03.10.2024

Cos фи в электрике: Коэффициент мощности — косинус фи — Help for engineer

Содержание

Что такое косинус фи в электрике

Дата публикации: .
Категория: Статьи.

Допустим, вы купили компрессор для полива растений или электродвигатель для циркулярной пилы. В инструкции по эксплуатации помимо основных технических характеристик (таких, как потребляемый ток, рабочее напряжение, частота вращения) вы можете обнаружить такой непонятный показатель, как косинус фи (cos ϕ). Данная информация может быть указана и на пластинке (шильдике), закрепленной на корпусе прибора. В нашей статье мы постараемся объяснить простым и доступным языком  всем, даже пользователям далеким от электротехнических тонкостей, как тригонометрическая функция (знакомая нам со школьной скамьи) влияет на работу всем нам привычных электробытовых приборов, и почему ее называют коэффициентом мощности.

Важно! Все нижесказанное касается только сетей переменного тока.

Далекий от электротехники, но весьма наглядный пример

Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.

Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.

Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).

Сдвиг фаз между напряжением и током

При использовании энергии переменного тока происходит приблизительно то же самое. При активной нагрузке (например, при включении электрочайника или лампы накаливания) переменные напряжение (U) и ток (I) полностью совпадают по фазе и одновременно достигают своих максимальных значений. В данном случае мощность потребителя электроэнергии можно рассчитать по формуле P=U•I.

Для сети переменного тока работающий электродвигатель, имеющийся, например, в стиральной машине, является комплексной нагрузкой, включающей в себя активную и индуктивную составляющие. При подаче напряжения на такой прибор оно появляется на обмотках, практически, мгновенно. А вот ток (из-за влияния индуктивности) запаздывает. То есть между ними образуется так называемый сдвиг фаз, который мы и называем ϕ.

При активно-емкостной нагрузке, наоборот, переменный ток сразу начинает течь через конденсатор, а напряжение отстает от него по фазе на величину ϕ.

Треугольник мощностей

Коэффициент мощности (PF) – это отношение мощностей: активной полезной (P) к полной (S). Чтобы показать, каким образом сдвиг фаз влияет на PF, используем так называемый треугольник мощностей. И вот тут-то нам и потребуются минимальные знания школьной тригонометрии.

Из теории о прямоугольных треугольниках всем нам известно, что cos ϕ=P/S. То есть, косинус фи — это и есть коэффициент мощности (PF), который показывает, какая часть от полной мощности (S= U•I) фактически необходима для конкретной нагрузки. Чем больше реактивная составляющая Q, тем меньше полезная P. Чтобы вычислить активную мощность необходимо полную S умножить на косинус фи: P= S•cos ϕ.

На заметку! Считать косинус фи абсолютным аналогом коэффициента мощности можно только при том условии, что мы имеем в электрической сети идеальную синусоиду. Для более точного расчета необходимо учитывать нелинейные искажения, которые имеют переменные напряжение и ток. На практике, зачастую коэффициентом нелинейных искажений синусоиды пренебрегают, и значение косинуса фи принимают за приближенное значение коэффициента мощности.

Усредненные значения коэффициента мощности

Лампы накаливания и электрические нагревательные элементы, хотя и имеют в своих конструкциях спирали, намотанные с помощью специального провода, считаются чисто активной нагрузкой для сетей переменного тока. Так как индуктивность этих элементов настолько мала, что ею, как правило, просто пренебрегают. Для таких приборов cos ϕ (или коэффициент мощности) принимают равным 1.

В разнообразных электрических ручных инструментах (дрелях, перфораторах, лобзиках и так далее) индуктивная составляющая мощности достаточно мала. Для них принято считать cos ϕ≈0,96÷0,97. Этот показатель достаточно близок к единице, поэтому его, практически, никогда не указывают в технических характеристиках.

Для мощных электродвигателей, люминесцентных ламп и сварочных трансформаторов cos ϕ≈0,5÷0,82. Этот коэффициент мощности необходимо учитывать, например, при выборе диаметра питающих проводов, чтобы они не нагрелись, и не сгорела их изоляция.

На что влияет низкий коэффициент мощности

К чему могут привести низкие показатели коэффициента мощности:

  • При низком PF возрастает потребляемый нагрузкой ток. cos ϕ=P/S=P/(U•I), следовательно I=P/(U•cos ϕ). Допустим, для конкретной нагрузки необходима активная мощность P=10000 ВА при напряжении U=220 В. В идеальном варианте PF=cos ϕ=1. Тогда ток нагрузки: I=10000/(220•1)≈45 А. При PF=0,8  I=10000/(220•0,8)≈57 А. То есть при снижении PF с 1 до 0,8 ток возрастет приблизительно на 20%. Значит, это приведет к излишним затратам на электроэнергию.
  • Снижение коэффициента мощности, и как следствие увеличение тока приводит к значительным энергетическим потерям в проводах, которые по закону Ома равны I•R², где R – активное сопротивление проводников. Для уменьшения этих потерь приходится увеличивать диаметр проводов, что опять же приводит к излишним экономическим затратам.
  • Вышеуказанные потери расходуются на выделение тепла. В этом случае придется применять более термостойкие, а следовательно, и более дорогие изоляционные материалы).

В заключении

Смело можно утверждать, что чем ближе значение PF к единице, тем эффективнее используется электроэнергия. В некоторых мощных приборах производители устанавливают специальные приспособления, которые позволяют осуществлять коррекцию коэффициента мощности.

Что такое косинус фи в электрике

Как найти электрическую мощность

Основная единица электрической мощности — Ватт. Электрическую мощность можно найти по следующей формуле:

Формула мощности

Давайте рассмотрим формулу, которую я привёл выше.

I (ток)- количество электричества, протекающее за определённый момент времени;

U(напряжение) — проделанная работа электрического поля по переносу заряду из точки А в точку В.

А теперь простыми словами: Два человека (это будет у нас ток) несут вместе один камень из точки А в точку В весом в 50 кг и тратят на это энергию (это напряжение), и один человек несёт камень массой 10 кг и тоже тратит энергию. Весовая категория у людей одинаковая. Если эти данные мы перенесём в нашу формулу, то выясним, что у двух людей мощность больше, чем у одного.

Приведу ещё формулы, по которым можно рассчитать электрическую мощность:

Формула мощности

Где: I-
ток, U- напряжение, R-
сопротивление

Как видите ничего сложного нет, потому что мы рассматриваем постоянный ток.

Косинус угла в электротехнике

Итак, что такое косинус в электротехнике? Дело в том, что есть такое явление, как сдвиг фаз между током и напряжением

Он происходит по разным причинам, и иногда важно знать о его величине. Сдвиг фаз можно измерить в градусах, от 0 до 360

На практике степень реактивности (без указания индуктивного либо емкостного характера) выражают не в градусах, а в функции косинуса, и называют коэффициентом мощности:

cos fi

где:

  • P – активная мощность, которая тратится на совершение полезной работы,
  • S – полная мощность.

Полная мощность является геометрической суммой активной Р и реактивной Q мощностей, поэтому формулу коэффициента мощности можно записать в следующем виде:

Формула коэффициента мощности через активную и реактивную мощности

В иностранной литературе cos φ называют PF (Power Factor). Фактически, это коэффициент, который говорит о сдвиге сигнала тока по отношению к сигналу напряжения.

Легендарный Алекс Жук очень толково рассказал, что такое реактивная мощность, и всё по этой теме:

В видео подробно и доступно изложена вся теория по теме.

«Звезда»

При соединении обмоток звездой к началам обмоток присоединяют питающие провода (на схемах обозначены цветами), а концы обмоток соединяют между собой в одну точку, при этом подключение нулевого проводника в точку соединения концов обмоток необязательно так как это симметричная нагрузка. В свою очередь, точка соединения концов обмоток также называется нейтралью.

Есть два варианта представления этого соединения на электрических схемах, как в наглядном виде, действительно напоминающем трёхлучевую звезду (А), так и в более классическом для схем представлении (Б). Вас не должно смущать это отличие, когда вы читаете схему.

Активная, реактивная и полная мощности

Мы знаем, что реактивные нагрузки (индуктивности и конденсаторы) не рассеивают мощность, но то, что на них падает напряжение и через них протекает ток, даёт обманчивое впечатление, что они всё-таки рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью, а её единицей измерения является вольт-ампер реактивный (вар), а не ватт.

Реактивная мощность в математических выражениях обозначается прописной буквой Q. Фактическое количество используемой или рассеиваемой в цепи мощности называется активной мощностью и измеряется в ваттах (обозначается, как обычно, прописной буквой P). Комбинация реактивной и активной мощностей называется полной мощностью и является произведением напряжения и тока цепи без учёта угла сдвига фаз. Полная мощность измеряется в вольт-амперах (ВА) и обозначается прописной буквой S.

Как правило, величина активной мощности определяется сопротивлением рассеивающих ее элементов цепи, обычно резисторов (R). Реактивная мощность определяется величиной реактивного сопротивления (X). Полная мощность определяется полным сопротивлением цепи (Z). Поскольку при определении мощности мы имеем дело со скалярными величинами, любые исходные комплексные величины (напряжение, ток и полное сопротивление) должны быть представлены в показательной форме, а не в виде действительных или мнимых составляющих. К примеру, при определении активной мощности по величинам тока и сопротивления необходимо использовать величину тока в полярной системе координат, а не действительную или мнимую часть. При определении полной мощности по напряжению и полному сопротивлению обе эти комплексные величины должны быть представлены в полярной системе координат для применения скалярной арифметики.

Имеется несколько выражений, связывающих три типа мощности со значениями активного, реактивного и полного сопротивления (во всех случаях используются скалярные величины).

P – активная мощность P = I2R P = E2/R

Единицей измерения является ватт

Q – реактивная мощность Q = I2X Q = E2/X

Единицей измерения является вольт-ампер реактивный (вар)

S – полная мощность S = I2Z S = E2/Z S = IE

Единицей измерения является вольт-ампер (ВА)

Обратите внимание, что для определения активной и реактивной мощности имеются два выражения. Для определения полной мощности есть три выражения, P = IE используется только для этой цели

Изучите схемы, приведённые ниже, и посмотрите, как определяются эти три типа мощности при резистивной нагрузке, при реактивной нагрузке и при резистивно-реактивной нагрузке (см. рисунки ниже).

Как правильно рассчитать

Активная мощность, как сделать правильный расчет?

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Однофазный синусоидальный ток в электрических цепях вычисляется по формуле Р = U x I x cos φ, где υ и Ι. Их обозначение шифруется следующим образом: среднеквадратичное значение напряжение и тока, а φ — фазный угол фаз между ними.

Для цепей несинусоидального тока электрическая ёмкость равна корню квадратному из суммы квадратов активной и реактивной производительности. Активная производительность характеризуется скоростью, которая имеет необратимый процесс преобразования электрической энергии в другие виды энергии. Данная ёмкость может вычисляться через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I(2) x r = U(2) x g.

Реактивная мощность (Reactive Power)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

В любой электрической цепи как синусоидального, так и несинусоидального тока активная способность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая емкость определяется как сумма пропускной способности отдельных фаз. С полной производительностью S, активная связана соотношением P = S x cos φ.

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной производительностью.

Как найти реактивную полную мощность через активную? Данная производительность, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = U x I x sin φ (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).

Обозначение реактивной величины

Сдвиг фаз между напряжением и током

Фазовый сдвиг – показатель, описывающий разность исходных фаз двух параметров, имеющих свойство меняться во времени с одинаковыми скоростями и периодами. Именно сдвиг между силой и напряжением определяет, сколько будет значение угла фи.

В радиотехнической промышленности используются цепочки для получения асинхронного хода. Одна RC-цепь создает 60-градусный сдвиг, для получения 180-градусного для трехфазной структуры организуют последовательное соединение трех цепочек.

При трансформации электродвижущей силы во вторичных обмотках прибора для всех вариаций тока ее значение идентично по фазе таковому для первичной обмотки. Если обмотки трансформатора включить в противофазе, значение напряжения получает обратный знак. Если напряжение идет по синусоиде, происходит сдвиг на 180 градусов.

В простом случае (к примеру, включение электрического чайника) фазы двух показателей совпадают, и они в одно и то же время достигают пиковых значений. Тогда при расчете потребительской мощности применять угол фи не требуется. Когда к переменному току подключен электродвигатель с составной нагрузкой, содержащей активный и индуктивный компоненты (двигатель стиральной машинки и т.д.), напряжение сразу подается на обмотки, а ток отстает вследствие действия индуктивности. Таким образом, между ними возникает сдвиг. Если индуктивный компонент (обмотки) подменен использованием достижений химии в виде емкостного аккумулятора, отстающей величиной, напротив, оказывается напряжение.

Косинус фи не следует путать с другим показателем, рассчитываемым для комплексных нагрузок, – коэффициентом демпфирования. Он широко используется в усилителях мощности и равен частному номинального сопротивлению прибора и выходному – усилка.

Угол фазового сдвига

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов

Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне

Активно применяются в промышленности.

Реактивная разновидность

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Полная разновидность

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс

Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Комплексная разновидность

Способы увеличения «косинуса фи»

Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ. К мерам увеличения cos φ относятся:

  1. Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
  2. Увеличение загрузки двигателей;
  3. Недопущение работы двигателей вхолостую продолжительное время;
  4. Правильный и высококачественный ремонт двигателей;
  5. Применение статических (то есть неподвижных, невращающихся) конденсаторов.

Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.

Подбирая величину емкости при параллельном соединении и емкости, можно добиться уменьшения угла сдвига фаз между напряжением и общим током при неизменной активной и реактивной мощности, потребляемой ветвью с индуктивностью. Этот угол можно сделать равным нулю. Тогда ток, текущий на общем участке цепи, будет иметь наименьшую величину и совпадать по фазе с напряжением сети.

Это явление называется компенсацией сдвига фаз и широко используется на практике. По экономическим соображениям невыгодно доводить угол φ до нуля, практически целесообразно иметь cos φ = 0,9 – 0,95.

Рассмотрим расчет емкости конденсаторов, которые нужно включить параллельно индуктивной нагрузке, чтобы повысить cos φ до заданной величины.

На рисунке 1, а изображена схема включения индуктивной нагрузки в сеть переменного тока. Для увеличения коэффициента мощности параллельно потребителю включена батарея конденсаторов. Векторная диаграмма начинается с построения вектора напряжения U. Ток I1 вследствие индуктивного характера нагрузки отстает по фазе от напряжения сети на угол φ1. Необходимо уменьшить угол сдвига фаз между напряжением U и общим током до величины φ. Иначе говоря, увеличить коэффициент мощности от значения cos φ1 до значения cos φ.

Рисунок 1. Увеличение cos φ при помощи статических конденсаторов:а – схема включения; б – векторная диаграмма

Отрезок ос, представляющий активную слагающую тока I1, равен:

ос = I1 × cos φ1 = оа × cos φ1 .

Пользуясь выражением мощности переменного тока

P = U × I × cos φ ,

отрезок ос выразим так:

Ток на общем участке цепи I равен геометрической сумме тока нагрузки I1 и тока конденсатора IC.

Из треугольника оас и овс имеем:

ас = ос × tg φ1 ;bс = ос × tg φ .

Из диаграммы получаем:

ab = od – ac – bc = ос × tg φ1 – ос × tg φ = oc × (tg φ1 – tg φ) .

Так как

abIC

Вместе с этим, как было указано выше,

IC = U × ω × C .

Следовательно,

Пример 1. Электрические двигатели шахты потребляют мощность 2000 кВт при напряжении 6 кВ и cos φ1 = 0,6. Требуется найти емкость конденсаторов, которую нужно подключить на шины установки, чтобы увеличить cos φ до 0,9 при f = 50 Гц.

Решение.

cos φ1 = 0,6;     φ1 = 53°10’;     tg φ1 = 1,335;

cos φ = 0,9;     φ = 25°50’;     tg φ = 0,484;

Что такое полная мощность на примере простой R-L цепи

Графики изменения мгновенных значений u,i:

Графики изменения мгновенных значений u,i:

φ — фазовый сдвиг между током и напряжением

Уравнение для S примет следующий вид 

Подставим вместо  и заменим амплитудные значения на действующие:

Значение S рассматривается как сумма двух величин , где

 и  — мгновенные активные и реактивные мощности на участках R-L.

Графики p,q,s:

Как видим из графика, наличие индуктивной составляющей повлекло за собой появление отрицательной части в полной мощности (заштрихованная часть графика), что снижает ее среднее значение. Это происходит из-за фазового сдвига, в какой-то момент времени ток и напряжение находятся в противофазе, поэтому появляется отрицательное значение S.

Итоговые выражения для действующих значений:

Активная составляющая сети выражается в ваттах (Вт), а реактивная в вольт-амперах реактивных (вар).

Полная мощность сети S, обусловлена номинальными данными генератора. Для генератора она обусловлена выражением:

Для нормальной работы генератора ток в обмотках и напряжение на зажимах не должны превышать номинальные значения Iн, Uн.  Для генератора значения P и S одинаковы, однако все-таки на практике условились S выражать в вольт-амперах (ВА).

Также энергию сети можно выразить через каждую составляющую отдельно:

Где S, P, Q – соответственно активное, реактивное и полное сопротивление сети. Они образуют треугольник мощностей:

Треугольник мощностей с преобладающей индуктивной нагрузкой

Если вспомнить теорему Пифагора, то из прямоугольного треугольника можно получить такое выражение:

Реактивная составляющая в треугольнике является положительной (QL), когда ток отстает от напряжения, и отрицательной (QC), когда опережает:

Треугольник мощностей с преобладающей емкостной нагрузкой

Для реактивной составляющей сети справедливо алгебраическое выражение:

Из чего следует что индуктивная и емкостная энергия взаимозаменяемы. То есть если вы хотите уменьшить влияние индуктивной части цепи, вам необходимо добавить емкость, и наоборот. Ниже пример данной схемы :

Схема компенсации реактивной составляющей

Векторная диаграмма показывает влияние конденсатора на cosφ. Как видно, что при включении конденсатора cosφ2> cosφ1 иIл<I.

Векторная диаграмма

Связь между полной и реактивной энергии выражается:

Отсюда:

сosφ – это коэффициент мощности. он показывает какую долю от полной энергии составляет активная энергия. Чем ближе он к 1, тем больше полезной энергии потребляется из сети.

Соединение в треугольник электроприемников и конденсаторных батарей.

Соединение в треугольник обмоток электродвигателей показано на рисунках 4, а – в. При этом на рисунке 4, а обмотки и соединены и расположены треугольником; на рисунке 4, б обмотки соединены треугольником, но расположены произвольно; на рисунке 4, в обмотки расположены звездой, но соединены в треугольник. На рисунке 4, г обмотки расположены треугольником, но соединены в звезду.

Рисунок 4. Соединение в треугольник электроприемников.

Все эти рисунки подчеркивают, что дело отнюдь не в том, как расположены изображения электроприемников на чертежах (хотя их часто удобно располагать в соответствии с видом соединения), а в том, что с чем соединено: концы (начала) всех обмоток между собой или конец одной обмотки с началом другой. В первом случае получается соединение в звезду, во втором – в треугольник.

Соединение в треугольник конденсаторных батарей показано на рисунке 4, д.

На рисунке 4, е показано соединение в треугольник ламп. Хотя лампы территориально разбросаны по разным квартирам, но они объединены сначала в группы в пределах каждой квартиры, затем в группы по стоякам 2 и, наконец, эти группы соединены в треугольник на вводном щите 1. Заметьте: до вводного щита нагрузка трехфазная, после вводного щита (в стояках и квартирах) однофазная, хотя она и включена между двумя фазами.

На каком основании нагрузка, питающаяся от двух фаз названа однофазной? На том основании, что изменения тока в обоих проводах, к которым присоединена нагрузка, происходят одинаково, то есть в каждый момент ток проходит через одни и те же фазы.

Видео 1. Соединение треугольником

1 Отсутствие тока в замкнутом контуре еще не означает, что в фазных обмотках нет тока. Токи в фазных обмотках соответствуют их нагрузкам.

Выводы обмоток

Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз то есть примерно в 1.

От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Однако, по крайней мере, можно использовать 3-фазное подключение треугольником. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта.

У каждого конца свое буквенное и числовое обозначение. На рисунке 4 приведена схема включения в трехфазную четырехпроводную сеть осветительной и силовой нагрузок.

К тому же агрегат сильно нагревается в процессе работы. Поэтому электродвигатели асинхронного типа со средней и большой мощностью чаще всего подключают по схеме звезда.

Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль. При помощи тестера провода прозванивают, чтобы найти катушки. По полученным векторным уравнениям можно для равномерной нагрузки фаз построить векторную диаграмму рис.

Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением В подключение звезда , так и в однофазной сети В подключение треугольником через конденсатор. Форму треугольника предает эргономичное размещение соединения обмоток. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании — будет отключаться питание электродвигателя.

К тому же агрегат сильно нагревается в процессе работы. Фазные обмотки генератора образуют замкнутый контур с малым внутренним сопротивлением.

При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. Каминский, г. Сдвиг на такой угол предназначен для создания вращения магнитного поля. Это может произойти из-за неисправного пускателя, или при перекосе фаз когда напряжение в одной из фаз сильно меньше, чем в двух других.
Подключение трехфазного двигателя по схеме звезды и треугольника

https://youtube.com/watch?v=PjZextDphQU

Оцените статью:

Cos фи или коэффициент реактивной мощности

Поиск по названию:
Поиск по артикулу:
Поиск по тексту:
Цена:
от: до:
Выберите категорию
Все
»Лампы

»»Светодиодные лампы

»»»Замена лампы накаливания до 60 Вт.

»»»Замена ламп накаливания до 100 Вт.

»»»Замена галогенных ламп

»»»Диммируемые светодиодные лампы

»»»Мощные светодиодные лампы

»»»Декоративные лампы

»»»Лампы для холодильников и швейных машин

»»»Замена люминесцентных ламп

»»»Лампы GX53 и GX70

»»Фитолампы

»»Ретро лампы

»»Лампы 12 Вольт

»»Диско лампа

»»Лампы энергосберегающие

»»»Аналоги ламп накаливания до 60 Вт.

»»»»Теплый свет лампы

»»»»Холодный свет лампы

»»»Аналоги ламп накаливания до 100 Вт.

»»»»Теплый свет лампы

»»»»Холодный свет лампы

»»»Аналоги ламп накаливания до 500 Вт.

»»»»Теплый свет лампы

»»Лампы накаливания

»»Лампы люминесцентные

»»»Лампы Т4 люминесцентные

»»»Лампы Т5 люминесцентные

»»»Лампы Т8 люминесцентные

»»Лампы галогенные

»»»Лампы галогенные декоративные

»»»Лампы галогенные G4, GU 5.3, GU10

»»»Блоки защиты галогенных ламп

»»Лампы металлогалогенные

»»Лампы ртутные и натриевые

»Светильники

»»Светодиодные светильники LED

»»»Потолочные светодиодные светильники

»»»»Светодиодный светильник под Армстронг

»»»»Встраиваемые светодиодные светильники

»»»»Накладные светодиодные светильники

»»»»Точечные светодиодные светильники

»»»»Крепления для потолочных светильников

»»»Настольные светодиодные светильники

»»»Прожекторы светодиодные

»»»Светодиодные светильники уличного освещения

»»»Для ЖКХ

»»Для дома

»»»Потолочные светильники, люстры

»»»»Светильники под лампу накаливания

»»»»Люстры

»»»»Люминесцентные светильники

»»»Настенные светильники, бра

»»»»Светильники под лампу накаливания

»»»»Люминесцентные светильники

»»»Ночники

»»»Для ванной и туалета

»»»Для кухни

»»»Точечные светильники

»»»Настольные светильники

»»Светильники лофт

»»Диско шар

»»Для дачи

»»Для теплицы

»»Для бани и сауны

»»Для гаража и подвала

»»Для производства

»»Для офиса

»»Для склада и производства

»»Для улицы

»»»Кронштейны для уличных светильниов

»»Светильники для сада и парка

»»Для подсветки

»»Для спортивного зала

»»Для магазина

»»Переносные светильники

»»Аварийные светильники

»»Аккумуляторные светильники

»»Патроны к светильникам

»Светодиодная подсветка

»»Светодиодная подсветка потолка

»»»Светодиодная гибкая лента для помещений на самоклеющейся основе ULS-3528

»»» Светодиодная гибкая лента для помещений на самоклеющейся основе ULS-5050

»»»Светодиодная гибкая герметичная лента ULS-3528

»»»Светодиодная гибкая герметичная лента ULS-5050

»»»Драйверы для светодиодов

»»»Контроллеры для управления светодиодными источниками света

»»Светодиодная подсветка шкафа

»»Электронные трансформаторы

»Стабилизаторы напряжения

»»Однофазные стабилизаторы напряжения

»»Стабилизаторы напряжения напольные, электронные

»»Стабилизаторы напряжения настенные, релейные

»»Стабилизаторы напряжения настольные

»»Стабилизаторы напряжения электромеханические

»Низковольтная аппаратура

»»Автоматические выключатели

»»»Автоматы для проводов сечением до 25мм.

»»»»Для дома, характеристика B

»»»»Для дома, характеристика C

»»»»Для производства, характеристика D

»»»Автоматы для проводов сечением до 35мм.

»»»»Для дома, характеристика C

»»»»Для производства, характеристика D

»»»Автоматы для проводов сечением до 50мм.

»»»»Для дома, характеристика C

»»»»Для производства, характеристика D

»»»Автоматы промышленные ВА88

»»УЗО

»»Дифференциальные автоматы

»»»Серия АВДТ 63

»»»Серия АВДТ 64 с защитой

»»»Дифавтоматы АД12, АД14

»»»Серия DX

»»Разрядники, ограничители импульсных перенапряжений

»»Выключатель нагрузки (мини-рубильник)

»»Предохранители

»»»Плавкие вставки цилиндрические ПВЦ

»»»Предохранители автоматические резьбовые ПАР

»»»Предохранители ППНН

»»Контакторы

»»»Контакторы модульные серии КМ63

»»»Контакторы малогабаритные КМН

»»»Контакторы КМН в оболочке IP54

»»Пускатели ручные

»Электроустановочные изделия

»»Выключатели

»»»Выключатели внутренние

»»»Выключатели накладные

»»Розетки

»»»Розетки внутренние

»»»»Серия INARI

»»»»Серия LARIO

»»»»Серия VATTERN

»»»»Серия MELAREN

»»»»Розетки, выключатели Legrand Valena

»»»Розетки накладные

»»»»Серия SUNGARY

»»»»Серия BALATON

»»»»Серия SAIMA

»»Коробки монтажные, подрозетники

»»»Монтажные коробки для открытой проводки

»»»Монтажные коробки для скрытой проводки

»»Удлинители электрические

»»»Удлинители бытовые

»»»Удлинители силовые

»»Сетевые фильтры

»»Тройники электрические

»»Вилки электрические

»»Силовые разъёмы

»»»Вилки переносные

»»»Розетки стационарные

»»»Розетки переносные

»»»Розетки стационарные для скрытой установки

»»»Вилки стационарные

»Щитовое оборудование

»»Корпуса к щитам электрическим

»»»Для помещения

»»»»Пластиковые боксы

»»»»»Боксы пластиковые навесные

»»»»»Боксы пластиковые встраиваемые

»»»»»Бокс КМПн

»»»»Металлические корпуса

»»»»»Щиты распределительные

»»»»»Щиты учётно-распределительные

»»»»»Щиты с монтажной панелью

»»»»»Щиты этажные

»»»»Шкафы напольные

»»»»»Сборно-разборные шкафы

»»»»»Моноблочные шкафы

»»»»»Аксессуары к шкафам

»»»Для улицы IP65

»»Электрощиты в сборе

»»»Ящики с понижающим трансформатором (ЯТП)

»»»Ящики с рубильником и предохранителями (ЯРП)

»»»Ящики с блоком «рубильник-предохранитель» (ЯБПВУ)

»»»Щитки осветительные (ОЩВ)

»»Аксессуры для шкафов и щитов

»»»Шина нулевая

»»»Шина нулевая на DIN-рейку в корпусе

»»»Шина N нулевая с изолятором на DIN-рейку

»»»Шина N нулевая, в изоляторе

»»»Шина N нулевая на угловых изоляторах

»»»Шина соединительная

»»»DIN-рейки

»Фонарики

»»Фонарики налобные

»»Фонари прожекторы

»»Фонари ручные

»»Фонари кемпинговые

»»Фонари с зарядкой от сети

»»Фонари для охоты

»Провод, Кабель

»»Кабель

»»»Кабель медный NYM (3-я изоляция, еврост.)

»»»Кабель медный силовой ВВГ-нг

»»»Кабель медный силовой ВВГ

»»»Кабель алюминиевый АВВГ, АВВГп

»»»Кабель бронированный

»»Провод

»»»Провод медный

»»»Провод медный осветительный ПУНП, ПУГНП

»»»Провод монтажный

»»»Провод медный гибкий соединительный ПВС

»»»Провод медный гибкий соединительный ШВВП (ПГВВП)

»»»Провод медный установочный ПВ

»»»Провод водопогружной ( ВВП)

»»»Провод алюминиевый

»»»Провод телефонный

»»»Провод ВВП

»Звонки дверные

»»Звонки беспроводные

»»»1 звонок + 1 кнопка

»»»1 звонок + 2 кнопки

»»»2 звонка + 1 кнопка

»»»1 звонок (вилка 220В) + 1кнопка (батарейка А23)

»»Звонки проводные

»Системы для прокладки кабеля

»»Кабельные каналы

»»Гофрированные трубы

»»»Аксессуары для труб

»»Металлорукав

»»»Аксессуары для металлорукава

»»»Металлорукав в ПВХ-изоляции

»»Труба ПВХ

»»»Аксессуары для труб

»»Лотки металлические

»Климатическое оборудование

»»Тепловые пушки и вентиляторы

»»»Тепловые пушки

»»»Масляные радиаторы

»»»Тепловентиляторы электрические

»»»»Керамические обогреватели

»»»»Спиральные обогреватели

»»Охлаждаемся, климатическое оборудование

»»»Кондиционеры напольные

»Инструмент, расходные материалы

»»Инструмент

»»Изоляция

»»»Термоусаживаемая трубка ТУТнг

»»»Изолента

»»Клеммы, зажимы

»»»Строительно-монтажная клемма КБМ

»»»Зажим винтовой ЗВИ

»»»Соединительный изолирующий зажим СИЗ

»»Хомуты, скобы

»»»Лента спиральная монтажная пластиковая ЛСМ

»»»Хомут нейлон

»»»Хомут полиамид

»»»Кабельный хомут с горизонтальным замком

»»»Скоба плоская

»»»Скоба круглая

»Умный дом

»»Датчики движения

»»Дистанционное управление

»»Фотореле

Производитель:
ВсеFamettoGaladLegrandTDMUnielVolpeКМ-ПрофильРесантаРоссияСтарлайтСтройСнаб

Чем ближе cos фи к единице — тем лучше. 

Если, например, на электроприборе указан cos фи 0,7 и мощность 1 тыс. ватт (1 Квт.), это означает, что прибор потребляет в реальности 1,4 Квт. Это необходимо учитывать при установке розетки, подключении удлинителя, сетевого фильтра или стабилизатора. 

Это значение важно только для предприятий, которые платят за активную и реактивную мощность. Частникам (читай для квартир) это не сильно критично, с точки зрения оплаты за электроэнергию. 

Если на лампе указана мощность, например, в 10 Вт (активная мощность), cos фи равен 0,9, то потребляемая светильником «полная мощность» будет 10/0,9=11,11 Вт, таким образом, предприятие будет платить за полную мощность за 11,11, а квартирант только за 10 Вт. 

Под понятием «полная мощность» подразумевается вся та мощность, которая потребляется электроприбором и включает в себя активную (мощность) составляющую и реактивную (мощность) составляющую.

Активная (мощность) составляющая — энергия, которая превращается в полезную работу и трансформируется, например, в свет.

Реактивная (мощность) составляющая — энергия, которая идет на нагрев проводников (проводов), фактически ее можно характеризовать еще, как потери на передачу энергии. 

Сos фи — это отношение полной мощности электроприбора к активной мощности. 

Чем выше cos фи потребителя, тем меньше будут потери мощности в линии и дешевле обойдётся передача электроэнергии потребителю. 

Сos фи показывает нам насколько эффективно используется рабочая мощность потребителя.

 

 

Рекомендуем почитать:

Обозначение ламп

Какие светодиодные лампы лучше?

 

Описание параметра «Компенсация (cos ϕ)»

Коэффициент мощности (cos φ) — физическая величина, являющаяся энергетической характеристикой электрического тока. Коэффициент мощности характеризует приёмник электроэнергии переменного тока, а именно — степень линейности нагрузки. Равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. Полная мощность — геометрическая сумма активной и реактивной мощностей (в случае синусоидальных тока и напряжения). В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. Полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощностей. В качестве единицы измерения полной мощности принято использовать вольт-ампер (ВА) вместо ватта (Вт).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения. Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

Коэффициент мощности позволяет судить о нелинейных искажениях, вносимых нагрузкой в электросеть. Чем он меньше, тем больше вносится нелинейных искажений. Кроме того, при одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, т. е. его повышения до значения, близкого к единице.

Значение коэффициента мощностиВысокоеХорошееУдовлетворительноеНизкоеНеудовлетворительное
cos φ0,95…10,8…0,950,65…0,80,5…0,650…0,5

КОСИНУС ФИ в Электрике — все невозможное возможно! — LiveJournal

§ 75. КОЭФФИЦИЕНТ МОЩНОСТИ («КОСИНУС ФИ»)

Коэффициентом мощности, или «косинусом фи» (соз j), цепи называется отношение активной мощности к полной мощности.

или

В общем случае активная мощность меньше полной мощности, т. е. у этой дроби числитель меньше знаменателя, и поэтому коэф­фициент мощности меньше единицы.

Только в случае чисто активной нагрузки, когда вся мощность является активной, числитель и знаменатель этой дроби равны между собой, и поэтому коэффициент мощности равен единице.

Чем большую часть полной мощности составляет активная мощность, тем меньше числитель отличается от знаменателя дроби и тем ближе коэффициент мощности к единице.

Величину соs j можно косвенно определить по показаниям, ваттметра, вольтметра и амперметра:

Коэффициент мощности можно также измерить особым при­бором — фазометром.

Пример 14. Амперметр показывает ток 10 а, вольтметр— 120 в, ватт­метр — 1 кет. Определить соз j потребителя:

Пример 15. Определить активную мощность, отдаваемую генератором однофазного переменного тока в сеть, если вольтметр на щите генератора пока­зывает 220 в, амперметр — 20 а и фазометр — 0,8:

Полная мощность

Пример 16. Вольтметр, установленный на щитке электродвигателя, по­казывает 120 в, амперметр — 450 а, ваттметр — 50 квт. Определить z, r, xL, S, cos j,Q:

Так как Р=I2r, то

Из построения треугольников сопротивлений, напряжений и мощ­ностей для определенной цепи видно, что эти треугольники подобны один другому, так как их стороны пропорциональны. Из каждого треугольника можно найти «косинус фи» цепи, как показано на рис. 168. Этим можно воспользоваться для решения самых раз­нообразных задач.

Пример 17. Определить z, xL, U, Ua, UL, S, Р, Q, если I= 6а, r = 3ом, соs j = 0,8 и ток отстает по фазе от напряжения.

Из треугольника сопротивлений из­вестно, что

Отсюда

или

или

или

Основными потребителями электрической энергии являются электрические двигатели, машины и электронагревательные устрой­ства. Все они потребляют активную мощность, которую преобразуют в механическую работу и тепло. Электрические двигатели потреб­ляют также реактивную мощность. Последняя, как известно, со­вершает колебательное движение от источника к двигателю и об­ратно.

У ламп и электрических печей сопротивления S = Р и соs j = 1. У   электрических   двигателей и соs j меньше   1.

При неизменной передаваемой активной мощности Р величина нагрузочного тока обратно пропорциональна значению соs j:

Это означает, что при тех же значениях активной мощности Р и напряжения U нагрузочный ток электрических двигателей больше, чем у электрических ламп. Если, например, коэффициент мощности электрического двигателя равен 0,5, то он потребляет в 2 раза больший ток, чем электрическая печь сопротивления той же мощности Р.

Потери мощности на нагрев проводов линии пропорциональны квадрату тока (ΔР =I2r).

Таким образом, при соs j= 0,5 потери мощности в линии, по которой энергия передается потребителям, больше в 4 раза, чем при соs j=1.  Кроме того,  генераторы и трансформаторы будут загружены током в 2 раза больше и в этом случае требуется примерно в 2 раза большее сечение проводов для обмоток.

Отсюда видно, какое важное значение имеет величина соs j в электроэнергетических установках. Для повышения коэффици­ента мощности промышленных установок, на которых преобла­дающая часть потребителей — электрические двигатели, парал­лельно им включают конденсаторы, т. е. добиваются резонанса,, токов, при котором соs j близок к 1.

косинус фи для потребителей, единица измерения > Флэтора

Соединения СИП-кабеля с медными проводами проколом и соединителем


Устройство и характеристики С И П-кабеля. Преимущества С И П-проводов. Марки С И П. Способы соединения разнородных проводов: прокалывающие зажимы, болтовое сочленение и клеммные соединения. Правила соединения С И П-кабеля с медными проводами проколом и соединителем….

30 03 2021 22:34:32

Как сделать внешнюю антенну для 4G модема Yota своими руками


В каких случаях необходимо усиление сигнала для LTE модемов Yota. Виды внешних антенн для роутеров Yota и преимущества их использования. Самодельная антенна для Yota: из банки из алюминия, антенна Харченко и спутниковая антенна….

24 03 2021 11:24:20

Монтаж встраиваемых и выдвижных розетки


Функционал места жительства сейчас на первом месте, именно поэтому стоит установить у себя выдвижные розетки их разновидности поражают воображение….

23 03 2021 15:39:45

О требованиях безопасности при работах с электроинструментом


Ручной и станочный электроинструмент. Особенности эксплуатации ручного электроинструмента. Факторы опасности при использовании ручных Э И. Техника безопасности при пользовании ручными электроинструментами. Требования безопасности при работе с электроинструментом….

15 03 2021 0:51:43

Какая аккумуляторная батарея лучше для шуруповерта


Какие элементы питания лучше для шуруповертов: литиевые или никеливые. Сроки службы А К Б шуруповертов. Сравнительные рейтинги аккумуляторов. Возможна ли переделка шуруповерта под другой тип аккумулятора….

09 02 2021 3:52:27

Основы практической электроники для новичков

Пути совершенствования: микроминиатюризация и микросхемотехника. Практическая электроника для начинающих: основы и азы. Основные разделы и направления электроники как науки. Вакуумные среды и твёрдые тела….

03 02 2021 7:56:57

Виды плакатов по электробезопасности по ГОСТу


Виды знаков и плакатов по электробезопасности по Г О С Т. Запрещающие, предупреждающие и указательные плакаты. Классификация плакатов и знаков по электрической безопасности….

20 01 2021 10:55:52

Примеры магнитной (диамагнитной) левитации, диамагнетизм


Определение магнитной (диамагнитной) левитации. Магнитная левитация: эксперименты в домашних условиях. Как сделать левитирующий магнит своими руками. Применение магнитов в подшипниках. Как используют магнитную левитацию в ветрогенераторах….

15 01 2021 21:41:51

Как отремонтировать стабилизатор напряжения своими руками

Диагностика повреждений и методика проверки стабилизатора. Ремонт электромеханических и релейных стабилизаторов напряжения. Ремонт платы управления стабилизатора своими руками. Степень сложности ремонта различных видов стабилизаторов….

27 12 2020 7:47:18

Степени защиты электрических розеток (IP)


Сейчас существует множество видов розеток, но для разных потребностей существуют различные методы их защиты. Мы расскажем как в них ориентироваться….

12 12 2020 23:48:27

Душ с подсветкой: классификация, выбор


Данная подсветка душа рассматривается многими людьми как вещь совершенно ненужная, но помимо эстетичного вида она имеет ещё определённую полезность….

04 12 2020 21:40:36

Определение постоянного и переменного электрического тока


Понятие о постоянном и переменном токе. Сравнительные характеристики постоянного и переменного токов. Постоянный и переменный ток: различия при транспортировке. Достоинства и недостатки переменных и постоянных электротоков….

13 11 2020 4:41:59

Расшифровка осциллограммы: измерение осциллографом


Особенности применения цифрового аппарата осциллографа и общие принципы функционирования. Расшифровка осциллограммы. Порядок подключения осциллографов. Возможности двухканального прибора. Определение угла сдвига фаз на осциллограмме….

06 11 2020 20:24:53

Что такое коэффициент мощности цепи. Определение коэффициента мощности

Коэффициент мощности
— это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.

Физическая сущность и основные методы определения

Математически cos φ
определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).

Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 — потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем. Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность . Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.

В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.

Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением . В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.

Повышение коэффициента мощности

Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.

Повышение cos φ преследует 3 основные задачи:

1) снижение потерь электроэнергии;

2) рациональное использование цветных металлов на создание электропроводящей аппаратуры;

3) оптимальное использование установленной мощности трансформаторов , генератор и прочих машин переменного тока.

Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств. Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более. Помимо этого, компенсация позволяет обеспечить отсутствие всплесков потребляемого тока на пике синусоиды, равномерную нагрузку на питающую линию.

Основные способы коррекции

1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор .

2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности. Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.

3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.

Коэффициент мощности, или косинус фи в электротехнике — это отношение активной мощности P (Вт) к полной S (ВА): cos(φ) = P/S. Он указывает на то, насколько эффективно данное устройство использует электрическую энергию.

Идеальная нагрузка

Для объяснения физического значения коэффициента мощности рассмотрим пример расчета косинуса фи для различных потребителей. Предположим, в линию переменного тока подключен идеальный конденсатор. Так как переменное напряжение непрерывно меняет свою полярность, конденсатор половину времени будет заряжаться и половину — возвращать сохраненную энергию обратно к источнику. В результате в линии будут постоянно циркулировать электроны, но чистой передачи энергии не будет. Итак, в проводнике будет и напряжение, и ток, но активной мощности не будет. Произведение U на I называется мнимой мощностью, потому что это просто математическое число, которое не имеет реального физического смысла. В этом примере коэффициент мощности равен 0.

Аналогично расчет косинуса фи для единственного идеального индуктора приведет к cos(φ) = 0, за исключением того, что его ток будет отставать от напряжения.

Теперь рассмотрим противоположный крайний случай резистивной нагрузки. В этом случае вся электрическая энергия, поступающая к ней, потребляется и преобразуется в другие виды энергии, такие как тепло. Это пример того, когда косинус фи в электрике равен 1. Все реальные схемы работают где-то в промежутке между этими двумя крайностями.

Векторная математика

При анализе цепей синусоидальный сигнал можно представить комплексным числом (называемым вектором), модуль которого пропорционален величине сигнала, а угол равен его фазе относительно некоторой ссылки. В линейных схемах коэффициент мощности равен косинусу фи. В электротехнике это угол между фазами напряжения и тока. Эти векторы и соответствующие им активные и реактивные составляющие мощности могут быть представлены в виде прямоугольного треугольника. Конечно, напряжение — это электрическое поле, а ток — поток электронов, поэтому так называемый угол между их векторами является не более чем математической величиной. Условились считать, что индуктивная нагрузка создает положительную реактивную мощность Q (измеряемую в вольт-амперах-реактивных, ВАр). Это связано с так называемым «запаздывающим» коэффициентом, поскольку ток отстает от напряжения. Аналогично емкостная нагрузка создает отрицательную Q и «опережающий» λ.

Нелинейные искажения

Индукторы и конденсаторы — не единственные причины низкого косинуса фи. В электротехнике это обычное явление, когда (за исключением идеальных R, L и C) электрические цепи нелинейны, особенно из-за наличия таких активных компонентов, как выпрямители. В таких схемах ток I (t) непропорционален напряжению V (t), даже если последнее является чистой синусоидой, поскольку I (t) будет периодическим, но не синусоидальным. Согласно теореме Фурье, любая периодическая функция представляет собой сумму синусоидальных волн с частотами, кратными исходной. Эти волны называются гармониками. Можно показать, что они не способствуют передаче чистой энергии, а увеличивают ток и уменьшают коэффициент λ. Когда напряжение синусоидальное, только первая гармоника I 1 обеспечит реальную мощность. Однако ее величина зависит от фазового сдвига между током и напряжением. Эти факты отражены в общей формуле расчета коэффициента мощности: λ = (I 1 /I) × cos(φ). Первый член в этом уравнении представляет собой искажения, а второй — смещение.

Активная и пассивная компенсация

Коррекция косинуса фи в электротехнике — это любая техника увеличения коэффициента мощности до 1. В общем случае cos(φ) может варьироваться от 0 до 1. Чем выше коэффициент мощности, тем эффективнее используется электричество. Причинами несовершенства являются искажения и фазовый сдвиг между гармониками напряжения и тока той же частоты. Поэтому существуют две основные категории методов коррекции коэффициента мощности.

Гармонические искажения вызваны нелинейными компонентами, такими как мост выпрямителя в источниках питания постоянного тока, который подключается непосредственно к большому накопительному конденсатору. Их можно скорректировать на этапе проектирования источника питания путем введения различных пассивных или активных схем компенсации. Основным источником фазового сдвига U-I являются промышленные асинхронные двигатели, которые с точки зрения схемы имеют индуктивную нагрузку. Косинус фи двигателя (который на холостом ходу падает до 0,1) можно увеличить, добавив внешние компенсирующие конденсаторы. При этом их необходимо установить как можно ближе к нагрузке, чтобы избежать циркуляции реактивной мощности до места их размещения.

Активная компенсация реактивной мощности использует активные электронные схемы с обратной связью, которые сглаживают форму кривой выпрямленного тока.

Нелинейные устройства генерируют гармонические колебания с частотой ƒ=1/(2π√LC). Если она совпадает с одной из гармоник, то будет усиливаться, что может привести к различным последствиям, в т. ч. катастрофическим. Во избежание этого, последовательно с компенсирующим конденсатором подсоединяют небольшой индуктор, что образует т. н. шунтирующий фильтр подавления гармоник.


На бирках (шильдиках) электродвигателей обязательно указана его мощность, измеряемая в ваттах, и вот такой значок «cosφ». Что обозначает косинус фи в электротехнике – это коэффициент мощности. И определяется он соотношением мощности активной к полной. При этом чем выше данный коэффициент, то есть приближается к единице, тем лучше. Потому что в данном случае реактивная мощность будет равна нулю, а, значит, будет уменьшаться потребляемое значение, что приведет к экономии электроэнергии.

Поэтому чтобы разобраться в косинусе фи, необходимо сначала разобраться со всеми этими мощностями.

Мощности в электродвигателе

Итак, полная мощность с единицей измерения вольт-ампер (ВА) – это комплексная величина, состоящая из активной мощности (действительной) и реактивной (мнимой). Если рассматривать полный показатель по формуле, то можно это отобразить вот так:

N=√Nа²+Nр²

Или вот так:

Теперь рассмотрим составляющие первой формулы. Активная мощность действует только на активных сопротивлениях, то есть она присутствует при определенных нагрузках, а, точнее сказать, когда электрический двигатель работает. Вычисляется она вот по этой формуле:

Что значит активное сопротивление? Здесь необходимо понимать, что в цепях переменного тока сопротивление выше, чем в цепях постоянного тока. Это связано со многими факторами. К примеру, это вихревые токи, которые образуются в цепи, это электромагнитное поле, это близость расположения проводников и так далее. Именно поэтому сопротивление в сетях переменного тока называют активным, а в сетях постоянного тока омическим.

Теперь, что касается реактивной мощностной составляющей. Во-первых, эта величина измеряется в вольт ампер реактивный (вар). Во-вторых, это своеобразная накопительная мощность, которая накапливается в проводниковых сетях, а потом отдается обратно в сеть. Кстати, эта величина может быть положительной или отрицательной.

Причинами появления реактивной составляющей могут быть приборы, которые выдают емкостную или индуктивную нагрузку. Рассчитывают этот показатель вот по этой формуле:

Если рассматривать полезность реактивной мощности, то она не расходуется на прямые нужды потребителя. К примеру, в электрических двигателях она не преобразуется из электрической в механическую. И хотя полезной нагрузки эта мощность не несет, без нее не может быть осуществлена полезная работа. И все же производители стараются данный показатель уменьшить, потому что повышение активной составляющей приводит к снижению реактивной, отсюда и низкий КПД оборудования или сети.

Косинус фи

Как уже было сказано выше, значение косинуса фи в электротехнике – это величина, характеризующая степень линейности нагрузки. Для нее тоже существует формула:

cos
φ
= N
а
/ (√3*U*I).

Что касается величины «cosφ», то ее увеличение преследует несколько целей.

  • Основная цель – экономия потребления электрического тока.
  • Соответственно экономия цветных металлов, которые используются в обмотках электромотора.
  • Максимальное использование полезной мощности агрегата.

Хотелось бы отметить вот какой момент – производственные электрические сети всегда находятся в недогруженном состоянии. Почему? Все дело в том, что не все электродвигатели постоянно работают под нагрузкой. Любой асинхронный двигатель на холостом ходе имеет косинус фи, равный приблизительно значению 0,2. При нагрузке косинус фи увеличивается до 0,85. Почему так происходит? Все опять упирается в активную и реактивную мощности. Первая при холостом ходе мотора приблизительно составляет 30%, вторая 15%. Как только нагрузка на электрический двигатель увеличивается, тут же поднимается активная составляющая, а реактивная снижается практически до нуля. Поэтому основное требование увеличения «cos
φ»
– это работа предприятия с полной нагрузкой.

Мероприятия по увеличению косинуса фи

Чтобы увеличить косинус фи, можно воспользоваться двумя способами:

  • Естественным путем без установки компенсирующих приборов и устройств.
  • Искусственным путем с установкой компенсирующих агрегатов.

Коэффициент мощности общие сведения

Как мы уже знаем из предыдущих лекций по электротехнике электрическая цепь может иметь чисто активную, реактивную и смешанную нагрузку. Угол сдвига между напряжением и током – это и есть угол φ. А косинус фи принято называть коэффициентом мощности.

При чисто активной нагрузке, например при подсоединенной лампы накаливания, косинус фи (cosφ) будет равен единице, так как угол φ равен нулю. При емкостном характере в нагрузке, протекающий ток будет опережать напряжение, а при индуктивной наоборот. Если в электрическую цепь поставить идеальную индуктивность, то угол между протекающим током и напряжением составит 90 градусов.

В рассмотренном выше примере понятие коэффициента мощности возникает из-за индуктивной нагрузки. На практике чисто индуктивная нагрузка невозможна в принципе, должно быть хоть какое-то небольшое активное сопротивление, то есть в реальных условиях нужно рассматривать смешанную нагрузку.

Коэффициент мощности в виде формулы можно записать, как отношение активной мощности (P
) к полной (S
):

Если косинус фи равен единице, то это идеальный показатель при чисто активной нагрузке, cosφ=0,9 считается очень хорошим значением, а на предприятиях пытаются достичь cosφ=0,8.

Чего пытаются достичь повышая косинус «фи»

Повышая коэффициент мощности пытаются добиться следующих основных целей:

Сокращение расходов на электрическую энергию
Экономию цветных металлов за счет уменьшения диаметра медных проводов
Максимум применения заданной мощности трансформаторов, генераторов и электродвигателей переменного тока.

Так, например, от одного и того же трансформатора можно получить больше активной мощности потребителей, при большем значении величины косинуса фи. Так, от трансформатора с номинальной по паспорту мощностью S н =1000 кВа
при соsφ = 0,7 можно достичь активной мощности Р 1 = S н cosφ = 1000 0,7=700 кВт
, а при cosφ = 0,95 активная мощность будет равна Р 2 = S н φ= 1000 0,95 = 950 кВт.

Причем в обоих примерах трансформатор будет нагружен полностью до 1000 кВа. Причиной малого коэффициента мощности на производствах являются недогруженные трансформаторы и асинхронные электродвигатели. Допустим, асинхронный двигатель при ХХ имеет cosφ хх равный 0,2, тогда как при загрузке до своей номинальной мощности его соsφ н = 0,85.

Для наглядности рассмотрим приближенный рисунок треугольника мощности для асинхронного двигателя. При XX асинхронный двигатель потребляет реактивную мощность, равную 30% номинальной мощности, тогда как потребляемая активная мощность составляет около 15%. Коэффициент мощности в данном случае достаточно мал. С ростом нагрузки активная мощность также растет, а реактивная меняется совсем немного и поэтому cosφ возрастает.

Основным мероприятием, повышающим cosφ, является работа совершаемая на полную производственную мощность. В данном случае асинхронные ЭД будут работать с cosφ, близкими к номинальным величинам.

Мероприятия по повышению cosφ можно условно поделить на два основных типа:

К первому типу относятся мероприятия не требующие установки компенсирующих схем
и целесообразные во всех случаях. К ним можно отнести упорядочение технологического процесса, ведущее к улучшению энергетического режима оборудования и повышению cosφ, использование синхронных ЭД вместо асинхронных.
Ко второй группе относятся мероприятия связанные с использованием компенсирующих устройств и схем
(искусственные методы).

Видеоурок по теме коэффициент мощности

Коэффициентом мощности, или «косинусом фи» (cos φ
), цепи называется отношение к полной мощности.

В общем случае активная мощность меньше полной мощности, то есть у этой дроби числитель меньше знаменателя, и поэтому меньше единицы.

Только в случае чисто активной нагрузки, когда вся мощность является активной мощностью, числитель и знаменатель этой дроби равны между собой, и поэтому коэффициент мощности равен единице.

Реактивная энергия потребляется нагрузкой и, если не принимать специальных мер, она будет загружать линию, идущую от генератора к нагрузке. Нельзя лишить реактивной энергии цепь, содержащую индуктивную нагрузку, но разгрузить генератор от реактивной мощности необходимо.

Чем большую часть полной мощности составляет активная мощность, тем меньше числитель отличается от знаменателя дроби и тем ближе коэффициент мощности к единице. Задача состоит в том, чтобы заставить протекать по линии к потребителю только минимально необходимую величину реактивной энергии.

Cos φ
, или коэффициент мощности, измеряется особым прибором фазометром.

Пример 1.
Амперметр показывает ток 10 А, вольтметр — 120 В, ваттметр — 1 кВт. Определить cos φ
потребителя.

S
= I
× U
= 10 × 120 = 1200 ВА,

Пример 2.
Определить активную мощность, отдаваемую генератором однофазного в сеть, если вольтметр на щите генератора показывает 220 В, амперметр — 20 А и фазометр 0,8.

P
= I
× U
× cos φ
= 20 × 220 × 0,8 = 3520 Вт = 3,52 кВт.

Полная мощность.

S
= I
× U
= 20 × 220 = 4400 ВА = 4,4 кВА.

Пример 3.
Вольтметр, установленный на щитке электродвигателя показывает 120 В, амперметр — 450 А, ваттметр — 50 кВт. Определить z
, r
, x L
, S
, cos φ
, Q
.

Так как P
= I
2 × r
, то

S
= I
× U
= 450 × 120 = 54000 ВА = 54 кВА,

Из построения треугольников сопротивлений, напряжений и мощностей для определенной цепи видно, что эти треугольники подобны один другому, так как их стороны пропорциональны. Из каждого треугольника можно найти «косинус фи» цепи, как показано на рисунке 1. Этим можно воспользоваться для решения самых разнообразных задач.

Пример 4.
Определить z
, x L
, U
, U
а, U L
, S
, P
, Q
, если I
= 6 А, r
= 3 Ом, cos φ
= 0,8 и ток отстает от по

Коэффициент мощности — PF (COS φ)

В системе питания переменного тока коэффициент мощности является очень важным параметром, который определяет, насколько эффективно электрическая мощность используется нагрузкой. Это рациональное число от -1 до 1, но без единицы измерения. Коэффициент мощности системы зависит от типа присутствующей нагрузки: резистивной, индуктивной или емкостной. Индуктивная и емкостная нагрузка отрицательно влияют на коэффициент мощности. системы. Низкий коэффициент мощности приводит к увеличению тока, потребляемого нагрузкой.

Определение коэффициента мощности

Коэффициент мощности можно определить как отношение реальной мощности (активной мощности) к полной мощности. Его также можно определить как абсолютное значение косинуса фазового сдвига между напряжением и током в цепи переменного тока. Обозначается греческим алфавитом λ (лямбда).

Коэффициент мощности (λ) = Активная мощность / Полная мощность
= VI.COS φ / VI
= COS φ

«V» — напряжение в вольтах
«I» — ток в амперах
«Φ» — фазовый угол между напряжением и током

Треугольник силы

Активная мощность (кВт)

Это истинная мощность , передаваемая на нагрузку для преобразования энергии.Например, двигатель потребляет истинную мощность из цепи и преобразует ее в механическую энергию, тогда как лампы, с другой стороны, преобразуют ее в свет. Обозначается буквой П.

.

Реактивная мощность (кВт)

Реактивная мощность — это мощность, необходимая для создания магнитного поля в двигателях и трансформаторе, которая оказывает непосредственное влияние на p.f. Обозначается буквой Q.

.

Полная мощность (кВА)

Полная мощность — это произведение напряжения и тока, потребляемых нагрузкой, независимо от их фазового угла.Это комбинация реальной и реактивной мощностей. Обозначается буквой S.

.

Коэффициент мощности Unity

Коэффициент мощности Unity считается идеальным сценарием, при котором полная мощность и активная мощность должны совпадать по фазе. Когда нагрузка является чисто резистивной, ток, протекающий к нагрузке, будет линейным, и, следовательно, фазовый сдвиг между напряжением и током будет равен нулю, а cos Φ будет равен единице.

Опережающий коэффициент мощности

Коэффициент мощности считается опережающим, если полная мощность опережает реальную мощность (истинную мощность), (т.е.д.) напряжение токоведущих проводов. Емкостные нагрузки заставляют ток опережать напряжение, так же как и коэффициент мощности.

Отстающий коэффициент мощности

Коэффициент мощности считается опережающим, если полная мощность отстает от реальной мощности (истинная мощность), (т. Е.) Ток отстает от напряжения. Индуктивные нагрузки приводят к тому, что ток отстает от напряжения, так как p.f.

Расчет коэффициента мощности

Из треугольника мощности:
Коэффициент мощности = Активная мощность / Полная мощность

Также,

Также,

Почему важно улучшение коэффициента мощности?

Повышение коэффициента мощности направлено на оптимальное использование электроэнергии, снижение счетов за электроэнергию и снижение потерь мощности.

  • Силовые трансформаторы не зависят от P.F. Если коэффициент мощности близок к единице, для того же номинала трансформатора в кВА можно подключить больше нагрузки. (Чем лучше коэффициент мощности, тем меньше будет ток).
  • Штрафы энергокомпаний за несоблюдение оптимальных значений п.ф. можно избежать.
  • Оптимальный размер силовых кабелей возможен с учетом коэффициента мощности. Низкая p.f. приводит к более высоким потерям в меди (I 2 R), также большее напряжение должно падать на кабель.

Методы коррекции коэффициента мощности

Схема потока мощности

Большинство силовых нагрузок являются индуктивными, что приводит к отставанию тока от напряжения. Чтобы преодолеть это несколько методов коррекции коэффициента мощности , адаптированы , которые помогают нейтрализовать этот запаздывающий ток. Самый распространенный P.F. Метод коррекции — использование статических конденсаторов параллельно нагрузке. Статические конденсаторы подают ток в систему и уменьшают задержку. Конденсаторные батареи подключаются параллельно индуктивным нагрузкам.Эти конденсаторы переключаются с помощью контактора в зависимости от требований. Статические компенсаторы VAR также используются для p.f. исправление. Это силовая электронная версия компенсаторов реактивной мощности, в которой вместо контакторов используются тиристоры для переключения конденсаторов.

Другие методы коррекции коэффициента мощности включают подключение синхронных компенсаторов параллельно нагрузке. Это синхронные двигатели, работающие без нагрузки. Когда синхронный двигатель перевозбужден и работает без нагрузки, он действует как конденсатор и подает реактивную мощность в сеть. Синхронные компенсаторы подключаются параллельно нагрузке.

Расчет коррекции коэффициента мощности

Соответствующая мера по коррекции коэффициента мощности должна быть принята для поддержания требуемого коэффициента мощности системы. В большинстве случаев инженеры выбирают конденсаторные батареи для p.f. исправление. Вот как требуется конденсатор для п.ф. исправление определено:

Мы можем измерить напряжение питания с помощью вольтметра и ток, потребляемый нагрузкой, с помощью амперметра.На основе этих данных мы можем рассчитать текущую p.f., полную мощность и реактивную мощность, потребляемую нагрузкой, используя приведенные ниже формулы.

Полная мощность = V x I (Измерено с помощью амперметра и вольтметра)
Фактический коэффициент мощности = Нагрузка, кВт (активная мощность) / Полная мощность

Из треугольника мощности:

Реактивная мощность (кВАр) = Кв.р. ((Полная мощность, кВА) 2 — (Фактическая мощность, кВт) 2 )

А,

Из приведенного выше уравнения

Расчет размера конденсатора, используемого для достижения единичного коэффициента мощности, можно рассчитать следующим образом:

Следовательно,

Где,

C — значение емкости в фарадах

F — частота питания

Xc — емкостное реактивное сопротивление.

Важность коэффициента мощности / Значение коэффициента мощности.

Активная мощность (истинная мощность) выражается как:

P = VI.Cos Φ

Для данной нагрузки P всегда должно быть постоянным, и напряжение, подаваемое от источника V, также должно быть постоянным. Параметры I и Cos Φ взаимозависимы. Например, если значение Cos Φ равно единице, то ток, потребляемый нагрузкой от источника, должен быть:

А если п.ф. Cos Φ меньше единицы, скажем «0».8 ’, то ток, потребляемый нагрузкой от источника, должен быть:

Из выражений 1 и 2 видно, что при передаче того же количества мощности P при меньшей p.f. ток значительно увеличился. Следовательно, для постоянной нагрузки при постоянном напряжении ток, отводимый от источника, обратно пропорционален коэффициенту мощности.

Увеличение тока напрямую влияет на стоимость производства электроэнергии, а также увеличивает потери при передаче.Проводник, используемый в оборудовании, предназначен для пропускания через него определенного количества тока. При низком коэффициенте мощности источника питания к оборудованию может протекать больший ток, что может привести к его повреждению или сокращению срока службы.

Коммунальные предприятия налагают огромные штрафы на коммерческих потребителей, у которых есть п.ф. ниже определенного уровня. Следовательно, очень важно поддерживать коэффициент мощности на определенном уровне для эффективного использования мощности.

Влияние ведущего коэффициента мощности на электрическую систему

Влияние «опережающего» коэффициента мощности на энергосистему заключается в увеличении емкостной мощности.Это зависит от того, анализируете ли вы источник (генератор) или нагрузку. Если нагрузка имеет емкостные свойства, ее можно использовать для компенсации индуктивной реактивной мощности, но не с таким большим коэффициентом мощности. Обычно это делается путем установки конденсаторов (параллельно или последовательно), и они имеют очень низкое сопротивление относительно их реактивного сопротивления и очень близко к 0.

Рассматривая генератор, изменяя его ток возбуждения, можно также заставить его работать как компенсатор. Есть даже специальные станки, предназначенные для компенсационных работ.

Компенсация (как конденсаторами, так и компенсаторами) позволяет питать индуктивные нагрузки (например, двигатели) без потерь при передаче. Нам не нужно передавать индуктивную мощность на нагрузку.

Отвечая на вопрос, как долго: это устойчивое состояние, поэтому не имеет значения, как долго PF может быть с таким значением. Если нагрузка изменится или будет изменена топология сети, этот PF тоже может измениться.

При расчете активной мощности вам не нужно знать, какой тип реактивной мощности вы принимаете / получаете.Уравнение для активной мощности: $$ P = Re (S) = | S | \ cos \ phi $$, где $$ \ cos \ phi = -0.95 $$
ваш коэффициент мощности.

В этом случае, однако, отрицательный коэффициент мощности означает, что активная мощность также отрицательна. Когда вы рассматриваете нагрузку, это означает, что нагрузка передает энергию в систему, поэтому она работает как генератор. Если вы рассмотрите генератор, отрицательная активная мощность означает, что он работает как нагрузка, поэтому он забирает энергию из системы. Фактически это может произойти в одном-единственном состоянии, когда турбина генератора вышла из строя и вращение ротора создается вращающимся магнитным полем системы (генератор работает как двигатель, а он вращает турбину).

Полная мощность никогда не будет меньше активной и реактивной мощности. Поскольку это комплексные числа, мы не можем сказать, какое из них больше. Знак минус на вашем измерителе означает, что коэффициент мощности, который рассчитывается как косинус угла вектора тока, относящегося к вектору напряжения, находится в некотором противодействии (поэтому он течет в противоположном направлении), поэтому мощность есть.

отбор проб — Измерение коэффициента мощности на синусоидах

Я не уверен, что это лучший форум для этого или stackoverflow может быть не лучше, но я спрошу здесь и посмотрю, что думают люди.

У меня есть система измерения напряжения 50 Гц и токов на частоте 1 кГц. Я использую квадратурную демодуляцию, чтобы измерить фазовый сдвиг и вычислить на его основе cos (φ) , а также вычислить активную и среднеквадратичную мощность и на основании них сделать вывод cos (φ) . Эти вычисления выполняются на отрезках данных в одну секунду.

Я приложу пример кода Python ниже, но в основном метод выглядит так:

  • Умножьте временные ряды мгновенного напряжения и тока вместе, чтобы получить мгновенную мощность, p_inst .
  • Интегрируйте p_inst (используя трапециевидное интегрирование) и разделите на временную длину среза данных, чтобы получить активную мощность, p_act .
  • Возведите в квадрат каждую выборку в p_inst , возьмите среднее значение p_inst ** 2 по временным рядам, а затем извлеките квадратный корень из этого значения, чтобы получить среднеквадратичную мощность, p_rms .
  • Рассчитайте коэффициент мощности, pf = p_act / p_rms .
  • Используя метод обнаружения перехода через нуль, оцените частоту сигнала напряжения.
  • Сгенерировать квадратурные опорные сигналы на этой частоте (т.е. cos (2πft) , sin (2πft) ).
  • Умножьте напряжение на каждый из опорных сигналов и проинтегрируйте (опять же трапециевидное приближение) каждый из результирующих временных рядов, получив в результате v_cos и v_sin . Фазовый угол сигнала напряжения, v_phi , по отношению к некоторой произвольной ссылке, затем atan2 (v_sin, v_cos) .
  • Повторите предыдущий шаг для текущего.Фазовое отставание тока относительно напряжения тогда составляет φ = v_phi - i_phi .
  • Моя вторая оценка коэффициента мощности тогда cos (φ) .

Для синусоидального сигнала с запаздыванием по фазе 30 градусов правильное значение cos (φ) составляет приблизительно 0,86602540378443871. Метод квадратурной демодуляции дает очень хорошее приближение 0,86636025346085943. Но метод отношения мощностей дает очень неверную оценку — 0,77542956418409648. Это эквивалентно погрешности угла сдвига почти в десять градусов.

Сначала я предположил, что я ошибся в квадратурной демодуляции (что является более сложным вычислением), но это дает правильный ответ. Затем я предположил, что сигнал был сильно несинусоидальным, и это могло бы объяснить разницу, но приведенный ниже код выполняет те же вычисления для идеальных синусоид.

Что я здесь не так?

Полный код Python, демонстрирующий проблему:

  импортировать numpy как np, pandas как pd
из импорта matplotlib.pyplot *

t = np.аранж (0, 600, 0,001)
t_rad = 2 * np.pi * 50 * t
phi = 30 * np.pi / 180

v = 230 * np.sin (t_рад)
i = 200 * np.sin (t_rad + phi)

p_inst = v * я

data = pd.DataFrame (np.array ([t, v, i, p_inst]). transpose (), columns = ['t', 'v', 'i', 'p_inst'], index = t)

def gen_act (x):
    return np.trapz (x.p_inst, x = x.index) / (x.index [-1] - x.index [0])

def gen_rms (x):
    вернуть np.sqrt (np.mean (x.p_inst ** 2))

second_bins = data.groupby (лямбда x: int (x))
p_act = second_bins.apply (gen_act)
p_rms = second_bins.apply (gen_rms)

def оценка_frequency (t, v):
    т = т.значения
    v = v.значения
    пытаться:
        zero_crossings = np.where (np.diff (np.sign (v))> 0,5) [0]
        diffs = np.diff (t [zero_crossings])
        аккумулятор_интервалы = np.copy (различия)
        аккумулятор_interval = 0
        ii = 0
        для ii в диапазоне (len (аккумулятор_интервалы)):
            аккумулятор_интервал + = различия [ii]
            аккумулятор_интервалы [ii] = интервал_акопления
            если аккумулятор_интервал> = 0,01:
                аккумулятор_interval = 0

        zero_crossings = zero_crossings [np.hstack ([np.where (период_накопления> 0.01) [0], -1])]
        заканчивается = zero_crossings [[0, -1]]
        частота = (len (zero_crossings) - 1) / (t [заканчивается [1]] - t [заканчивается [0]])
        частота возврата
    Кроме:
        возврат с плавающей запятой ('NaN')

def generate_reference_signals (t, f):
    freq = np.mean (f)
    если np.isnan (freq):
        return None
    x = t * 2 * np.pi * частота
    вернуть np.sin (x), np.cos (x)

def Estimation_phi (t, v, i, refs):
    def angle_from_refs (t, x, refs):
        s_i = np.trapz (x * ссылка [0], t)
        c_i = np.trapz (x * ссылка [1], t)
        вернуть нп.arctan2 (c_i, s_i)

    angle = angle_from_refs (t, i, refs) - angle_from_refs (t, v, refs)
    в то время как угол> np.pi:
        угол - = 2 * np.pi
    угол возврата

def gen_phi (x):
    f = оценка_частота (x.t, x.v)
    refs = generate_reference_signals (x.t, f)
    вернуть оценку_phi (x.t, x.v, x.i, refs)

phi = second_bins.apply (gen_phi)
cos_phi = np.cos (фи)
pf = p_act / p_rms

print ('Коэффициент мощности, рассчитанный на основе квадратурной демодуляции: {}'. format (np.mean (cos_phi)))
print ('Коэффициент мощности, рассчитанный на основе измеренной мощности: {}'.формат (np.mean (pf)))
print ('Истинный коэффициент мощности: {}'. format (np.cos (30 * np.pi / 180)))
  

Что такое cos φ? — Worldpowerfaqs

Детали
Категория: Теоретическое объяснение

Простое представление
Мы можем изобразить это тележкой на железной дороге.Спереди к нему привязана веревка. Если вы встанете перед минной тележкой и потянете за веревку, тележка поедет вперед по рельсам. Если вы встанете рядом с рельсами и потянете за веревку, вы заметите, что для того, чтобы тянуть тележку, требуется больше силы. Вы тянете веревку под углом, этот угол можно сравнить с углом «фи» (φ). Чем шире угол, тем труднее тащить минную тележку с той же скоростью. Следовательно, вам придется использовать больше мощности по мере увеличения угла.

Теоретическое представление
Cos phi — это коэффициент мощности.Это соотношение активной и полной мощности.

При переменном напряжении полная мощность S (в ВА) индуктивной нагрузки больше, чем активная мощность P (в Вт), которая фактически используется нагрузкой.

Cos phi равняется активной мощности P, деленной на полную мощность S.
cos φ = P / S

Примеры:

    1. Активные нагрузки:

Лампы накаливания и нагревательные элементы cos φ = 1

    1. Индуктивные нагрузки:

Электроинструмент ручной cos φ ~ 0.97
Электродвигатели cos φ = 0,7 — 0,8
Люминесцентные лампы, сварочный трансформатор cos φ ~ 0,5

Перечень приборов

% PDF-1.5
%
4 0 obj
>
эндобдж

xref
4 92
0000000016 00000 н.
0000002456 00000 н.
0000002552 00000 н.
0000003170 00000 н.
0000003551 00000 н.
0000003595 00000 н.
0000003639 00000 н.
0000003674 00000 н.
0000005003 00000 н.
0000005446 00000 н.
0000005582 00000 н.
0000008230 00000 н.
0000008848 00000 н.
0000009471 00000 н.
0000009594 00000 н.
0000009707 00000 н.
0000009830 00000 н.
0000009941 00000 н.
0000010056 00000 п.
0000010169 00000 п.
0000010238 00000 п.
0000010337 00000 п.
0000016968 00000 п.
0000017236 00000 п.
0000017533 00000 п.
0000017558 00000 п.
0000017975 00000 п.
0000024600 00000 п.
0000024853 00000 п.
0000025228 00000 п.
0000033916 00000 п.
0000034171 00000 п.
0000034666 00000 п.
0000034739 00000 п.
0000035041 00000 п.
0000035114 00000 п.
0000035421 00000 п.
0000035494 00000 п.
0000037500 00000 п.
0000039895 00000 п.
0000040270 00000 п.
0000040343 00000 п.
0000040650 00000 п.
0000040723 00000 п.
0000040753 00000 п.
0000040826 00000 п.
0000070265 00000 п.
0000070586 00000 п.
0000070649 00000 п.
0000070763 00000 п.
0000070836 00000 п.
0000070948 00000 п.
0000071237 00000 п.
0000071513 00000 п.
0000071586 00000 п.
0000071616 00000 п.
0000071689 00000 п.
0000073695 00000 п.
0000074361 00000 п.
0000074686 00000 п.
0000074749 00000 п.
0000074864 00000 н.
0000076870 00000 п.
0000078876 00000 п.
0000079542 00000 п.
0000083713 00000 п.
0000084064 00000 п.
0000084137 00000 п.
0000085929 00000 п.
0000086002 00000 п.
0000087795 00000 п.
0000087868 00000 п.
0000089874 00000 п.
0000094704 00000 п.
0000095047 00000 п.
0000095120 00000 п.
0000097126 00000 п.
0000101620 00000 н.
0000102000 00000 н.
0000102073 00000 н.
0000104079 00000 п.
0000106499 00000 н.
0000106869 00000 н.
0000108523 00000 н.
0000110177 00000 н.
0000114998 00000 н.
0000276865 00000 н.
0000278519 00000 н.
0000280173 00000 п.
0000285036 00000 н.
0000450022 00000 н.
0000002136 00000 п.
трейлер
] / Назад 453036 >>
startxref
0
%% EOF

95 0 объект
> поток
hb«d`vE01! $ H (f`Oqs`af`jl«g? * d0`ԐρB: elFQ24>

Формулы для расчета коэффициента мощности — RF Cafe

Коэффициент мощности измеряет фазовый угол между мгновенным напряжением и мгновенным током в цепи.Напряжение ( E ) отводит ток ( I ) на 90 ° по индуктивной ( L ) цепи
и напряжение ( E ) отстает от тока ( I ) на 90 ° в емкостной ( C ) цепи.

Популярным мнемоником является ELI человек ICE , так как E ведет (идет впереди) I в
ELI, а E отстает (идет после) I в ICE.

коэффициент мощности (P f ) = cos (q)
Полная мощность (P) = I * В
Истинная мощность = P
I = Ток
q = Фазовый угол
В = Напряжение
Формулы мощности
Полная мощность
P = I * V
P = I 2
* R
P = V 2 / R
Истинная мощность
P = I * V * cos (q)
P
= I 2 * Z * cos (q)
P = V 2 * cos (q) / Z
P = P a * P f
Импеданс
Z = V 2 * cos (q)
/ P
Z = P / [I 2 * cos (q)]
Ток
I = P / [V * cos (q)]
I = sqrt {P
/ [Z * cos (q)]}
Напряжение
В = P / [I * cos (q)]
В = sqrt [P
* Z / cos (q)]

где

P = мощность в ваттах
V = напряжение в вольтах
I = ток в амперах
R = сопротивление
в Ом (Ом)
Z = полное сопротивление в Ом (Ом)
q = фазовый угол между I и V в градусах
P a
= полная мощность в вольт · амперах (ВА)
P f = коэффициент мощности

Фактор мощности | электрическаялегкость.com

Энергия нужна и используется повсюду в мире. С точки зрения удобства, эффективности и экономии, лучше всего, чтобы мы генерировали, передавали и распространяли его в электрической форме, прежде чем он будет преобразован в требуемый с помощью подходящего оборудования. По тем же причинам экономии и эффективности мы используем переменный ток, а не постоянный ток. На практике мы производим, передаем и распределяем энергию почти исключительно в форме переменного тока. Постоянный ток используется либо в приложениях постоянного тока (машины постоянного тока и электронные схемы), либо в линиях передачи постоянного тока высокого напряжения.

Везде, где используется питание переменного тока, возникает вопрос о коэффициенте мощности.

Коэффициент мощности

  • Определяется как « косинус угла между напряжением и током ».
  • В цепи переменного тока напряжение и ток идеально совпадают по фазе.
  • Но практически между ними существует разность фаз.
  • Косинус этой разности фаз называется коэффициентом мощности.
  • Его можно определить и математически представить следующим образом:

Из рис.(a) выше, можно ясно отметить, что существует разность фаз угла между вектором напряжения и вектором тока.
Коэффициент мощности = cosɸ

Рис. (b) называется Power Triangle
Здесь VI sinɸ = реактивная мощность (в ВАр)
VI cosɸ = активная мощность (в ваттах)
VI = полная мощность (в ВА)
PF = cosɸ = активная мощность ( Вт) / Полная мощность (ВА)

Рис. (c) называется треугольником импеданса
Здесь R = сопротивление, X = реактивное сопротивление, Z = импеданс
Z 2 = R 2 + X 2
PF = cosɸ = R / Z

Коэффициент мощности может быть запаздывающим, опережающим или единичным.

Отстающий коэффициент мощности

  • Когда ток отстает от напряжения, коэффициент мощности цепи называется «запаздывающим».
  • Когда цепь индуктивная, коэффициент мощности отстает.
  • Нагрузки, такие как асинхронные двигатели, катушки, лампы и т. Д., Являются индуктивными и имеют запаздывание pf.

Ведущий коэффициент мощности

  • Когда ток опережает напряжение (или напряжение отстает от тока), коэффициент мощности цепи называется опережающим.
  • Когда цепь емкостная, опережает pf.
  • Емкостные нагрузки, такие как синхронные конденсаторы, конденсаторные батареи и т. Д., Потребляют опережающий ток. Такие схемы имеют опережающий коэффициент мощности.

Коэффициент мощности Unity

  • Коэффициент мощности равен единице (т.е. 1) для идеальных цепей.
  • Когда ток и напряжение совпадают по фазе, PF = 1
  • Коэффициент мощности не может быть больше единицы.
  • Практически он должен быть максимально приближен к единице.

Если коэффициент мощности низкий, возникают следующие проблемы:

Влияние низкого коэффициента мощности

  1. Ток нагрузки
    Мощность в цепи переменного тока может быть задана как: P = VI cosɸ
    Следовательно, cosɸ = P / VI
    I ∝ 1 / cosɸ
    Аналогичное соотношение может быть получено и для трехфазной цепи. Мы видим, что ток обратно пропорционален pf.

    Например, предположим, что мы хотим передать мощность 10 кВА при 100 В
    Если PF = 1,
    I = P / (V cosɸ) = 10000 / (100 x 1) = 100 A
    Если PF = 0 .8,
    I = P / (V cosɸ) = 10000 / (100 x 0,8) = 125 A
    Следовательно, потребляемый ток выше при низком коэффициенте мощности.

  2. Потери: Как указано выше, для низкого pf потребляемый ток будет большим. Следовательно, потери в меди (потери I 2 R) также будут высокими. Это снижает эффективность оборудования.
  3. Перегрев оборудования: I 2 R при потерях выделяется тепло (закон Джоуля). Следовательно, повышение температуры будет относительно большим при низком коэффициенте мощности, что приведет к дальнейшему увеличению нагрузки на изоляцию.
  4. Размер проводника: Низкий коэффициент мощности приводит к увеличению тока нагрузки. Если ток нагрузки увеличивается, размер необходимого проводника также увеличивается. Это еще больше увеличит стоимость кондуктора.
  5. кВА Номинальная мощность машины: Машины не рассчитываются в кВт при производстве, потому что коэффициент мощности источника питания неизвестен. Вместо этого они оцениваются в кВА.
    Согласно определению, Cosɸ = Активная мощность (кВт) / Полная мощность (кВА).
    Следовательно, номинальная мощность в кВА = 1 / cos13
    Следовательно, для низкого коэффициента мощности необходимо оборудование с большей номинальной мощностью кВА.Но чем выше рейтинг кВА, тем больше размер оборудования. Если размер увеличивается, увеличивается и стоимость.
  6. Регулировка напряжения: Определяется как разница между конечным напряжением отправки и приема на единицу конечного напряжения отправки. Когда мощность передается с одного конца на другой, напряжение падает по нескольким причинам. Это падение напряжения должно быть в допустимых пределах.
    P = VI cosɸ, поэтому I 1 / V
    При низком коэффициенте мощности ток будет больше и, следовательно, будет увеличиваться падение напряжения.Следовательно, регулирование напряжения при низком коэффициенте мощности плохое.
  7. Активная и реактивная мощность (передаваемая мощность): Активная и реактивная мощность передаются по линии вместе. Для питания нагрузки требуется активная мощность. Реактивная мощность необходима для поддержания напряжения в линии. Но если реактивная мощность больше, то передаваемая активная мощность уменьшается. Для низкого коэффициента мощности активная мощность мала, поскольку cosɸ = активная мощность (Вт) / полная мощность (ВА). Это приводит к неэкономичной работе.

Это результат низкого коэффициента мощности. Для оптимальной производительности коэффициент мощности должен быть как можно ближе к единице. Для этого используется оборудование для коррекции коэффициента мощности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *