротивление не должно превышать 30 Ом. При этом если дом оснащен газовым котлом, то сопротивление не должно превышать уже 10 Ом.

Правила Устройства Электроустановок (ПУЭ) определяют, что каждый жилой объект в черте города обязан оснащаться специальными мерами защиты от опасных напряжений. Речь идет именно о металлических контурах заземления, которые гарантируют защиту проживающих от поражения током.

Глава 1.7, часть 1, пункт 1.7.72 ПЭУ гласит — размеры металлических элементов подбираются с учетом окончательного показателя сопротивления (упоминалось выше), при этом параметры каждого элемента конструкции могут отличаться по своим характеристикам.

Минимальные требования к размерам всё же жестко определены:

  • Соединительная полоса — не менее 12×4 мм (сечение не менее 48 кв.мм).
  • Штыри (металлический уголок) — толщина металла не менее 4 мм.
  • Круглые арматурные штыри — площадь сечения не менее 10 кв.мм.
  • Металлические трубы — толщина стенки не менее 3,5 мм.

На первый взгляд вся эта информация может показаться слишком сложной и даже ненужной. Тем не менее данные о характеристиках заземляющего контура и используемом на участке оборудовании позволит защитить жильцов и животных, предотвратив перегрузку сетей.

Как правильно рассчитать

В первую очередь следует определить проводимость заземлителя. То есть надо выбрать электрод так, чтобы сопротивление контура было в пределах нормы. Согласно положениям ПУЭ, максимальные значения сопротивления растеканию заземлителей следующие:

  • 2 Ом – для линейного напряжения 660/380 В источника трёхфазного/однофазного тока;
  • 4 Ом – для 380/220 В;
  • 8 Ом – для 220/127 В.

Проводимость защитной конструкции зависит от площади её контакта с землёй, а также удельного сопротивления грунта. Чем больше размеры штырей (электродов), тем больше площадь их поверхности и, следовательно, выше проводимость и эффективность контура. При этом для достижения хороших характеристик заземляющего устройства правильнее увеличивать длину электродов, а не поперечное сечение. Это очень актуально при создании контура в твёрдых почвах, таких как песчаник, скалистый грунт и прочих.

Так, для определения проводимости одного электрода круглого сечения используется следующая формула:

R1 = ρ(ln(2L/d) + 0,5ln(4T+L)/(4T-L))/2ПL,

где d и L – диаметр и длина электрода, T – половина глубины заложения штыря, ln – натуральный логарифм, П – постоянная (3,14), ρ – удельное сопротивление грунта (Ом×м).

Удельное сопротивление грунта также является важным параметром. Чем он больше, тем хуже будет проводимость контура заземления. Величину удельного сопротивления для определённого типа грунта можно узнать в общедоступных таблицах.

Чем ниже удельное сопротивление грунта, тем лучше будет контур

При монтаже контура заземления, состоящего из нескольких электродов, расчёт немного меняется. Сначала определяется сопротивление каждого отдельного штыря по вышеуказанной формуле. Потом полученные показатели суммируются с учётом так называемого «коэффициента использования». Расчётная формула здесь такая:

R = R1/(KN), где R – общее сопротивление контура, N – количество электродов, К – коэффициент использования, R1 – сопротивление одного штыря.

Величина К зависит от расстояния между электродами. Причём чем дальше друг от друга расположены штыри, тем больше будет этот коэффициент. Электрики же рекомендуют располагать электроды на расстоянии в 2,2 от их длины. В этом случае К может принимать следующие значения:

  • при использовании двух электродов – 0,9–0,92;
  • трёх – 0,85–0,88;
  • пяти – 0,79–0,83.

Для определения глубины заложения стержней нужно воспользоваться формулой:

N = R1/KR, где R – полученное ранее проектное сопротивление контура, R1 – сопротивление одного штыря, К – коэффициент использования.

Что касается горизонтальных частей, соединяющих штыри в один контур заземления, то их проводимость здесь не рассчитана

Технические требования к сопротивлению заземляющих контуров

С теорией разобрались, можно переходить и разбору технической составляющей данного вопроса. Для частных домов предварительно стоит изучить главу 1.7 ПЭУ, которая регламентирует монтаж контуров заземления в сетях до 1000В. Именно в эту категорию входят все жилые частные дома, поэтому при подборе компонентов нужно руководствоваться именно этим стандартом.

В соответствии с этим документом сопротивление может достигать нескольких показателей:

  • До 0.5 Ом для электроустановок напряжением свыше 1000 Вольт с большими токами замыкания на землю (более 500 А).
  • До 4 Ом для установок до 1000 Вольт (нужная нам категория частных домов, дач, коттеджей).
  • Не более 10 Ом для электроустановок с напряжением свыше 1000 В и маленькими токами замыкания на землю.
  • Не более 10 Ом, если общая суммарная мощность электроустановок не превышает 100 кВА.

Вот так и выглядит нормативная документация, позволяющая подобрать правильные параметры контуров заземления при подборе материалов и компонентов для их монтажа. Теперь же перейдем к изучению сами конструкций, позволяющих эффективно отводить большие токи замыкания в землю.

Проверка заземления

По окончании монтажа контура заземления, необходимо выполнить контрольную проверку конструкции. Такая проверка проводится при помощи довольно дорогого оборудования, но существует более простой метод.

Прикрутите к одному из концов контура один контакт лампочки мощностью в 100 Вт. А другой контакт необходимо прикрепить к фазе.

В случае, если свет довольно тусклый – это означает, что контакт между частями заземления слабый, а если свет горит ярко, то контур полностью в рабочем состоянии.

Существует и третий вариант, когда лампочка не горит совсем, это говорит о том, что контур собран неверно. Вот такая нехитрая технология, о том, как проверить заземление дома, поможет сэкономить денежные средства.

Разновидности контуров и схемы заземления

Скорость отвода тока в землю напрямую зависит от эффективности самой системы. Заземления конструктивно очень схожи с громоотводами, поскольку выполняют одну и ту же задачу, но это касается и технической составляющей.

Чем больше электродов будут одновременно отводить электрический заряд, тем меньше времени потребуется для этого.

Существует три типа заземления:

  • Модульно-штыревая — наиболее простой вид контуров, представляющий собой аналог громоотвода в виде одиночного электрода, уходящего вглубь земли. Из-за малой эффективности и узкого применения из-за отличий в твердости грунтов, практически не применяется. Несмотря на это, данный вариант намного эффективнее, чем полное отсутствие заземления в доме или на даче.
  • Линейный — компромиссное решение, поскольку эффективность разомкнутого контура значительно ниже замкнутых. Тем не менее в случае отсутствия необходимого количества пространства, линейный контур может здорово спасти ситуацию. Технически он представляет цепочку электродов, расположенных на одной линии, или по кругу на расстоянии 1-1,5 единицы относительно длины электрода. Для большей эффективности придется увеличить точек отвода.
  • Замкнутый контур (треугольник) — наиболее эффективный метод защиты от замыканий и перепадов напряжения в сети. Замкнутый треугольник позволяет быстро и эффективно отвести большой ток утечки без необходимости углубления электродов на большую глубину. Жесткое соединение штырей позволяет существенно повысить качество и эффективность контура, при этом схема позволяет существенно снизить затраты на установку.

Давайте разберем именно последний вариант, поскольку рекомендуется использовать именно этот вариант в частных жилых домах, дачах или коттеджах.

Конструкция достаточно проста, вам понадобится:

  • Три заостренных прута равной длины — 2-3 метра.
  • Три соединительных полосы равной длины — 1,2-1,5 метра.

Эти компоненты соединяются в равноугольный треугольник, из каждой вершины которого отходит по одному штырю. Для соединения лучше всего использовать электросварку, которая превратит все компоненты в надежный монолитный контур заземления.

Необходимые параметры каждого элемента мы рассматривали в начале этой статьи, поэтому сейчас стоит упомянуть о глубине и размерах треугольника.

Минимальное заглубление составляет 0,5 метра, при этом по возможности стоит увеличить этот параметр. Длина штырей находится в пределах 2-3 метров, при этом расстояние между ними в готовой конструкции варьируется от 1,2 м до 1,5 метра, на ваше усмотрение.

Вкапывать такой контур стоит в любом удобном месте недалеко от жилого дома на глубину, указанную выше. Если же вы жестко ограничены в площади участка, стоит обратить внимание на другие схемы заземлений. Помните — малоэффективное заземление лучше, чем его полное отсутствие.

Как обезопасить дачу?

Рассмотрим, как сделать заземление на даче и, тем самым, обезопасить себя от удара током. Как уже упоминалось, для таких домов чаще применяют схему №2 из электродов, соединенных в виде треугольника.

Установка самодельного заземления

По данной схеме можно собрать заземление не только из заводского комплекта, но и из подручных материалов.

Траншея под заземление

Для этого понадобится:

  • металлические полосы шириной 4 см и толщиной 4 мм для шины;
  • стальной уголок толщиной 4-5 мм для электродов;
  • шлифовальная машинка;
  • садовый бур;
  • лопата;
  • сварочный аппарат;
  • кувалда.

Сначала определяемся с местом расположения. Оно должно обеспечить удобное подключение от шины заземления к силовому щитку. Кроме того, контур нельзя размещать на расстоянии менее трех метров от фундамента дома. Перед началом работ рекомендуется проконсультироваться в местной службе электроснабжения относительно оптимальных схем заземления для вашего региона.

Последовательность работ по установке:

  1. В выбранном месте наносят разметку и выкапывают котлован глубиной около 1 м и траншею, ведущую к цоколю дома. Вместо котлована можно ограничиться траншеей по форме заземляющего контура.
  2. Края стальных уголков, которые станут электродами, заостряют в виде треугольника шлифовальной машинкой.
  3. Электроды заглубляют в грунт при помощи кувалды так, чтобы они возвышались над дном котлована или траншеи на 20 см.
  4. К уголкам горизонтально приваривают стальные полосы, образовывая треугольную шину.
  5. К одному из электродов присоединяют еще одну стальную полосу (шину), укладывают ее в заранее подготовленную траншею и выводят на цоколь здания.
  6. Шину крепят к цоколю и к ней приваривают болт с резьбой.
  7. Конец шины при помощи болта соединяют с клеммой провода заземления, ведущего к распределительному щитку.
  8. В стене высверливают отверстие под провод и вставляют в него пластиковую гильзу.
  9. Провод выводят на щиток и соединяют с распределительной пластиной.

Вывод шины на цоколь дома Конструкция готова, но прежде чем засыпать котлован, убедитесь, что все работает исправно. Но как проверить заземление на даче? Измерять сопротивление получившегося контура, не имея специального оборудования и навыков, небезопасно. В этой ситуации рациональнее пригласить работников из службы энергоснабжения, тем более что им необходимо выдать разрешающую документацию на работы по заземлению.

Если измерения покажут неудовлетворительный результат, уменьшить сопротивляемость заземления можно добавив вертикальных электродов. Еще один способ улучшить показатели – посыпать контур поваренной солью. Но нужно учитывать, что так коррозия металла усилится. Добившись нужных параметров, траншею засыпают грунтом и утрамбовывают.

Соль уменьшает сопротивляемость материала

Монтаж заводского комплекта

Помимо самодельной, можно установить готовую конструкцию на даче. Заводской комплект заземления для дачи, намного удобнее в сборке и установке, чем самодельный. Он состоит из набора медных или оцинкованных штырей с соединительными муфтами, которые позволяют корректировать длину электродов по мере заглубления. Такой комплект применяется для создания заземления по схеме №3 с одним штыревым электродом.

Обычно в комплектацию входят стальные штыри с диаметром 1,4-1,8 мм и длиной по 1,5 метра каждый.

Соединения выполняется при помощи резьбовых или запрессовочных муфт, также прилагается заостренный наконечник для удобства прохождения грунта. Следует отдавать предпочтение проверенным фирмам, а устройства приобретать в магазинах с ответственными поставщиками.

Ударное воздействие передается специальной насадкой – нагелем. Его применение не дает металлу спрессоваться от ударов кувалды. Есть наборы, в которых предусмотрено заглубление штырей не ударной силой, а через переходник, соединенный с перфоратором высокой мощности.

Порядок проведения работ по монтажу:

  • В подходящем месте выкапывают котлован глубиной и шириной в 1 м.
  • В дно ямы вбивают штыри, наращивая их до нужной длины (6-15 м в зависимости от почвы).
  • Над поверхностью земли оставляют участок электрода длиной 20 см и надевают на него контактный зажим (идет в комплекте).
  • Внутрь зажима вставляют металлическую полосу или кабель заземления.
  • Кабель или шину заводят внутрь дома и подключают к щитку, так же, как описывалось выше.

Заводской комплект Остается только проверить работу устройства, и заземление на даче готово.

Итак, если вы приложите немного усилий, то при организации заземления сэкономите время и средства. Но, если вы сомневаетесь, что сможете выполнить все мероприятия правильно, обратитесь за помощью к специалистам.

Монтаж заземления в частном доме своими руками

Приступаем непосредственно к процессу установки заземлительного контура на участке.

Чтобы сделать контур заземления своими руками вам понадобятся:

  • УШМ для резки и зачистки швов.
  • Гаечные ключи М12 и М14.
  • Штыковая лопата для рытья траншеи до места установки контура.
  • Кувалда для заглубления токоподводящих штырей.
  • Сварочный аппарат для сборки конструкции.

Кроме этого, в зависимости от почвы, вам может понадобится лом или перфоратор. Они могут пригодится в момент, когда вы наткнетесь на камень при рытье траншей.

Теперь уделим ещё несколько слов комплекту материалов для изготовления контура заземления.

Список необходимых материалов:

  • Металлический уголок 50×50 мм с толщиной металла 5 мм — 3 отрезка по 3 метра.
  • Стальная полоса 40 мм толщиной 4 мм — 12 метров (для одной точки заземления).
  • Болты М12 или М14 с шайбами и гайками — 2 шт.
  • Медный проводник для отвода контура от здания — медный кабель сечением 6-10 кв.мм.

Не стоит использовать в качестве заземлителей рифленую арматуру или круглую сталь диаметром менее 10 мм. Минимальные требования для заземлителя является уголок 40x40x5 ммили стальной круг диаметром от 14 мм.

Все перечисленное позволит собрать качественный и надежный заземляющий контур, который обезопасит ваших близких, и весь дом, от неприятностей с электричеством.

Перед заглублением штырей, стоит заострить один из их краев, оптимальным вариантом будет угол не менее 30 градусов. Так уголок будет намного проще заглубить в грунт.

Приступаем непосредственно к земляным работам.

Чтобы упростить вбивание штырей, можно создать три вертикальных отверстия при помощи бура, и лишь после этого вбивать заземлители в землю.Не забывайте, что вся конструкция должна быть заглублена в грунт на 0,5 метра, соответственно все параметры нужно рассчитывать начиная с этой глубины, а не поверхности земли.

После забивания штырей можно заняться свариванием всех компонентов в монолитную конструкцию. Благодаря одинаковой длине отрезков стальной полосы, у вас в любом случае получиться равнобедренный треугольник. Не забудьте расположить его так, чтобы одна из вершин «указывала» на сам дом, именно от неё нужно отвести оставшуюся полосу для связки с проводкой дома.

Также дадим вам несколько советов — лучше всего покупать материалы с запасом, исходя из максимально указанной выше длины. Это позволит перестраховать себя, при этом штыри в процессе забивания могут деформироваться, и соответственно уменьшить свою длину. Также стоит поступить и с металлической полосой, поскольку при сваривании или обрезке размеры могут измениться.

Наиболее распространенные ошибки

Необходимо обязательно обрабатывать сварные швы заземления от коррозии
При монтаже заземляющего устройства наиболее часто допускают следующие ошибки:

  • Контур подключают не в ту точку электроустановки, например, непосредственно к оборудованию. Он должен подключаться к главной заземляющей шине.
  • Вместо контура используют трубу водоснабжения, отопления или другие подобные. Они могут быть заземляющими конструкциями с некоторыми оговорками и далеко не всегда.
  • Отсутствие связи нулевого проводника в заземляющем устройством, а также установка отдельных автоматических выключателей в нулевом проводнике.
  • Использование в качестве заземлителей арматуры, закопанных металлических предметов, рабочего нуля, заборов.
  • Использование контуров заземления, изготовленных из элементов малого сечения.
  • Сварной шов менее 10 см.
  • Сварные швы не обрабатывают от коррозии битумными мастиками.
  • Полоса контура, которая вышла из земли, не окрашивается. Она должна быть окрашена черной или желто-зеленой краской.
  • Недостаточная длина горизонтальных и вертикальных заземлителей.
  • Недостаточное заглубление горизонтальных элементов.
  • Устанавливают контур заземления, но не заземляют основные коммуникации, состоящие из металлических элементов: водоснабжения, отопления, газоснабжения, канализации.

Должна быть предусмотрена возможность отключения заземляющего устройства от электроустановки для производства измерений, то есть полоса, которая выходит из заземляющего устройства, должна отсоединяться. Такую возможность дает болтовое соединение элементов.

Если установка произведена в соответствии со всеми правилами, удалось должным образом измерить сопротивление и показатели соответствуют норме, здание надежно защищено от короткого замыкания и его последствий.

Готовые комплекты или ручная сборка?

У многих владельцев, решивших сделать контур заземления своими руками может возникнуть резонный вопрос — не проще ли воспользоваться готовыми комплектами заземления?

Нет, не проще, точнее не всегда проще, а иногда и дороже. Готовые комплекты являются компромиссным решением, поскольку с экономией времени вы получаете более высокую стоимость, при этом не всегда надлежащее качество материалов.

В большинстве магазинов продают модульные или линейные контуры, которые сравнительно дешевле, но при этом не всегда обеспечивают должного качества проводимости электричества.

Самостоятельно подобрав и соединив все компоненты вы будете на 100% уверены в качестве заземляющего контура, соответственно и в безопасности всего дома. Но не стоит отказываться от готовых комплектов — они прекрасно подойдут для обустройства небольшой дачи или коттеджа, гаражей и подсобных помещений, оборудованных электросетью.

Перед тем как вы закопаете всю конструкцию, необходимо выполнить окрашивание видимой части контура для надежной защиты от коррозии. Лучше всего зачистить всю плоскость элементов, поскольку некачественная подготовка перед покраской приведет к ускоренной коррозии металла.

После выполнения всех монтажных работ вам необходимо зарыть траншеи. Еще один совет — перед закапыванием можно залить свежий грунт соляным раствором, который повышает проводимость контура. Чтобы его приготовить руководствуйтесь пропорцией 2-3 кг соли на 10 литров воды. После нужно тщательно утрамбовать почву для лучшего контакта с контуром, малая плотность негативно сказывается на показателях сопротивления грунта.

Что оно дает

Защитное заземление необходимо для обеспечения электробезопасности в доме. Правильно выполненное, появлении тока утечки оно ведет к немедленному срабатыванию УЗО (повреждение электроизоляции или при прикосновение к токоведущим частям). Это — главная и основная задача этой системы.

Вторая функция заземления — обеспечение нормальной работы электрооборудования. Для некоторых электроприборов наличия защитного провода в розетке (если он есть) недостаточно. Необходимо подключение к заземляющей шине напрямую. Для этого обычно есть специальные зажимы на корпусе. Если говорить о бытовой технике, то это микроволновая печь, духовка и стиральная машина.

Основная задача заземления — обеспечить электробезопасность частого дома

Мало кто знает, но микроволновка без прямого подключения к «земле» во время работы может существенно фонить, прием уровень излучения может быть опасным для жизни. В некоторых моделях на задней стенке можно увидеть специальную клемму, хотя в инструкции обычно только одна фраза: «необходимо заземление» без уточнения как именно его желательно сделать.

При прикосновении мокрыми руками к корпусу стиральной машины часто ощущается пощипывание. Оно неопасно, но неприятно. Избавиться можно подключив «землю» напрямую на корпус. В случае с духовкой ситуация аналогична. Даже если она не «щиплет», прямое подключение более безопасно, так как проводка внутри установки работает в очень тяжелых условиях.

С компьютерами дело обстоит еще интереснее. Подключив напрямую «земляной» провод к корпусу, вы можете разы поднять скорость работы Интернета и свести к минимуму количество «зависаний». Вот так просто из-за наличия прямого соединения с заземляющей шиной.

Нужно ли заземление на даче или в деревянном доме

В дачных поселках делать заземление надо обязательно. Особенно, если дом построен из горючего материала — деревянный или каркасный. Дело в грозах. На дачах очень много элементов, притягивающих молнии. Это колодцы, скважины, трубопроводы, лежащие на поверхности или закопанные на минимальную глубину. Все эти объекты притягивают молнии.

На дачах высока вероятность попадания молнии

Если громоотвода и заземления нет, попадание молнии почти равнозначно пожару. Пожарной части поблизости нет, так что огонь распространится очень быстро. Потому в паре с заземлением делайте еще и молниеотвод — хоть пару стержней метровой длины, прикрепленных к коньку и соединенных при помощи стальной проволоки с заземлением.

Нюансы и подводные камни в использовании контура заземления

Как бы хорошо вы не произвели расчеты количества и качества материалов, есть нюансы, которые не зависят от них, но об этом должен знать каждый домовладелец.

В первую очередь речь идет о сопротивлении самого грунта, ведь оно разнится, в зависимости от его характеристик. Например сопротивление торфа составляет всего 20 Ом на 1 куб.м, а вот показатели песка могут достигать 1000 Ом на 1 куб.метр. Чернозем и глина практически не отличаются по своим характеристикам, их сопротивление на 1 куб.метр составляет 50 Ом и 60 Ом соответственно.

Также на уровень сопротивления влияет глубина водного горизонта, чем ближе он к поверхности, тем меньше сопротивление грунта. Обязательно учтите какой именно тип грунта в вашем регионе, и определите хотя бы приблизительные показатели сопротивления, так вы будете уверены в качестве работы заземления.

Итак, мы разобрали все важные особенности и требования к заземляющим контурам для частных домов. Если вы не знали как правильно сделать контур заземления, здесь рассмотрены все схемы, особенности и специфика процесса монтажа подобных систем.

Принцип действия

Главный элемент электролитического заземления — полый электрод (труба) Г -образной формы с перфорацией в горизонтальной части, устанавливаемый в зоне протайки вечномерзлого грунта (на глубину 0,7 метра) и заполненный специальной смесью минеральных солей. Эта смесь впитывает воду из окружающей среды, превращаясь в электролит (выщелачиваясь), после чего проникает в грунт, повышая его электропроводность (понижая его удельное сопротивление) и уменьшая его промерзание (понижая температуру замерзания). Обмен жидкостями осуществляется через перфорированную поверхность электрода.

Как проверить контур заземления после установки?

Все описанные ниже действия нужно проводить перед засыпкой траншей, поэтому не стоит спешить, повторная проверка позволить быть ещё более уверенным в надежности конструкции.

В первую очередь проведите визуальный осмотр:

  • Проверьте места соединения элементов на качество сварки, а также наличие трещин.
  • Исследуйте отсутствие следов повреждения соединительного провода и металлической полосы.
  • Осмотрите качество окрашивания элементов, при необходимости исправьте поврежденные места.

По такому же принципу необходимо проводить ежегодный контроль состояния контура заземления частного дома. Благодаря этому он будет работать долгие годы, без необходимости замены элементов.

Кроме этого, стоит уделять внимание и периодическим проверкам физических показателей контура, таких как сопротивление. ПЭУ гласит, что общее сопротивление всех повторных заземлений в любое время года не должно превышать 10 и 20 Ом для сетей с напряжением 380 В и 220 В соответственно. При этих же напряжениях сопротивление каждого отдельного элемента заземления не должно превышать 30 Ом и 60 Ом для сетей 380 В и 220 В соответственно.

Обязательно помните — кроме соответствия техническим параметрам, заземляющий контур должен соответствовать всем требованиям стандартов ГОСТ и ПЭУ, регламентирующих этот вопрос. Только полное их соблюдение позволит быть уверенным в работе заземления для частного дома на 100%.

Пример на железнодорожном транспорте

Рассмотрим требования к монтажу заземления на железнодорожном транспорте (стационарные или тяговые электроустановки), указания по которым приводятся в инструкции ЦЭ-191. Согласно этому документу всё действующее электрооборудование должно быть надёжно защищено путём подключения заземляющего проводника к специальной шине.

Той же инструкцией оговаривается величина максимального сопротивления шины заземления, при которой токи утечки достаточны для того, чтобы защитные устройства успевали сработать и своевременно отключить аварийный участок контактной сети.

Отключение повреждённой линии производится с помощью специальных фидерных выключателей, размещённых на тяговой подстанции и настроенных на требуемый ток отсечки (смотрите ПУЭ).

Особые требования предъявляются к конструкциям или агрегатам с повышенным риском попадания на них напряжения контактной сети (из-за пробоя изоляции или при случайном соприкосновении). Всё это оборудование должно иметь надёжное электрическое соединение с основной тяговой или рельсовой сетью.

Такому заземлению подлежат и все металлические конструкции, включая опоры контактной линии с закреплёнными на изоляторах проводами.

Финальная стадия — ввод заземления в дом

Хотя все уличные работы по организации заземляющего контура мы уже разобрали, нужно еще подумать о соединении электропроводки и контура заземления.

Для соединения нужно использовать такую же шину, как и для соединения проводников. Лучше всего постараться «дотянуть» металлическую шину прямо к электрощитку, но если это не удастся, стоит сделать это хотя бы с наружной стороны дома, и после соединить при помощи медного провода сечением 6-10 мм2.

Если вам кажется что всё настолько просто, не забывайте о том что есть несколько схем подключения — TN-C-S и TN-S.

Схема TN-S — наиболее современный и надежный тип электропроводки. Такая схема совместима с трансформаторами с глухозаземленной нейтралью, при этом проводники N и PE разделены на протяжении всей линии от подстанции до потребителя. Этот вариант подразумевает использование пятижильного кабеля, благодаря чему обеспечивается максимальная эффективность и безопасность.

Схема TN-C-S — отличный вариант организации заземления на временной основе. Исходя из этой схемы, нейтральная жила N пересекается с проводником PE, при этом в таком случае необходимо несколько точек заземления. От подстанции проводится общий провод PEN, который на подводе к жилому дому разделяется на PE и N. Чаще всего подобные схемы применяются на участках новостроя, или при отсутствии современной электросети в регионе. В последнем случае необходимо дождаться проведения полноценной пятижильной системы службами электросетей.

Главным недостатком второго варианта является необходимость прокладки проводки трехжильным кабелем, который впоследствии всё равно придется заменить более надежным пятижильным. Также при необходимости подключения трёхфазной сети 380В необходимо использовать всё тот же пятижильный кабель. Исходя из всего этого выходит что затраты на монтаж проводки по этой схеме является экономически невыгодным.

Если изначально позаботиться о прокладке правильного типа проводки, внедрение заземления не станет для вас проблемой. Кроме этого, применение пятижильной линии позволит существенно сэкономить, поскольку вам не придется повторно заниматься прокладкой электросетей в собственном доме.

Теги:

  • электромонтаж

Оцените материал:

Объекты, требующие оснащения контуром

Металлическая проводка обязательно должна заземляться
В обязательном порядке должны заземляться:

  • помещения, где работают станки, приборы и источники освещения с металлическими корпусами и кожухами;
  • комплектные трансформаторные подстанции, а также здания, в которых размещено электротехническое оборудование со стальными корпусами;
  • вторичная обмотка измерительного трансформатора;
  • металлические трубопроводы для кабелей, помещения, где одновременно расположены металлоконструкции и кабели, провода.

Не требуется заземлять устройства, которые установлены на уже заземленное оборудование, автоматы защиты в электрощитках, электроизмерительные устройства.

Заглянем в теорию

Рассмотрим пример – схема заземления с одиночным вертикальным заземлителем, забитым в землю. С ним соединён металлический корпус электроприбора, где произошло короткое замыкание – фаза соединилась с корпусом. При этом исходные условия: замыкание «металл – на металл», без учёта сторонних факторов, поэтому сопротивлением в точке контакта можно пренебречь. Сопротивление заземляющего проводника от прибора до земли тоже не учитываем, так как оно незначительное, когда используется достаточно большое сечение.

Далее при условии, что грунт вокруг заземлителя считаем однородным во всех направлениях, то и ток будет уходить в землю одинаково в этих же направлениях. При этом наибольшая плотность тока будет у самого заземлителя. Чем дальше от заземлителя, тем больше уменьшается его плотность. В итоге получается, что на пути тока сопротивление его движению с увеличением расстояния от заземлителя всё более уменьшается, потому что он проходит через постоянно увеличивающееся «сечение» проводника – земли. И напряжение, которое снижается на пути этого тока по закону Ома: самое большое на самом заземлителе, а при удалении плавно убывает. А на каком-то расстоянии от заземлителя напряжение станет пренебрежимо мало – приблизится к 0. Точка с таким напряжением – точка нулевого потенциала. По сути эта точка нулевого потенциала и есть та самая земля, с которой связан корпус электроприбора.

Сопротивление заземляющего устройства, это не электрическое сопротивление его металла – оно низкое, это не сопротивление между металлом штыря и землёй – при соблюдении определённых условий оно тоже небольшое. Это сопротивление земли между штырём и точкой нулевого потенциала.

Всё это отображается формулой Rз : Uф / Iкз. То есть – сопротивление заземляющего устройства будет равно фазовому напряжению, пришедшему на корпус, поделённому на ток короткого замыкания. На этой формуле всё и завязано.

Но параметров сопротивления одиночного заземлителя скорее всего будет недостаточно, чтоб организовать контур заземления, соответствующий требованиям ПУЭ. Как всё привести в соответствие? Площадь заземляющего электрода имеет решающее значение, поэтому самое очевидное решение – нужно забить рядом ещё один электрод. Но если забить их в непосредственной близости, то ток растекается, как и прежде, ничего не меняется. Для того чтоб поменять конфигурацию растекания нужно разнести заземляющие электроды подальше друг от друга. В этом случае получается разделение тока между ними – он стекает с каждого из них.

Однако существует зона, где они пересекаются. Получается, что это не простое параллельное соединение двух сопротивлений, за исключением примеров, когда заземлители очень далеко друг от друга. Но это очень непрактично, для реального устройства заземления потребуются огромные площади. Поэтому при расчётах удаления заземляющих электродов используют поправочные коэффициенты, которые учитывают их взаимное влияние – коэффициент экранирования.

Чтобы ещё уменьшить сопротивление контура заземления, нужно увеличить глубину погружения электрода, то есть увеличить его длину. Ведь чем длиннее заземлитель, тем больше площадь, способствующая растеканию тока. Этот эффект широко используется при изготовлении омеднённых штырей для комплектов заземления. Они забиваются в землю друг за другом соединяясь резьбовыми муфтами в единый электрод. При этом достигается нужная для параметров заземления глубина.

Соединяя электроды заземления горизонтальной связью, ещё снижается общее сопротивление заземляющего устройства

Влияние связи тоже учитывается, также принимаются во внимание, что её экранируют вертикальные электроды

Получается система из нескольких элементов, зависящих друг от друга:

Расстояние между вертикальными заземлителями. Их количество. Важно, на какую глубину они забиты. Форма – прут, труба, уголок. Это разная площадь прилегания к земле. Форма и длина горизонтальной связи.. То есть факторов достаточно много и по одной формуле всё рассчитывать некорректно

Остальные параметры для расчёта берутся из следующих понятий и величин

То есть факторов достаточно много и по одной формуле всё рассчитывать некорректно. Остальные параметры для расчёта берутся из следующих понятий и величин.

Глубина прокладки проводников

Поверхностный слой грунта подвергается сезонным и погодным воздействиям. Повышенная влажность, замерзание/оттаивание грунта в этом слое негативно сказываются как на заземлителе, так и на заземляющем/соединительном проводниках, находящихся в нем. К тому же, вероятность механически повредить проводники в поверхностном слое в ходе проведения хозяйственных работ создает неудобства и повышает вероятность создать опасную ситуацию связанную с аварийным состоянием заземления.

На большей части РФ и стран СНГ, глубина поверхностного слоя грунта, который подвергается выше описанным видам воздействия равна 0,5 — 0,7 метра. Поэтому заземляющий и соединительные проводники в земле должны прокладываться на этой глубине (0,5 — 0,7 метра) в заранее подготовленном канале.

На эту же глубину заглубляются электроды заземления.

Отдельно о заземлении некоторых агрегатов

В частном доме есть некоторые мощные приборы, потребляющие большие объемы электроэнергии и представляющие повышенную опасность

Важно выполнить правильное заземление этих агрегатов, чтобы обезопасить себя и своих близких

Газовый и электрический котел

К вопросу заземления газового котла в частном доме следует подойти со всей ответственностью. В противном случае вы можете не только лишиться автоматики, очень чувствительной к резкому изменению напряжения, но и рискуете жизнью, так как газ может взорваться от любой искры.

Не расслабляйтесь, если инспектор газовой службы не потребовал от вас установки заземлителя. Это строго не предписано правилами. Позаботьтесь о собственной безопасности, не дожидаясь неприятных последствий.

Схема для газового котла

Для котла можно использовать самодельный контур, о котором мы уже говорили или приобрести готовый комплект.

Статья по теме:

Водонагреватель

Самой распространенной ошибкой в заземлении водонагревателя является подключение его к фазному проводу в розетке. Это грозит аварийным выбиванием фазы. Предотвратить последствия такого отключения может только автоматическое устройство, но оно установлено не на всех агрегатах.

Считается, что подсоединение заземляющих контактов к контуру в земле приводит к преждевременной коррозии корпуса водонагревателя, но тут из двух зол выбирают меньшее. Специалисты рекомендуют одновременно с контуром заземления монтировать с водонагревателем и устройство защитного отключения.

Как заземлить водонагреватель в частном доме в следующем видеоматериале:

Watch this video on YouTube

Статья по теме:

Розетка

Заземление розеток – способ обезопасить все остальные электроприборы в доме. Позаботиться о безопасности жилища следует еще в момент прокладки проводки. Для этого используют трехжильный провод, в котором находятся «ноль» «фаза» и «земля». Очень удобно, если провода будут иметь оплетку разного цвета, это значительно облегчает монтаж.

Современные производители выпускают розетки, в которых трудно что-то перепутать. На всех клеммах стоят четкие обозначения, так что подключить розетку может даже новичок.

Как заземлить розетку в частном доме в видео инструкции:

Watch this video on YouTube

Заземление электроустановок и оборудования — правила и требования

Заземление – соединение корпуса электроустановки с заземляющим контуром, с целью предотвращения поражения током работающих и находящихся в непосредственной близости людей. Является обязательным элементом комплекса мер по обеспечению безопасности. Существуют различные виды электроустановок, и каждый требует особого подхода к организации заземления, поэтому важно уделить внимание технической стороне вопроса. 

Классификация заземляющих устройств

Система заземления электроустановок – комплекс, состоящий из заземляющего контура и проводников, соединяющих его с корпусами оборудования для обеспечения стекания в землю  избыточного тока, появившегося в результате попадания фазы на корпус. Действующая в России  классификация устройств заземления (далее УЗ) подразумевает градацию по следующим признакам:

  • Виду нейтрали. По наличию соединения с заземляющим устройством:
    • заземленная;
    • изолированная.
  • Способу прокладывания от понижающей подстанции до электроустановки.
  • Способ подключения нагрузки к нейтрали.

Организация системы заземления регулируется правилами устройства электроустановок (ПУЭ). Документ регламентирует порядок и признаки классификации заземляющих систем. Для обозначения маркировки используются буквы английского алфавита:

T – заземление;

N – нейтраль;

I – изолированное;

C – общая;

S – раздельная.

Такой вид маркировки позволяет определить используемый способ защиты генератора тока и предпочтительные схемы заземления электроустановок на стороне потребителя.

При монтаже линий электроснабжения общепринятыми для России считаются три системы заземления:

  • TN-C – обозначает, что нулевой рабочий и защитный проводники объединены в общую шину на всем протяжении трассы.
  • TN-S – нулевой рабочий и защитный проводники прокладываются раздельно.
  • TN-C-S – нулевой рабочий и защитный проводники на части трассы объединены, а на остальной прокладываются раздельно.

Реже встречаются следующие системы:

  • TT – нулевой рабочий и защитный проводники заземляются раздельно. Чаще всего этот способ используют в случае неудовлетворительного состояния питающей воздушной ЛЭП или для предотвращения поражения людей через токопроводящие поверхности временных сооружений.
  • IT – в этой схеме нейтраль изолируется от земли или заземляется через специальное оборудование. Такой вариант чаще всего используют, если необходимо обеспечить высокий уровень защиты оборудования. Поскольку при таком варианте подключения риск искрообразования минимален.

Технические требования к организации заземления электроустановок

УЗ используют для защиты людей и оборудования от разрушительного действия электрического тока. Безопасность обеспечивается путем соединения защищаемых корпусов электроустановок с землей. Работы по организации заземляющих сетей регламентируются положениями ГОСТ 12.1.030-81, согласно которым  защитное заземление электроустановки следует выполнять при следующих параметрах:

  • при значениях номинального напряжения 380 B и более переменного тока и более 440 B и более постоянного тока – при любых значениях;
  • при значениях номинального напряжения 42-380 B переменного тока 110-440 B. Для работ связанных с повышенной опасностью.

Правильно организованная система заземления электроустановок способна нейтрализовать избыточный потенциал любой мощности и защитить людей, оборудование и здания от воздействия электрического тока будь то скачки, вызванные включением или отключением силового оборудования или грозовое воздействие.

Принцип работы основан на разнице сопротивлений человеческого тела и УЗ. Избыточный потенциал отводится в направлении меньшего показателя, т. е. в сторону защитного контура.

Выбор естественных заземлителей

Согласно правилам устройства электроустановок, их корпуса должны быть подключены к искусственным или естественным заземлителям. В качестве естественных используют следующие металлические объекты:

  • каркасы подземных металлоконструкций, имеющие непосредственный контакт с грунтом;
  • защитные кожухи кабелей, проложенных под землей;
  • металлические трубы, за исключением газо- и нефтепроводов;
  • железнодорожные рельсы.

Контакт объекта с естественным заземлителем должен осуществляться минимум в двух местах. Преимущества этого метода в простоте, эффективности и сокращении затрат на организацию системы электробезопасности.

Нельзя выбирать в качестве естественных заземлителей следующие объекты:

  • трубопроводы горючих и взрывчатых газов и жидкостей;
  • трубы, покрытые антикоррозийной изоляцией;
  • канализационные трубопроводы;
  • трубы централизованного отопления.

Сопротивление стеканию тока

Заземление работает по следующему принципу: ток, стекающий в землю через место замыкания, проходит вначале на корпус электроустановки и с него через УЗ в грунт. Очевидно, что при организации сетей заземления до 1000 Вольт, важно создать цепочку, обеспечивающую стекание избыточного заряда в землю.

Значения сопротивления заземления для сетей различного назначения:

Назначение сети

Максимальное значение сопротивления, Ом

Частные дома 220, 380 Вольт

30

Промышленное оборудование

4

Источник тока при напряжении 660, 380 и 220 Вольт

2, 4, 8

Частный дом при подключении газопровода

10

Устройства защиты линий связи

2 (реже 4)

Телекоммуникационное оборудование

2 или 4

Чтобы получить показатели сопротивления, установленные нормативами, следует придерживаться типовых процедур:

  • Увеличить площадь соприкосновения деталей заземляющего устройства с грунтом.
  • Обеспечить качественный контакт между элементами устройства и соединительными шинами.
  • Усилить проводимости почвы увлажнением или повышением ее солености.

Для контроля за соответствием сопротивления предписанным нормам следует проверять его уровень не реже одного раза в шесть лет.

Работа УЗ при нарушении защитной изоляции электрооборудования

Нарушение целостности защитной изоляции нередко приводит к замыканию фазы на корпус. Дальнейшее развитие событий зависит от качества системы электробезопасности. Возможны следующие варианты:

  1. Заземление отсутствует, устройство защитного отключения не установлено. Самая неблагоприятная ситуация. При прикосновении к корпусу ощущается сильный удар.
  2. Корпус подключен к системе заземления, УЗО отсутствует. Если ток утечки будет велик, сработает автомат и отключит питающую линию или цепочку. Этот вариант может привести к накоплению избыточного потенциала на корпусе, если сопротивление переходов и номинал предохранителей будут велики. Такая ситуация опасна для людей.
  3. Заземление отсутствует, устройство защитного отключения установлено. Ток утечки вызовет срабатывание УЗО и человек успеет ощутить только слабый удар током.
  4. Корпус подключен к заземлению, УЗО установлено – наиболее надежный вариант, обеспечивающий защиту людей и техники благодаря тому, что защитные устройства дополняют и отчасти дублируют друг друга. При замыкании фазы на корпус, избыточный потенциал стекает через систему заземления. Одновременно устройство защитного отключения реагирует на утечку и отключает подачу тока, исключая возможность поражения током людей. Если ток утечки значительно превышает возможности УЗО, может сработать автомат и продублировать его функцию.

Заземление цехового оборудования

Согласно правилам устройства электроустановок до 1000 Вольт, их классифицируют по виду заземляемых устройств:

  • Для типового станочного оборудования.
  • Для электродвигателей и сварочных аппаратов.
  • Для передвижных установок и эксплуатируемых электроприборов.

Заземление типового станочного оборудования

Для заземления цехового оборудования используют контур системы уравнивания потенциалов (далее СУП).

Система уравнивания потенциалов  – это элемент устройства заземления, представляющий из себя контур из проводящих элементов для подключения корпусов оборудования с целью достижения равенства потенциалов.

 Важно уделить внимание  следующим техническим вопросам: 

  • Определить расположение контура СУП в рабочей зоне.
  • Рассчитать толщину шины, используемой для соединения корпуса станка с УЗ.
  • Определить место наложения стационарного заземления.
  • Выяснить какие устройства используются для защиты опасных частей оборудования.

Контроль этих вопросов – обязанность цехового электрика, владеющего информацией о структуре и расположении элементов системы заземления и порядке подсоединения к ней корпусов станков, в том числе предписанном конструкцией станка расположении точки подключения заземляющей шины.

Заземление электродвигателей

Согласно нормам, заземление электродвигателей также является обязательным, кроме случаев, когда оборудование устанавливается на металлический пьедестал, имеющий контакт с грунтом. В остальных случаях необходимо соединить корпус с системой заземления при помощи медной жилы. Правилами указывается, что контакт с заземлением должно быть прямым у каждого электродвигателя и последовательное подключение нескольких устройств через заземляющую цепочку недопустим, поскольку обрыв линии приводит к потере контакта сразу всех электродвигателей.

Для грамотного подключения заземления необходимо предусмотреть на подводящем силовом кабеле 380 Вольт дополнительную шину, одним концом подключенную клемме заземления в распредкоробке двигателя, а вторым – к корпусу силового шкафа. При этом важно соблюсти последовательность подключения и соединить с системой заземления вначале электрический щиток. Важно также обеспечить соответствие диаметра сечения проводников установленным нормам.

Заземление сварочных аппаратов

Правила устройства электроустановок регламентируют также порядок заземления сварочных аппаратов. Заземление корпусов оборудования в данном случае является обязательным. Кроме корпуса заземляться должна и трансформаторная вторичная обмотка через один из выводов. Другой используется для подключения держателя электродов.

Возле заземляемого вывода на корпусе расположен соответствующий знак и приспособление для фиксации шины, соединяющей его с защитным контуром. Переходное сопротивление защитного контура или устройства не должно быть выше 10 Ом.

Для повышения электропроводимости системы заземления следует увеличить контактную площадь соединений, в том числе площадь соприкосновения с землей. Подключение к ЗУ должно быть индивидуальным у каждого сварочного аппарата и не должно осуществляться через заземляющую цепочку, поскольку в случае обрыва контакт с УЗ будет потерян сразу всеми аппаратами.

Защита передвижных установок

Особое внимание стоит уделить заземлению передвижных установок. Для защиты передвижных установок используют заземлители для передвижных установок  ГОСТ 16556-02016. Поскольку особенности их эксплуатации затрудняют выполнение требований по обеспечению показателей переходного сопротивления, поэтому правилами устройства электроустановок допускается повышение показателя до 25Ом. Это относится только к установкам, снабженным автономным питанием и имеющим изолированную нейтраль.

Этот вид УЗ может применяется для установок с пониженным искрообразованием, не являющихся источниками питания для иного оборудования, а также для передвижных агрегатов, имеющих собственные заземлители, не задействованные в данный момент.

Передвижные установки, оснащенные автономным питанием, требуют регулярного освидетельствования на наличие повреждений защитной оболочки, поскольку имеют изолированную нейтраль и повышенный риск образования трущихся сочленений.

Защита электроприборов

При работе с электроприборами разных типов можно ориентироваться на стандартные правила обеспечения безопасности:

  • Защитить открытые токоведущие части.
  • Нарастить защитную изоляцию.
  • Использовать специальные приспособления для ограничения доступа к корпусам оборудования.
  • Если позволяет конструкция, можно как меру использовать понижение напряжения.

 Во избежание пробоев изоляции и попадания фазы на корпус электроприбора эффективными являются традиционные методы:

  • Наличие системы заземления.
  • Система уравнивания потенциалов.
  • Усиление изоляции токоведущих частей.
  • В некоторых случаях как меру безопасности при работе с электрооборудованием можно использовать ограничение доступа в помещения, представляющие потенциальную опасность за счет повышенной влажности, запыленности и т.п.

Важно учесть, если помимо заземления используются другие методы защиты людей – они не должны быть взаимоисключающими и снижать эффективность друг друга.

Задействовать естественные заземлители для обеспечения защиты возможно только при отсутствии вероятности повреждения подземных конструкций, в случае протекания по ним аварийного тока.

Защита с помощью заземления и зануления

Для обеспечения электробезопасности людей нередко используют комбинированный метод заземления и зануления электрооборудования. Зануление обеспечивается соединением защитных корпусов с нейтралью подводящей силовой линии. Это позволяет преобразовать сетевое напряжение, попавшее на корпус установки, в однофазное короткое замыкание. И заземление и зануление выполняют защитную функцию, но разными методами.

При заземлении для обеспечения снижения избыточного потенциала используется дополнительное устройство. Для работы системы зануления достаточно соединить корпус электроустановки с нейтралью питающей сети.

При работе в потенциально опасных помещениях использование одного из описанных методов является обязательным. Ответственные сотрудники должны четко понимать отличие одного способа защиты от другого и знать каким должен быть контур заземления у каждого вида оборудования.

Контроль состояния защитных устройств

Правила устройства электроустановок предписывают проводить периодическую проверку работоспособности системы заземления. Она позволяет установить соответствие параметров сопротивления стеканию тока заземляющих контуров нормативным. Проверка происходит с использованием специальных измерительных приборов, подключаемых к заземляющим устройствам по определенным схемам.

Правилами также регламентируется периодичность проведения проверки. Она зависит от класса обследования, конструкции заземляющих устройств, типа и мощности используемого оборудования. Визуальный осмотр состояния системы заземления должен проводиться каждые полгода. Проверки, сопровождаемые вскрытием грунта в местах, связанных с повышенным риском – раз в 12 лет или чаще.

Грамотный подход к организации системы заземления электроустановок, четкое понимание структуры и особенностей разных типов УЗ, а также своевременный контроль их состояния, в соответствии с действующими регламентами, обеспечит безопасность сотрудников предприятия, сохранность оборудования и зданий.

Основы контура заземления

Что такое контур заземления?

Контур заземления возникает, когда есть
более одного пути заземления
между двумя частями оборудования. В
дублированные наземные пути образуют
эквивалент рамочной антенны, которая очень
эффективно улавливает помехи
токи. Преобразование сопротивления свинца
эти токи превращаются в колебания напряжения.
Как следствие замыкания на землю
индуцированные напряжения, заземление в
система больше не стабильная
потенциал, поэтому сигналы движутся на шуме.Шум становится частью программы
сигнал.

Контур заземления — это обычное состояние проводки, при котором ток заземления может проходить по нескольким путям, чтобы вернуться к заземляющему электроду на СЕРВИСНОЙ ПАНЕЛИ.
Все компьютеры с питанием от переменного тока соединены друг с другом заземляющим проводом в общей проводке здания. Компьютеры также могут быть соединены кабелями передачи данных. Поэтому компьютеры часто соединяются друг с другом более чем одним путем. Когда существует многопутевое соединение между компьютерными цепями, результирующее устройство известно как «контур заземления».Всякий раз, когда существует контур заземления, существует вероятность повреждения из-за ВНУТРЕННИХ СИСТЕМНЫХ ЗЕМНЫХ ШУМОВ.

Контур заземления в силовом или видеосигнале возникает, когда некоторые компоненты в
одна и та же система получает питание от другого заземления, чем другие
компонентов, или потенциал земли между двумя частями оборудования не
идентичный.

Обычно разность потенциалов в заземлении вызывает протекание тока.
в межкомпонентных соединениях. Это, в свою очередь, модулирует вход
схемы и обрабатывается как любой другой сигнал, подаваемый через нормальный
входы.Вот пример ситуации, когда два заземляющего оборудования
соединены между собой через заземление сигнального провода и заземляющий провод сети.
В этой ситуации в проводе течет ток 1А.
что вызывает разницу в напряжении 0,1 В между этими двумя устройствами.
точки заземления.

Из-за разницы напряжений между электронными приборами сигнал
в соединительном проводе видит, что разница добавляется к сигналу.
Это можно услышать как гудение на проводе, потому что переменный ток
привести к тому, что разность напряжений этих потенциалов земли также будет
Напряжение переменного тока.Это одна из причин шума 50 или 60 Гц, который вы слышите.
в аудиосигнале (или увидеть в видеосигнале раздражающие горизонтальные полосы).

Еще одна проблема — ток, протекающий в заземляющем проводе сигнального кабеля.
Этот ток проходит по кабелю и через оборудование. Принадлежащий
способ, которым curren parsses не разработан, это может вызвать много шума
к оборудованию или другим проблемам (например, зависанию компьютера).
Многие дизайнеры рассчитывают на то, что земля будет заземлена, и не оптимизируют
их конструкция исключает их чувствительность к шумам от земли.

Если вы дизайнер продукта, не забудьте позаботиться о том, чтобы контур заземления
ток не вызывает проблем в вашем оборудовании, проектируя
правильная схема заземления внутри оборудования.

Почему контур заземления является проблемой?

Контур заземления — распространенная проблема при подключении нескольких аудиовизуальных
компоненты системы вместе, есть хорошие изменения, чтобы сделать неприятный
контуры заземления. Проблемы контура заземления — одна из самых распространенных проблем с шумом
в аудиосистемах. Типичным признаком проблемы с контуром заземления является
слышно 50 Гц или 60 Гц (в зависимости от частоты сетевого напряжения, используемой в
ваша страна) шум в звуке.Наиболее частая ситуация, когда вы сталкиваетесь с проблемами контура заземления, когда ваш
система включает оборудование, подключенное к заземленной розетке, и
антенная сеть или оборудование, подключенное к разным заземленным розеткам
по комнате.

Все подключено к единой электросети, которая обычно подключается к
все контакты заземления во всех розетках в одной комнате. Тогда антенная сеть
также заземлен к той же точке заземления. Обычно это нормально,
поскольку заземления соединены друг с другом только звездообразным образом
от центрального заземляющего провода (ведущего к реальной Земле через заземление).
кабеля или металлической трубы) заземляющие кабели проходят через силовые кабели в
оборудование.

Как только вы примете во внимание, что часть вашего оборудования связана с
экранированный кабель вы, скорее всего, столкнетесь с некоторыми проблемами.
Вполне возможно, что токи могут течь от одной части оборудования в
кабель заземления, в другую часть оборудования, а затем обратно в первую часть
через экранированный аудиокабель. Эта проволочная петля также может улавливать помехи
от близлежащих магнитных полей и радиопередатчиков.

В результате нежелательный сигнал будет усиливаться до тех пор, пока не будет
слышно и явно нежелательно.Даже разница в напряжении ниже
чем 1 мВ может вызвать раздражающий жужжащий звук в вашей аудиосистеме.

Проблема со слышимым шумом, исходящим от вашей аудиосистемы, когда другой
электронные компоненты (холодильник, кулер для воды и т. д.) могут быть результатом
загрязненного заземляющего / нейтрального проводника в вашей проводке кондиционера и
контур заземления в нашей аудиосистеме. Этот
может произойти при включении определенного типа устройств. Обычно их мощность
поставки нелинейны и выбрасывают мусор обратно на нейтраль и / или
заземляющие проводники.Обычно линейные кондиционеры или устройства ИБП не подходят.
все, что поможет решить эту проблему.

Распространенные причины неполадок компьютерной системы

Много раз, когда пользователь думает, что его система «плохая» или «испортилась»
неисправность имеет электрическую или магнитную природу.
Проблемы с монитором очень часто вызваны близлежащими магнитными полями,
гармоники нейтрального провода или наведенные / передаваемые электрические помехи.
Периодические зависания компьютеров очень часто вызваны:
контур заземления, электрическое явление, которое иногда проявляется
сам, когда система и ее периферийные устройства неправильно подключены к
различных электрических цепей .Многие даже не знают, что их стена
розетка правильно подключена и заземлена, что абсолютно необходимо для компьютера
и периферийное оборудование для надежной и безопасной работы.

Вы исключили заземление в своей компьютерной системе?
Контуры заземления могут вызвать проблемы с подключениями к локальной сети, если не
правильно подключен. Контур заземления, вызванный подключением RS-232
к другому компьютеру может вызвать зависание компьютера.

Когда контур заземления не является проблемой

Контур заземления не вызывает проблем при соблюдении всех перечисленных ниже условий.
вещь верна:

  • Ни один из проводов контура не пропускает ток
  • Петля не подвергается воздействию внешних изменяющихся магнитных полей.
  • Рядом нет радиопомех

Если в каких-либо проводах есть ток, значит, есть
потенциальная разница, которая заставляет ток течь и по другим проводам
что вызывает проблемы.Петля также будет действовать как катушка и забирать ток из изменяющегося магнитного поля.
поля вокруг него. Проволочная петля также действует как антенна, принимающая радио.
сигналы.

О каком размере проблемы разности потенциалов земли идет речь?

В литературе говорится о синфазном шуме от 1 до 2 В в «хорошо заземленных» установках и
более 20 Вольт в «слабо заземленных» установках.
В литературе также говорится о токе, измеренном в сети.
служебное заземление (в большом здании) в амперах.

Откуда эта разница тока и напряжения?

Утечка тока конденсаторов между горячим и заземлением и между нейтралью и землей в течение
Например, основные фильтры, вызовите ток в заземляющих проводах (и контурах заземления).
Ток утечки обычно измеряется в миллиамперах (обычно меньше
чем 1 мА в компьютерном оборудовании) на одно оборудование. Когда вы подводите итог, может быть, сотни
такого оборудования вы легко можете получить в амперах.

Емкость между линией и землей больших нагревателей и двигателей, для
Например, может быть намного больше, чем емкость конденсаторов фильтра.Токи от этого источника обычно составляют порядка 1 ампер (а не
0,1 А или 10 А)

Даже очень небольшое индуцированное напряжение может вызвать очень большой ток в
контур заземления, потому что сопротивление (и индуктивность) очень
низкий. Эти токи действительно могут составлять десятки ампер.
Индукция тока может быть вызвана, например, кабелями, по которым проходят большие токи.
и от трансформаторов.

На что способны эти заземляющие токи и разность напряжений?

Небольшая разница в напряжении просто приводит к добавлению шума к сигналам.Это может вызвать жужжание звука и помехи для видеосигнала.
и ошибки передачи в компьютерные сети.

Более высокие токи могут вызвать более серьезные проблемы, такие как искрение в соединениях,
повреждает оборудование и сгорает проводка. Мой собственный опыт в этой области ограничен
к искрообразующим разъемам, нагревательным кабелям и поврежденным платам последовательного порта компьютера.
Я читал о сгоревших сигнальных кабелях и дымящих компьютерах из-за
дифференциальные заземления и вызываемые ими большие токи.Так что будьте осторожны об этой потенциальной проблеме и не выполняйте глупых установок.


Томи Энгдал <[email protected]>

Проблемы контура заземления и способы их устранения

Написано Томи Энгдалом, авторские права принадлежат Томи Энгдал 1997-2013 гг.

ЗАМЕТКА:
Информация, представленная здесь, считается правильной и доступна здесь автором. Автор этого документа
не несет ответственности за какой-либо эффект, который может иметь эта информация или любое ее использование.

Документы использовались и рекомендовались многими людьми и
считаются точными. Настолько точны, что их также называли
GB AUDIO Ground loops DATA SHEET на своих веб-страницах (с моего разрешения).

Основы

Дилемма состоит в том, что решение «шумовых» проблем — это само по себе искусство. Поскольку это происходит не каждый день, у всех нас ограниченный практический опыт. Это породило индустрию для тех, кто теперь специализируется на решении проблем с шумом.

Хорошая система распределения электроэнергии важна для правильной работы
аудиосистемы. Профессиональные аудиосистемы просто не работают
хорошо с обычными удлинителями, идущими на сотни футов до сцены.
Помимо питания, необходимо хорошее заземление всей системы.
существенный.

Контур заземления — это состояние, при котором происходит непреднамеренное соединение с землей.
через мешающий электрический проводник. Обычно подключение контура заземления
существует, когда электрическая система подключена более чем через
один путь к электрическому заземлению.

Когда два или более устройства подключены к общему
заземление по разным путям, возникает контур заземления.
Токи текут по этим многочисленным путям и развиваются.
напряжения, которые могут вызвать повреждение, шум или 50 Гц / 60 Гц
гудение в аудио- или видеоаппаратуре. Чтобы предотвратить землю
петли, все сигнальные земли должны идти в одну общую точку
а когда невозможно избежать двух точек заземления, одна
сторона должна изолировать сигнал и заземление от другой.

Суть в том, что идеальной «тихой» земли не существует.Основы всех проблем с шумом в системе заземления сводятся к тому, что такое нежелательный ток. За исключением больничных систем, определение в лучшем случае расплывчато. Стандартная система электрического заземления во всем здании не предназначена для постоянного протекания через нее тока, но, тем не менее, это так, вы не можете остановить это. Причина, по которой заземление не будет и никогда не будет абсолютно бесшумным, заключается в том, что провод заземляющего электрода представляет собой не что иное, как длинный провод от точки A до точки B.И чем длиннее провод, тем больше шума он улавливает.

Звук и видео люди имеют в виду тип шумной земли
с термином, подобным контурам заземления: ток, протекающий по заземляющему проводнику оборудования, металл в здании и провод заземляющего электрода.
Использование любой из сегодняшних стандартных однофазных систем переменного тока на 120 или 230 вольт создает потенциальные проблемы для аудиооборудования.
У компьютерщиков такая же проблема в работе и так далее.

Обычно контуры заземления возникают постфактум, когда
конечный пользователь винит установщика, установщик винит производителя и
на самом деле никто не виноват.Ни производитель, ни установщик обычно не могут предсказать, где
возникнет петля. Только после того, как система будет установлена, можно определить
если проблема будет.

Проблемы с контуром заземления можно исправить и избежать.
Это важно, чтобы продавец, заказчик и конечный пользователь знали
что эта проблема может возникнуть. Спроектировать систему — хорошая идея.
чтобы избежать наиболее очевидного источника такого рода проблем, а затем
готов все же столкнуться с некоторыми проблемами при запуске системы.Проблема контура заземления может возникнуть в нескольких точках системы, и
каждое возникновение проблемы необходимо устранять индивидуально.

Почему заземление так важно?

Заземление электрических систем требуется по ряду причин, в основном для обеспечения безопасности людей, находящихся рядом с системой, и для предотвращения повреждения самой системы в случае неисправности. Функция защитного проводника или заземления состоит в том, чтобы обеспечить путь с низким сопротивлением для тока короткого замыкания, чтобы устройства защиты цепи сработали быстро и отключили питание.

Национальный электротехнический кодекс NEC определяет заземление как «проводящее соединение, независимо от того,
намеренно или случайно между электрической цепью или оборудованием и землей, или с некоторыми
проводящее тело, которое служит вместо земли ». Когда мы говорим о заземлении, на самом деле это два
разные предметы, заземление и заземление оборудования. Заземление заземления — преднамеренное
соединение проводника цепи, как правило, нейтрали с заземляющим электродом, помещенным в землю.
Заземление оборудования предназначено для обеспечения правильной работы оборудования внутри конструкции.
заземлен.Эти две системы заземления необходимо держать отдельно, за исключением соединения.
между двумя системами, чтобы предотвратить разницу в потенциале из-за возможного пробоя из-за
удар молнии. Целью заземления помимо защиты людей, растений и оборудования является
чтобы обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, ​​статических разрядов,
EMI и RFI сигналы и помехи.

Неправильное заземление может создать опасность для жизни.
Правильное заземление необходимо для правильной работы и безопасности.
электрооборудования.Заземление может решить многие проблемы, но
это также может вызвать новые. Одна из наиболее частых проблем — это
называется «контур заземления».

Что вызывает гудение в аудиосистемах?

Аудио- и видеосистемы нуждаются в ориентире для их напряжений.
Обычно называется общим или заземленным, хотя может и не быть
фактически связанный с землей, эта ссылка остается на «нуле»
вольт », в то время как другие сигнальные напряжения« качаются »положительным (вверху) и отрицательным
(под этим. Физически общим может быть провод, след на
печатная плата, металлическое шасси, практически все, что
проводит электричество.В идеале это должен быть идеальный дирижер,
но в любой практической системе это не так.
По мере увеличения сложности и размера системы несовершенные
проводимость общего (заземляющего) проводника неминуемо вызывает
проблемы.

Гул и гудение (50 Гц / 60 Гц и его гармоники) возникают в несбалансированных системах, когда токи протекают в соединениях экрана кабеля между различными частями оборудования.
Гул и гудение также могут возникать в сбалансированных системах, даже если их обычно очень много.
более

Токи экрана кабеля и разность напряжений заземления вызываются несколькими механизмами.Второй наиболее распространенный источник шума и гудения — это разница напряжений между двумя защитными заземлениями, разделенными большим расстоянием, или разница напряжений между защитным заземлением и заземлением.
(например, заземленная спутниковая антенна или источник кабельного телевидения). Эта проблема
обычно называется «контур заземления». Это самый распространенный среди тяжелых
проблемы с гудением.

Гул и гудение могут также индуцироваться магнитным или емкостным образом непосредственно в сигнальных кабелях. Или ток шума может просачиваться из сети через емкость между A.C. первичная и вторичная обмотка силового трансформатора
обмотки, что приводит к тому, что часть линейного напряжения переменного тока будет
ВСЕГДА иметь емкостную связь непосредственно с землей аудиосхемы.
Этот сигнал линии электропередачи с емкостной связью обычно содержит
значимые гармоники до 1 МГц и более. Эти сигналы вызывают протекание токов в экранах кабелей, таким образом добавляя этот шум непосредственно к звуковому сигналу.

Почему заземление без проблем сделать сложно?

Практически все проекты строительства передачи данных и трансляции выполняются.
в проблемы заземления.Эти проблемы возникают в первую очередь
потому что существует конфликт между вопросами безопасности (земля-
ing для предотвращения поражения электрическим током) и электронного шумоподавления
(используя «землю» в качестве электронной «свалки» для шумов и помех.
ference.) Эти два использования часто несовместимы и могут
иногда находятся в прямом конфликте друг с другом.
Конечная цель хорошей схемы заземления —
сохранение и соблюдение аспектов безопасности при получении
возможно максимальное снижение шума. Обычно это нелегкая задача.

Почему контур заземления является проблемой?

Контуры заземления являются загадкой для многих людей. Даже инженеры-электронщики, получившие образование в колледже, могут не знать, что такое контуры заземления на самом деле. Инженеры сконцентрировались либо на распределении энергии (для электроэнергетической компании), либо на оборудовании, которое подключается к системе распределения электроэнергии. Не так много внимания уделялось распределению энергии и оборудованию как единому объекту, в котором возникают контуры заземления.

Контуры заземления являются наиболее частой причиной гудения частоты сети переменного тока в звуковых системах.Контуры заземления обычно можно определить по низкому гудению (60 Гц в США, 50 Гц в Европе) через звуковую систему.
Контур заземления в силовом или видеосигнале возникает, когда некоторые компоненты в
одна и та же система получает питание от другого заземления, чем другие
компонентов, или потенциал земли между двумя частями оборудования не
идентичный.

Контур заземления — распространенная проблема при подключении нескольких аудиовизуальных
компоненты системы вместе, есть хорошие изменения, чтобы сделать неприятный
контуры заземления.Контуры заземления обычно вызывают жужжание аудиосигналов
и интерференционные полосы к изображению. Контур заземления делает систему чувствительной
улавливать помехи от сетевой проводки, что может привести к неустойчивой
эксплуатация оборудования или даже его повреждение.
В некоторых статьях утверждается, что проблемы с проводкой и заземлением являются причиной
до 80 процентов всех проблем, связанных с качеством электроэнергии, связанных с
чувствительное электронное оборудование, такое как аудио / видео системы.

Аудио / видео и электроэнергетика разработали свои системы.
и оборудование самостоятельно.В результате есть степень
несовместимость. Обычно достаточно мощности.
чувство безопасности распространения и эксплуатации недостаточно хорошее для AV-систем.
Следствием этого является проблема помех контура заземления.

Всегда при работе с проблемами заземления
помните, что не существует абсолютного основания . Есть определенное количество
сопротивление электрическому току между всеми точками заземления. Этот
сопротивление может меняться в зависимости от влажности, температуры, подключенного оборудования
и многие другие переменные.Каким бы маленьким ни был
сопротивление всегда может позволить электрическому напряжению существовать на нем
когда между этими точками заземления течет ток
(и почти всегда есть ток).

Проблемы с заземлением звуковой частоты обычно находятся в диапазоне низких милливольт,
так что не должно быть большого вмешательства в систему заземления, чтобы вызвать проблемы
в аудиосистемах.

Помните, что нет абсолютной почвы. Между всеми точками заземления существует определенное сопротивление электрическому току.Это сопротивление может изменяться в зависимости от влажности, температуры, подключенного оборудования и многих других переменных. Независимо от того, насколько мало, сопротивление всегда может позволить электрическому напряжению существовать на нем. Заземляющие провода между розетками и трансформаторами энергокомпании не являются идеальными проводниками, равно как и экран вашего коаксиального видеокабеля. Если бы это было так, контуры заземления не были бы проблемой.
Эффекты контура заземления на видеоизображениях представлены в виде черной теневой полосы.
по экрану или как разрыв в верхнем углу картинки.Это вызвано разными потенциалами земли в системе.

Общие темы

Бытовые аудио- и видеосистемы

Профессиональные аудиосистемы

Профессиональные видеосистемы

Сети передачи данных

Лабораторная среда

Советы по дизайну

Другая сопутствующая информация

НОВАЯ ФУНКЦИЯ: Обсуждение контура заземления


Дискуссионный форум проблем контура заземления на ePanorama.net Система дискуссионных форумов создана для обсуждения всех тем, связанных с контурами заземления, и проблем, которые, по вашему мнению, могут быть вызваны контуром заземления.

Полезные ссылки на другие сайты и статьи

    Общие инструкции
    Проблемы с заземлением электропроводки
    Установки аудио- и видеосистем
    Решение проблем
    Конструкция оборудования
    Полезные сайты

Откуда взялась вся эта информация?

Большая часть информации получена из моих личных знаний в этой области.
У меня был опыт проектирования, создания, использования, обслуживания
и поиск неисправностей во многих аудио-, видео- и компьютерных сетевых системах.Я также разработал электронные устройства для аудио, видео и
телекоммуникационные приложения.

Когда я обнаружил проблемы со стойкостью на
те системы, которые я попытался провести хорошее расследование, в чем причина
проблемы и каковы разумные способы ее решения.
Различные книги, журнальные статьи и техническая документация со многих веб-сайтов
также был очень полезен при составлении этого веб-документа.


Если у вас есть комментарии к этой странице, пришлите их мне по адресу [адрес электронной почты защищен] или оставьте комментарии по адресу
Форум обсуждения проблем контура заземления.


Томи Энгдал <[email protected]>

Что такое контур заземления?

Шум… Изоляция заземления решает фундаментальную проблему

Проблемы контура заземления вызваны небольшими перепадами напряжения, которые обычно существуют между «землей» на передающем и приемном концах сигнального кабеля. В несбалансированном интерфейсе (видео и потребительское аудио) эта разница напряжений заземления напрямую добавляется к сигналу.Обычно это вызывает гудение или гудение в звуке и полосы гула на видео. В сбалансированном интерфейсе (профессиональное аудио) разница напряжений заземления может выявить недостаточное подавление синфазного сигнала на входном каскаде оборудования или другие дефекты конструкции.

Изолятор заземления на пути прохождения сигнала является принципиально правильным способом устранения проблем контура заземления системы. Трансформатор делает это путем магнитной передачи сигнала через электрически изолированный барьер.

Для несимметричного интерфейса трансформатор эффективно останавливает любой ток в кабеле, вызванный разницей напряжения заземления, что останавливает шум.

Для сбалансированного интерфейса трансформатор эффективно предотвращает попадание синфазного напряжения на входной каскад оборудования, производительность которого зачастую ниже идеальной.

Трансформаторы

обладают преимуществами пассивности (не требуется питание), надежности и прочности. Это делает их невосприимчивыми к большинству переходных процессов, которые могут повредить или разрушить включенные (активные) электронные изоляторы заземления.

Внутри каждого изолятора заземления Iso-Max находится трансформатор Jensen.Это функциональное ядро ​​практически каждого продукта, который мы производим. Трансформаторы Jensen легендарны своей способностью обеспечивать исключительную передачу сигнала без артефактов, искажений или деградации.

Качество без компромиссов

Большинство производителей считают, что ровный отклик в диапазоне от 20 Гц до 20 кГц достаточно для обеспечения прозрачности звука. Мы в Jensen знаем, что фазовая характеристика не менее, а может быть, даже важнее. Поэтому мы проектируем каждый трансформатор для расширенной полосы пропускания, особенно на нижнем уровне, потому что важно добиться хороших фазовых характеристик и, как следствие, акустической нейтральности.

Мы не останавливаемся на достигнутом. Огромные усилия прилагаются к передаче сигнала без шума. Например, во всех линейных входах, микрофонных входах, микрофонных входах и трансформаторах прямого блока Jensen используются внутренние экраны Фарадея. Экран Фарадея представляет собой заземленную фольгу, помещенную между обмотками трансформатора для предотвращения емкостной связи. Это не только значительно улучшает подавление шума земли, но и практически исключает радиопомехи, особенно радиоприемники AM. Большинство этих трансформаторов затем помещается в контейнер MuMETAL® (из перманентного сплава) для дополнительной защиты чувствительного тракта прохождения сигнала от внешних магнитных помех, вызываемых диммерами, трансформаторами и источниками питания.

Сотни тысяч аудиопреобразователей Jensen работают по всему миру в студиях звукозаписи, концертных площадках и вещательных площадках — даже в космических кораблях. Jensen был выбран производителем тестового оборудования Audio Precision, а также многими производителями высококачественного аудиофильского оборудования.

Основы заземления | Что такое контур заземления?

Контур заземления — это нежелательный путь тока в электрической цепи. Контуры заземления возникают всякий раз, когда заземляющий провод электрической системы подключается к заземляющей пластине в нескольких точках.

Не только контуры заземления могут вызывать шум в сигнальных кабелях прибора, но в тяжелых случаях могут даже перегревать сигнальный кабель прибора и, таким образом, представлять опасность возгорания!

Явление контуров заземления показано на схематической диаграмме ниже:

Причины замыкания на землю

Существует несколько причин возникновения контуров заземления в любой установке КИПиА. Некоторые из них перечислены ниже:

  • Разница потенциалов между точками заземляющего провода, к которым были подключены выводы заземления.
  • Индуктивная муфта
  • Емкостная муфта
  • Использование инструментов с внутренним заземлением внутри уже заземленного контура
  • Экраны кабелей заземлены с обоих концов
  • Заземленные термопары с неизолированными преобразователями
  • Четырехпроводные передатчики, используемые в качестве входа для прибора-приемника, заземленного на другое заземление

Существует несколько методов ограничения контуров заземления, которые вносят нежелательное шумовое напряжение в сигнальные кабели прибора.

Однако есть два наиболее эффективных метода уменьшения контуров заземления:

  • Одноточечное заземление
  • Использование дифференциальных входов

Одноточечное заземление включает заземление контрольно-измерительной аппаратуры в одной точке. Такой подход значительно снижает шумовое напряжение, создаваемое контурами заземления из нескольких точек заземления.

Дифференциальные входы используются для подавления напряжения шума, которое может появиться в измерительной цепи.

Одним из очень эффективных способов полной изоляции измерительной системы от контуров заземления является использование инструментов с батарейным питанием. Однако из-за ограниченного срока службы батареи они используются редко.

Импедансная муфта (или кондуктивная муфта)

Если две или более электрических цепей имеют общие проводники, между разными цепями может быть некоторая связь.

Когда сигнальный ток из одной цепи возвращается обратно по общему проводнику, он создает напряжение ошибки на обратной шине, которое влияет на другие сигналы.Напряжение ошибки возникает из-за сопротивления обратного провода.

Один из способов уменьшить влияние импедансной связи — минимизировать импеданс обратного провода.

Второе решение — избежать контакта между цепями и использовать отдельные возвратные линии для каждой отдельной цепи.

Индуктивная муфта

Когда по проводу проходит электрический ток, он создает магнитное поле; если этот провод находится рядом с другим проводом, также несущим электрический ток или сигнал, создаваемые ими магнитные поля взаимодействуют друг с другом, в результате чего в проводах индуцируется шумовое напряжение.

Это принцип, по которому возникает индуктивная связь в проводке сигнального кабеля КИП.

Как мы уже знаем, индуктивность — это свойство, присущее любому проводнику, благодаря которому энергия накапливается в магнитном поле, образованном током, протекающим через провод.

Взаимная индуктивность между параллельными проводами образует мост. посредством чего переменный ток через один провод может индуцировать переменное напряжение по длине другого провода.

Это становится еще более явным, если у нас есть силовые кабели и сигнальные кабели инструментов, проходящие через один и тот же канал.

Простой способ уменьшить индуктивную связь сигналов — просто разделить проводники, несущие несовместимые сигналы.

Вот почему электрические проводники и сигнальные кабели инструментов почти никогда не находятся в одном и том же кабелепроводе и работают вместе.

Наиболее практичный метод уменьшения индуктивной связи и обеспечения устойчивости к магнитному полю сигнальным проводам прибора — скручивать пару проводов, а не позволять им лежать вдоль параллельных прямых линий.Это значительно снижает влияние электромагнитной индукции.

Электромагнитная индукция снижается, потому что, когда провода скручены таким образом, чтобы создать серию петель вместо одной большой петли, индуктивные эффекты внешнего магнитного поля имеют тенденцию нейтрализоваться, тем самым уменьшая наведенное шумовое напряжение на сигнальных проводах прибора из-за внешнее магнитное поле.

Как избавиться от гула, гудения и других шумов в вашей аудиосистеме

Примечание редактора, 16 июля 2017 г. Мы обновили эту историю, добавив новые иллюстрации и новые советы и рекомендации.

Итак, вы только что распаковали свое новое развлекательное оборудование, все подключили, и вы слышите гудение, вой, шипение, болтовню или любое количество других раздражающих шумов, которые, как известно, мешают звуковому оборудованию. Вы даже можете увидеть на телевизоре полосы или волны. Итак, вы берете все это обратно в магазин только для того, чтобы посмотреть, как продавец подключает его, и все работает идеально. Что за…?

Я хотел бы сказать вам, что вы не сделали ничего плохого, но вы могли это сделать, по крайней мере, случайно.Опять же, это может быть плохая проводка, неисправное оборудование или просто шумная электронная среда. Независимо от типа шума, который вы слышите, и от его причины, вот как от него избавиться.

Примечание. Присутствуют некоторые шумы, такие как шипение ленты или шипение, когда вы увеличиваете усиление на входе. Это часть оборудования, и, как правило, единственное лекарство … Лучшее оборудование.

Контуры заземления

Упомянутые в статье

Причина номер один необычного звукового шума и странного видео — это контур заземления просто потому, что его чертовски легко создать.Наиболее частые проявления — это громкое жужжание или жужжание, исходящее из динамиков, или полосы прокрутки на экране телевизора. Это также может быть гораздо более тихий, но не менее раздражающий гул или гул, который вы слышите только тогда, когда в комнате тишина.

Заземляющий контур обычно возникает, когда одна или несколько частей вашей развлекательной системы подключены к сети переменного тока (переменного тока) в разных местах, а затем соединены вместе электрическими (а не оптическими) сигнальными кабелями — RCA, HDMI, композитный, компонентный — чьи экран подключен к земле.Проще говоря, это создает одноконтурную антенну, которая просто любит поглощать различные типы шума посредством электромагнитной индукции. Вы можете увидеть, как создается цикл, на схеме ниже.

Роб Шульц
Один из способов создания контура заземления — это питание взаимосвязанного оборудования от разных розеток переменного тока: земля проходит через экранирование сигнальных кабелей.

Все, что разрывает петлю, устраняет шум, и самый простой способ сделать это — подключить все к одной розетке переменного тока.Как показано ниже, просто подключите все свое оборудование к единому удлинителю, сетевому фильтру или силовому центру и подключите его к стене. Проблема решена. С большинством мультимедийных устройств можно легко справиться с помощью одной цепи на 10 А, и большинство бытовых цепей справятся хотя бы с этим.

Роб Шульц
Питание подключенного оборудования от одной и той же розетки переменного тока устраняет большинство контуров заземления. Если гул по-прежнему слышен, проверьте, есть ли у вашей антенны или кабельного провода собственное заземление.

Могут быть случаи, когда вы просто не можете добраться до той же розетки с частью оборудования.На ум приходят динамики и сабвуферы с автономным питанием. Вы можете просто «потянуть за землю», используя переходник с трех контактов на два, но это представляет потенциальную опасность поражения электрическим током. Посмотрите на Ли Харви и Stone the Crows экстремальный пример того, что может случиться с мощным оборудованием.

Если использование удлинителя нецелесообразно, вы можете купить глушитель, например Hum X от Ebtech. Но это стоит 70 долларов. Есть и другие продукты, которые делают примерно то же самое, некоторые из которых прерывают петлю в сигнальных кабелях, но все они также дороги.Если у вас есть навыки, вы можете построить свой собственный гудок примерно за 10-15 долларов. В Интернете вы найдете много информации, которая покажет вам, как это сделать, но для выполнения этой задачи требуется умеренное владение паяльником и аналогичными инструментами.

Ebtech
Hum X

Ebtech надежно устраняет шум контура заземления. В Интернете также есть решения для самостоятельного изготовления, которые дешевле, если у вас есть навыки.

Если эти методы не помогают, проблема может заключаться в беспроводной антенне (OTA) или в коаксиальном кабеле кабельного телевидения, у которого есть собственный путь к земле.При обращении с разветвителями коаксиального сигнала я получил довольно неприятные удары. Обычно — из-за изоляции кабельных модемов, кабельных коробок и подобного оборудования — это происходит только в том случае, если вы подключаетесь напрямую к телевизору или видеомагнитофону.

Если вы обнаружили, что проблема связана с сигнальным кабелем телевизора, который подключен к кабельному модему или аналогичному устройству (отсоедините его и посмотрите, исчезнет ли проблема), замените это оборудование — с ним что-то не так. Если вы подключаетесь напрямую к телевизору, есть изоляторы контура заземления по цене от 20 до 30 долларов.

Viewsonics

Изолятор контура заземления для коаксиальных (антенных и кабельных ТВ) кабелей.

Шум в линии переменного тока

Контуры заземления — далеко не единственное, что вызывает электрические помехи; Практически любое устройство с двигателем (например, фены и блендеры), а также диммеры и неисправные люминесцентные светильники будут создавать такие помехи. Он может быть слышен через ваше аудиооборудование или отображаться на экране телевизора, а может и нет. Очевидное решение проблемы шума такого типа — не использовать устройства такого типа во время просмотра телевизора или прослушивания музыки.Возможно, у вас получится сделать это, если вы живете один. Если под одной крышей есть другие люди, возможно, и нет.

Если вы готовы расстаться с несколькими Benjamins, вы можете убедиться в чистоте переменного тока без шума контура заземления, используя онлайн-ИБП (источник бесперебойного питания) или изолирующий трансформатор. Онлайн-ИБП — это система с резервным питанием от батареи, батарея которой всегда подключена (онлайн) между входным и выходным переменным током. Для этого требуется, чтобы электрическая мощность была преобразована в постоянный ток (постоянный ток), а затем обратно в переменный, что устранит все помехи.Это также известно как двойное преобразование.

TrippLite

Tripplite SU1000XLCD стоит 630 долларов, но он лучше справляется с регулированием мощности, чем так называемые аудиофильские устройства, которые стоят в 10 раз дороже. Если вас не беспокоят контуры заземления, вы можете найти ИБП, который устранит шум переменного тока (обратите внимание на синусоидальный выход) за чуть больше 100 долларов.

Настоящий онлайн-ИБП стоит дорого. Например, ИБП SU1000XLCD, который Tripplite отправил мне для наведения порядка в очень грязном кондиционере в моей квартире, стоит около 630 долларов.Он также тяжелый, размером с небольшой осушитель воздуха, и у него есть некоторые функции (например, мониторинг USB, чтобы он мог корректно выключить подключенный компьютер в случае сбоя питания), которые не имеют отношения к устранению шума. Но черт возьми, если он не на 100 процентов эффективен, а также обеспечивает удобную защиту от скачков напряжения и отключений.

Упоминается в статье

Разделительный трансформатор Tripp Lite IS1000HG

К тому же он намного дешевле, чем один из тех высококачественных стабилизаторов мощности, которые продаются доверчивым аудиофилам.Если вы не беспокоитесь об устранении шума контура заземления, вы можете обойтись не намного дороже 100 долларов с ИБП, который рекламирует синусоидальный выходной сигнал.

Изолирующий трансформатор, который немного дешевле, чем онлайн-ИБП, но абсолютно эффективен против всех видов помех в сети. Tripplite также прислал мне один из них: превосходный IS1000HG на 1000 ватт (больничного класса) с четырьмя розетками. Это около 500 долларов, но вы можете легко обойтись моделью меньшей мощности (500 или 250) менее чем за 250 долларов. Обратите внимание, что я видел гораздо дешевле на Amazon, но не от известного поставщика, поэтому я не могу за них поручиться.

Изолирующий трансформатор — один из тех продуктов, название которого описывает его как тройник. В нем используется специальный экранированный трансформатор, который преобразует грязный переменный ток в чистый переменный ток с помощью электромагнитной индукции — да, то же самое, что вызывает шум контура заземления.

Изолирующие трансформаторы предназначены для использования с тонким диагностическим оборудованием, где даже минимально шумный переменный ток может вызвать ложные показания. Это означает, что их более чем достаточно для мультимедийных установок.

TrippLite

Задняя часть изолирующего трансформатора IS1000HG, который предназначен для устранения всех шумов переменного тока, которые могут повлиять на чувствительное испытательное оборудование.Это также работает для развлекательных систем.

Провода

На самом деле существует только одно или два жестких правила для кабелей и шума. Во-первых, никогда не прокладывайте силовой кабель через кабели аудио- или видеосигналов, включая антенные провода, или рядом с ними. Современные сигнальные кабели хорошо экранированы, но если вы слышите гудение и это не контур заземления, это вполне может быть причиной. Обратите внимание, что кабели, идущие к динамикам с автономным питанием (без Wi-Fi), представляют собой кабели аудиосигнала, а не выходные кабели.

Также обратите внимание, что трехпроводные симметричные сигнальные кабели (отправляются два сигнала, один с обратной полярностью — точно так же, как знаменитый звукосниматель хамбакер) гораздо менее восприимчивы к гудению кабеля питания и другим шумам, чем двухпроводные кабели.Если ваше оборудование позволяет использовать балансные выходы или входы, XLR или TRS (наконечник / кольцо / гильза), сделайте это.

Кабели громкоговорителей не должны подвергаться звуковому воздействию из-за того, что по ним проходит гораздо более сильный сигнал. Но на всякий случай постарайтесь изолировать шнуры переменного тока.

Ямаха

Обведены красным балансные входы для этой колонки Yamaha HS7. Многие высококачественные ЦАП и аудиоинтерфейсы имеют соответствующие выходы. Сбалансированные соединения устраняют любой шум, наведенный на сигнал, проходящий по кабелю.

Другое правило для проводов — это не петляющие антенные сигнальные кабели (двухжильные), которые имеют тенденцию вызывать такой же шум, делая их самими антеннами. Электромагнитная индукция; это благословение, это проклятие. (Если вы об этом не знаете)

Что касается качества кабелей: плохо сделанный кабель может вызвать проблемы с шумом, но нет никакого реального преимущества в том, чтобы тратить на него целое состояние. Распространенное заблуждение — чем дороже металл, тем лучше кабель. Неправильный. Золото используется в разъемах, потому что оно не окисляется, а не потому, что это лучший проводник электричества.Он неплохой, лучше, чем никель и хром, но на самом деле немного хуже, чем серебро и медь. Забудьте о платине — она ​​звучит сексуально, но ее значение в списке проводимости составляет примерно 20 или .

Упоминается в статье

Изолятор контура заземления для кабельного телевидения VSIS-EU

Лучшая комбинация — медный провод с золотыми разъемами; но опять же, не слушайте пропаганду продаж аудио в бутиках. Есть много кабелей в диапазоне от 10 до 20 долларов или даже ниже, которые также подойдут.

Одна вещь, которую вы можете проверить, хотя в основном проблема в приложениях с высоким импедансом (более высокое усиление / напряжение, также называемых Hi-Z), например, с гитарными кабелями, заключается в том, что они не являются микрофонными.Плохое или слабое экранирование и другие факторы могут фактически превратить физические удары в звуковой сигнал. Я не шучу. Я испытал это только один раз в жизни с кабелями для подключения компонентов, и это было для проигрывателя виниловых пластинок. Но если вы замечаете странные шумы, которые, кажется, совпадают с басами или вибрациями, сильно постучите пальцем по сигнальным кабелям (при включенном оборудовании), чтобы проверить, не является ли это проблемой.

Еще одна проблема с проводом: размер. Хотя провод большего сечения может помочь усилителю работать немного легче и холоднее при подключении динамиков за счет снижения импеданса (удельного сопротивления) кабеля, влияние на сигнальные кабели незначительно.То есть, это не слышно для тех, кто не много заплатил за толстый провод и хочет услышать разницу.

RF-помехи

Вы когда-нибудь задумывались, почему стенки вашего стереоресивера и других электронных устройств металлические, когда кажется, что все остальное в мире сделано из пластика? Это не для прочности на разрыв, а для блокировки входящих и исходящих RFI (радиопомех). Любой проводящий материал имеет тенденцию блокировать радиочастотные сигналы и отводить их заряд на свою поверхность.Действительно, экранирование кабелей работает как клетка Фарадея.

Но практические реализации (например, не облицовывать телевизионную комнату медной оболочкой) клеток Фарадея могут только на столько, поэтому вам может потребоваться уменьшить мощность сигналов, с которыми они должны иметь дело. Я говорю о портативных телефонах, сотовых телефонах, оборудовании Wi-Fi и даже компьютерах.

Неизвестно

Если клетка Фарадея может блокировать это, у нее не должно быть проблем с РЧ, окружающим ваше мультимедийное оборудование.

Компьютеры могут генерировать много радиоволн, поэтому я избегаю причудливых прозрачных пластиковых сторон, которые позволяют им как наружу, так и внутрь.Я также слышал, что беспроводные периферийные устройства, например мыши, могут вызывать помехи. Это неисправность или плохая конструкция, и единственное решение — заменить их.

Возвращаясь к сути: не будьте параноиками по этому поводу, но неплохо было бы держать РЧ-излучающее оборудование как можно дальше от мультимедийной системы. И если это устройство, которое должно находиться рядом с вашей установкой, убедитесь, что оно достаточно защищено.

Шум кабеля USB / HDMI

Упомянуто в этой статье

ИБП Tripp Lite TRIPP LITE SU1000XLCD

Я использую внешние аудиоинтерфейсы USB и Thunderbolt, потому что они звучат намного лучше, чем все, что вы найдете на материнской плате.Поверьте, если мои старые уши слышат разницу — она ​​есть. Но когда я впервые начал его использовать, я иногда слышал очень слабые статические помехи. По довольно сложным причинам ток может протекать через экран USB-кабеля, что влияет на сигнал. Это раздражало.

Есть три метода устранения помех кабеля USB (и HDMI). Один из них — использовать кабель с ферритовой гильзой для шумоподавления (большой круглый наконечник на одном конце. Вы также можете купить фиксируемый ферритовый шумоподавитель). Иногда их называют ферритовыми шариками.

Неизвестно

Кабель HDMI с ферритовым фильтром помех для блокировки паразитного тока, проходящего через экран.

Второй метод — это проложить провод с меньшим сопротивлением, чем экранирование кабеля USB / HDMI, от корпуса аудиоинтерфейса USB или аудиокомпонента, подключенного через HDMI, к корпусу вашего компьютера. Провод динамика работает нормально. Электричество всегда следует по пути наименьшего сопротивления, поэтому паразитный ток проходит по заземляющему проводу, а не по экрану кабеля.Это также известно как заземляющий шунт или просто шунт.

Третий метод — получить USB-фильтр помех (я никогда не видел его для HDMI, но адаптер HDMI мог бы работать), который на самом деле представляет собой ретранслятор USB, который разделяет соединение экрана. Они стоят около 50 долларов и, как говорят, действительно устраняют шум. Я никогда не использовал один, потому что первый и второй методы намного дешевле и никогда меня не подводили.

Аудиошум ПК

Другая причина, по которой я использую внешние интерфейсы USB и Thunderbolt, заключается в том, что они просто не подвержены такому количеству радиочастотных помех.Внутренние аудиорешения, особенно те, которые находятся на материнской плате, подвержены всевозможным линейным шумам и электромагнитным помехам, которые невозможно устранить. Как вы могли заметить, я только что дал вам решение — используйте внешний USB-порт или Thunderbolt. Тем не менее, существуют карты PCI и PCIe, которые также могут устранить проблему, а также предоставить больше выходов для игр и объемного звука.

Однажды вы это услышали, теперь нет

Используя вышеуказанные методики, вы сможете устранить все шумы, которые не присущи вашей аудиосистеме, а также некоторые, которые, как вы могли подумать, были присущи .Но если вы страдаете от шума, который я не покрыл, или у вас есть исправление для домашнего приготовления, которое работает, поделитесь им с нами, оставив комментарий на нашей странице в Facebook и / или отправив мне электронное письмо на jjacobi @ pcworld. com.

Примечание. Когда вы покупаете что-то после перехода по ссылкам в наших статьях, мы можем получить небольшую комиссию.Прочтите нашу политику в отношении партнерских ссылок для получения более подробной информации.

Размыкание контуров заземления с функциональной изоляцией для уменьшения ошибок передачи данных

В этой статье объясняется, как возникают контуры заземления, и обсуждается, как гальваническая изоляция использовалась для их устранения.

Передача данных на большие расстояния чревата потенциальными проблемами. Контур заземления может быть источником помех, которые могут вызвать напряжение шума между заземлениями на обоих концах передачи.Если это напряжение достаточно велико, это может вызвать ошибки данных на приемнике. В этой статье объясняется, как возникают контуры заземления, и обсуждается, как гальваническая изоляция использовалась для их устранения. Контуры заземления обсуждаются в контексте USB в этой статье, но другие интерфейсы, такие как RS-232, RS-485 и CAN, также чувствительны к контурам заземления (см. AN-375, AN-740, AN-770) . Хотя это обсуждение сосредоточено на разрыве контуров заземления как мотивации для изоляции этих интерфейсов, есть и другие важные соображения, такие как безопасность оператора и защита электроники, которые требуют изоляции.Более подробно они описаны в Ott, AN-375, AN-740, AN-770 и AN-727 (см. Раздел «Ссылки»).

Контуры заземления — это, как следует из названия, физическая петля в схеме заземления системы, возникающая в результате нескольких путей заземления между цепями. Эти пути заземления могут действовать как большая рамочная антенна, которая улавливает шум из окружающей среды, вызывая токи в системе заземления. Магнитное поле 50/60 Гц от сети переменного тока является обычным источником шума, который улавливается контурами заземления.Аналогично, распределенная система заземления может также позволить шуму напряжения заземления от источников в одном месте вызвать протекание заземляющих токов в контуре заземления. Поскольку заземление имеет низкий импеданс, шумовые токи часто бывают большими. Шум в сотнях милливольт может вызвать протекание тока через контур заземления.

На рисунке 1 показан пример того, как помехи контура заземления могут возникать в общем тракте передачи данных. Устройство №1 подает несимметричный сигнал, который принимает Устройство №2.Сигнальная линия заземлена на любом устройстве. Например, заземление может быть экраном коаксиального кабеля. Между заземляющими устройствами устройств имеется второй путь с низким сопротивлением через заземления их источников питания. Эти два заземляющих соединения создают большую петлю, которая улавливает шумовое напряжение от магнитного поля расположенного поблизости источника помех. Эти помехи ухудшают сигнал, воспринимаемый устройством №2, и затрудняют передачу.

Рис. 1. Помехи от контура заземления в общем тракте передачи данных.

Хотя разработчики должны быть осторожны, чтобы избежать образования петель, используя одно место заземления, для некоторых интерфейсов требуется заземление между их трансиверами. Это заземление необходимо разорвать, сохраняя при этом поток информации от передатчика к приемнику. Другими словами, два устройства должны быть гальванически изолированы.

Один из возможных методов разрыва цепи заземления — использование оптопары, как показано на рисунке 2. Устройство №1 управляет светодиодом оптопары, который возбуждает ток в фототранзисторе.Заземление через кабель удалено, что предотвращает протекание шумовых токов между устройством №1 и устройством №2, и информация передается в виде света.

Рисунок 2.

Этот подход имеет ограничения, поскольку производительность и сложность интерфейса возрастают. Интерфейсы с оптической изоляцией могут стать сложными, дорогими и потребовать значительного места на плате. Оптопары имеют значительные задержки распространения, что делает их полезными только для низкоскоростных сигналов.Рассеивание мощности в светодиодах и подтягивающем резисторе может стать значительным при использовании нескольких оптопар. Технология цифровой развязки может использоваться для разрыва контуров заземления без ущерба для производительности интерфейса и относительно небольшого количества компонентов в простых схемах приложений. Цифровые изоляторы — это неоптические изоляторы, в которых используются ИС интерфейса CMOS для передачи информации через емкостную или магнитную связь (Ott).

Соединение двух устройств с питанием от переменного тока с помощью кабеля USB может вызвать контур заземления, который нарушит связь по шине.Обмен данными по USB осуществляется по одной двунаправленной дифференциальной паре (сигналы D + и D- на рисунке 3). Хост-устройство управляет шиной и взаимодействует с периферийным устройством. Направленность пакетов данных устанавливается через протокол USB, а не через управляющие сигналы. Хост-устройство обеспечивает питание и заземление периферийного устройства. Это заземление в кабеле USB и заземление хоста и периферийного устройства образуют контур заземления, который может вызвать смещение потенциала земли периферийного устройства относительно хоста и привести к ненадежной связи (см. AN-375, AN-727).

Рисунок 3.

Изоляция порта USB для устранения заземления кабеля по своей сути является сложной задачей, поскольку отсутствуют управляющие сигналы, указывающие, передаются ли данные в нисходящем (на периферийное устройство) или восходящем (на хост) потоке. Без доступа к внутренним сигналам механизма последовательного интерфейса (SIE), управляющего шиной, единственный способ определить направленность данных — это транзакции на шине. Сигналы SIE могут быть недоступны, потому что SIE часто интегрируется в процессоры.

Есть несколько возможных подходов к изоляции USB. Например, проблемы изоляции D + и D- можно избежать, используя внешний SIE, который управляется последовательным интерфейсом с однонаправленными сигналами, такими как SPI. SPI является однонаправленным, поэтому его легче изолировать. Рисунок 4 иллюстрирует этот подход. Задержка распространения оптронов сильно ограничит скорость изолированного SPI, поэтому используется четырехканальный цифровой изолятор. Внешний USB-контроллер передает данные из своих буферов, которые заполняются через интерфейс SPI.Хотя внешний SIE будет передавать данные на самой быстрой скорости передачи данных периферийного устройства, эффективная скорость передачи данных по шине ограничена способностью контроллера сохранять буферы SIE полными. В этом случае задержка распространения цифрового изолятора может быть узким местом. Этот подход является дорогостоящим с точки зрения места на плате из-за внешнего SIE и может потребовать модификации драйверов периферийного устройства.

Рисунок 4.

Более простой подход состоит в том, чтобы напрямую изолировать линии D + и D- с помощью однокристального изолятора USB ADuM3160, как показано на рисунке 5.Этот цифровой изолятор не требует модификации драйверов хоста или периферийных устройств. Его внутренняя логика определяет направленность D + и D- по протоколу USB и соответственно активирует и деактивирует драйверы. Изолирующий барьер на 2,5 кВ разделяет заземляющее соединение через кабель USB, что в противном случае могло бы вызвать контур заземления (Кантрелл).

Рисунок 5.

Простое аппаратное моделирование контура заземления было разработано для иллюстрации рисков контуров заземления при проводной связи и эффективности гальванической развязки при размыкании контуров заземления.Тестовая установка создавала контур заземления с подключениями через USB-кабель и источники питания USB-концентратора и периферийного устройства, которыми управлял ноутбук. Эта установка соединяла сигнал 60 Гц, полученный из линии электропередачи переменного тока, с линией заземления с трансформатором. Это было аналогично магнитному полю от линий электропередач, вызывающему шум в контуре заземления, поскольку он основан на том же источнике шума. Переменное последовательное сопротивление позволяло регулировать ток через контур заземления. Наблюдалось напряжение от земли концентратора до земли периферийного устройства, и ток через контур заземления увеличивался до тех пор, пока не нарушалась связь с концентратором.Два разных периферийных устройства постоянно теряли связь с концентратором и ноутбуком, когда их земля повышалась до более чем 1 В (среднеквадратичное значение) над землей концентратора из-за имитации тока контура заземления. Изоляция порта концентратора USB-изолятором ADuM3160 от заземления через USB-кабель и предотвращение протекания трансформаторного тока. Это эффективно восстановило связь между ПК и любым периферийным устройством и показывает, как можно использовать цифровую изоляцию для предотвращения контуров заземления.

Таким образом, контуры заземления могут быть проблематичными при проводной связи. Множественные заземляющие соединения между устройствами создают петлю, которая может улавливать помехи от близлежащих магнитных полей переменного тока. Кроме того, если есть разница в потенциале земли, которая может иметь место на больших расстояниях, это будет способствовать току шума контура заземления. Любой из них может вызвать ошибки данных. USB — это пример интерфейса, который может страдать от помех от контура заземления и который нелегко изолировать с помощью дискретных цифровых изоляторов.Аппаратное моделирование контура заземления дало реальный пример того, как контуры заземления могут повлиять на интерфейс USB и как изолятор USB, ADuM3160, исправил ситуацию. Другие интерфейсы, помимо USB, также могут испытывать проблемы из-за контуров заземления. Ресурсы о том, как изолировать эти интерфейсы, и дополнительную информацию о цифровой изоляции можно найти на сайте www.analog.com/iCoupler.

использованная литература

Замечания по применению AN-375. Семейство ADM2xxL для связи RS-232 . Analog Devices, Inc., май 1994 г.

Замечания по применению AN-727. iCoupler ® Изоляция в приложениях RS-485 . Analog Devices, Inc., июнь 2004 г.

Замечания по применению AN-770. iCoupler ® Изоляция в приложениях CAN-шины . Analog Devices, Inc., март 2005 г.

Отт, Генри. Методы шумоподавления в электронных системах. Второе издание. Wiley-Interscience. 1988.

Контуры заземления и неизолированные объекты общего пользования

Любой установщик оборудования управления промышленными процессами скажет вам, что контуры заземления — одна из самых неприятных ошибок подключения сигналов, которые необходимо диагностировать и исправить.Шаги, необходимые для их устранения, часто приравниваются к чему-то столь же загадочному, как магические заклинания. Аналогичным образом рассматриваются проблемы, связанные с совместным использованием неизолированных общин. Проблемы с совместным возвратом сигнала часто даже путают с контурами заземления. Контуры заземления и общие общие могут вызвать непредсказуемые сигналы и сделать ваш текущий контур непригодным для использования.

Лучший и наиболее практичный способ исправить эти проблемы с сигналом — предотвратить их возникновение, в первую очередь, путем планирования правильной разводки устройств и следования конкретным передовым методикам.Однако, если вы подозреваете, что у вас проблемы с сигналом, связанные с контурами заземления или общими общими узлами в существующей сети, нет необходимости вытаскивать книгу и волшебную палочку «Контуры заземления и неизолированного общего пользования», есть некоторые предсказуемые симптомы, которые вы можете ищите, чтобы диагностировать проблему.

Прежде всего, вам необходимо знать определение контуров заземления и общих общих линий. Контур заземления — это поток тока от одной сигнальной земли к другой из-за разницы напряжений между двумя заземлениями.Это может произойти, если два устройства в сети заземлены в разных местах, и в одном из этих мест сигнальная земля испытывает более высокий потенциал напряжения. Любой инженер-электрик скажет вам, что любой перепад напряжения приведет к протеканию тока. Именно этот ток вызывает симптомы замыкания на землю.

Общий неизолированный общий провод может стать проблематичным при неправильном подключении. Устройства с несколькими входами и выходами, особенно с несколькими проходящими через них петлями, печально известны трудностями, связанными с общим доступом.Их обычно называют «контурами заземления» из-за схожести их симптомов, но они не являются настоящими контурами заземления, поскольку они не возникают из-за проблем с заземлением. Проблемы такого рода возникают, когда узлы создаются, намеренно или нет, до достижения всех применимых устройств в цепи, требующих чистого, предсказуемого сигнала. Это приведет к смешанному потоку тока и усреднению сигнала, что приведет к непригодному для использования технологическому сигналу.

На рисунке 1 выше показан источник питания 24 В постоянного тока, обеспечивающий напряжение в токовой петле.Этот контур подключается параллельно к двум парам датчик уровня / местный дисплей, предположительно, на разных резервуарах в совершенно разных местах на промышленном объекте. Два датчика используют подаваемое на них напряжение для генерации технологического сигнала 4–20 мА, который затем проходит по проводу, соединяющему их с локальным дисплеем, отображающим переменную процесса. Схема замыкается запуском возврата к источнику питания.

Все это звучит как типичная функциональная токовая петля, пока вы не заметите, что оба входа питания локальных дисплеев заземлены в их отдельных местах.Заземление 2, поскольку среда, в которой он расположен, испытывает больше шума и имеет худшие соединения для его заземляющих шин, чем другое место, имеет более высокий потенциал напряжения, чем земля 1. Это приводит к протеканию тока, обозначенному выше как IGND. Этот ток проходит по тем же проводам, которые должны передавать на дисплеи только технологический сигнал 4-20 мА, в результате чего два тока смешиваются, а технологический сигнал становится непредсказуемым и, следовательно, непригодным для использования.

В примере, показанном на Рисунке 1, это было устройство в контуре 4–20 мА, которое вводило ток заземления в контур.Однако возможно, что причиной может быть устройство, не расположенное на шлейфе. Подумайте, подключено ли какое-либо устройство в контуре через неизолированный RS-485 или источник питания ввода / вывода к устройству, имеющему потенциал земли с более высоким напряжением. Как правило, лучше избегать многоточечного заземления устройств в токовой петле. Потенциалы заземления часто не равны из-за различных электрических шумов, сопротивления пути заземления и плохой первоначальной установки шины питания.

Контур заземления также может возникать в системе с одноточечным заземлением.Рассмотрим систему, в которой не используются изолированные провода витой пары, например, показанная на рисунке 2. Могут быть внесены любые электрические помехи, воспринимаемые заземляющим проводом, такие как паразитные магнитные поля или помехи от источника питания переменного тока 50/60 Гц. на токовый контур и приведет к непредсказуемому сигналу. Этот тип контура заземления чаще всего возникает из-за неправильной прокладки пути и отсутствия экранированной витой пары.

На рис. 3 показана правильно смонтированная токовая петля, а на рис. 4 — неправильно смонтированная токовая петля.На рисунке 3 потенциал напряжения, подаваемый источником питания, вызывает прохождение тока к каждому из трех параллельных передатчиков. Этот ток используется для создания токового сигнала 4-20 мА, который отправляется на локальные дисплеи, отображающие переменную процесса.

На рисунке 4 устройства были подключены бессистемно, потому что в последовательной электрической цепи порядок устройств обычно не имеет значения. Однако на общем общем устройстве с несколькими входами был создан узел, соединяющий текущие сигналы.Это приводит к смешиванию и усреднению токов технологического сигнала, в результате чего на всех дисплеях отображается одно и то же значение. На этих изображениях проблема такого типа кажется тривиальной для устранения

: просто удалите дополнительный переход из цепи. Однако, когда сложная сеть оборудования сталкивается с той же проблемой, решение не всегда бывает таким интуитивно понятным.

Подобные проблемы чаще всего возникают из-за использования неизолированных устройств с несколькими входами, таких как недорогие ПЛК.Поскольку устройство имеет несколько физических токовых входов, установщик может предположить, что каждый вход изолирован. Однако, если эти входы соединены внутри, токовые сигналы сливаются, что приводит к усреднению тока перед продолжением по цепи. Эта проблема также может быть вызвана неправильной разводкой трехпроводных устройств или сложных многоконтурных сетей.

Из-за природы проблем с сигнальным соединением и уникальных переменных, присутствующих на промышленных объектах, симптомы, вызванные этими проблемами, также будут уникальными.Тем не менее, есть некоторые общие признаки, на которые можно обратить внимание, если вы подозреваете, что испытываете одну из этих проблем с существующей сетью.

НЕПРЕДСКАЗУЕМЫЕ КОЛЕБАНИЯ СИГНАЛА 4-20 МА

Непредсказуемые колебания сигнала — верный признак того, что что-то мешает работе вашего токового контура. Вероятно, это результат электрических помех или замыкания на землю.

ДОБАВЛЯЕТ, ОБНАРУЖИВАЕТ ИЛИ ВЫВОДИТ ДИСПЛЕЙНЫЙ СИГНАЛ ЗА ПРЕДЕЛЫ ДИАПАЗОНА

Сигнал может также испытывать сложение или вычитание на некоторое значение от одной точки цикла к другой.Это сложение или вычитание может даже вывести сигнал за пределы диапазона устройств, предназначенных для измерения сигнала.

ОБЩИЕ ОБЩИЕ ОБЩИЕ, ВЫЗЫВАЮЩИЕ УСРЕДНИЕ СИГНАЛА

Проблемы с общими неизолированными общими объектами обычно усредняют сигнал процесса, вызывая регистрацию одной и той же переменной значения на устройствах, которые должны получать разные переменные процесса.

ФИЗИЧЕСКОЕ ПОВРЕЖДЕНИЕ КОМПОНЕНТОВ

Наиболее серьезным (и, к счастью, редким) признаком этих проблем является физическое повреждение устройств в сети.Если, например, разница напряжений между двумя заземлениями окажется значительной, это может привести к перегрузке чувствительной сигнальной электроники таких устройств, как сигнальные входы и выходы. Повреждение электроники более высокого уровня, такой как блоки питания и реле, чрезвычайно редки из-за их способности выдерживать очень высокие потенциалы напряжения.

Как упоминалось ранее, лучший способ восстановить контуры заземления — это вообще избегать их. Проблемы с многоточечным заземлением можно решить, используя только одноточечное заземление.Любые два места заземления будут иметь разные потенциалы напряжения, хотя серьезность этой разницы зависит от среды, в которой они расположены. По возможности используйте плавающие (незаземленные) устройства. Если возникает ситуация, когда несколько устройств в сети должны быть заземлены (по соображениям безопасности и т. Д.), Убедитесь, что заземление выполнено по всей системе, по возможности, с помощью экранированного кабеля через кабелепровод.

Все провода в системе должны быть экранированной витой парой, в которой используются оба провода.По возможности и в рамках бюджета все сигналы должны быть изолированы с помощью устройств с изолированными входами и выходами. Наконец, всегда помните о неизолированных многоконтурных устройствах и проявляйте особую осторожность при планировании проводки. Следуя этим нескольким передовым методам установки всякий раз, когда вы устанавливаете оборудование для управления технологическим процессом, вы можете избавить себя от головной боли, пытаясь диагностировать и устранять эти проблемы в будущем.

Контуры заземления и неизолированные общие контуры могут доставлять неудобства как установщикам оборудования для управления производственными процессами, так и обслуживающему персоналу, но их можно легко избежать с помощью правильного планирования и установки.Контуры заземления создают проблемы для систем, когда несколько устройств заземлены в разных местах, которые имеют разные потенциалы напряжения, или при неправильном подключении заземленных устройств возникает шум, создаваемый их заземлением. Неизолированные общие объекты общего пользования могут стать проблемой, когда текущие пути пересекаются и становятся непредсказуемыми.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *