что это такое и как он измеряется
В природе не все можно объяснить с точки зрения механики, МКТ и термодинамики, есть и электромагнитные явления, которые воздействуют на тело, при этом не зависят от их массы. Способность тел быть источником электромагнитных полей характеризуется физической скалярной величиной – электрическим зарядом. Его впервые вывели в законе Кулона в 1785 году, но обратили внимание на его существование еще до нашей эры. В этой статье мы простыми словами расскажем о том, что такое электрический заряд и как он измеряется.
История открытий
Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.
Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи. Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными». Бенджамин Франклин также исследовал этот вопрос и ввел понятия положительного и отрицательного заряда. На иллюстрации – Б. Франклин ловит молнию.
Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.
И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.
Теоретические сведения
Электрическим зарядом называется способность тел создавать электромагнитное поле. В физике раздел электростатики изучает взаимодействия неподвижных относительно выбранной инерциальной системы отчета зарядов. (-19) Кл
Позитрон – это противоположная величина электрону, также состоит из одного положительного элементарного заряда.
Кроме того, что он дискретен, квантуется или измеряется порциями, для него еще и справедлив Закон сохранения зарядов, который говорит о том, что в замкнутой системе могут возникать только одновременно заряды обоих знаков. Простым языком – алгебраическая (с учетом знаков) сумма зарядов частиц и тел, в замкнутой (изолированной) системе всегда остается неизменной. Он не изменяется со временем или при движении частицы, он постоянен в течение её времени жизни. Простейшие заряженные частицы условно сравнивают с электрическими зарядами.
Закон сохранения электрических зарядов впервые подтвердил Майкл Фарадей в 1843 году. Это один из фундаментальных законов физики.
Проводники, полупроводники и диэлектрики
В проводниках есть много свободных зарядов. Они свободно перемещаются по всему объему тела. В полупроводниках свободных носителей почти нет, но если передать телу небольшую энергию они образуются, в результате чего тело начинает проводить электрический ток, т. е. электрические заряды начинают движение. Диэлектриками называют вещества, где число свободных носителей минимально, поэтому ток через них протекать не может или может при определенных условиях, например, очень высокое напряжение.
В чем выражается взаимодействие
Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется. Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику. При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.
По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.
Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.
Способы измерения
Существует ряд способов измерения электрического заряда, давайте рассмотрим некоторые из них. Измерительный прибор называется крутильными весами.
Весы Кулона – это крутильные весы его изобретения. Смысл заключается, в том, что в сосуде на кварцевой нити подвешена легкая штанга с двумя шариками на концах, и один неподвижный заряженный шарик. Вторым концом нить закреплена за колпак. Неподвижный шарик вынимается, для того чтобы сообщить ему заряд, после этого нужно установить его обратно в сосуд. После этого подвешенная на нити часть начнет движение. На сосуде нанесена проградуированная шкала. Принцип его действия отражен на видео.
Другой прибор для измерения электрического заряда – электроскоп. Он, как и предыдущие, представляет собой стеклянный сосуд с электродом, на котором закреплено два металлических листочка из фольги. Заряженное тело подносят к верхнему концу электрода, по которому заряд стекает на фольгу, в результате оба листочка окажутся одноименно заряженными и начнут отталкиваться. Величину заряда определяют по тому, насколько сильно они отклонятся.
Электрометр – еще один измерительный прибор. Состоит из металлического стержня и вращающейся стрелки. При прикосновении к электрометру заряженным телом, заряды стекают по стержню к стрелке, стрелка отклоняется и указывает на шкале определенную величину.
Напоследок рекомендуем просмотреть еще одно полезное видео по теме:
Мы рассмотрели важную физическую величину. Учения о ней позволили значительно расширить знания об электричестве в целом. Вклад в науку и технику достаточно весомый, а область применения этих знаний связана и с медициной. Ионизаторы воздуха положительно воздействуют на организм человека: ускоряют процесс доставки кислорода из воздуха к клеткам. Примером такого прибора является люстра Чижевского. Теперь вы знаете, что такое электрический заряд и как его измеряют.
Материалы по теме:
Электрический заряд в чем измеряется
Что такое электрический заряд в каких единицах он измеряется
Простое объяснение понятия электрический заряд. Что это за величина, в чем она измеряется и как, собственно, ее измеряют.
В природе не все можно объяснить с точки зрения механики, МКТ и термодинамики, есть и электромагнитные явления, которые воздействуют на тело, при этом не зависят от их массы. Способность тел быть источником электромагнитных полей характеризуется физической скалярной величиной – электрическим зарядом. Его впервые вывели в законе Кулона в 1785 году, но обратили внимание на его существование еще до нашей эры. В этой статье мы простыми словами расскажем о том, что такое электрический заряд и как он измеряется. Содержание:
История открытий
Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.
Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи. Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными». Бенджамин Франклин также исследовал этот вопрос и ввел понятия положительного и отрицательного заряда. На иллюстрации – Б. Франклин ловит молнию.
Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.
И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.
Теоретические сведения
Электрическим зарядом называется способность тел создавать электромагнитное поле. В физике раздел электростатики изучает взаимодействия неподвижных относительно выбранной инерциальной системы отчета зарядов.
В чем выражается взаимодействие
Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется. Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику. При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.
По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.
Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.
Способы измерения
Существует ряд способов измерения электрического заряда, давайте рассмотрим некоторые из них. Измерительный прибор называется крутильными весами.
Весы Кулона – это крутильные весы его изобретения. Смысл заключается, в том, что в сосуде на кварцевой нити подвешена легкая штанга с двумя шариками на концах, и один неподвижный заряженный шарик. Вторым концом нить закреплена за колпак. Неподвижный шарик вынимается, для того чтобы сообщить ему заряд, после этого нужно установить его обратно в сосуд. После этого подвешенная на нити часть начнет движение. На сосуде нанесена проградуированная шкала. Принцип его действия отражен на видео.
Другой прибор для измерения электрического заряда – электроскоп. Он, как и предыдущие, представляет собой стеклянный сосуд с электродом, на котором закреплено два металлических листочка из фольги. Заряженное тело подносят к верхнему концу электрода, по которому заряд стекает на фольгу, в результате оба листочка окажутся одноименно заряженными и начнут отталкиваться. Величину заряда определяют по тому, насколько сильно они отклонятся.
Электрометр – еще один измерительный прибор. Состоит из металлического стержня и вращающейся стрелки. При прикосновении к электрометру заряженным телом, заряды стекают по стержню к стрелке, стрелка отклоняется и указывает на шкале определенную величину.
Напоследок рекомендуем просмотреть еще одно полезное видео по теме:
Мы рассмотрели важную физическую величину. Учения о ней позволили значительно расширить знания об электричестве в целом. Вклад в науку и технику достаточно весомый, а область применения этих знаний связана и с медициной. Ионизаторы воздуха положительно воздействуют на организм человека: ускоряют процесс доставки кислорода из воздуха к клеткам. Примером такого прибора является люстра Чижевского. Теперь вы знаете, что такое электрический заряд и как его измеряют.
Материалы по теме:
- Как перевести ватты в киловатты
- Закон Джоуля-Ленца простыми словами
- Что такое статическое электричество
Нравится0)Не нравится0)
что это такое и как он измеряется, как сделать самому, Ремонт и Строительство
В природе не все можно объяснить с точки зрения механики, МКТ и термодинамики, есть и электромагнитные явления, которые воздействуют на тело, при этом не зависят от их массы. Способность тел быть источником электромагнитных полей характеризуется физической скалярной величиной – электрическим зарядом. Его впервые вывели в законе Кулона в 1785 году, но обратили внимание на его существование еще до нашей эры. В этой статье мы простыми словами расскажем о том, что такое электрический заряд и как он измеряется.
История открытий
Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.
Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи. Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными». Бенджамин Франклин также исследовал этот вопрос и ввел понятия положительного и отрицательного заряда. На иллюстрации – Б. Франклин ловит молнию.
Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.
И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.
Теоретические сведения
Электрическим зарядом называется способность тел создавать электромагнитное поле. В физике раздел электростатики изучает взаимодействия неподвижных относительно выбранной инерциальной системы отчета зарядов.
В чем измеряется
Единица измерения в системе СИ называется «Кулон» – это электрический заряд, проходящий через сечение проводника 1 Ампер за 1 секунду.
Буквенное обозначение – Q или q. (-19) Кл
Позитрон – это противоположная величина электрону, также состоит из одного положительного элементарного заряда.
Кроме того, что он дискретен, квантуется или измеряется порциями, для него еще и справедлив Закон сохранения зарядов, который говорит о том, что в замкнутой системе могут возникать только одновременно заряды обоих знаков. Простым языком – алгебраическая (с учетом знаков) сумма зарядов частиц и тел, в замкнутой (изолированной) системе всегда остается неизменной. Он не изменяется со временем или при движении частицы, он постоянен в течение её времени жизни. Простейшие заряженные частицы условно сравнивают с электрическими зарядами.
Закон сохранения электрических зарядов впервые подтвердил Майкл Фарадей в 1843 году. Это один из фундаментальных законов физики.
Проводники, полупроводники и диэлектрики
В проводниках есть много свободных зарядов. Они свободно перемещаются по всему объему тела. В полупроводниках свободных носителей почти нет, но если передать телу небольшую энергию они образуются, в результате чего тело начинает проводить электрический ток, т. е. электрические заряды начинают движение. Диэлектриками называют вещества, где число свободных носителей минимально, поэтому ток через них протекать не может или может при определенных условиях, например, очень высокое напряжение.
В чем выражается взаимодействие
Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется. Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику. При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.
По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.
Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.
Способы измерения
Существует ряд способов измерения электрического заряда, давайте рассмотрим некоторые из них. Измерительный прибор называется крутильными весами.
Весы Кулона – это крутильные весы его изобретения. Смысл заключается, в том, что в сосуде на кварцевой нити подвешена легкая штанга с двумя шариками на концах, и один неподвижный заряженный шарик. Вторым концом нить закреплена за колпак. Неподвижный шарик вынимается, для того чтобы сообщить ему заряд, после этого нужно установить его обратно в сосуд. После этого подвешенная на нити часть начнет движение. На сосуде нанесена проградуированная шкала. Принцип его действия отражен на видео.
Другой прибор для измерения электрического заряда – электроскоп. Он, как и предыдущие, представляет собой стеклянный сосуд с электродом, на котором закреплено два металлических листочка из фольги. Заряженное тело подносят к верхнему концу электрода, по которому заряд стекает на фольгу, в результате оба листочка окажутся одноименно заряженными и начнут отталкиваться. Величину заряда определяют по тому, насколько сильно они отклонятся.
Электрометр – еще один измерительный прибор. Состоит из металлического стержня и вращающейся стрелки. При прикосновении к электрометру заряженным телом, заряды стекают по стержню к стрелке, стрелка отклоняется и указывает на шкале определенную величину.
Напоследок рекомендуем просмотреть еще одно полезное видео по теме:
Мы рассмотрели важную физическую величину. Учения о ней позволили значительно расширить знания об электричестве в целом. Вклад в науку и технику достаточно весомый, а область применения этих знаний связана и с медициной. Ионизаторы воздуха положительно воздействуют на организм человека: ускоряют процесс доставки кислорода из воздуха к клеткам. Примером такого прибора является люстра Чижевского. Теперь вы знаете, что такое электрический заряд и как его измеряют.
Источник
09.
Электростатика — MAPHY.COM
Основные теоретические сведения
Электрический заряд и его свойства
Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q. В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10–6 Кл), нанокулонами (1 нКл = 10–9 Кл) и пикокулонами (1 пКл = 10–12 Кл). Электрический заряд обладает следующими свойствами:
1. Электрический заряд является видом материи.
2. Электрический заряд не зависит от движения частицы и от ее скорости.
3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
4. Существует два рода электрических зарядов, условно названных положительными и отрицательными.
5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.
6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом. Его значение:
e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.
Электрический заряд любого тела всегда кратен элементарному
Закон Кулона. Измерение электрического заряда.
В результате долгих наблюдений учеными было установлено, что разноименно заряженные тела притягиваются, а одноименно заряженные наоборот – отталкиваются. Это значит, что между телами возникают силы взаимодействия. Французский физик Ш. Кулон опытным путем исследовал закономерности взаимодействия металлических шаров и установил, что сила взаимодействия между двумя точечными электрическими зарядами будет прямопропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними:
Где k – коэффициент пропорциональности, зависящий от выбора единиц измерений физических величин, которые входят в формулу, а также и от среды, в которой находятся электрические заряды q1 и q2. r – расстояние между ними.
Отсюда можем сделать вывод, что закон Кулона будет справедлив только точечных зарядов, то есть для таких тел, размерами которых вполне можно пренебречь по сравнению с расстояниями между ними.
В векторной форме закон Кулона будет иметь вид:
Где q1 и q2 заряды, а r – радиус-вектор их соединяющий; r = |r|.
Силы, которые действуют на заряды, называют центральными. Они направлены по прямой, соединяющей эти заряды, причем сила, действующая со стороны заряда q2 на заряд q1, равна силе, действующей со стороны заряда q1 на заряд q2, и противоположна ей по знаку.
Для измерения электрических величин могут использоваться две системы счисления – система СИ (основная) и иногда могут использовать систему СГС.
В системе СИ одной из главных электрических величин является единица силы тока – ампер (А), то единица электрического заряда будет ее производной (выражается через единицу силы тока). Единицей определения заряда в СИ является кулон. 1 кулон (Кл) – это количество «электричества», проходящего через поперечное сечение проводника за 1 с при токе в 1 А, то есть 1 Кл = 1 А·с.
Коэффициент k в формуле 1а) в СИ принимается равным:
И закон Кулона можно будет записать в так называемой «рационализированной» форме:
Многие уравнения, описывающие магнитные и электрические явления, содержат множитель 4π. Однако, если данный множитель ввести в знаменатель закона Кулона, то он исчезнет из большинства формул магнетизма и электричества, которые очень часто применяют в практических расчетах. Такую форму записи уравнения называют рационализированной.
Величина ε0 в данной формуле – электрическая постоянная.
Основными единицами системы СГС являются механические единицы СГС (грамм, секунда, сантиметр). Новые основные единицы дополнительно к вышеперечисленным трем в системе СГС не вводятся. Коэффициент k в формуле (1) принимается равным единице и безразмерным. Соответственно закон Кулона в не рационализированной форме будет иметь вид:
В системе СГС силу измеряют в динах: 1 дин = 1 г·см/с2, а расстояние в сантиметрах. Предположим, что q = q1 = q2, тогда из формулы (4) получим:
Если r = 1см, а F = 1 дин, то из этой формулы следует, что в системе СГС за единицу заряда принимают точечный заряд, который (в вакууме) действует на равный ему заряд, удаленный от него на расстояние 1 см, с силой в 1 дин. Такая единица заряда называется абсолютной электростатической единицей количества электричества (заряда) и обозначается СГСq. Ее размерность:
Для вычисления величины ε0, сравним выражения для закона Кулона, записанные в системе СИ и СГС. Два точечных заряда по 1 Кл каждый, которые находятся на расстоянии 1 м друг от друга, будут взаимодействовать с силой (согласно формуле 3):
В СГС данная сила будет равна:
Сила взаимодействия между двумя заряженными частицами зависит от среды, в которой они находятся. Чтобы характеризовать электрические свойства различных, сред было введено понятие относительной диэлектрической проницательности ε.
Значение ε это различная величина для разных веществ – для сегнетоэлектриков ее значение лежит в пределах 200 – 100 000, для кристаллических веществ от 4 до 3000, для стекла от 3 до 20, для полярных жидкостей от 3 до 81, для неполярных жидкостей от 1,8 до 2,3; для газов от 1,0002 до 1,006.
Также от температуры окружающей среды зависит и диэлектрическая проницаемость (относительная).
Если учесть диэлектрическую проницаемость среды, в которую помещены заряды, в СИ закон Кулона примет вид:
Диэлектрическая проницаемость ε – величина безразмерная и она не зависит от выбора единиц измерения и для вакуума считается равной ε = 1. Тогда для вакуума закон Кулона примет вид:
Поделив выражение (6) на (5) получим:
Соответственно относительная диэлектрическая проницаемость ε показывает, во сколько раз сила взаимодействия между точечными зарядами в какой-то среде, которые находятся на расстоянии r друг относительно друга меньше, чем в вакууме, при том же расстоянии.
Для раздела электричества и магнетизма систему СГС иногда называют системой Гаусса. До появления системы СГС действовали системы СГСЭ (СГС электрическая) для измерения электрических величин и СГСМ (СГС магнитная) для измерения магнитных величин. В первой равной единице принималась электрическая постоянная ε0, а второй магнитная постоянная μ0.
В системе СГС формулы электростатики совпадают соответствующими формулами СГСЭ, а формулы магнетизма, при условии, что они содержат только магнитные величины – с соответствующими формулами в СГСМ.
Но если в уравнении одновременно будет содержаться и магнитные, и электрические величины, то данное уравнение, записанное в системе Гаусса, будет отличаться от этого же уравнения, но записанного в системе СГСМ или СГСЭ множителем 1/с или 1/с2. Величина с равна скорости света (с = 3·1010 см/с) называется электродинамической постоянной.
Закон Кулона в системе СГС будет иметь вид:
Пример
На двух абсолютно идентичных каплях масла недостает по одному электрону. Силу ньютоновского притяжения уравновешивает сила кулоновского отталкивания. Нужно определить радиусы капель, если расстояния между ними значительно превышает их линейные размеры.
Решение
Поскольку расстояние между каплями r значительно больше их линейных размеров, то капли можно принять за точечные заряды, и тогда сила кулоновского отталкивания будет равна:
Где е – положительный заряд капли масла, равный заряду электрона.
Силу ньютоновского притяжения можно выразить формулой:
Где m – масса капли, а γ – гравитационная постоянная. Согласно условию задачи Fк = Fн, поэтому:
Масса капли выражена через произведение плотности ρ на объем V, то есть m = ρV, а объем капли радиуса R равен V = (4/3)πR3, откуда получаем:
В данной формуле постоянные π, ε0, γ известны; ε = 1; также известен и заряд электрона е = 1,6·10-19 Кл и плотность масла ρ = 780 кг/м3 (справочные данные). Подставив числовые значения в формулу получим результат: R = 0,363·10-7 м.
Электрический заряд. Закон Кулона
Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.
Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.
Электрический заряд обычно обозначается буквами q или Q.
Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:
• Существует два рода электрических зарядов, условно названных положительными и отрицательными.
• Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
• Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.
Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.
В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:
q1 + q2 + q3 + … +qn = const. |
Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.
С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.
В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.
Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:
Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.
В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр (или электроскоп) – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.
Рисунок 1. 1.1. Перенос заряда с заряженного тела на электрометр |
Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Шарлем Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10–9 Н.
Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.
Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.
Рисунок 1.1.2. Прибор Кулона |
Рисунок 1.1.3. Силы взаимодействия одноименных и разноименных зарядов |
На основании многочисленных опытов Кулон установил следующий закон:
Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:
Силы взаимодействия подчиняются третьему закону Ньютона:
Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.
Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.
Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).
Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.
Коэффициент k в системе СИ обычно записывают в виде:
Где – электрическая постоянная.
В системе СИ элементарный заряд e равен:
Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции:
Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.
Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.
Рисунок 1.1.4. Принцип суперпозиции электростатических сил
|
Модель. Взаимодействие точечных зарядов |
Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов.
Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.
Количественная мера электрических взаимодействий, это величина q — электрический заряд
Электричество нас окружает со всех сторон. Но когда-то это было не так. Потому что само слово произошло от греческого названия конкретного материала: «электрон», по-гречески, «янтарь». С ним проводили занятные эксперименты, похожие на фокусы. Люди всегда любили чудеса, а тут — всякие пылинки, ворсинки, ниточки, волосинки, начинали притягиваться к кусочку янтаря, стоило только его потереть лоскутком ткани. То есть вот у камушка этого золотистого никаких «ручек» маленьких нет, а ворсинки поднимать может.
Накопление электричества и знаний о нём
Зримое накопление электричества происходило и когда надевали на себя поделки из янтаря: янтарные бусы, янтарные заколки для волос. Тут уж объяснений, кроме как явной магии, не могло быть никаких. Ведь, чтобы фокус удавался, перебирать бусы надо было исключительно чистыми сухими руками и сидя в чистой одежде. И чистые волосы, хорошо потёртые заколкой, дают нечто красивое и устрашающее: нимб торчащей кверху шевелюры. Да ещё потрескивание. Да ещё в темноте вспышки. Это же действие духа, требовательного и капризного, равно как и страшного и непонятного. Но настала пора, и электрические явления перестали быть территорией духа.
Стали всё что угодно называть просто — «взаимодействие». Вот уж тогда и начали экспериментировать. Придумали специальную машину для этого (электрофорная машина), и банку для накопления электричества (лейденская банка). И прибор, который уже мог показывать некоторое «равно-больше-меньше» в отношении электричества (электроскоп). Осталось только всё это объяснить с помощью набиравшего силу языка формул.
Так, человечество додумалось до необходимости осознания наличия в природе некоего электрического заряда. Собственно, в названии никакого открытия не содержится. Электрический — значит, связанный с явлениями, изучение которых началось с магии янтаря. Слово «заряд» говорит только о неясных возможностях, заложенных в предмет, как ядро в пушку. Просто ясно, что электричество можно как-то добывать и как-то накапливать. И как-то ого должно измеряться. Равно как и обычное вещество, например, масло.
И, по аналогии с веществами, о мельчайших частицах которых (атомах), говорили уверенно ещё со времён Демокрита, и решили, что заряд должен непременно состоять из аналогичных очень маленьких «корпускул» — телец. Количество которых в большом заряженном теле и даст величину электрического заряда.
Электрический заряд — закон сохранения заряда
Разумеется, тогда и приблизительно не могли представить, сколько таких электрических «корпускул» может оказаться хотя бы в совсем небольшом заряженном теле. Но практическая единица электрического заряда была всё-таки нужна. И её стали придумывать. Кулон, в честь кого такую единицу потом назвали, видимо измерял величины зарядов с помощью металлических шариков, с которыми проводил опыты, но как-то относительно. Открыл свой знаменитый закон Кулона, в котором алгебраически записал, что сила, действующая между двумя, разнесёнными на расстояние R зарядами q1 и q2, пропорциональна их произведению и обратно пропорциональна квадрату расстояния между ними.
Коэффициент k зависит от среды, в которой происходит взаимодействие, в вакууме же он равен единице.
Вероятно, после Кеплера и Ньютона такие вещи делать было не так уж и сложно. Расстояние измерить легко. Заряды он делил физически, прикасаясь одними шариками к другим. Получалось, что на двух одинаковых шариках, если один заряжен, а другой нет, при соприкосновении заряд делится пополам — разбегается по обоим шарикам. Так, он получал дробные значения исходной неизвестной величины q.
Изучая взаимодействие электрических зарядов, он делал замеры при разных расстояниях между шариками, фиксировал отклонения на своих крутильных весах, которое при этом получаются, когда заряженные шарики отталкиваются друг от друга. Видимо, его закон — то была чистая победа алгебры, так как единицы измерения заряда «кулон» сам Кулон не знал и знать просто не мог.
Другой победой было открытие того факта, что общее количество этой самой величины q в шариках, которые он сумел зарядить таким способом, оставалось всегда неизменным. За что открытый закон он и назвал законом сохранения заряда.
Q = q 1 + q 2 + q 3 + + q n
Надо отдать должное аккуратности и терпению учёного, а также отваге, с которой он провозгласил свои законы, не имея единицы количества того, что изучал.
Частица электричества — минимальный заряд
Это уже потом догадались, что элементарным, то есть самым маленьким, электрическим зарядом является электрон. Только не маленький кусочек янтаря, а невыразимо малая частица даже уже не вещества (почти), но которая обязательно есть в любом вещественном теле. И даже в каждом атоме любого вещества. И не только в атомах, но и вокруг них. И те:
- что находятся в атомах, называются связанные электроны.
- а которые вокруг — свободные электроны.
Связанными в атоме электроны бывают потому, что атомное ядро тоже содержит частицы заряда — протоны, и каждый протон обязательно притянет к себе электрон. Как раз по закону Кулона.
А заряд, который вы можем видеть или чувствовать получается в результате:
- трения,
- накопления,
- химической реакции,
- электромагнитной индукции,
составляют только свободные электроны, которые были выброшены из атомов по причине разных недоразумений:
- от удара другого атома (тепловая эмиссия)
- кванта ли света (фотоэмиссия) и по другим причинам
и бродящие внутри огромных макроскопических тел (например, волосинок).
Для электронов тела наших предметов действительно огромны. В одной единице заряда (кулоне) — электронов содержится примерно вот сколько: 624 150 912 514 351 000 с небольшим. Звучит это так: 624 квадриллиона 150 триллионов 912 миллиардов 514 миллионов 351 тысяча электронов в одном кулоне электрического заряда.
А кулон, это величина совсем простая и нам близкая. Кулон, это тот самый заряд, который протекает в одну секунду через сечение проводника, если ток в нём имеет силу в один ампер. То есть при 1 ампере за каждую секунду через поперечное сечение проволочки будут мелькать как раз вот эти 624 квадриллиона электронов.
Электроны настолько подвижны, и так быстро передвигаются внутри физических тел, что включают нам электрическую лампочку в одно мгновение, как только мы нажмём на выключатель. И поэтому электрическое взаимодействие у нас такое быстрое, что каждую секунду происходят события, называемые «рекомбинация». Сбежавший электрон находит атом, из которого электрон как раз убежал, и занимает в нём свободное место.
Количество таких событий в секунду тоже порядка, ну, все это себе уже представляют. И эти события непрерывно повторяются, когда электроны покидают атомы, потом в атомы возвращаются. Убегают возвращаются. Такова их жизнь, без этого они просто не могут существовать. И только благодаря этому существует электричество — та система, которая стала частью нашей жизни, нашего комфорта, нашего питания и сохранения.
Направление тока. Кто у нас в заряде главный?
Только так и остался один небольшой курьёз, который все знают, но никто из физиков так и не желает исправить.
Когда Кулон фокусничал со своими шариками, видели, что заряды бывают двух видов. И заряды одного вида отталкиваются друг от друга, а заряды разных притягиваются. Естественно было назвать одни из них положительными, а другие отрицательными. И предположить, что электрический ток течёт оттуда, где больше, туда, где меньше. То есть от плюса к минусу. Так оно и закрепилось в головах физиков на многие поколения.
Но обнаружить потом удалось первыми не электроны, а ионы. Это как раз те самые безутешные атомы, потерявшие свой электрон. В ядре которых имеется «лишний» протон, и потому они заряжены. Ну а как это обнаружили, так сразу и вздохнули, и сказали — вот он, заряд ты наш положительный. И за протоном так закрепилась слава положительно заряженной частицы.
А потом догадались, что атомы чаще всего бывают нейтральными потому, что электрический заряд ядра уравновешивается зарядом электронных оболочек, вращающихся вокруг ядра. То есть построили планетарную модель атома. И только тогда поняли, что атомы составляют всё (почти) вещество, его твёрдую кристаллическую решётку, или всю массу его жидкого тела. То есть протоны с нейтронами солидно сидят в ядрах атомов. А не на побегушках, как лёгкие и подвижные электроны. Следовательно, ток бежит не от плюса к минусу, а наоборот, от минуса к плюсу.
Электрический заряд — Простая английская Википедия, бесплатная энциклопедия
Электрический заряд — это основное свойство электронов, протонов и других субатомных частиц. Электроны заряжены отрицательно, а протоны — положительно. Вещи, заряженные отрицательно, и предметы, заряженные положительно, притягивают (притягивают) друг друга. Это заставляет электроны и протоны слипаться, образуя атомы. Вещи с одинаковым зарядом отталкивают друг друга ( отталкивают друг друга).Это называется Закон о сборах . Его открыл Шарль-Огюстен де Кулон. Закон, который описывает, насколько сильно заряды притягивают и толкают друг друга, называется законом Кулона. [1]
Вещи, которые имеют одинаковое количество электронов и протонов, нейтральны . Вещи, в которых электронов больше, чем протонов, заряжены отрицательно, а предметы с меньшим количеством электронов, чем протоны, заряжены положительно. Вещи с одинаковым зарядом отталкивают друг друга. Вещи с разным зарядом притягиваются друг к другу.Если возможно, тот, у которого слишком много электронов, даст достаточно электронов, чтобы соответствовать количеству протонов в том, у которого слишком много протонов для его нагрузки электронов. Если электронов достаточно, чтобы соответствовать дополнительным протонам, то эти две вещи больше не будут притягивать друг друга. Когда электроны перемещаются из места, где их слишком много, в место, где их слишком мало, это называется электрическим током.
Когда человек шаркает ногами по ковру, а затем касается латунной дверной ручки, он может получить удар электрическим током.Если есть достаточно дополнительных электронов, тогда силы, с которой эти электроны отталкивают друг друга, может быть достаточно, чтобы заставить некоторые электроны перепрыгнуть через зазор между человеком и дверной ручкой. Длина искры является мерой напряжения или «электрического давления». Количество электронов, которые перемещаются из одного места в другое за единицу времени, измеренное как сила тока или «скорость потока электронов».
Если человек получает положительный или отрицательный заряд, это может заставить его волосы встать дыбом, потому что заряды в каждом волосе отталкивают их от других.
Электрический заряд, ощущаемый при ударе дверной ручкой или другим предметом, обычно составляет от 25 до 30 тысяч вольт. Однако электрический ток протекает непродолжительное время, поэтому поток электронов через тело человека не причиняет физического вреда. С другой стороны, когда облака приобретают электрические заряды, они имеют еще более высокое напряжение, а сила тока (количество электронов, которые будут течь при ударе молнии) может быть очень высокой. Это означает, что электроны могут прыгать с облака на землю (или с земли на облако).Если эти электроны проходят через человека, поражение электрическим током может вызвать ожог или смерть.
Следующий эксперимент описан Джеймсом Клерком Максвеллом в его работе «Трактат об электричестве и магнетизме » (1873 г.). Обычно стекло и смола заряжены нейтрально. Однако, если их потереть друг о друга, а затем разделить, они смогут притягиваться друг к другу.
Если протереть второй кусок стекла вторым куском смолы, можно будет увидеть следующее:
- Два куска стекла отталкиваются друг от друга.
- Каждый кусок стекла притягивает каждый кусок смолы.
- Два куска смолы отталкиваются друг от друга.
Если соединить заряженный и незаряженный предметы, притяжение будет очень слабым.
Тела, которые способны притягивать или отталкивать предметы таким образом, называются «наэлектризованными» или «заряженными электричеством». Когда два разных вещества трутся друг о друга, возникает электрический заряд, потому что одно из них отдает электроны другому.Причина в том, что атомы в двух веществах обладают неодинаковой способностью притягивать электроны. Таким образом, тот, кто более способен притягивать электроны, будет забирать электроны у того, у которого сила притяжения ниже. Если стекло трется о что-то еще, оно может отдавать или принимать электроны. Что произойдет, зависит от другого.
Вещи, которые приняли электроны, называются «отрицательно заряженными», а вещи, которые потеряли электроны, называются «положительно заряженными». Для этих имен нет особого смысла. Это просто произвольное (случайный выбор) соглашение (соглашение).
Помимо того, что тела наэлектризованы трением, тела могут быть наэлектризованы многими другими способами.
- ↑ Перселл, Эдвард М. и Дэвид Дж. Морен, 2013. Электричество и магнетизм . 3-е изд., Cambridge University Press. ISBN 978-1-107-01402-2
.
Что такое электрический заряд? | Живая наука
Большая часть электрического заряда переносится электронами и протонами внутри атома. Считается, что электроны несут отрицательный заряд, а протоны несут положительный заряд, хотя эти обозначения совершенно произвольны (подробнее об этом позже). Протоны и электроны притягиваются друг к другу, архетип клише «противоположности притягиваются», согласно веб-сайту HyperPhysics Университета Джорджии. И наоборот, два протона отталкиваются друг от друга, как и два электрона.
Протоны и электроны создают электрические поля, которые создают силу, называемую кулоновской силой, которая распространяется во всех направлениях. По словам Серифа Урана, профессора физики в Питтсбургском государственном университете, электрическое поле излучается наружу от заряженной частицы так же, как свет излучается наружу от электрической лампочки. Так же, как и яркость света, напряженность электрического поля уменьшается пропорционально квадрату расстояния от источника (1/ r 2 ).Если вы отодвинетесь вдвое дальше, сила поля уменьшится до одной четвертой, а если вы переместитесь в три раза дальше, поле уменьшится до одной девятой.
Поскольку протоны обычно ограничены ядрами, заключенными внутри атомов, они не так свободно перемещаются, как электроны. Поэтому, когда мы говорим об электрическом заряде, мы почти всегда имеем в виду избыток или недостаток электронов. Когда существует дисбаланс зарядов и электроны могут течь, создается электрический ток.
Локальный и постоянный недостаток или избыток электронов в объекте вызывает статическое электричество. Ток может принимать форму внезапного разряда статического электричества, такого как молния или искра между вашим пальцем и заземленной пластиной выключателя света; устойчивый поток постоянного тока (DC) от батареи или солнечного элемента; или колеблющийся ток, например, от генератора переменного тока (AC), радиопередатчика или аудиоусилителя.
Электрическая вселенная
Мы обычно не знаем об электрическом заряде, потому что большинство объектов содержат равное количество положительного и отрицательного заряда, которые эффективно нейтрализуют друг друга, по словам Майкла Дубсона, профессора физики из Университета Колорадо в Боулдере.Обычно считается, что чистый заряд Вселенной нейтрален. Если бы соотношение положительного и отрицательного заряда было меньше всего в 10 −40 , кулоновская сила была бы более мощной, чем гравитация, что сделало бы Вселенную совершенно отличной от той, которую мы наблюдаем, сказал Дубсон Live Science. Тем не менее, некоторые исследователи, такие как Майкл Дюрен из Университета Юстуса Либиха в Гиссене в Германии, высказывали предположения о возможности электрически заряженной Вселенной.
Ранние исследования в области электричества
Положительные и отрицательные значения заряда были первоначально определены американским государственным деятелем и изобретателем Бенджамином Франклином, который начал изучать электричество в 1742 году. До этого большинство людей думали, что электрические эффекты были результатом смешивания двух разных электрических жидкостей, одной положительной и одной отрицательной. Однако Франклин пришел к убеждению, что существует только одна электрическая жидкость, и что объекты могут иметь избыток или недостаток этой жидкости. Поэтому, согласно данным Университета Аризоны, он изобрел термины «положительный» и «отрицательный» для обозначения избытка или недостатка соответственно.
Единицей измерения электрического заряда является кулон (C), названный в честь Шарля-Огюстена Кулона, французского физика 18 века.Кулон разработал закон, гласящий, что «одинаковые заряды отталкиваются, а разные заряды притягиваются». Кулон определяется как количество заряда, переносимого током в один ампер за одну секунду. Хотя это звучит как небольшое количество, согласно HyperPhysics, «два заряда по одному кулону каждый, разделенные метром, будут отталкивать друг друга с силой около миллиона тонн!» Инженеры-электрики часто предпочитают использовать для заряда более крупную единицу — ампер-час, равную 3600 C.
Кулоновская сила — одна из двух фундаментальных сил, заметных в макроскопическом масштабе, вторая — сила тяжести.Однако электрическая сила намного сильнее гравитации. Кулоновская сила отталкивания между двумя протонами из-за их заряда в 4,1 × 10 42 раз сильнее силы притяжения между ними из-за их массы. Это верно на любом расстоянии, поскольку расстояние компенсируется с обеих сторон уравнения.
Насколько велико это число? Сравнение величины этих двух сил похоже на сравнение массы Земли с массой одной молекулы пенициллина! Однако гравитация по-прежнему доминирует во Вселенной в больших масштабах, потому что, в отличие от заряда, можно собрать большие количества массы.Большие скопления одинаково заряженных частиц невозможны из-за их взаимного отталкивания и их сродства к разным зарядам.
Другие свойства заряда
Электрический заряд квантуется, что означает, что он возникает в дискретных единицах. Протоны и электроны несут заряды ± 1,602 × 10 −19 C. Каждое накопление заряда является четным кратным этому числу, и дробные заряды не могут существовать. Квантовая хромодинамика (КХД) утверждает, что протоны и нейтроны состоят каждый из трех кварков с зарядами +2/3 или -1/3 от единичного заряда протона, и два кварка одного и один другой объединяются, чтобы сформировать частицы с зарядами ноль или +1 единица заряда.
Однако эти частицы не могут существовать отдельно. Всякий раз, когда вы пытаетесь разделить протон или нейтрон на составляющие его кварки, для этого требуется столько энергии, что энергия преобразуется в материю в соответствии со знаменитым уравнением Эйнштейна E = mc 2 , а вместо одиночный кварк, в итоге получается нейтрально заряженная кварк-антикварковая пара, называемая мезоном. Тем не менее, электроны считаются действительно фундаментальными, то есть их нельзя разделить на более мелкие части.
Электрический заряд — это сохраняемая величина. Это означает, что он не может быть создан или уничтожен, а чистое количество электрического заряда во Вселенной постоянное и неизменное. Положительные и отрицательные заряды могут нейтрализовать друг друга, или нейтральные частицы могут расщепляться, образуя положительно и отрицательно заряженные пары частиц, но чистое количество заряда всегда остается неизменным.
Дополнительные ресурсы
.
электрического заряда | Свойства, примеры, единицы измерения и факты
Электрический заряд , основное свойство материи, переносимой некоторыми элементарными частицами, которое определяет, как на частицы влияет электрическое или магнитное поле. Электрический заряд, который может быть положительным или отрицательным, возникает в дискретных природных единицах и не создается и не разрушается.
Подробнее по этой теме
гроза: электрификация грозы
В пределах одной грозы есть восходящие и нисходящие потоки, а также различные частицы облаков и осадки.Измерения показывают, что …
Электрические заряды бывают двух основных типов: положительные и отрицательные. Два объекта, у которых есть избыток заряда одного типа, оказывают друг на друга силу отталкивания, когда находятся относительно близко друг к другу. Два объекта с избыточными противоположными зарядами, один положительно заряженный, а другой отрицательно заряженный, притягиваются друг к другу, когда они относительно близко. ( См. Кулоновская сила.)
Многие фундаментальные, или субатомные, частицы материи обладают свойством электрического заряда.Например, электроны имеют отрицательный заряд, а протоны имеют положительный заряд, а нейтроны имеют нулевой заряд. Экспериментально установлено, что отрицательный заряд каждого электрона имеет одинаковую величину, которая также равна положительному заряду каждого протона. Таким образом, заряд существует в естественных единицах, равных заряду электрона или протона, фундаментальной физической постоянной. Прямое и убедительное измерение заряда электрона как естественной единицы электрического заряда было впервые проведено (1909 г. ) в эксперименте Милликена с каплей масла.Атомы вещества электрически нейтральны, потому что их ядра содержат столько же протонов, сколько электронов, окружающих ядра. Электрический ток и заряженные объекты предполагают разделение части отрицательного заряда нейтральных атомов. Ток в металлических проводах состоит из дрейфа электронов, из которых один или два от каждого атома связаны более слабо, чем остальные. Некоторые из атомов в поверхностном слое стеклянного стержня, положительно заряженного при протирании его шелковой тканью, потеряли электроны, оставив чистый положительный заряд из-за ненейтрализованных протонов их ядер.Отрицательно заряженный объект имеет избыток электронов на поверхности.
Милликен, эксперимент с каплей масла
Между 1909 и 1910 годами американский физик Роберт Милликен провел серию экспериментов с каплями масла. Сравнивая приложенную электрическую силу с изменениями в движении масляных капель, он смог определить электрический заряд на каждой капле. Он обнаружил, что все капли имеют заряды, кратные одному числу — фундаментальному заряду электрона.
Encyclopædia Britannica, Inc.
Электрический заряд сохраняется: в любой изолированной системе, в любой химической или ядерной реакции чистый электрический заряд постоянен. Алгебраическая сумма основных зарядов остается прежней. ( См. Сохранение заряда .)
Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня
Единицей электрического заряда в системах метр – килограмм – секунда и системе СИ является кулон и определяется как количество электрического заряда, протекающего через поперечное сечение проводника в электрической цепи в течение каждой секунды, когда ток имеет значение одного ампера.Один кулон состоит из 6,24 × 10 18 естественных единиц электрического заряда, таких как отдельные электроны или протоны. По определению ампера, сам электрон имеет отрицательный заряд 1,602176634 × 10 −19 кулон.
Электрохимическая единица заряда, фарадей, полезна при описании реакций электролиза, например, при нанесении металлического гальванического покрытия. Один фарадей равен 96485,332123 кулонам, заряду моля электронов (то есть числу Авогадро, 6.02214076 × 10 23 , электронов).
.
Электрический заряд (Q)
Что такое электрический заряд?
Электрический заряд генерирует электрическое поле. Электрический заряд влияет на другие электрические заряды с электрической силой и под влиянием другого заряжается с той же силой в противоположном направлении.
Есть 2 вида электрического заряда:
Положительный заряд (+)
Положительный заряд содержит больше протонов, чем электронов (Np> Ne).
Положительный заряд обозначается знаком плюс (+).
Положительный заряд притягивает другие отрицательные заряды и отталкивает другие положительные заряды.
Положительный заряд притягивается другим отрицательным заряды и отражаются другими положительными зарядами.
Отрицательный заряд (-)
Отрицательный заряд содержит больше электронов, чем протонов (Ne> Np).
Отрицательный заряд обозначается знаком минус (-).
Отрицательный заряд притягивает другие положительные заряды и отталкивает другие отрицательные заряды.
Отрицательный заряд притягивается другим положительным заряды и отражаются другими отрицательными зарядами.
Направление электрической силы (F) в зависимости от типа заряда
Заряды 1/2 кв. | Сила на q 1 Заряд | Сила на q 2 Заряд | |
---|---|---|---|
— / — | ← ⊝ | ⊝ → | пополнение |
+ / + | ← ⊕ | ⊕ → | пополнение |
— / + | ⊝ → | ← ⊕ | аттракцион |
+ / — | ⊕ → | ← ⊝ | аттракцион |
Заряд элементарных частиц
Частица | Заряд (К) | Заряд (е) |
---|---|---|
Электрон | 1. 602 × 10 -19 С | — e |
Протон | 1,602 × 10 -19 С | + е |
Нейтрон | 0 С | 0 |
Кулон
Электрический заряд измеряется в кулонах [C].
Один кулон имеет заряд 6,242 × 10 18 электроны:
1C = 6,242 × 10 18 e
Электрический заряд расчет
Когда электрический ток течет в течение определенного времени, мы можем рассчитать сбор:
Постоянный ток
Q = I ⋅ т
Q — электрический заряд, измеренный в кулоны [C].
I — ток в амперах [А].
t — период времени, измеряемый в секунды [с].
Кратковременный ток
Q — электрический заряд, измеренный в кулоны [C].
i ( t ) — мгновенный ток, измеряется в амперах [A].
t — период времени, измеряемый в секунды [с].
См. Также
.
Определение, типы, свойства и эффекты
- БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
- КОНКУРСНЫЕ ЭКЗАМЕНА
- BNAT
- Классы
- Класс 1-3
- Класс 4-5
- Класс 6-10
- Класс 110003 CBSE
- Книги NCERT
- Книги NCERT для класса 5
- Книги NCERT, класс 6
- Книги NCERT для класса 7
- Книги NCERT для класса 8
- Книги NCERT для класса 9
- Книги NCERT для класса 10
- NCERT Книги для класса 11
- NCERT Книги для класса 12
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
9plar
- Книги NCERT
- RS Aggarwal
- RS Aggarwal Решения класса 12
- RS Aggarwal Class 11 Solutions
- RS Aggarwal Решения класса 10
- Решения RS Aggarwal класса 9
- Решения RS Aggarwal класса 8
- Решения RS Aggarwal класса 7
- Решения RS Aggarwal класса 6
- RD Sharma
- RD Sharma Class 6 Решения
- RD Sharma Class 7 Решения
- Решения RD Sharma класса 8
- Решения RD Sharma класса 9
- Решения RD Sharma класса 10
- Решения RD Sharma класса 11
- Решения RD Sharma Class 12
- PHYSICS
- Механика
- Оптика
- Термодинамика
- Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- MATHS
- Статистика
- Числа
- Числа Пифагора Тр Игонометрические функции
- Взаимосвязи и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убытки
- Полиномиальные уравнения
- Разделение фракций
- Microology
0003000
- FORMULAS
- Математические формулы
- Алгебраные формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- 000
- 000 Калькуляторы по химии
- 000
- 000
- 000 Образцы документов для класса 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 1 1
- Образцы документов CBSE для класса 12
0003000
- Вопросники предыдущего года CBSE
- Вопросники предыдущего года CBSE, класс 10
- Вопросники предыдущего года CBSE, класс 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- HC Verma Solutions Класс 12 Физика
- Решения Лакмира Сингха
- Решения Лакмира Сингха класса 9
- Решения Лахмира Сингха класса 10
- Решения Лакмира Сингха класса 8
9000 Класс
9000BSE 9000 Примечания3 2 6 Примечания CBSE
Примечания
- Дополнительные вопросы по математике для класса 8 CBSE
- Дополнительные вопросы по науке для класса 8 CBSE
- Дополнительные вопросы по математике класса 9 CBSE
- Вопросы
- CBSE Class 10 Дополнительные вопросы по математике
- CBSE Class 10 Science Extra questions
- Class 3
- Class 4
- Class 5
- Class 6
- Class 7
- Class 8 Класс 9
- Класс 10
- Класс 11
- Класс 12
- Решения NCERT для класса 11
- Решения NCERT для класса 11 по физике
- Решения NCERT для класса 11 Химия
- Решения NCERT для биологии класса 11
- Решение NCERT s Для класса 11 по математике
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Business Studies
- NCERT Solutions Class 11 Economics
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Commerce
- NCERT Solutions for Class 12
- Решения NCERT для физики класса 12
- Решения NCERT для химии класса 12
- Решения NCERT для биологии класса 12
- Решения NCERT для математики класса 12
- Решения NCERT, класс 12, бухгалтерия
- Решения NCERT, класс 12, бизнес-исследования
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 Accountancy Part 1
- NCERT Solutions Class 12 Accountancy Part 2
- NCERT Solutions Class 12 Micro-Economics
- NCERT Solutions Class 12 Commerce
- NCERT Solutions Class 12 Macro-Economics
- NCERT Solut Ионы Для класса 4
- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
- Решения NCERT для класса 5
- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
- Решения NCERT для класса 6
- Решения NCERT для математики класса 6
- Решения NCERT для науки класса 6
- Решения NCERT для класса 6 по социальным наукам
- Решения NCERT для класса 6 Английский язык
- Решения NCERT для класса 7
- Решения NCERT для математики класса 7
- Решения NCERT для науки класса 7
- Решения NCERT для социальных наук класса 7
- Решения NCERT для класса 7 Английский язык
- Решения NCERT для класса 8
- Решения NCERT для математики класса 8
- Решения NCERT для науки 8 класса
- Решения NCERT для социальных наук 8 класса ce
- Решения NCERT для класса 8 Английский
- Решения NCERT для класса 9
- Решения NCERT для класса 9 по социальным наукам
- Решения NCERT для математики класса 9
- Решения NCERT для математики класса 9 Глава 1
- NCERT для математики класса 9, глава 2
- для математики класса 9, глава 3
- для математики класса 9, глава 4
- Решения NCERT для математики класса 9, глава 5
Решения
Решения NCERT
Решения NCERT
.
Что такое электрический ток »Электроника
Электрический ток возникает при движении электрических зарядов — это могут быть отрицательно заряженные электроны или положительные носители заряда — положительные ионы.
Учебное пособие по электрическому току Включает:
Что такое электрический ток Единица измерения тока — Ампер ПЕРЕМЕННЫЙ ТОК
Электрический ток — одно из основных понятий, существующих в электротехнике и электронике. Электрический ток лежит в основе науки об электричестве.
Будь то электрический нагреватель, большая электрическая сеть, мобильный телефон, компьютер, удаленный сенсорный узел или что-то еще, понятие электрического тока является центральным для его работы.
Однако ток как таковой обычно нельзя увидеть, хотя его эффекты можно видеть, слышать и чувствовать все время, и в результате иногда трудно получить представление о том, что это такое на самом деле.
Удар молнии — это впечатляющее зрелище электрического тока
Фотография сделана с вершины башен Петронас в Куала-Лумпуре Малайзия
Определение электрического тока
Определение электрического тока:
Электрический ток — это поток электрического заряда в цепи. Более конкретно, электрический ток — это скорость прохождения заряда через заданную точку в электрической цепи. Зарядом могут быть отрицательно заряженные электроны или положительные носители заряда, включая протоны, положительные ионы или дырки.
Величина электрического тока измеряется в кулонах в секунду, обычно единицей измерения является ампер или ампер, обозначаемый буквой «А».
Ампер или усилитель широко используются в электрических и электронных технологиях вместе с умножителями, такими как миллиампер (0.001A), микроампер (0,000001A) и т. Д.
Ток в цепи обычно обозначается буквой «I», и эта буква используется в уравнениях, таких как закон Ома, где V = I⋅R.
Что такое электрический ток: основы
Основная идея тока состоит в том, что это движение электронов внутри вещества. Электроны — это мельчайшие частицы, которые существуют как часть молекулярной структуры материалов. Иногда эти электроны плотно удерживаются внутри молекул, а иногда они удерживаются свободно, и они могут относительно свободно перемещаться по структуре.
Одно очень важное замечание относительно электронов — это то, что они заряженные частицы — они несут отрицательный заряд. Если они перемещаются, то перемещается некоторое количество заряда, и это называется током.
Также стоит отметить, что количество электронов, которые могут двигаться, определяет способность конкретного вещества проводить электричество. Некоторые материалы позволяют току двигаться лучше, чем другие.
Движение свободных электронов обычно очень случайное — оно случайное — столько электронов движется как в одном направлении, так и в другом, и в результате отсутствует общее движение заряда.
Случайное движение электронов в проводнике со свободными электронами
Если на электроны действует сила, перемещающая их в определенном направлении, то все они будут дрейфовать в одном и том же направлении, хотя и в некоторой степени случайным образом, но в целом движение происходит в одном направлении. Одно направление.
Сила, действующая на электроны, называется электродвижущей силой или ЭДС, а ее величина — это напряжение, измеряемое в вольтах.
Электронный поток под действием приложенной электродвижущей силы
Чтобы лучше понять, что такое ток и как он действует в проводнике, его можно сравнить с потоком воды в трубе.У этого сравнения есть ограничения, но оно служит очень простой иллюстрацией тока и протекания тока.
Ток можно рассматривать как воду, текущую по трубе. Когда давление оказывается на один конец, вода движется в одном направлении и течет по трубе. Количество воды пропорционально давлению на конце. Давление или силу, приложенную к концу, можно сравнить с электродвижущей силой.
Когда к трубе прикладывается давление или вода течет в результате открытия крана, вода течет практически мгновенно.То же самое и с электрическим током.
Чтобы получить представление о потоке электронов, требуется 6,24 миллиарда миллиардов электронов в секунду для тока в один ампер.
Обычный ток и поток электронов
Часто существует множество недоразумений относительно обычного потока тока и потока электронов. Сначала это может немного сбивать с толку, но на самом деле все довольно просто.
Частицы, переносящие заряд по проводникам, являются свободными электронами.Направление электрического поля в цепи по определению является направлением проталкивания положительных испытательных зарядов. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю.
Электронный и обычный ток
Это произошло потому, что первоначальные исследования статических и динамических электрических токов были основаны на том, что мы теперь называем носителями положительного заряда. Это означало, что тогда раннее соглашение о направлении электрического тока было установлено как направление, в котором будут двигаться положительные заряды.Это соглашение сохранилось и используется до сих пор.
Итого:
- Обычный ток: Обычный ток идет от положительного к отрицательному выводу и указывает направление, в котором будут течь положительные заряды.
- Электронный поток: Электронный поток идет от отрицательного полюса к положительному. Электроны заряжены отрицательно и поэтому притягиваются к положительному полюсу так же, как притягиваются разные заряды.
Это соглашение, которое используется во всем мире по сей день, даже если оно может показаться немного странным и устаревшим.
Скорость движения электрона или заряда
Скорость передачи электрического тока сильно отличается от скорости реального движения электронов. Сам электрон отскакивает в проводнике и, возможно, движется вдоль проводника только со скоростью несколько миллиметров в секунду. Это означает, что в случае переменного тока, когда ток меняет направление 50 или 60 раз в секунду, большая часть электронов никогда не выходит из провода.
Возьмем другой пример. В почти вакууме внутри электронно-лучевой трубки электроны движутся почти по прямым линиям со скоростью примерно в одну десятую скорости света.
Влияние тока
Когда электрический ток течет по проводнику, есть несколько признаков, указывающих на то, что ток течет.
- Тепло рассеивается: Возможно, наиболее очевидным является то, что тепло выделяется. Если ток небольшой, то количество выделяемого тепла, вероятно, будет очень небольшим и его можно не заметить.Однако если ток больше, возможно, выделяется заметное количество тепла. Электрический огонь — яркий пример того, как ток вызывает выделение тепла. Фактическое количество тепла зависит не только от тока, но также от напряжения и сопротивления проводника.
- Магнитный эффект: Другой эффект, который можно заметить, состоит в том, что вокруг проводника создается магнитное поле. Если в проводнике течет ток, это можно обнаружить.Если поднести компас к проводу, по которому идет достаточно большой постоянный ток, можно увидеть, что стрелка компаса отклоняется. Обратите внимание, что это не будет работать с сетью, потому что поле слишком быстро меняется, чтобы игла могла реагировать, а два провода (под напряжением и нейтраль), расположенные близко друг к другу в одном кабеле, нейтрализуют поле.
Магнитное поле, создаваемое током, находит хорошее применение во многих областях. Намотав провод в катушку, можно усилить эффект и создать электромагнит.Реле и множество других предметов используют этот эффект. Громкоговорители также используют переменный ток в катушке, чтобы вызвать колебания в диафрагме, которые позволяют преобразовывать электронные токи в звуки.
Как измерить ток
Одним из важных аспектов тока является знание величины тока, который может протекать в проводнике. Поскольку электрический ток является таким ключевым фактором в электрических и электронных схемах, очень важно знать, какой ток течет.
Есть много разных способов измерения тока. Один из самых простых — использовать мультиметр.
Как измерить ток с помощью цифрового мультиметра:
Используя цифровой мультиметр, цифровой мультиметр, легко измерить ток, поместив цифровой мультиметр непосредственно в цепь, по которой проходит ток. Цифровой мультиметр даст точные показания тока, протекающего в цепи
.
Узнайте , как измерить ток с помощью цифрового мультиметра.
Хотя существуют и другие методы измерения тока, это наиболее распространенный.
Ток — один из наиболее важных и фундаментальных элементов в электрических и электронных технологиях. Ток, протекающий в цепи, можно использовать различными способами: от генерирования тепла до переключения схем или сохранения информации в интегральной схеме.
Дополнительные основные понятия:
Напряжение Текущий Сопротивление Емкость Мощность Трансформеры RF шум Децибел, дБ Q, добротность
Вернуться в меню «Основные понятия».. .
.
Конвертер электрического заряда • Электротехника • Определения единиц • Онлайн-конвертеры единиц измерения
Определения единиц конвертера «Конвертер электрического заряда»
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления. Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Определения единиц конвертера «Конвертер электрического заряда» на русском и английском языках
кулон
Кулон (Кл) — единица измерения электрического заряда (количества электричества) в Международной системе единиц (СИ). Кулон является производной единицей системы СИ. Кулон — это величина заряда, прошедшая через проводник при силе тока один ампер за одну секунду. Кулон можно определить и через емкость. Один кулон — это заряд на положительной обкладке конденсатора емкостью в одну фараду, заряженному до разности потенциалов один вольт.
мегакулон
Мегакулон — единица измерения электрического заряда (количества электричества) в Международной системе единиц (СИ), кратная одному кулону. Кулон является производной единицей системы СИ. Кулон — это величина заряда, прошедшая через проводник при силе тока один ампер за одну секунду. Кулон можно определить и через емкость. Один кулон — это заряд на положительной обкладке конденсатора емкостью в одну фараду, заряженному до разности потенциалов один вольт.
килокулон
Килокулон — единица измерения электрического заряда (количества электричества) в Международной системе единиц (СИ), кратная одному кулону. Кулон является производной единицей системы СИ. Кулон — это величина заряда, прошедшая через проводник при силе тока один ампер за одну секунду. Кулон можно определить и через емкость. Один кулон — это заряд на положительной обкладке конденсатора емкостью в одну фараду, заряженному до разности потенциалов один вольт.
милликулон
Милликулон — единица измерения электрического заряда (количества электричества) в Международной системе единиц (СИ), кратная одному кулону. Кулон является производной единицей системы СИ. Кулон — это величина заряда, прошедшая через проводник при силе тока один ампер за одну секунду. Кулон можно определить и через емкость. Один кулон — это заряд на положительной обкладке конденсатора емкостью в одну фараду, заряженному до разности потенциалов один вольт.
микрокулон
Микрокулон — дольная единица измерения единица измерения электрического заряда (количества электричества) в Международной системе единиц (СИ), равная 10−6 Кл. Кулон является производной единицей системы СИ. Кулон — это величина заряда, прошедшая через проводник при силе тока один ампер за одну секунду. Кулон можно определить и через емкость. Один кулон — это заряд на положительной обкладке конденсатора емкостью в одну фараду, заряженному до разности потенциалов один вольт.
нанокулон
Нанокулон — дольная единица измерения единица измерения электрического заряда (количества электричества) в Международной системе единиц (СИ), равная 10−9 Кл. Кулон является производной единицей системы СИ. Кулон — это величина заряда, прошедшая через проводник при силе тока один ампер за одну секунду. Кулон можно определить и через емкость. Один кулон — это заряд на положительной обкладке конденсатора емкостью в одну фараду, заряженному до разности потенциалов один вольт.
пикокулон
Пикокулон — дольная единица измерения единица измерения электрического заряда (количества электричества) в Международной системе единиц (СИ), равная 10−12 Кл. Кулон является производной единицей системы СИ. Кулон — это величина заряда, прошедшая через проводник при силе тока один ампер за одну секунду. Кулон можно определить и через емкость. Один кулон — это заряд на положительной обкладке конденсатора емкостью в одну фараду, заряженному до разности потенциалов один вольт.
абкулон
Абкулон (синоним единица заряда СГСМ) — основная физическая единица электрического заряда в абсолютной электромагнитной системе СГСМ. Один абкулон равен 10 кулонам.
единица заряда СГСМ
Единица заряда СГСМ (синоним абкулон) — основная физическая единица электрического заряда в абсолютной электромагнитной системе СГСМ. Одна единица заряда СГСМ равна 10 кулонам.
статкулон
Статкулон (синонимы: франклин, единица заряда СГСЭ) — единица электрического заряда в СГСЭ (абсолютная электростатическая система сантиметр-грамм-секунда) и в гауссовой системе. Статкулон является производной единицей СГСЭ. По определению, два разноимённых заряда по одному статкулону, находящихся в вакууме на расстоянии 1 см, будут притягиваться друг к другу с силой 1 дина.
СГСЭ-единица заряда
Единица заряда СГСЭ (синонимы: франклин, статкулон) — единица электрического заряда в СГСЭ (абсолютная электростатическая система сантиметр-грамм-секунда) и в гауссовой системе. Единица заряда СГСЭ является производной единицей СГСЭ. По определению, два разноимённых заряда по одной единице заряда СГСЭ, находящихся в вакууме на расстоянии 1 см, будут притягиваться друг к другу с силой 1 дина.
франклин
Франклин (синонимы: статкулон, единица заряда СГСЭ, обозначение Фр) — единица электрического заряда в СГСЭ (абсолютная электростатическая система сантиметр-грамм-секунда) и в гауссовой системе. Франклин является производной единицей СГСЭ. По определению, два разноимённых заряда по одному франклину, находящихся в вакууме на расстоянии 1 см, будут притягиваться друг к другу с силой 1 дина.
ампер-час
Ампер-час (А·ч) — внесистемная единица измерения электрического заряда. Один ампер-час равен 3600 кулонов (ампер-секунд). Физический смысл: 1 ампер-час — это электрический заряд, который проходит через поперечное сечение проводника в течение одного часа при наличии в нём тока в 1 ампер. Ампер-час используется главным образом для обозначения ёмкости аккумуляторов. Аккумулятор, заряженный до 1 А·ч, теоретически способен обеспечить ток в один ампер в течение одного часа.
миллиампер-час
Миллиампер-час (мА·ч) — внесистемная единица измерения электрического заряда. Один миллиампер-час равен 3,6 кулона (ампер-секунд). Миллиампер-час используется главным образом для обозначения ёмкости аккумуляторов. Аккумулятор, заряженный до 1 мА·ч, теоретически способен обеспечить ток в один ампер в течение 3,6 секунд.
ампер-минута
Ампер-минута (А·мин) — внесистемная единица измерения электрического заряда. Одна ампер-минута равна 60 кулонам (ампер-секундам). Физический смысл: 1 ампер-минута — это электрический заряд, который проходит через поперечное сечение проводника в течение одной минуты при наличии в нём тока в 1 ампер.
ампер-секунда
Ампер-секунда (А·с) — внесистемная единица измерения электрического заряда. Одна ампер-секунда равен 1 кулону (ампер-секунде). Физический смысл: 1 ампер-секунда — это электрический заряд, который проходит через поперечное сечение проводника в течение одной секунды при наличии в нём тока в 1 ампер.
фарадей (единица заряда)
Фарадей (Ф) — внесистемная единица измерения электрического заряда, используемая в электрохимии. 1 фарадей соответствует заряду 1 моля электронов или однозарядных ионов. При пропускании через электролитическую ячейку заряда в 1 Ф на каждом электроде выделяется 1 моль однозарядных ионов. 1 фарадей = 96,48 килокулона.
элементарный электрический заряд
Элементарный электрический заряд (e) — минимальная порция (квант) электрического заряда, то есть, заряд, переносимый одним протоном или одним электроном. Этот заряд приблизительно равен 1,602 176 565·10−19 Кл в системе СИ (и 4,803·10−10 ед. СГСЭ в системе СГС).
Преобразовать единицы с помощью конвертера «Конвертер электрического заряда»
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Расчеты для перевода единиц в конвертере «Конвертер электрического заряда» выполняются с помощью функций unitconversion.org.
Понимание объёма (мА*ч) и эффективности зарядки портативного аккумулятора Power Bank
Распространённое заблуждение
Единица измерения миллиампер-час (мА*ч) обычно используется для обозначения объёма аккумулятора. Одно из распространённых заблуждений заключается в том, что мы можем измерять объём аккумулятора power bank с помощью объёма аккумулятора смартфона/планшета, чтобы выяснить, сколько раз мы можем использовать этот power bank для их зарядки. Но такой алгоритм не является правильным.
Объём и энергия – это разные понятия
Проще говоря, Ампер-час (мА*ч) – это единица измерения электрического заряда, которая представляет объём аккумулятора, а Ватт-час (Вт*ч) – это единица измерения электрической энергии.
Ватт-час = Ампер-час х Напряжение
Объём в 10400 мАч означает, что этот аккумулятор способен обеспечить суммарный заряд в 10400 мАч при определенном показателе напряжения. Что касается литий-ионного аккумулятора, то большая часть его заряда передаётся с напряжением около 3,7В, поэтому общая мощность аккумулятора на 10400 мАч теоретически составляет 10400 мАч х 3,7 В = 38480 мВт*ч, что равно примерно 38 Вт*ч.
Определение количества циклов зарядки Power Bank
В качестве примера возьмём аккумулятор TL-PB10400_V1.
TL-PB10400_V1 – литий-ионный аккумулятор объёмом в 10400 мАч. Когда мы используем TL-PB10400_V1 для зарядки других устройств, его выходное напряжение равно 5В, как и в случае многих других зарядных устройств.
Таким образом, общий доступный выходной электрический заряд в теории составляет 38480 мВт*ч / 5В = 7696 мАч. Внутренняя схема устройства должна потреблять некоторое количество энергии, поэтому КПД не может быть 100%. Учитывая, что фактический КПД разряда устройства TL-PB10400 составляет около 90% при 1А тока, TL-PB10400 в действительности выдаёт электрический заряд, который равен 7696 мАч * 0.9 = 6926 мАч.
Примечание: эффективность разряда менее 90% при 2А тока.
Теперь вы можете разделить 6926 мАч на объём аккумулятора вашего смартфона, чтобы определить количество возможных циклов зарядки. Например, 6926 мАч может полностью зарядить устройство с аккумулятором в 2600 мАч около 2,5 раз (6926 мАч / 2600 мАч = 2,66 раза). Но это все равно предполагает идеальные условия.
На самом деле, внутренние схемы смартфона/планшета тоже потребляют некоторое количество энергии. В результате только часть заряда Power Bank в конечном итоге попадёт в батарею смартфона/планшета. Таким образом, вы можете получить менее 2,4 циклов из вышеприведённого примера. Помимо этого различные устройства могут иметь разную эффективность зарядки в зависимости от их различной внутренней конструкции, поэтому цикл заряда может отличаться даже у двух устройств имеющих одинаковую емкость батареи.
Кроме того, если смартфон работает или во время заряда включён экран, Wi-Fi модуль, центральный процессор или работают другие компоненты, он потребляет больше энергии, что делает эффективность зарядки еще ниже.
Окончательная эффективность заряда других аккумуляторных устройств (смартфонов/ планшетов) также определяется их собственной конструкцией по тем же принципам, что описаны выше.
Единицы измерения заряда. Закон Кулона.
Точечный заряд
Основной
закон взаимодействия электрических
зарядов был найден Шарлем Кулоном в
1785 г. экспериментально. Кулон установил,
что сила
взаимодействия
между двумя небольшими заряженными
металлическими шариками обратно
пропорциональна квадрату расстояниямежду ними и зависит от величины зарядови:
,
где
—коэффициент
пропорциональности
.
Силы,
действующие на заряды
,
являются центральными
,
то есть они направлены вдоль прямой,
соединяющей заряды.
Закон
Кулона
можно записать в
векторной форме
:
,
где
—со стороны заряда,
— радиус-вектор,
соединяющий заряд
с зарядом;
— модуль радиус-вектора.
Сила,
действующая на заряд
со стороныравна
,
.
Закон Кулона в
такой форме
справедлив
только
для взаимодействия точечных электрических
зарядов
,
то есть таких заряженных тел, линейными
размерами которых можно пренебречь по
сравнению с расстоянием между ними.
выражает
силу взаимодействия
между неподвижными электрическими
зарядами, то есть это электростатический
закон.
Формулировка
закона Кулона
:
Сила
электростатического взаимодействия
между двумя точечными электрическими
зарядами прямо пропорциональна
произведению величин зарядов и обратно
пропорциональна квадрату расстояния
между ними
.
Коэффициент
пропорциональности
в законе Кулоназависит
от свойств среды
выбора единиц
измерения величин, входящих в формулу.
Поэтому
можно
представить отношением
,
где
—коэффициент,
зависящий только от выбора системы
единиц измерения
;
— безразмерная
величина, характеризующая электрические
свойства среды, называется относительной
диэлектрической проницаемостью среды
.
Она не зависит от выбора системы единиц
измерения и равна единице в вакууме.
Тогда
закон Кулона примет вид:
,
для
вакуума
,
тогда
—относительная
диэлектрическая проницаемость среды
показывает, во сколько раз в данной
среде сила взаимодействия между двумя
точечными электрическими зарядами
и,
находящимися друг от друга на расстоянии,
меньше, чем в вакууме.
В
системе СИ
коэффициент
,
и
закон
Кулона имеет вид
:
.
Это
рационализированная
запись закона К
улона.
— электрическая
постоянная,
.
В
системе СГСЭ
,
.
В
векторной форме закон Кулона
принимает вид
где
—вектор
силы, действующей на заряд
со стороны заряда
,
—
радиус-вектор, соединяющий заряд
с зарядом
r
–модуль радиус-вектора
.
Всякое
заряженное тело состоит из множества
точечных электрических зарядов, поэтому
электростатическая
сила, с которой одно заряженное тело
действует на другое, равна векторной
сумме сил, приложенных ко всем точечным
зарядам второго тела со стороны каждого
точечного заряда первого тела.
1.3.Электрическое поле. Напряженность.
Пространство,
в котором находится электрический
заряд, обладает определенными физическими
свойствами
.
На
всякий
другой заряд,
внесенный в это пространство, действуют
электростатические силы Кулона.
Если в каждой
точке пространства действует сила, то
говорят, что в этом пространстве
существует силовое поле.
Поле наряду с
веществом является формой материи.
Если
поле стационарно, то есть не меняется
во времени, и создается неподвижными
электрическими зарядами, то такое поле
называется электростатическим.
Электростатика
изучает только электростатические поля
и взаимодействия неподвижных зарядов.
Для
характеристики электрического поля
вводят понятие напряженности
.
Напряженность
ю
в каждой точке электрического поля
называется вектор
,
численно равный отношению силы, с которой
это поле действует на пробный положительный
заряд, помещенный в данную точку, и
величины этого заряда, и направленный
в сторону действия силы.
Пробный
заряд
,
который вносится в поле, предполагается
точечным и часто называется пробным
зарядом.
— Он
не участвует в создании поля,
которое с его помощью измеряется.
Предполагается, что этот заряд не
искажает исследуемого поля,
то есть он достаточно мал и не вызывает
перераспределения зарядов, создающих
поле.
Если
на пробный точечный заряд
поле действует силой,
то напряженность
.
Единицы напряженности:
СИ:
СГСЭ:
В
системе СИ выражение
для
поля точечного заряда
:
.
В векторной форме:
Здесь
– радиус-вектор, проведенный из зарядаq
, создающего поле, в данную точку.
Т
аким
образом,векторы
напряженности электрического поля
точечного заряда
q
во всех точках поля направлены радиально
(рис.1.3)
— от
заряда, если он положительный, «исток»
— и
к заряду, если он отрицательный
«сток»
Для
графической интерпретации
электрического поля вводят понятие
силовой линии или
линии
напряженности
.
Это
кривая
,
касательная в каждой точке к которой
совпадает с вектором напряженности
.
Линия напряженности
начинается на положительном заряде и
заканчивается на отрицательном.
Линии напряженности
не пересекаются, так как в каждой точке
поля вектор напряженности имеет лишь
одно направление.
Тема 1.1 ЭЛЕКТРИЧЕСКИЕ ЗАРЯДЫ.
Раздел 1 ОСНОВЫ ЭЛЕКТРОДИНАМИКИ
1. Электризация тел. Понятие о величине заряда.
Закон сохранения заряда.
2. Силы взаимодействия между зарядами.
Закон Кулона.
3. Диэлектрическая проницаемость среды.
4. Международная система единиц в электричестве.
1.
Электризация тел. Понятие о величине заряда.
Закон сохранения заряда.
Если две поверхности привести в плотное соприкосновение, то возможен переход электронов
с одной поверхности на другую, при этом на этих поверхностях появляются электрические заряды.
Это явление называется ЭЛЕКТРИЗАЦИЕЙ. При трении площадь плотного соприкосновения поверхностей увеличивается, увеличивается и величина заряда на поверхности – такое явление называют ЭЛЕКТРИЗАЦИЕЙ ТРЕНИЕМ.
В процессе электризации происходит перераспределение зарядов, в результате которого обе поверхности заряжаются равными по величине, противоположными по знаку зарядами.
Т.к. все электроны имеют одинаковые заряды (отриц.) е = 1,6 10Кл, то для того, чтобы определить величину заряда на поверхности (q), необходимо знать, сколько электронов в избытке или недостатке на поверхности (N) и заряд одного электрона.
В процессе электризации новые заряды не появляются и не исчезают, а только происходит их перераспределение
между телами или частями тела, поэтому суммарный заряд замкнутой системы тел остается постоянным, в этом и заключается смысл ЗАКОНА СОХРАНЕНИЯ ЗАРЯДА.
2.
Силы взаимодействия между зарядами.
Закон Кулона.
Электрические заряды взаимодействуют между собой, находясь на расстоянии, при этом одноименные заряды отталкиваются, а разноименные – притягиваются.
Впервые выяснил опытным
путем отчего зависит сила взаимодействия между зарядами французский ученый Кулон и вывел закон, названный законом КУЛОНА. Закон фундаментальный т.е. основан на опытах. При выводе этого закона Кулон использовал крутильные весы.
3) k – коэффициент, выражающий зависимость от окружающей среды.
Формула закона Кулона.
Сила взаимодействия между двумя неподвижными точечными зарядами прямо пропорциональны произведению величин этих зарядов и обратно пропорциональна квадрату расстояний между ними, и зависит от среды, в которой находятся эти заряды, и направлена вдоль прямой, соединяющей центры этих зарядов.
3.
Диэлектрическая проницаемость среды.
Е — диэлектрическая проницаемость среды, зависит от окружающей заряды среды.
Е = 8,85*10 — физическая постоянная, диэлектрическая проницаемость вакуума.
Е – относительная диэлектрическая проницаемость среды, показывает во сколько раз сила взаимодействия между точечными зарядами в вакууме больше чем в данной среде. В вакууме самое сильное взаимодействие между зарядами.
4.
Международная система единиц в электричестве.
Основной единицей для электричества в системе «СИ» является сила тока в 1А, все остальные единицы измерения являются производными от 1Ампера.
1Кл – количество электрического заряда, переносимого заряженными частицами через поперечное сечение проводника при силе тока в 1А за 1с.
q=N;
Тема 1.2 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
1. Электрическое поле – как особый вид материи.
6. Связь разности потенциалов с напряженностью электрического поля.
1.
Электрическое поле – как особый вид материи.
В природе как вид материи существует электромагнитное поле. В разных случаях электромагнитное поле проявляет себя по — разному, так например около неподвижных зарядов проявляет себя только электрическое поле, которое называют электростатическим. Около подвижных зарядов можно обнаружить как электрическое, так и магнитное поля, которые в совокупности представляют ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ.
Рассмотрим свойства электростатических полей:
1) Электростатическое поле создается неподвижными зарядами, обнаружить такие поля можно
с помощью пробных зарядов (небольшой по величине положительный заряд), т. к. только на них электрическое поле оказывает силовое действие, которое подчиняется закону Кулона.
2.
Напряженность электрического поля.
Эл.поле как вид материи обладает энергией, массой, распространяется в пространстве с конечной скоростью и теоретических границ не имеет.
Практически считается, что поля нет если оно не оказывает заметного действия на пробные заряды.
Так как обнаружить поле можно с помощью силового действия на пробные заряды, то основной характеристикой электрического поля является напряженность.
Если в одну и ту же точку электрического поля вносить разные по величине пробные заряды, то между действующей силой и величиной пробного заряда прямая пропорциональная зависимость.
Коэффициентом пропорциональности между действующей силой и величиной заряда является напряженность Е.
Е = -формула расчета напряженности электрического поля, если q = 1 Кл, то | E | = | F |
Напряженность является силовой характеристикой точек электрического поля, т. к. она численно равна силе, действующей на заряд в 1 Кл в данной точке электрического поля.
Напряженность – величина векторная, вектор напряженности по направлению совпадает с вектором силы, действующей на положительный заряд в данной точке электрического поля.
3. Линии напряженности электрического поля. Однородное электрическое поле.
Для того, чтобы наглядно можно было изображать электрическое поле, т.е. графически, используют линии напряженности электрического поля. Это такие линии, иначе называемые силовыми линиями, касательные к которым по направлению совпадают с векторами напряженности в точках электрического поля через которые эти линии проходят,
Линии напряженности обладают следующими свойствами:
1) Начинаются на полож. зарядах, заканчиваются – на отрицательных, или начинаются на положител. зарядах и уходят в бесконечность, или приходят из бесконечности и заканчиваются на положительных зарядах..
2) Эти линии непрерывны и нигде не пересекаются.
3) Густота линий (кол-во линий на единицу площади поверхности) и напряженность электрического поля находятся в прямой и пропорциональной зависимости.
В однородном электрическом поле напряженность во всех точках поля одинакова, графически такие поля изображаются параллельными линиями на равном расстоянии друг от друга. Такое поле можно получить между двумя параллельными плоскими заряженными пластинами на маленьком расстоянии друг от друга.
4. Работа по перемещению заряда в электрическом поле.
Поместим в однородное электрическое поле электрический заряд. Со стороны поля на заряд будут действовать силы. Если заряд перемещать, то может совершаться работа.
Совершенная работа на участках:
А = q E d — формула расчета работы по перемещению заряда в электрическом поле.
Вывод: Работа по перемещению заряда в электрическом поле от формы траектории не зависит, а она зависит от величины перемещаемого заряда (q) , напряженности поля (Е), а также от выбора начальной и конечной точек перемещения (d).
Если заряд в электрическом поле перемещать по замкнутому контуру, то совершаемая работа будет равна 0. Такие поля называются потенциальными полями. Тела в таких полях обладают потенциальной энергией, т.о. электрический заряд в любой точке электрического поля обладает энергией и совершаемая работа в электрическом поле равна разности потенциальных энергий заряда в начальной и конечной точках перемещения.
5. Потенциал. Разность потенциалов. Напряжение.
Если в данную точку электрического поля помещать разные по величине заряды, то потенциальная энергия заряда и его величина находятся в прямой пропорциональной зависимости.
-(фи) потенциал точки электрического поля
примем
Потенциал является энергетической характеристикой точек электрического поля, т.к. он численно равен потенциальной энергии заряда в 1 Кл в данной точке электрического поля.
На равных расстояниях от точечного заряда потенциалы точек поля одинаковы. Эти точки образуют поверхность равного потенциала, и такие поверхности называются эквипотенциальными поверхностями. На плоскости это окружности, в пространстве – это сферы.
Напряжение
Формулы расчета работы по перемещению заряда в электрическом поле.
1В – напряжение между точками электрического поля при перемещении в которых заряда в 1Кл совершается работа в 1 Дж.
— формула, устанавливающая связь между напряженностью электрического поля, напряжением и разностью потенциалов.
Напряженность численно равна напряжению или разности потенциалов между двумя точками поля взятыми вдоль одной силовой линии на расстоянии 1м. Знак (-) означает, что вектор напряженности всегда направлен в сторону точек поля с уменьшающимся потенциалом.
Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.
Между электрическими зарядами действует сила. Как она зависит от величины зарядов и других факторов?
Этот вопрос исследовал в 1780-е годы французский физик Шарль Кулон (1736-1806). Он воспользовался
крутильными весами, очень похожими на те, которые применял Кавендиш для определения гравитационной постоянной.
Если к шарику на конце стержня, подвешенного на нити, подности заряд, стержень слегка отклоняется, нить закручивается,
и угол поворота нити будет пропорционален действующей между зарядами силе (крутильные весы).
С помощью этого прибора Кулон определил зависимость силы от величины зарядов и расстояния между ними.
В те времена еще не было приборов для точного определения величины заряда, но
Кулон сумел приготовить небольшие шарики с известным соотношением зарядов.
Если заряженный проводящий шарик, рассуждал он, привести в соприкосновение с точно таким же незаряженным шариком,
то имевшийся на первом заряд в силу симметрии распределится поровну между двумя шариками.
Это дало ему возможность получать заряды, составлявшие 1/2, 1/4 и т.д. от первоначального.
Несмотря на некоторые трудности, связанные с индуцированием зарядов, Кулону удалось доказать, что сила,
с которой одно заряженное тело действует на другое малое заряженное тело, прямо пропорциональна электрическому заряду каждого из них.
Другими словами, если заряд любого из этих тел удвоить, то удвоится и сила;
если же удвоить одновременно заряды обоих тел, то сила станет вчетверо больше. Это справедливо при условии, что расстояние
между телами остается постоянным.
Изменяя расстояние между телами, Кулон обнаружил, что действующая между ними сила обратно пропорциональна квадрату
расстояния: если расстояние, скажем, удваивается, сила становится вчетверо меньше.
Итак, заключил Кулон, сила, с которой одно малое заряженное тело (в идеальном случае -точечный заряд, т.е. тело, подобно материальной
точке не имеющее пространственных размеров) действует на другое заряженное тело, пропорциональна
произведению их зарядов Q
1 и Q
2 и обратно пропорциональна квадрату расстояния между ними:
Здесь k
-коэффициент пропорциональности.
Это соотношение известно как закон Кулона; его справедливость подтверждена тщательными экспериментами,
гораздо более точными, чем первоначальные трудно воспроизводимые опыты Кулона.
Показатель степени 2 установлен в настоящее время с точностью 10 -16 , т.е. он равен
2 ± 2×10 -16 .
Коль скоро мы теперь имеем дело с новой величиной — электрическим зарядом, мы можем подобрать такую единицу измерения,
чтобы постоянная к в формуле равнялась единице.
И действительно, такая система единиц еще недавно широко использовалась в физике.
Речь идет о системе СГС (сантиметр-грамм-секунда), в которой используется электростатическая единица заряда СГСЭ. По определению два малых тела, каждое с зарядом 1 СГСЭ, расположенные на расстоянии 1 см друг от друга, взаимодействуют с силой 1 дина.
Теперь, однако, заряд чаще всего выражают в системе СИ, где его единицей является кулон (Кл).
Точное определение кулона через электрический ток и магнитное поле мы приведем позднее.
В системе СИ постоянная k
имеет величину k
= 8,988×10 9 Нм 2 /Кл 2 .
Заряды, возникающие при электризации трением обычных предметов (расчески, пластмассовой линейки и т. п.),
по порядку величины составляют микрокулон и меньше (1 мкКл = 10 -6 Кл).
Заряд электрона (отрицательный) приблизительно равен 1,602×10 -19 Кл.
Это наименьший известный заряд; он имеет фундаментальное значение и обозначается символом е
, его часто называют элементарным зарядом.
е
= (1,6021892 ± 0,0000046)×10 -19 Кл, или е
≈ 1,602×10 -19 Кл.
Поскольку тело не может приобрести или потерять долю электрона, суммарный заряд тела должен быть целым
кратным элементарного заряда. Говорят, что заряд квантуется (т.е. может принимать лишь дискретные
значения). Однако, поскольку заряд электрона е
очень мал, мы обычно не замечаем дискретности макроскопических
зарядов (заряду 1 мкКл соответствуют примерно 10 13 электронов) и считаем заряд непрерывным.
Формула Кулона характеризует силу, с которой один заряд действует на другой. Эта сила направлена вдоль линии, соединяющей заряды.
Если знаки зарядов одинаковы, то силы, действующие на заряды, направлены в противоположные стороны.
Если же знаки зарядов различны, то действующие на заряды силы направлены навстречу друг другу.
Заметим, что в соответствии с третьим законом Ньютона сила, с которой один заряд действует на другой,
равна по величине и противоположна по направлению силе, с которой второй заряд действует на первый.
Закон Кулона можно записать в векторной форме подобно закону всемирного тяготения Ньютона:
где F
12 — вектор силы, действующей на заряд Q
1 со стороны заряда Q
2,
— расстояние между зарядами,
— единичный вектор, направленный от Q
2 к Q
1.
Следует иметь в виду, что формула применима лишь к телам, расстояние между которыми значительно больше их собственных размеров.
В идеальном случае это точечные заряды. Для тел конечного размера не всегда ясно, как отсчитывать расстояние r
между ними, тем
более что распределение заряда может быть и неоднородным.
Если оба тела — сферы с равномерным распределением заряда, то r
означает расстояние между центрами сфер.
Важно также понимать, что формула определяет силу, действующую на данный заряд со стороны единственного заряда.
Если система включает несколько (или много) заряженных тел, то результирующая сила, действующая на данный заряд,
будет равнодействующей (векторной суммой) сил, действующих со стороны остальных зарядов.
Постоянная к в формуле Закона Кулона обычно выражается через другую константу, ε 0
, так называемую
электрическую постоянную, которая связана с k
соотношением k =
1/(4πε 0)
.
С учетом этого закон Кулона можно переписать в следующем виде:
где с наивысшей на сегодня точностью
или округленно
Запись большинства других уравнений электромагнитной теории упрощается при использовании ε 0
,
поскольку 4π
в окончательном результате часто сокращается. Поэтому мы будем обычно использовать Закон Кулона, считая, что:
Закон Кулона описывает силу, действующую между двумя покоящимися зарядами. Когда заряды движутся, между ними возникают дополнительные силы, и их мы обсудим в последующих главах. Здесь же рассматриваются только покоящиеся заряды; этот раздел учения об электричестве называется электростатикой
.
Продолжение следует. Коротко о следующей публикации:
Электрическое поле — один из двух компонентов электромагнитного поля, представляющий собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, либо возникающий при изменении магнитного поля.
Замечания и предложения принимаются и приветствуются!
Заряды и электричество — это термины, обязательные для тех случаев, когда наблюдается взаимодействие заряженных тел. Силы отталкивания и притяжения словно исходят от заряженных тел и распространяются одновременно во всех направлениях, постепенно затухая на расстоянии. Эту силу в свое время открыл известный французский естествоиспытатель Шарль Кулон, и правило, которому подчиняются заряженные тела, с тех пор называется Закон Кулона.
Шарль Кулон
Французский ученый родился во Франции, где получил блестящее образование. Он активно применял полученные знания в инженерных науках и внес значительный вклад теорию механизмов. Кулон является автором работ, в которых изучалась работа ветряных мельниц, статистика различных сооружений, кручение нитей под влиянием внешних сил. Одна из этих работ помогла открыть закон Кулона-Амонтона, объясняющий процессы трения.
Но основной вклад Шарль Кулон внес в изучение статического электричества. Опыты, которые проводил этот французский ученый, подвели его к пониманию одного из наиболее фундаментальных законов физики. Именно ему мы обязаны знанием природы взаимодействия заряженных тел.
Предыстория
Силы притяжения и отталкивания, с которыми электрические заряды действуют друг на друга, направлены вдоль прямой, соединяющей заряженные тела. С увеличением расстояния эта сила ослабевает. Спустя столетие после того, как Исаак Ньютон открыл свой всемирный закон тяготения, французский ученый Ш. Кулон исследовал экспериментальным путем принцип взаимодействия между заряженными телами и доказал, что природа такой силы аналогична силам тяготения. Более того, как оказалось, взаимодействующие тела в электирическом поле ведут себя так же, как и любые тела, обладающие массой, в гравитационном поле.
Прибор Кулона
Схема прибора, при помощи которого Шарль Кулон делал свои измерения, приведена на рисунке:
Как можно видеть, по существу эта конструкция не отличается от того прибора, которым в свое время Кавендиш измерял величину гравитационной постоянной. Изолирующий стержень, подвешенный на тонкой нити, заканчивается металлическим шариком, которому сообщен определенный электрический заряд. К шарику приближают другой металлический шарик, а затем, по мере сближения, измеряют силу взаимодействия по степени закручивания нити.
Эксперимент Кулона
Кулон предположил, что к силе, с которой закручивается нить, можно применить уже известный тогда Закон Гука. Ученый сравнил изменение силы при различной дистанции одного шарика от другого и установил, что сила взаимодействия изменяет свое значение обратно пропорционально квадрату дистанции между шариками. Кулон сумел изменять значения заряженного шарика от q до q/2, q/4, q/8 и так далее. При каждом изменении заряда сила взаимодействия пропорционально меняла свое значение. Так, постепенно, было сформулировано правило, которое впоследствии было названо «Закон Кулона».
Определение
Экспериментальным путем французский ученый доказал, что силы, с которыми взаимодействуют два заряженных тела, пропорциональны произведению их зарядов и обратно пропорциональны квадрату расстояния между зарядами. Это утверждение и представляет собой закон Кулона. В математическом виде он может быть выражен так:
В этом выражении:
- q- количество заряда;
- d — расстояние между заряженными телами;
- k- электрическая постоянная.
Значение электрической постоянной во многом зависит от выбора единицы измерения. В современной системе величина электрического заряда измеряется в кулонах, а электрическая постоянная, соответственно, в ньютон×м 2 / кулон 2 .
Последние измерения показали, что данный коэффициент должен учитывать диэлектрическую проницаемость среды, в которой проводится опыт. Сейчас величину показывают в виде соотношения k=k 1 /e, где к 1 является уже знакомой нам электрической константой, а не является показателем диэлектрической проницаемости. В условиях вакуума эта величина равна единице.
Выводы из закона Кулона
Ученый экспериментировал с различной величиной зарядов, проверяя взаимодействие между телами с различной величиной заряда. Разумеется, измерить электрический заряд в каких-либо единицах он не мог — не хватало ни знаний, ни соответствующих приборов. Шарль Кулон смог разделять снаряд, прикасаясь к заряженному шарику незаряженным. Так он получал дробные значения исходного заряда. Ряд опытов показал, что электрический заряд сохраняется, происходит обмен без увеличения или уменьшения количества заряда. Этот фундаментальный принцип лег в основу закона сохранения электрического заряда. В настоящее время доказано, что этот закон соблюдается и в микромире элементарных частиц и в макромире звезд и галактик.
Условия, необходимые для выполнения закона Кулона
Для того чтобы закон выполнятся с большей точностью, необходимо выполнение следующих условий:
- Заряды должны быть точечными. Другими словами, дистанция между наблюдаемыми заряженными телами должна быть намного больше их размеров. Если заряженные тела имеют сферическую форму, то можно считать, что весь заряд находится в точке, которая является центром сферы.
- Измеряемые тела должна быть неподвижными. Иначе на движущийся заряд будут влиять многочисленные сторонние факторы, например, сила Лоренца, которая придает заряженному телу дополнительное ускорение. А также магнитное поле движущегося заряженного тела.
- Наблюдаемые тела должны находиться в вакууме, чтобы избежать воздействия потоков воздушных масс на результаты наблюдений.
Закон Кулона и квантовая электродинамика
С точки зрения квантовой электродинамики взаимодействие заряженных тел происходит посредством обмена виртуальными фотонами. Существование таких ненаблюдаемых частиц и нулевой массы, но не нулевыго заряда косвенно подтверждается принципом неопределенности. Согласно этому принципу, виртуальный фотон может существовать между мгновениями испускания такой частицы и ее поглощения. Чем меньше расстояние между телами, тем меньше времени затрачивает фотон на прохождение пути, следовательно, тем больше энергия испускаемых фотонов. При небольшой дистанции между наблюдаемыми зарядами принцип неопределенности допускает обмен и коротковолновыми и длинноволновыми частицами, а при больших расстояниях коротковолновые фотоны в обмене не участвуют.
Есть ли пределы применения закона Кулона
Закон Кулона полностью объясняет поведение двух точечных зарядов в вакууме. Но когда речь идет о реальных телах, следует принимать во внимание объемные размеры заряженных тел и характеристики среды, в которой ведется наблюдение. Например, некоторые исследователи наблюдали, что тело, несущее в себе небольшой заряд и принудительно внесенное в электрическое поле другого объекта с большим зарядом, начинает притягиваться к этому заряду. В этом случае утверждение, что одноименно заряженные тела отталкиваются, дает сбой, и следует искать другое объяснение наблюдаемому явлению. Скорее всего, здесь не идет речь о нарушении закона Кулона или принципа сохранения электрического заряда — возможно, что мы наблюдаем неизученные до конца явления, объяснить которые наука сможет немного позже.
Понятие электричества. Электризация. Проводники, полупроводники и диэлектрики. Элементарный заряд и его свойства. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. Электрическое поле как проявления взаимодействия. Электрическое поле элементарного диполя.
Термин электричество происходит от греческого слова электрон (янтарь).
Электризацией называют процесс сообщения телу электрического
заряда. Этот термин ввел в 16 веке английский ученый и врач Джилберт.
ЭЛЕКТРИЧЕСКИЙ ЗАРЯД – ЭТО ФИЗИЧЕСКАЯ СКАЛЯРНАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СВОЙСТВА ТЕЛ ИЛИ ЧАСТИЦ ВСТУПАТЬ И ЭЛЕКТРОМАГНИТНЫЕ ВЗАИМОДЕЙСТВИЯ, И ОПРЕДЕЛЯЮЩАЯ СИЛУ И ЭНЕРГИЮ ЭТИХ ВЗВИМОДЕЙСТВИЙ.
Свойства электрических зарядов:
1.В природе существуют два типа электрических зарядов. Положительные (возникают на стекле потертом о кожу) и отрицательные(возникают на эбоните потертом о мех).
2. Одноименные заряды отталкиваются, разноименные притягиваются.
3. Электрический заряд НЕ СУЩЕСТВУЕТ БЕЗ ЧАСТИЦ НОСИТЕЛЕЙ ЗАРЯДА (электрон, протон, позитрон и др.).Например с электрона и др. элементарных заряженных частиц нельзя снять э/заряд.
4.Электрический заряд дискретен, т.е. заряд любого тела составляет целое кратное от элементарного электрического заряда
е
(е =
1,6 10 -19 Кл). Электрон (т е
= 9,11
10 -31
кг) и протон
(т р =
1,67 10 -27 кг
) являются соответственно носителями элементарных отрицательного и положительного зарядов.(Известны частицы с дробным электрическим зарядом: – 1/3 е и
2/3 е –
это кварки и антикварки
, но в свободном состоянии они не обнаружены).
5. Электрический заряд — величина релятивистски инвариантная
,
т. е. не зависит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.
6. Из обобщения опытных данных установлен фундаментальный закон природы
— закон сохранения заряда: алгебраическая сум-
ма электрических зарядов любой замкнутой системы
(системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.
Закон экспериментально подтвержден в 1843 г. английским физиком
М. Фарадеем (1791- 1867) и др., подтвержден рождением и аннигиляцией частиц и античастиц.
Единица электрического заряда (производная единица, так как определяется через единицу силы тока) — кулон
(Кл): 1 Кл — электрический заряд,
проходящий через поперечное сечение проводника при силе тока 1 А за время 1с.
Все тела в природе способны электризоваться, т.е. приобретать электрический заряд. Электризация тел может осуществляться различными способами: соприкосновением (трением), электростатической индукцией
и др. Всякий процесс заряжения сводится к разделению зарядов, при котором на одном из тел (или части тела) появляется избыток положительного заряда, а на другом (или другой части тела) — избыток отрицательного заряда. Общее количество зарядов обоих знаков, содержащихся в телах, не изменяется: эти заряды только перераспределяются между телами.
Электризация тел возможна потому, что тела состоят из заряженных частиц. В процессе электризации тел могут перемещаться, находящиеся в свободном состоянии, электроны и ионы. Протоны остаются в ядрах.
В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники
.
Проводники
— тела, в которых электрический заряд может перемешаться по всему его объему. Проводники делятся на две группы:
1) проводники первого рода
(металлы) — перенос в
них зарядов (свободных электронов) не сопровождается химическими
превращениями;
2) проводники второго рода
(например, расплавленные соли, ра-
створы кислот) — перенос в них зарядов (положительных и отрицательных
ионов) ведет к химическим изменениям.
Диэлектрики
(например, стекло, пластмассы) — тела, в которых практически отсутствуют свободные заряды.
Полупроводники
(например, германий, кремний) занимают
промежуточное положение между проводниками и диэлектриками. Указанное деление тел является весьма условным, однако большое различие в них концентраций свободных зарядов обусловливает огромные качественные различия в их поведении и поэтому оправдывает деление тел на проводники, диэлектрики и полупроводники.
ЭЛЕКТРОСТАТИКА
— наука о неподвижных зарядах
Закон Кулона.
Закон взаимодействия неподвижных точечных
электрических зарядов
Экспериментально установлен в 1785 г. Ш. Кулоном с помощью крутильных весов.
подобных тем, которые использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет).
Точечным зарядом,
называется заряженное тело или частица, размерами которых можно пренебречь, по сравнению с расстоянием до них.
Закон Кулона: сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме,
пропорциональна зарядам q 1
и q 2 ,
и обратно пропорциональна квадрату расстояния r между ними
:
k —
коэффициент пропорциональности, зависящий от выбора системы
В СИ
Величина ε 0
называется электрической постоянной;
она относится к
числу фундаментальных физических постоянных
и равна:
ε 0 = 8,85 ∙10 -12 Кл 2 /Н∙м 2
векторной форме закон Кулона в вакууме имеет вид:
где — радиус вектор, соединяющий второй заряд с первым, F 12 – сила, действующая со стороны второго заряда на первый.
Точность выполнения закона Кулона на больших расстояниях, вплоть до
10 7
м, установлена при исследовании магнитного поля с помощью спутников
в околоземном пространстве. Точность же его выполнения на малых расстояниях, вплоть до 10 -17
м, проверена экспериментами по взаимодействию элементарных частиц.
Закон Кулона в среде
Во всех средах сила кулоновского взаимодействия меньше по сравнению с силой взаимодействием в вакууме или воздухе. Физическая величина, показывающая во сколько раз сила электростатического взаимодействия в вакууме больше, чем в данной среде, называется диэлектрической проницаемостью среды и обозначается буквой ε.
ε = F в вакууме / F в среде
Закон кулона в общем виде в СИ:
Свойства Кулоновских сил.
1.Кулоновские силы — это силы центрального типа, т.к. направлены вдоль прямой, соединяющей заряды
Кулоновская сила является силой притяжения, если знаки зарядов разные и силой отталкивания, если знаки зарядов одинаковые
3.
Длякулоновских сил справедлив 3 закон Ньютона
4.Кулоновские силы подчиняются принципу независимости или суперпозиции, т.к. сила взаимодействия между двумя точечными зарядами не изменятся при появлении вблизи других зарядов. Результирующая сила электростатического взаимодействия, действующая на данный заряд, равна векторной сумме сил взаимодействия данного заряда с каждым зарядом системы отдельно.
F= F 12 +F 13 +F 14 + ∙∙∙ +F 1 N
Взаимодействия между зарядами осуществляются посредством электрического поля. Электрическое поле – это особая форма существования материи, посредством которой осуществляется взаимодействие электрических зарядов. Электрическое поле проявляет себя тем, что на любой другой заряд внесенный в это поле оно действует с силой. Электростатическое поле создается неподвижными электрическими зарядами и распространяется в пространстве с конечной скоростью с.
Силовая характеристика электрического поля называется напряженностью.
Напряженностью
электрического в некоторой точке называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку, к модулю этого заряда.
Напряженность поля точечного заряда q:
Принцип суперпозиции:
напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в этой точке каждым зарядом в отдельности (в отсутствие других зарядов).
Какое обозначение соответствует электрическому заряду. Измерение электрического заряда
Одна из базовых физических величин, которая имеет непосредственное отношение к электричеству и в частности к электротехнике — это электрический заряд
. Мы привыкли к тому, что в электротехнике заряд измеряется в кулонах
, но мало кто знает, что есть и другие единицы измерения электрического заряда. При расчётах электрических схем, при использовании электроизмерительных приборов применяют международную систему единиц СИ. Но знаете ли вы, что есть и другие системы измерения?
Кулон
Эта единица измерения заряда известна многим ещё со школы. Относится она, как вы уже поняли, к системе единиц СИ. Это производная величина, которая не является в системе СИ базовой. Она выводится из других величин и определяется другими величинами.
Единица измерения носит название учёного — Шарля де Огюстена Кулона, открывшего закон взаимодействия зарядов, и соответственно, электрический заряд. Обозначают сокращённо величину заряда буквами Кл
, а когда речь идёт о количестве заряда — пишут его с прописными буквами — кулон
.
Определение электрического заряда в системе СИ следующее:
Электрический заряд в один кулон — это такой заряд, который проходит через сечение проводника при силе тока в один ампер за время равное одной секунде.
Между зарядом и единицей в ампер-час существует связь. Один кулон электричества равен 1/3600 ампер-часа.
Франклин
Ещё одна единица и измерения заряда, которая названа в честь американского изобретателя и физика — Бенджамина Франклина. Его портрет можно увидеть на стодолларовой купюре США. Эта единица относится к системе величин СГСЭ, в которой базовыми являются такие единицы как сантиметр, грамм и секунда. По другому эту систему единиц называют абсолютной системой физических единиц и она широко использовалась до принятия системы СИ (принята в 1960 году).
Сокращённо единица измерения записывается как Фр
(русское) или Fr
(английское).
Определение электрического заряда в системе СГСЭ следующее:
Количество электрического заряда в один Франклин — это такое количество заряда, что два разноимённых заряда по одному франклину, находящихся в вакууме на расстоянии одного сантиметра, будут притягиваться друг к другу с силой в один дин.
Как видно из определения, оно отличается от того, что приведено для системы СИ. Разница прежде всего в том, что в системе СИ заряд выражается через силу тока и исходя из этого определяется, а в системе СГСЭ заряд выражен через .
Система СГСЭ удобна для вычислений и исследований в физике, а система СИ более удобна для практических нужд электротехники.
Закон Кулона, имеющий непосредственное отношение к зарядам, в системе СИ и СГС (СГСЭ), записываются по разному. Единицу заряда в 1 Кл
можно перевести в 1 Фр
и наоборот.
Существует также планковская система естественных единиц измерения и в ней также имеется электрический заряд. Эта система была впервые предложена немецким физиком Максом Планком
1899 году на основе скорости света и гравитационной постоянной и ещё двух введённых им констант.
Обозначается q p
. Основная единица измерения, которая определяется в терминах фундаментальных констант. Определяется следующим образом:
Все тела состоят из неделимых мельчайших частиц, называемых элементарными. Они имеют массу и способны притягиваться друг к другу. По закону всемирного тяготения, при увеличении расстояния между частицами относительно медленно убывает (она обратно пропорциональна квадрату расстояния). Сила взаимодействия частиц превосходит Это взаимодействие и называют «электрический заряд», а частицы — заряженными.
Взаимодействие частиц называют электромагнитным. Оно свойственно большинству элементарных частиц. Если же его между ними нет, то говорят об отсутствии заряда.
Электрический заряд определяет степень интенсивности Он является важнейшей характеристикой элементарных частиц, которая определяет их поведение. Обозначается буквами «q» либо «Q».
Макроскопического эталона единицы электрического заряда не существует, поскольку создать его не представляется возможным из-за его неизбежной утечки. В атомной физике за единицу принимают заряд электрона. В Международной системе единиц она устанавливается с помощью Заряд в 1 кулон (1 Кл) обозначает, что он проходит при силе тока в 1 А за 1 с через Это довольно высокий заряд. Небольшому телу сообщить его невозможно. Но в нейтральном проводнике привести в движение заряд в 1 Кл вполне реально.
Электрический заряд является скалярной физической величиной, которая характеризует способность частиц или тел вступать в электромагнитное силовое взаимодействие между собой.
При изучении взаимодействия важным является представление о точечном заряде. Он являет собой заряженное тело, размеры которого гораздо меньше расстояния от него до точки наблюдения или других заряженных частиц. При взаимодействии двух точечных зарядов расстояние между ними является гораздо большим, чем их линейные размеры.
Частицы обладают противоположными зарядами: протоны — положительным, электроны — отрицательным. Эти знаки (плюс и минус) отражают способность частиц притягиваться (при разных знаках) и отталкиваться (при одном). В природе положительные показатели и отрицательные скомпенсированы между собой.
Одинаков по модулю, независимо от того, положительный ли он, как у протона, или отрицательный, как у электрона. Минимальный заряд называется элементарным. Им обладают все заряженные частицы. Отделить часть заряда частицы невозможно. Минимальное значение определяется экспериментально.
Электрический заряд и его свойства можно измерять с помощью электрометра. Он состоит из вращающейся вокруг горизонтальной оси стрелки и металлического стержня. Если к стрежню прикоснуться положительно заряженной палочкой, то стрелка отклонится на определенный угол. Это объясняется распределением заряда по стрелке и стержню. Поворот стрелки обусловлен действием силы отталкивания. При увеличении заряда возрастает и угол отклонения от вертикали. То есть он показывает значение заряда, который передается стрежню электрометра.
Выделяют следующие свойства электрического заряда. Они могут быть положительными и отрицательными (выбор названий случаен), которые притягиваются и отталкиваются. Заряды способны передаваться при контакте от одних тел другим. Одно тело в разных условиях может обладать разными зарядами. Важным свойством является дискретность, что означает существование наименьшего, универсального заряда, которому кратны аналогичные показатели любых тел. Внутри замкнутой системы алгебраическая сумма всех зарядов остается постоянной. В природе заряды одного знака не возникают и не исчезают одновременно.
Признаком того, что тело имеет электри-ческий заряд
, является его взаимодействие с другими телами. Об этом шла речь в предшествующем параграфе. Но такое вза-имодействие в каждом отдельном случае по интенсивности может быть разным. Это дает основание утверждать, что свойство тела, называющееся электрическим зарядом, мо-жет иметь количественную меру.
Термин «электрический заряд»
часто употребляют и просто для обозначения «тела, имеющего электрический заряд».
Количественную меру электрического за-ряда сначала назвали количеством электри-чества
. Но со временем эта мера получила название просто электрического заряда
. Итак, если говорят о значении электрического заряда, то подразумевают количественную меру свойства тела — электрического заряда.
Электрический заряд
— это свойство тела, проявляющее-ся во взаимодействии с элект-ромагнитным полем. Электрический заряд
— это также ме-ра свойства тела, имеющего электрический заряд.
Значение заряда про-тяженного тела обозначается буквой Q.
Если же речь идет о заряде точечного тела, то он обозначается маленькой буквой q.
Для измерения электрического заряда ис-пользуют специальные приборы. Одним из таких приборов является электрометр
.
Главная часть электрометра — это метал-лический стержень, закрепленный в метал-лическом корпусе с помощью втулки из непроводящего вещества (рис. 4.4). В нижней части стержня находится легкая металли-ческая стрелка, которая может вращаться на горизонтальной оси. Ось стрелки прохо-дит несколько выше ее центра масс. Под действием только силы тяжести стрелка в обычном состоянии будет находиться в вер-тикальном положении. Материал с сайта
Если верхнего конца стержня коснуться заряженным металлическим шариком, то стержень и стрелка получат электрический заряд. Вследствие взаимодействия одноимен-но заряженных стержня и стрелки возникнет сила, которая повернет стрелку на опреде-ленный угол. Экспериментально установле-но, что угол отклонения стрелки будет за-висеть от значения заряда на стержне и стрелке. Таким образом, измерив угол от-клонения стрелки, можно сделать вывод о значении электрического заряда. Чтобы на стрелку не влияли другие тела, металли-ческий корпус обязательно соединяют с зем-лей.
В технике и научных исследованиях ис-пользуют более сложные и более чувстви-тельные приборы для измерения электри-ческих зарядов, которые называют кулон-метрами
(рис. 4.5). Это, как правило, элект-ронные приборы, принцип действия кото-рых основан на явлении изменения пара-метров некоторых элементов электронных систем при сообщении им электрического заряда.
Вопросы по этому материалу:
Кулон единица заряда электрического — Энциклопедия по машиностроению XXL
Единица электрического заряда. В международной системе за единицу заряда принят кулон (Кл). [c.131]
Электрический заряд (количество электричества). Согласно закону Кулона единица количества электричества СГС ) есть такой заряд, который взаимодействует в вакууме с равным ему зарядом на расстоянии один сантиметр с силой в одну дину. [c.241]
Поверхностная плотность электрического заряда, электрическое смещение, поляризован-ность (L- -T-I). Единица СИ — кулон на квадратный метр (Кл/м ). [c.13]
Электрический заряд. Единица заряда — кулон (Кл) определяется, согласно формуле (7.2), как количество электричества, протекающее через поперечное сечение проводника в одну секунду при постоянном токе силой
[c.212]
Ньютон на кулон равен напряженности электрического поля, в котором на точечный заряд 1 Кл действует сила 1 Н. На практике эта единица напряженности носит название вольт на метр и определяется на основе формулы, устанавливающей связь между напряженностью поля и разностью потенциалов (см. с. 70). Размерность напряженности [c.68]
Единицей электрического заряда является кулон. За один кулон принимают такой электрический заряд, который действует в воздухе на расстоянии 1 м с силой в 9 млрд. ньютонов на равный себе электрический заряд (1 ньютон равен 102 г). [c.121]
Основные понятия и единицы измерений. Электрический ток представляет собой перемещение по проводнику электрических зарядов. При протекании тока через металлический проводник носителями заряда являются электроны. Электрон представляет собой первичное, предельно малое количество электричества с отрицательным зарядом. За единицу количества электричества или электрического заряда в практической системе единиц принят 1 кулон, соответствующий по заряду 6,3.10 электронов. [c. 179]
Кулон — единица количества электричества (электрического заряда). Наименование единицы дано по имени французского ученого Ш. Кулона (1736—1806). В кулонах также выражается поток электрического смещения. [c.69]
Кулон как единица потока электрического смещения — поток электрического смещения сквозь замкнутую поверхность, внутри которой содержится свободный заряд 1 Кл. [c.69]
Экспериментально установлено, что для любой конфигурации электродов отношение заряда к потенциалу между электродами всегда постоянно. Это постоянное отношение удобно использовать для характеристик зарядного устройства оно получило название емкости, а само устройство — конденсатора. Единицей электрической емкости является фарада, которая представляет Собой отношение кулона к вольту [c.251]
Единицу электрического смещения в СИ и ее связь с единицей СГС можно получить, используя любое выражение для ), например (7.80). Согласно этой формуле единицей электрического смещения является смещение в плоском конденсаторе при плотности заряда на пластинах один кулон на квадратный метр (Кл/м ). В СГС при этом [c.264]
Объемная плотность электрического заряда (L- T I). Единица СИ — кулон на кубический метр (Кл/м ).
[c.13]
Эта единица получила наименование кулон (Кл). Кулон равен электрическому заряду, проходящему через поперечное сечение при токе силой 1 А за время 1 с. Размерность заряда [c.64]
В данной книге мы будем использовать систему единиц МКСА, поэтому электрическое поле Е измеряется в вольтах на метр, магнитная индукция В — в веберах на квадратный метр, электрическая индукция D — в кулонах на квадратный метр, магнитное поле Н — в амперах на метр. В уравнения Максвелла входят также объемная плотность заряда р, измеряемая в кулонах на кубический метр, и плотность тока J — в амперах на квадратный метр. [c. 11]
Противодействие проводника прохождению тока определяется электрическим сопротивлением проводника. За единицу сопротивления— Ом принимается сопротивление любого проводника, в котором течет ток силой I А при напряжении на зажимах в I В. За единицу силы тока — ампер принимают такой ток, при котором через поперечное сечение проводника в секунду проходит заряд в 1 кулон. [c.98]
Свойство конденсатора накапливать электрические заряды называют емкостью. Единицей емкости является фарада, представляющая собой емкость конденсатора, заряженного до напряжения в 1 В одним кулоном электричества. Емкость конденсаторов, применяемых в системах зажигания автомобилей, измеряется в миллионных долях фарады — микрофарадах (мкФ). [c.102]
Если единица измерения заряда е — кулон, концентрация электронов п 1м и подвижность Ь м в сек, то удельная электрическая проводимость у будет в um M Эти формулы приме- [c.38]
Кулон (Кл) — единица количества электричества, потока электрического смещения, электрического заряда. [c.81]
Кулон на метр (Кл/м) — единица линейной плотности электрического заряда. [c.81]
Кулон на квадратный метр (Кл/м2) — единица поверхностной плотности электрического заряда и электрического смещения. [c.81]
Кулон на кубический метр (Кл/м ) — единица объемной плотности электрического заряда. [c.81]
Для характеристики рентгеновского и гамма-излучения принято также понятие экспозиционной дозы, как количественная характеристика, основанная на ионизирующем действии этих излучений в сухом атмосферном воздухе, а характеристика выражается отношением суммарного электрического заряда ионов одного знака, образованного излучением, поглощенным в воздухе, к массе этого воздуха. За единицу измерения экспозиционной дозы принят кулон на килограмм (Кл/кг). Допускается также применение внесистемной единицы рентген 1Р = 2,57976-10″ Кл/кг. Экспозиционная доза в 1Р создает при нормальных условиях в 1 см ионы, несущие одну электростатическую единицу количества электричества каждого знака (2,08-10 пар ионов). Поглощенная энергия в воздухе, соответствующая экспозиционной дозе 1Р, будет равна 0,88-10 Дж/кг. [c.80]
Кулон, единица электрического заряда (количества электричества), определен как заряд, переносимый током в 1 ампер за I секунду, т. е. как 0,1 ед. СГСМ. [c.13]
Целесообразно упомянуть еще одну систему единиц, в свое время обсуждавшуюся, а ныне почти полностью забытую. Как отмечалось в 5, при разработке системы Джорджи в качестве четвертой основной единицы в конечном счете был выбран ампер, и система получила название МКСА. Ыо вначале рассматривались и другие возможности. Предполагали остановить выбор на единице заряда— кулоне, или на единице сопротивления — оме, или, по аналогии с системой СГСцо, на абсолютной магнитной проницаемости вакуума Но, для которой было найдено и наименование — магн. В. построенной таким путем системе МКСМ электрические и магнитные единицы имели бы ту же размерность, что и в системе СГС Ло, с теми же дробными показателями. Однако тот или иной выбор четвертой основной единицы, разумеется, никак не затронул бы размера единиц и вида уравнений электромагнетизма, которые оставались такими же, как и в МКСА. Все различие между системами МКСМ и МКСА заключалось бы только в размерности электрических и магнитных величин. [c.93]
Итак, рационализацию закона Кулона можно произвести путем рационализации а) заряда б) единицы заряда — кулона в) электрической постоянной. В соответствии с соглашением, достигнутым в международных организациях, при рационализации уравнений электромагнитного поля не должно допускаться изменение понятий и размера единиц важнейших величин, в том числе и заряда. Поэтому полагают, что рационализацию закона Кулона следует произвести за счет рационализации электрической постоянной 8о, при которой ее значение уменьшается в 4л раза по сравнению с прежним. Так как при перационализованной форме уравнений
[c. 151]
Электростатическая систсма единиц система СГСЭ). При построении этой системы первой производной электрической единицей вводится единица электрического заряда с использованием закона Кулона в качестве определяюпцего уравнения. При этом абсолютная диэлектрическая проницаемость рассматривается безразмерной электрической величиной. Как следствие этого, в некоторых уравнениях, связывающих электромагнитные величины, появляется в явном виде корень квадратный из скорости света в вакууме. [c.30]
Поляризованность — векторная величина ее направление совпадает с направлением электрического момента — от отрицательного заряда к положительному. Так как электрический момент измеряется в Кл м, а объем — в м формула (4.1) дает единицу модуля поляризованности — кулон на квадратный метр (КлУм ), совпадающую с единицей поверхностной плотности электрического заряда и с единицей электрического смещения. [c.86]
При образовании единиц электромагнетизма на основе трех единиц — сантиметра, грамма и секунды — можно построить не одну, а две одинаково логичные и стройные системы единиц электромагнитную систему СГСМ и электростатическую систему СГСЭ. Первая получается, если исходить из закона Кулона для магнитных масс. Ко второй же приходят, взяв в качестве исходного закон Кулона для электрических зарядов. Комитет рекомендовал для практического применения систему СГСМ, [c.12]
Последовательное образование производных единиц электричества и магнетизма на базе трех основных единиц (длины, массы и времени) можно осуществить не одним, а двумя разными способами. Можно исходить вслед за Гауссом из закона Кулона для взаимодействия магнитных масс. Несмотря на фиктивность понятия магнитной массы это приводит к логически стройной системе единиц, прлучивщей название электромагнитной системы СГС, или системы СГСМ. Но можно исходить и из закона Кулона для электрических зарядов. Получается не менее стройная электростатическая система СГС, или система СГСЭ. [c.70]
Электрические единицы гауссовой системы совпадают с единицами СГСЭ. В качестве исходного определяющего уравнения используют закон Кулона, выражающий силу взаимодействия двух точечных электрических зарядов qi и 92. находящихся на расстоянии г дрзт от друга. Закон Кулона, как и другие уравнения гауссовой системы, пишут в нерационализованной форме (без коэффициента 4л в знаменателе) [c.72]
Единица экспозиционной дозы фотонного излучения СГС равна экспозиционной дозе излучения, при которой сумма электрических зарядов одного знака всех ионов, созданных электронами, освобожденными в облученном воздухе массой 1 г при условии полного использования ионизирующей способности электронов, равна 1 ед. СГСд. Соотношение единицы экспозиционной дозы СГС с кулоном на килограмм [c.193]
Международные электрические единицы. После изготовления эталонов для абсолютных практических электрических единиц было обнаружено расхождение с теоретически установленными абс. практ. ед. По этой причине в 1893 г. МКЭ взамен абсолютных принял международные электрические единицы. В качестве основных ед. были приняты ом, ампер, вольт. В 1908 г. МКЭ вольт был отнесен к числу производных ед. в СССР М, э. е. были введены постановлением ВСНХ РСФСР от 7 февраля 1919 г. Об электрических единицах», а в 1929 г. были включены в ОСТ 515. Определялись М. э. е. след, образом. Ом — сопротивление ртутного столба (при неизменяющемся электр. токе и при тем-ре тающего льда — О °С) длиной 106,300 см, имеющего одинаковое по всей длине сечение и массу 14,4521 г. Точное значение ед. определялось ртутными образцами ома, изготовленными согласно междунар. постановлениям и спецификациям. Ампер — сила неизменяющегося электр. тока, к-рый при прохождении через водный раствор азотнокислого серебра отлагает 0,00111800 г серебра в секунду. Точная величина ампера опред. по серебряному вольтметру, согласно междунар. постановлениям и спецификациям. Вольт — эпектр. напряжение или электродвижущая сила, к-рые в проводнике, имеющем сопротивление в один ом, производит ток силой в один ампер. Точное значение вольта устанавливалась посредством нормальных элементов, проверяемых с помощью серебряного вольт-метра и ртутных образцов ома. Ватт — мощность неизменяющегося электр. тока силой в один ампер при напряжении в один вольт, Купон или ампер-секунда — количество электричества, протекающего через поперечное сечение проводника в течение одной секунды при токе силой в один ампер. Ватт-секунда или джоуль — работа, совершаемая электр, током в течение одной секунды при мощности тока в один ватт. Фарада — емкость конденсатора, заряженного до напряжения в один вольт зарядом в один кулон. Гянри опред. двояко 1) Г, — индуктивность электр. цепи, в к-рой при равномерном изменении силы тока на один ампер в секунду индуктируется ЭДС в один вольт 2) Г. — взаимная индуктивность в системе двух электр. цепей, в одной из к-рых индуктируется ЭДС в один вольт при равномерном изменении тока в др. цепи со скоростью одного ампера в секунду. [c.292]
Экспозиционная доза рентгеновского и гамма-излучений — доза излучения, при которой соп])яженная корпускулярная эмиссия на един1щу массы пли единицу объема сухого атмосферного воздуха производит в воздухе ионы, несущие электрический заряд каждого знака. Единицы измерения кулон па килограмм (к/кг) в системах СИ и М КСА п внесистемная единица рентген >).
[c.123]
В системе МКСА за единицу емкости принята фарада (ф).Она представляет емкость конденсатора, у которого заряд в 1 кулон к) вызывает разность потенциалов на его обкладках, равную 1 вольту (в). В системе СГС за единицу емкости принят сантиметр (см). Более мелкими единицами электрической емкости является микрофарада (мкф) и пикофарада (пф), или, иначе, микромикрофарада мкмкф). Соотнощение между этими единицами следующее [c.186]
Уравнение электрического тока и применение | В чем измеряется электрический заряд? — Видео и стенограмма урока
Формула электрического тока
Чтобы понять, как электричество течет по линиям электропередач, приводит в движение двигатели или накапливается в батареях, необходимо понять две концепции: электрический заряд и электрический ток. В физике определение электрического заряда — это количество заряженных частиц; он может быть как положительным, так и отрицательным. Однако в большинстве приложений заряженными частицами являются электроны.Электрический заряд измеряется в кулонов. Один кулон эквивалентен группе примерно из шести квинтиллионов электронов.
Поток электрического заряда называется «электрический ток». Ток — это мера движения заряженных частиц в единицу времени. Хотя, опять же, эти частицы обычно являются электронами. Электрический ток можно рассчитать по формуле электрического тока: I=V/R. Это уравнение также известно как «уравнение тока», и оно получено из закона Ома.Переменная «I» обозначает ток, «V» — напряжение, а «R» — сопротивление. Если использовать общую аналогию, которая сравнивает поток электричества с потоком воды в реке, ток будет сравним с расходом воды, напряжение будет сравнимо с давлением воды, а сопротивление будет сравнимо с некоторым показателем силы тока. препятствия и ограничения на реке. Подобно воде, электроны перетекают из областей с высокой концентрацией в области с низкой концентрацией.
Электрический ток измеряется в ампер, также известный как «ампер». Один ампер – это скорость потока, равная одному кулону в секунду. Таким образом, электрическая розетка, излучающая один ампер электричества, фактически имеет около шести квинтиллионов электронов, вытекающих из нее каждую секунду. Однако важно отметить, что большинство электрических розеток излучают переменный ток, а не постоянный ток. Постоянный ток — это поток электронов, текущий только в одном направлении (как в аналогии с рекой).18 электронов. Электрический ток, с другой стороны, представляет собой поток электрического заряда (обычно электронов) через проводник. Сила тока измеряется в амперах, часто называемых «амперами». Один ампер эквивалентен скорости потока 1 кулон в секунду.
В чем измеряется электрический заряд?
Две единицы измерения, ампер и кулон, тесно связаны между собой. Электрический ток измеряется в амперах, а электрический заряд измеряется в кулонах. Амперы были названы в честь французского физика Андре-Мари Ампера.Один ампер соответствует скорости потока 1 кулон/с. Между тем, кулоны были названы в честь французского ученого Шарля-Огюстена де Кулона. Один кулон можно рассматривать как количество электронов, которое 1 ампер тока переносит через данную точку каждую секунду.
Нажмите и узнайте — количество заряда
Расчет количества заряда объекта
Электрон — это частица, которая отвечает за заряд объекта. Движение электронов к объекту определяет тип заряда, который будет иметь объект.Объект будет заряжен положительно там, где происходит потеря электронов, отрицательно заряжен там, где есть прирост или избыток электронов, и нейтрален там, где положительный и отрицательный заряды равны.
Общее количество электронов, осажденных или удаленных из объекта, будет определять количество (количество) заряда на объекте.
Таким образом, заряд одного электрона определяется как фундаментальная единица заряда. Заряд является фундаментальным измерением, которое не может быть получено из каких-либо других измерений.Заряд измеряется в единицах
кулонов.
Символ заряда — « Q », а символ Кулона — « C ».
Количество заряда на одном отдельном электроне может быть математически определено равным очень небольшому количеству заряда.
Этот небольшой заряд равен 1,6 X 10 -19 Кл . Это небольшое количество заряда известно как основной заряд, и его символ равен e (чтобы напомнить нам, что это заряд одного отдельного электрона).Это постоянное значение.
Следовательно, e = 1,6 X 10 -19 C/e [Кулоны на электрон]
Чтобы рассчитать общий заряд объекта, мы умножаем постоянное значение e на количество электронов, осевших на объекте (или удаленных с него).
Для обобщения этого важного факта используется простая формула:
.
Q = N x e
Где:
Q — это полный заряд объекта, N — количество задействованных электронов, а e — это основная гармоника; заряд одного электрона ( 1.6 X 10 -19 С/д)
Пример:
Если вы пройдете по ковру в носках, а затем коснетесь металлической дверной ручки, вы почувствуете удар током. Количество заряда, переданного при ударе током между вашими пальцами и дверной ручкой (на землю), составляет примерно 3,0 X 10 20 C. Сколько электронов было передано с ковра на землю через ваш палец во время удара током?
Решение:
Дано
е = 1.6 X 10 -19 C/e (основная зарядовая постоянная)
Q = 3,0 X 10 20 C (общий переданный заряд)
Найти: N (общее количество задействованных электронов)
Q = N x e \ N = Q/e
N = [3,0 X 10 20 C]/[1,6 X 10 -19 C/e]
N = 1,90 X 10 39 электронов
Емкость аккумулятора | PVEducation
«Емкость батареи» — это мера (обычно в ампер-часах) заряда, хранящегося в батарее, и определяется массой активного материала, содержащегося в батарее.Емкость аккумулятора представляет собой максимальное количество энергии, которое может быть извлечено из аккумулятора при определенных условиях. Однако фактическая способность батареи накапливать энергию может значительно отличаться от «номинальной» номинальной емкости, поскольку емкость батареи сильно зависит от возраста и прошлой истории батареи, режимов зарядки или разрядки батареи и температуры.
Единицы емкости батареи: ампер-часы
Энергия, хранящаяся в батарее, называемая емкостью батареи, измеряется в ватт-часах (Втч), киловатт-часах (кВтч) или ампер-часах (Ач).Наиболее распространенной мерой емкости батареи является Ач, определяемая как количество часов, в течение которых батарея может обеспечивать ток, равный скорости разряда при номинальном напряжении батареи. Единица А·ч обычно используется при работе с аккумуляторными системами, поскольку напряжение аккумулятора будет меняться на протяжении всего цикла зарядки или разрядки. Емкость Втч может быть аппроксимирована емкостью Ач путем умножения емкости Ач на номинальное (или, если известно, среднее по времени) напряжение батареи. Более точный подход учитывает изменение напряжения путем интегрирования емкости А/ч x V(t) по времени цикла зарядки.Например, 12-вольтовая батарея емкостью 500 Ач позволяет накапливать энергию приблизительно 100 Ач x 12 В = 1200 Втч или 1,2 кВтч. Однако из-за большого влияния скорости зарядки или температуры для практического или точного анализа производители батарей предоставляют дополнительную информацию об изменении емкости батареи.
Влияние скорости зарядки и разрядки на емкость
Скорость зарядки/разрядки влияет на номинальную емкость аккумулятора. Если батарея разряжается очень быстро (т.т. е. ток разряда велик), то количество энергии, которое можно извлечь из батареи, уменьшается, и емкость батареи ниже. Это связано с тем, что необходимые для протекания реакции компоненты не обязательно успевают либо переместиться в нужные им положения. Только часть всех реагентов преобразуется в другие формы, и поэтому доступная энергия уменьшается. С другой стороны, если аккумулятор разряжается очень медленно с использованием низкого тока, из аккумулятора может быть извлечено больше энергии, и емкость аккумулятора выше.Поэтому емкость батареи должна включать скорость зарядки/разрядки. Обычный способ определения емкости батареи состоит в том, чтобы указать емкость батареи как функцию времени, которое требуется для полной разрядки батареи (обратите внимание, что на практике батарея часто не может быть полностью разряжена).
Температура
Температура батареи также влияет на извлекаемую из нее энергию. При более высоких температурах емкость батареи обычно выше, чем при более низких температурах.Однако преднамеренное повышение температуры батареи не является эффективным методом увеличения емкости батареи, поскольку это также сокращает срок службы батареи.
Возраст и история батареи
Возраст и история батареи имеют большое влияние на емкость батареи. Даже если следовать спецификациям производителей на DOD, емкость батареи будет оставаться на уровне или близком к номинальной емкости в течение ограниченного количества циклов зарядки/разрядки. История батареи оказывает дополнительное влияние на емкость в том смысле, что если батарея использовалась ниже своего максимального DOD, то емкость батареи может быть преждевременно уменьшена, а номинальное количество циклов зарядки/разрядки может быть недоступно.
— Плата
Электричество происходит из атомов. Или конкретно из-за избытка или отсутствия нормального количества электронов, которое должно быть у атома. Мы называем атомы
с зарядом ионов и они могут быть положительными (некоторые электроны отсутствуют) или отрицательными (имеется избыток электронов). Итак, откуда берется весь этот заряд? Воды
молекулы в воздухе притягивают свободные электроны из-за того, что одна сторона молекулы воды имеет тенденцию быть заряженной по сравнению с
другую сторону молекулы.Молекула считается полярной . Хотя суммарный заряд молекулы воды нейтрален, ее состав, показанный здесь, стремится сделать одну сторону положительной или отрицательной.
отрицательный. Это приведет к тому, что электроны будут свободно удерживаться в воде. Земля сама по себе является огромным резервуаром для электронов, и электроны, как правило, довольно свободно проходят через объекты на Землю. Мы называем
этот процесс заземление .
Мы упоминали, что трение предметов друг о друга также может вызвать передачу заряда. Частично это связано с тем, как атомы соединяются.В то время как
протоны и нейтроны в ядре довольно стабильны и фиксированы, электроны, вращающиеся вокруг ядра, более или менее свободно приходят и уходят. Трение двух предметов друг о друга может привести к передаче
электронов от одного объекта к другому. Объект, который получает электроны, становится отрицательно заряженным объектом, а объект, который теряет электроны, становится положительно заряженным объектом. Роберт
Милликен провел эксперимент в 1909 году, используя капли масла и электрический прибор для определения заряда электрона.Это число
обсуждалось более подробно в уроке по электрону. Он определил, что заряд квантуется , то есть существует в дискретных единицах. Мы говорим, что единица заряда
обозначается буквой e , которая относится к электрону. Электрон имеет 1 единицу заряда, поэтому объект может иметь +e, +2e, +3e, -5e и т. д. единицы заряда. У него не может быть .5e. Или любой другой
доля единицы. Заряд измеряется в системе СИ в кулонах (Кл) . 1 e имеет заряд 1.602 x 10 -19 Кл, или 6,2 x 10 18 электронов, присутствующих в одном
Кулон заряда. Подробнее об этом в уроке Закон Кулона.
Еще несколько определений: Объекты, допускающие свободный перенос электронов, например металлы, называются проводниками . Объекты, которые
такие как дерево, стекло, керамика и резина, называются изоляторами . Некоторые материалы являются хорошими проводниками, но только при определенных условиях. В противном случае они являются изоляторами. Эти
материалы называются полупроводниками , и они действительно полезны при изготовлении электронных компонентов, таких как компьютерные чипы.А некоторые сверхпроводники при определенных условиях
температуры, могут стать идеальными проводниками.
Статическое электричество окружает нас повсюду. Иногда накопление избыточного заряда может быть очень большим, и мы можем видеть путь разряда на землю, например
как с нашим генератором Ван де Графа, или с молнией. Это немного отличается от тока на землю, который мы обсудим позже.
Можем ли мы измерить статический заряд? Конечно. Устройство, называемое электроскопом , можно использовать для обнаружения наличия заряда.Как правило, в банку помещают два куска фольги и соединяют их сверху. Когда заряд помещается на фольгу,
листья разойдутся. Чем больше заряд, тем на большее расстояние перемещается фольга. К сожалению, электроскоп не покажет нам заряд, пока мы сначала не снимем заряд, а затем не приложим известный заряд к
листья и проверить новые обвинения против этого. Новые устройства, называемые электрометрами, заменяют электроскопы и являются гораздо более чувствительными.
Чтобы узнать больше об электрическом заряде, посетите физику.bu.edu/py106/notes/Charge.html
Для получения дополнительной информации о статическом электричестве посетите сайт
www.sciencemadesimple.com/static.html
Статическое электричество – обзор
10.2 Генерация статического электричества
Статическое электричество может образовываться различными способами. Однако большая часть статического электричества возникает из-за образования трибоэлектрического заряда и требует следующих условий:
- (1)
Когда два разных твердых материала трутся друг о друга
- (2)
Материалы впоследствии разделяются
При контакте двух материалов происходит перераспределение электрических зарядов на каждой поверхности по термодинамическим причинам.Когда электроны перемещаются из одного материала в другой, доступные уровни электронов в обоих материалах уравновешиваются после достижения равновесия. Трение, также называемое фрикционным зарядом, не является необходимым, но обычно увеличивает передачу заряда.
Когда два материала последовательно разделяются, перенос заряда проявляется в виде накопления электростатического заряда в двух материалах.
Различные материалы ранжированы в порядке их способности создавать статический заряд (Blakemore, 1974; Moore, 1973).Такие ранжирования производят так называемые трибоэлектрические ряды. Трибоэлектрификацией называют электрические заряды, создаваемые силами трения.
В трибоэлектрическом ряду воздух, асбест, стекло, слюда, свинец, алюминий, бумага, сталь и дерево находятся на положительном (+) конце (от высокого к младшему), а резина, никель, медь, латунь, серебро, золото и кремний находятся на отрицательном (+) конце (от высокого к низкому порядку).
Когда материал, такой как стекло, выбирают с положительной стороны и приводят в контакт с материалом, выбранным с отрицательной стороны, таким как резина, стекло приобретает положительный заряд, а резина приобретает отрицательный заряд.Некоторые электроны в стекле находятся на более высоком энергетическом уровне, чем свободные энергетические уровни в резине. Таким образом, электроны будут течь от стекла к каучуку, пока не будет достигнуто равновесие. Сохранение заряда требует, чтобы каждый материал приобретал равные уровни заряда.
Чем дальше два материала разделены в трибоэлектрическом ряду, тем больше будет величина электростатического заряда, когда два материала соприкасаются и впоследствии разделяются.
Разделенные поверхности приобретут положительный или отрицательный заряд в зависимости от их относительного положения в трибоэлектрическом ряду. Полярность заряда не имеет большого практического значения при рассмотрении аспектов безопасности статических разрядов. Очевидно, это связано с тем, что количество энергии, вовлеченной в разряд, одинаково независимо от того, идет ли разряд от положительно или отрицательно заряженного объекта. Однако с точки зрения человеческого комфорта обычно обнаруживается, что люди чувствуют себя более комфортно, когда их тела заряжены отрицательно, тогда как они могут чувствовать тошноту, когда заряжены положительно.Поэтому, когда на теле человека ожидается небольшое накопление статического заряда, лучше всего, если это будет отрицательный заряд. Если ковры вызывают у жильцов положительный заряд, они чувствуют себя «больными», а ковер способствует «синдрому больного здания».
Величина накопления статического заряда зависит от электрического сопротивления контактирующих поверхностей. Низкое электрическое сопротивление позволит зарядам вернуться по разделяющим поверхностям к точке контакта, где они нейтрализуют друг друга.С другой стороны, когда электрические сопротивления материалов высоки, заряд не может вернуться по разделяющим поверхностям за время разделения. В таких случаях генерация электростатического заряда будет высокой.
________ — поток электрического заряда или скорость потока электрического заряда, обозначаемый буквой I и измеряемый в амперах (А).
Лиза Л.
спросил • 10.01.19
Полное сопротивление
Напряжение
Ток
Сопротивление
Лорен Х.ответил • 11.01.19
Опытный учитель химии средней школы
Это определение тока.
Все еще ищете помощь? Получите правильный ответ, быстро.
ИЛИ
Найдите онлайн-репетитора сейчас
Выберите эксперта и встретьтесь онлайн.Никаких пакетов или подписок, платите только за то время, которое вам нужно.
¢
€
£
¥
‰
µ
·
•
§
¶
SS
‹
›
«
»
<
>
≤
≥
–
—
¯
‾
¤
¦
¨
¡
¿
ˆ
˜
°
−
±
÷
⁄
×
ƒ
∫
∑
∞
√
∼
≅
≈
≠
≡
е
∉
∋
∏
∧
∨
¬
∩
∪
∂
∀
∃
∅
∇
*
∝
∠
´
¸
ª
º
†
‡
А
А
Â
Ã
Ä
Å
Æ
Ç
Э
Э
Ê
Ë
Я
Я
Я
Я
Ð
С
Ò
О
Ô
Õ
О
Ø
О
Ш
Ù
Ú
Û
О
Ý
Ÿ
Þ
а
а
â
г
ä
å
æ
ç
э
э
э
ë
я
я
я
я
ð
с
ò
о
ô
х
ö
ø
œ
ш
ù
ú
û
ü
ý
þ
ÿ
А
В
Г
Δ
Е
Ζ
Η
Θ
я
Κ
Λ
М
N
Ξ
О
Π
Р
Σ
Т
Υ
Φ
Χ
Ψ
Ом
α
β
γ
дельта
ε
ζ
η
θ
я
κ
λ
мю
ν
ξ
о
π
р
ς
о
т
υ
ф
х
ψ
ю
ℵ
ϖ
ℜ
ϒ
℘
ℑ
←
↑
→
↓
↔
↵
⇐
⇑
⇒
⇓
⇔
∴
⊂
⊃
⊄
⊆
⊇
⊕
⊗
⊥
⋅
⌈
⌉
⌊
⌋
〈
〉
◊
Что такое количество заряда? — Определение из WhatIs.ком
От
Величина заряда — это выражение степени, в которой объект электрически заряжен. Это также выражение относительного количества носителей заряда в данной области или объеме.
Сила, с которой два электрически заряженных тела притягиваются или отталкиваются, зависит от произведения величин заряда обоих тел, а также от расстояния между центрами зарядов тел. Если полярности одинаковы, сила отталкивающая; если полярности противоположны, сила притягивает.Для любых двух заряженных тел сила уменьшается пропорционально квадрату расстояния между их центрами заряда, если предположить, что заряды на объектах не меняются.
Наиболее распространенной единицей количества заряда является кулон (символ C). Это единица заряда в Международной системе единиц (СИ) и представляет примерно 6,24 x 10 18 единиц электрических зарядов. Статкулон (statC) — это cgs (сантиметр/грамм/секунда) единица измерения количества заряда, приблизительно равная 2.082 x 10 9 единица электрических зарядов. Единица электрического заряда — это количество заряда, содержащегося в одном электроне или протоне. По соглашению электронам приписывается отрицательный заряд, а протонам — положительный.
Приведенные ниже таблицы упрощают преобразование кулонов, статкулонов и единиц электрического заряда.
Единица измерения (и символ) | Чтобы преобразовать в кулоны, умножить на: | И наоборот, умножить на: |
статкулон (statC) | 3.3356 x 10 -10 | 2,9980 x 10 9 |
плата за единицу | 1,60 x 10 -19 | 6,24 x 10 18 |
Единица измерения (и символ) | Чтобы преобразовать в статкулоны, умножить на: | И наоборот, умножить на: |
кулон (К) | 2. |