очередная история вопроса / Блог компании Medgadgets / Хабр
Сегодня мы предлагаем вам очередную заметку из рубрики, «как это было», в рамках которой мы уже коротко знакомили вас с историей возникновения шагомера, проблемой изучения феномена осознанных сновидений, настоящим «автором» электронной сигареты, а также большой историей изучения человеческого мозга.
На этот раз мы предлагаем историю измерения кровяного давления, благо она короткая: впервые давление измерили в 1733 году, и внутри мы расскажем о том, кто это сделал.
Кровяное давление можно измерять прямым путем или «непрямым», и к последнему относятся все неинвазивные методы, самыми распространенными из которых и наиболее «цитируемыми» являются цифровые и механические тонометры. Тем не менее, учитывая определенное увлечение этой «метрикой» среди производителей носимых гаджетов, груши и манжеты — уже не монополисты.
На страницах нашего блога вы могли читать обзор трекера W/me2, видеть подборку современных гаджетов, которые умеют или могли бы уметь делать замеры. Слухи про вторую модель Apple Watch систематически наделяют новые часы датчиком давления, а лидер рынка Fitbit еще в прошлом году заверил устами генерального директора, что добавит возможность мониторить давления в текущем году. Так или иначе, это все методы «не классические»
Что будет в будущем, конечно, никто из нас толком не знает, а вот немного заглянуть в прошлое мы посмели. Итак, впервые кровяное давление было измерено Стивеном Хейлсом. Тот самый случай, когда медицина и религия успешно «уживались» в одной голове и не мешали друг другу.
Богослов и естествоиспытатель родился в 1677 году в многодетной семье. Обучался теологии и естественным наукам, после чего отправлял должность викария в одном из графств.
Впрочем, запомнился он отнюдь не как философ или теоретик христианства, но как ученый естествоиспытатель, с чьим именем связано несколько крупных открытий в ботанике, ряд изобретений, а также первые опыты по измерению давления. Этим опытам посвящена вторая часть его книги «Statical Essays», где приведены описания экспериментов и таблицы впервые получаемых данных.
Надо непременно уточнить, что первые опыты со вставкой трубки в сосуды для определения того, на какую высоту поднимается кровь, производились, конечно, не на людях, за что, кстати, Хейлса критиковали, в том числе и известные современники. Одним из них был поэт Александр Поуп, страстный любитель собак.
Сохранилось изображение одного из первых опытов Хейлса, который он проводил на лошадях:
Так или иначе этот «живодерский» подход наделил Хейлса званием первого человека, который измерил кровяное давление, а «Гемостатика», книга из второй части «Statical Essays» — памятник об этом и тому доказательство. Свои эксперименты Хейлс проводил примерно с 1709 года.
Кстати, в первой части автор рассуждает о роли воздуха в жизни животных и растений, обращает внимание на способности корней некоторых образцов весьма избирательно поглощать минеральные вещества из почвы, рассуждает о качестве воздуха и влиянии его на продолжительность жизни. Эти наблюдения побудили его изобрести вентилятор!
И тогда же его начали применять в тюрьмах, на заводах, в портах, что существенно (по тем меркам) повысило продолжительность жизни работников и отбывающих наказание преступников.
Прошло 100 лет…
Надо сказать, что открытые Хейлсом возможности не сразу нашли применение в клинической медицине, и прошло почти сто лет, прежде чем опыты по измерению кровяного давления были продолжены. Продолжил же их физик Жан Луи Мари Пуазёйль.
Его вклад в гемодинамику неотрывен от физических экспериментов, и одни из них подталкивали другие. Так, в результате исследований был сформулирован закон, носящий его имя, как и одно из ламинарных течений.
Его исследования в области истечения жидкости через тонкую цилиндрическую трубку получили широкое применение для определения вязкости и скорости течения в капиллярах. Впервые для определения давления воспользовался ртутным манометром, U-образным «девайсом», который помог ему зафиксировать давление в том числе и у человека. Произошло это во время ампутации бедра, и выражалось как 120 мм. рт. ст. Собственно, традиция «ртутного столба» берет свои корни именно от ртутного манометра Пуазёйля. Открытия ученого, связанные с медициной, пришлись на конец 30-х годов 19 века.
Его «U» усовершенствовал выдающийся физиолог Карл Людвиг, которому принадлежит масса важных открытий в медицине, в том числе и в области сердечно-сосудистых заболеваний, нервной системы и т. п.
Давление он предлагал измерять с помощью кимографа. Так он назвал свой «гаджет», который по сути являл собой усовершенствованный ртутный манометр и позволял графически оформлять и регистрировать результаты давления в разных условиях.
Так как в основе был ртутный манометр, использованный Пуазёйлем, то метод Людвига был также инвазивным, и одна из сторон трубки, погружаемой в артерию, закреплялась в ней с помощью катетера. Опыты на животных позволили обнаружить ряд закономерностей между дыхательными процессами и давлением крови. Позднее появился еще один прибор — «кровяные часы Людвига» для измерения регионарного кровотока и сердечного выброса. Это было около 1847 года.
Эти опыты, в отличие от чисто научных экспериментов того же Хейлса, уже могли применяться в медицине, однако клиническую практику методы измерения смогли пополнить позднее, тогда, когда появились первые возможности неинвазивного измерения. Они связаны с именем Карла Вирордта, который также работал в середине 19 века.
Он работал над методами измерения кровотока, в результате чего предложил прибор, который был назван сфигмограф и положил начало сфигмографии как методу в медицине. Ученый базирует свой метод измерения на гипотезе, что косвенно давление может быть измерено путем «противодавления» при котором прекращается пульсация. И первые записанные им показания перед вами:
Собственно, эта идея с пульсацией, или биением, в процессе измерения давления актуальна и поныне.
Над усовершенствованием устройства Вирордта работал Этьен-Жюль Марэ, который известен и как физиолог, и как кардиолог, и как фотограф, который положил начало целому направлению — хронофотографии.
Марэ ввел в клиническую медицину первый сфигмограф, который разрабатывался совместно с часовщиками «Бреге», а также методом плетизмографии попытался получить данные о давлении.
Его работа «Давление и скорость потока крови» вышла в 1876 году, где он описал принцип расслабления артериальной стенки, и добился на своем аппарате впервые двух цифр: систолического и диастолического давления.
После измерения давления методом помещения руки в стеклянную колбу, то есть методом Марэ, возник еще один, похожий, но улучшенный. Его предложил Самуэль Зигфрид Карл Риттер фон Баш. В 1881 году он заменяет колбу на резиновый мешочек с водой, который уже обматывается вокруг руки. Но при том, что этот метод уже напоминает как бы современные тонометры, показывал он только верхнее, систолическое давление.
Прибор Баша модернизирует, еще более уподобляя современным, знаменитый кардиолог Пьер Потэн, который в 1899 году меняет воду в резиновом мешочке на воздух, который также, оказывая давление на руку меняет «положение» ртути в сфигмоманометре, регистрируя верхнее давление.
Полую резиновую манжету для измерения давления использовал и Густав Гартнер, однако созданное им изобретение он впервые назвал иначе. Так он ввел в обиход термин «тонометр», и именно так по сей день мы и называем приборы с аналогичным назначением.
Несколькими годами ранее, в 1896 году появился новый метод при старом названии оборудования. Его появление связано с именем Рива-Роччи.
Суть его метода заключалась в следующем. В резиновую шину, опоясывающую руку, нагнетался воздух, и показания ртутного столба, при которых прекращалась пульсация, соответствовали систолическому давлению. Затем воздух постепенно выпускался, и возвращение пульсации фиксировалось как диастолическое давление.
Изобретение Рива-Роччи без посягательства на метод слегка модернизировал немецкий врач Генрих фон Реклингхаузен, заменив ртутную шкалу пружинной, а резиновую шину манжетой, близкой к нынешним.
Метод Короткова
Этот метод используется и сейчас в клинической практике во всем мире. Открыл его в 1905 году российский военный врач, заслышав шумы, которые возникают при накачивании грушей манжеты. Получилось это по воле случая, поэтому теоретическими обоснованиями данный метод обязан другому профессору, фамилия которого одно время стояла рядом в сочетании «Метод Коротково-Яновского».
Согласно этой механике, уровень давления в манжете, зафиксированный во время первого шума, показывает верхнее давление. Когда же постепенно кровоток выравнивается, и звуки пропадают, фиксируется давление диастолическое.
Дальнейшее развитие возможностей измерения давления связано уже скорее с созданием и совершенствований новых аппаратов, тонометров и других девайсов, и все основные фамилии практиков перечислены.
Спасибо за внимание.
Что такое артериальная гипертензия, симптомы и лечение болезни. Артериальное давление
Многие всё чаще слышат от близких про «высокое давление» и «гипертонию», а тонометр стал обязательным атрибутом в каждом доме. Сердечно-сосудистые заболевания, инфаркты и инсульты, предвестником которых является повышенное артериальное давление, занимают первое место среди причин смерти людей трудоспособного возраста. Это делает проблему ранней диагностики и разработки новых методов лечения артериальной гипертензии не только медицинской, но и острой социальной проблемой. В этой статье поговорим о причинах, симптомах, формах и принципах терапии этого заболевания.
Что такое артериальная гипертензия
Артериальная гипертензия — самая распространенная болезнь сердечно-сосудистой системы, связанная со стойким повышением систолического давления до 140 и выше мм рт. ст., а диастолического — до 90 и выше.
Систолическое давление — это давление крови в крупных сосудах в момент сокращения левого желудочка сердца, а диастолическое — давление, поддерживаемое тонусом стенок сосудов во время расслабления желудочка.
Синдром повышенного давления ставится на основании трех произведенных в спокойной обстановке измерений. Главное условие — чтобы человек не принимал накануне никаких препаратов, влияющих на давление. Для постановки диагноза, особенно при обследовании пожилых людей, достаточно, чтобы было постоянно повышенным только систолическое давление (его ещё называют «сердечным»).
По данным ВОЗ, артериальная гипертензия — самое распространенное в мире заболевание кардиологического профиля, им страдают 30-45% населения. На уровень заболеваемости не влияют ни доход, ни климат, ни общее социально-экономическое положение страны. Патология чаще диагностируется у мужчин, после 60 лет она отмечается у 60% людей. Специалисты ВОЗ прогнозируют дальнейший рост показателя распространенности артериальной гипертензии в связи с увеличением продолжительности жизни и старением населения всех стран. По прогнозам число людей, страдающих от повышенного давления, достигнет к 2025 году 1,5 млрд.
Классификация
Артериальная гипертензия (АГ) классифицируется по различным признакам:
- степень повышения давления;
- тяжесть поражения органов-мишеней, т.е. органов и систем, максимально страдающих от повышенного давления;
- причина появления и развития патологии.
Классификация по уровню артериального давления (АД) выделяет несколько стадий артериальной гипертензии:
- оптимальным считается АД, не превышающее 120/80 мм рт. ст., но если АД находится в пределах 139/89, это считается нормой;
- 1-я степень патологии — до 159/99;
- 2-я степень — до 179/109;
- 3-я степень (тяжелая) — выше 180/110.
По причинам развития заболевания различают первичную и вторичную артериальную гипертензию. Первичная АГ называется также эссенциальной гипертензией или гипертонической болезнью. Среди всех случаев АГ на долю этого вида приходится 95% диагностированных случаев. При вторичной (симптоматической) АГ повышение артериального давления — это следствие патологии других органов и систем организма, например, воспалительных заболеваний почек, эндокринных нарушений или проблем с центральной нервной системой (ЦНС).
Причины развития
Причины развития артериальной гипертензии до сих пор до конца не ясны. Основная теория ее происхождения предполагает, что на сердечно-сосудистую систему влияет нарушение регуляторной деятельности высших отделов ЦНС. Факторы риска развития патологии:
- Наследственная предрасположенность. Риск развития АГ связан с наличием у ближайших родственников проблем с сердцем: перенесенные инфаркты, ранняя смерть, сердечная недостаточность.
- Длительные стрессы, некомфортные условия труда, умственное перенапряжение.
- Неправильное питание, избыточное количество соли в диете. В сочетании с генетической предрасположенностью потребление соли более чем 5 г в сутки, значительно повышает риск развития АГ, так как соль задерживает в организме жидкость и вызывает спазм сосудов.
- Сидячий образ жизни, отсутствие физической активности.
- Наличие у человека эндокринных заболеваний: сахарного диабета, патологии щитовидной железы и надпочечников.
- Повышенный уровень холестерина в крови.Из-за этого сужается просвет артерий и повышается давление крови на стенки сосудов.
- Лишний вес и ожирение.
- Вредные привычки. Курение сужает сосуды и повышает активности центральной нервной системы. Злоупотребление алкоголем повышает нагрузку на почки.
- У женщин — гормональная перестройка организма в период климакса.
- Возраст и пол. После 60 лет артериальная гипертензия встречается у половины населения, но у мужчин до 40 лет заболевание диагностируют чаще.
- Неблагоприятная экологическая обстановка, наличие в регионе проживания вредных производств.
- Недостаток в организме калия и магния, участвующих во многих физико-химических процессах и влияющих на эластичность стенок сосудов.
Важно! Артериальная гипертензия все чаще диагностируется у молодых людей до 30 лет. Эта тенденция ведет к росту смертности от сердечно-сосудистых заболеваний в репродуктивном возрасте. Необходимо регулярно измерять артериальное давление и обращаться к врачу даже при незначительном, но стойком его повышении.
Вторичная АГ может развиться вследствие приема некоторых лекарственных препаратов.
Рисунок 1. Как отличаются сосуды у людей с артериальной гипертензией (гипертонией) от сосудов людей без заболевания. Источник: СС0 Public Domain
Формы артериальной гипертензии
Правильное определение формы артериальной гипертензии играет решающую роль в предупреждении развития опасных осложнений и выборе оптимальной терапевтической тактики. Особенно это касается вторичной АГ как следствия дисфункции некоторых отдельных органов и систем организма.
Нефрогенные паренхиматозные артериальные гипертензии
Чаще всего причина вторичной артериальной гипертензии — заболевание почек. Давление может повышаться при пиелонефрите, нефропатиях различной природы, опухолях, туберкулезном поражении почек и других почечных патологиях.
Эта форма гипертензий чаще встречается у более молодых людей. Для нее характерно нормальное давление на начальной стадии заболевания. Развитие заболевания и выраженное поражение тканей вызывают повышение артериального давления на фоне хронической почечной недостаточности.
Нефрогенные реноваскулярные артериальные гипертензии
Причина реноваскулярной АГ — нарушение артериального почечного кровотока, в большинстве наблюдений обусловленного атеросклерозом почечных артерий. Стойкое повышение давление развивается при сужении просвета почечной артерии более чем на 70%. Характерный признак данной формы АГ — повышение давления до 160/100 мм рт. ст. и выше.
Заболевание обычно начинается остро, при этом давление не удается сбить гипотензивными препаратами.
При ультразвуковом исследовании определяют асимметрию почек и нарушение магистрального кровотока. Болезнь часто приводит к инфаркту миокарда и инсульту. При отсутствии адекватной терапии выживаемость в ближайшие 5 лет прогнозируют только 30% людей.
Феохромоцитома
Эта АГ, причиной которой является гормонально активное новообразование надпочечников, встречается примерно в 0,3% симптоматических гипертензий. Периодический выброс в кровь адреналина, дофамина и других гормонов вызывает резкое повышение артериального давления и часто приводит к гипертоническому кризу.
Диагноз ставится на основании результатов гормональных тестов и инструментальных исследований. Феохромоцитома лечится только хирургически.
Первичный альдостеронизм
Заболевание обусловлено излишней выработкой в почках гормона альдостерона — он отвечает за задержку в организме ионов натрия и выведение ионов калия. При нарушении калиево-натриевого баланса образуется излишек калия в клетках. Из-за этого в организме накапливается жидкость и повышается артериальное давление.
Лекарственная терапия при первичном альдостеронизме не дает должного эффекта. Пациенты страдают от судорог, мышечной слабости, жажды. Патология может привести к инсульту, гипертоническому кризу, отеку легких.
Синдром и болезнь Иценко-Кушинга
Синдром и болезнь Иценко-Кушинга — изменение гипоталамуса, следствием которого становится избыточный синтез корой надпочечников глюкокортикоидных гормонов. Один из признаков заболевания — ожирение.
Повышенное из-за гормонального дисбаланса артериальное давление не снижается при приеме снижающих давление препаратов. При подтверждении диагноза на КТ и МРТ надпочечников назначается хирургическое или гормональное лечение.
Коарктация аорты
Одна из редких форм артериальной гипертензии, причина которой — затруднение кровотока в большом круге кровообращения из-за врожденного сужения просвета аорты.
Коарктация (сужение) аорты диагностируют сразу после рождения ребенка или в раннем детском возрасте. В результате сужения главного кровеносного сосуда кровоток ухудшается, что приводит к систолической перегрузке левого желудочка сердца. При измерении артериального давления отмечаются высокие показатели на руках и нормальные или пониженные на ногах.
При значительном стенозе артерии показано хирургическое вмешательство.
Лекарственные формы артериальной гипертензии
Некоторые лекарственные препараты повышают вязкость крови, задерживают в организме соль и воду, вызывают спазм сосудов, и становятся причиной артериальной гипертензии.
Среди этих лекарств — капли от насморка с производными эфедрина, нестероидные противовоспалительные препараты, некоторые гормональные контрацептивы, антидепрессанты, глюкокортикоиды.
Подобные средства следует принимать строго по назначению врача и под его постоянным контролем.
Нейрогенные артериальные гипертензии
Причинами артериальной гипертензии могут быть черепно-мозговые травмы, энцефалит, новообразования в головном мозге. Такой вид АГ называется нейрогенным.
Характерные признаки: судороги, головные боли, тахикардия. Нормализация артериального давления возможна только после успешной терапии основного заболевания.
Механизм повышения артериального давления
Артериальное давление регулируется сложной системой стимуляции или торможения кровотока в сосудах. Увеличение давления происходит при росте объема сердечного выброса крови за минуту и сопротивлении сосудистого русла. Контроль за этим физиологическим процессом осуществляет гипоталамус и сосудодвигательный центр, расположенный в стволе головного мозга.
К росту артериального давления могут привести три основных причины:
- сужение артериол большого круга кровообращения;
- сдвиг кровяных масс к сердцу из-за сужения вен — это ведет к расширению полости сердца, росту напряжения в сердечных мышцах и увеличению объема выброса крови;
- усиление сердечной деятельности по сигналу симпатической нервной системы.
Клинические и патофизиологические изменения в органах-мишенях
Артериальная гипертензия негативно влияет на функциональность многих органов и систем организма:
- Сердце. Чрезмерные усилия сердечной мышцы для проталкивания излишнего объема крови через суженные сосуды приводит к гипертрофии и нарушению диастолической функции левого желудочка. На фоне постоянного кислородного голодания сердце перестает полноценно сокращаться, в результате чего развивается хроническая сердечная недостаточность. Из-за того, что сосуды долго находятся в суженном состоянии, происходит замена мышечной стенки соединительной тканью. Это может стать причиной атеросклероза коронарных артерий.
- Головной мозг. Повышенное давление — основная причина внутричерепных нетравматических кровоизлияний, ишемического инсульта, гипертонической энцефалопатии, когнитивных нарушений и деменции.
- Почки. Нарушения в работе почек могут быть и причиной, и следствием артериальной гипертензии. Почечная недостаточность в результате постоянно повышенного давления проявляется в виде патологического просачивания белка через почечный фильтр (микроальбуминория) и снижением выводящей функции почек.
- Сосуды глазного дна из-за постоянного сужения затрудняют кровоснабжение тканей глаза, и они испытывают кислородное голодание.
По тяжести поражения органов-мишеней различаются 3 стадии АГ:
- на I стадии лабораторные и инструментальные исследования не показывают никаких изменений в органах-мишенях;
- на II стадии результаты анализов крови или исследования сердца и сосудов при помощи ЭКГ, УЗИ и других методов диагностики показывают наличие хотя бы одного признака поражения. Среди них: повышение уровня креатинина в крови, гипертрофия левого желудочка, наличие холестериновых бляшек и т.д.;
- на III стадии появляются клинические признаки заболеваний органов-мишеней: инсульт, инфаркт, стенокардия, аневризма аорты, сердечная или почечная недостаточность, нарушения зрения и другие.
Клиническая картина
Течение артериальной гипертензии зависит от стадии заболевания, уровня повышения давления и задействованных органов-мишеней.
На начальном этапе болезнь может протекать бессимптомно и обнаруживаться только при плановом измерении артериального давления.
С развитием патологии появляются жалобы на головную боль, тяжесть в затылке, шум в ушах, учащенное сердцебиение, проблемы со сном, снижение работоспособности.
Стойкое повышение давления выше 140/90 мм рт. ст. может стать причиной:
- постоянной одышки, даже при минимальных физических усилиях;
- болей в области сердца;
- повышенного потоотделения, онемения конечностей;
- отеков и выраженной одутловатости лица.
Спазм глазных сосудов проявляется мелкими кровоизлияниями в сетчатку, потерей четкости зрения, мельканием мушек перед глазами.
Каждый из этих симптомов требует незамедлительной консультации у врача-кардиолога.
Артериальная гипертензия у беременных
По статистике артериальную гипертензию диагностируют у 5-8% беременных женщин. Различают два вида гипертензии:
- хроническую — заболевание имелось у женщины до беременности и обострилось после зачатия;
- гестационную — формируется во второй половине беременности.
Основные причины стойкого повышения давления у беременных:
- увеличение массы тела;
- ускорение метаболических процессов;
- увеличение внутрибрюшного давления и объема крови;
- изменение гормонального фона.
Без своевременного лечения АГ во время беременности может привести к серьезным осложнениям: гестозу (преэклампсия, эклампсия), фетоплацентарной недостаточности, преждевременным родам, отслойки плаценты и другим.
При выявленной артериальной гипертензии беременная женщина должна находиться под постоянным врачебным контролем.
Гипертонический криз
Резкий внезапный подъем артериального давления — одно из самых распространенных проявлений артериальной гипертензии, это — гипертонический криз.
Такое состояние может возникнуть под влиянием стресса, резкой перемене климата или погодных условий, физическом перенапряжении.
Гипертонический криз сопровождается нервным перевозбуждением или, наоборот, заторможенностью, сильной головной болью, тошнотой, ухудшением зрения.
Результатом криза может стать острое нарушение мозгового кровообращения, инфаркт миокарда или другое острое сосудистое расстройство.
Лечение повышенного давления
Источник: World Cancer Research Fund
Народные средства
На данный момент нет доказательств эффективности народных средств для лечения артериальной гипертензии. Отказ от визита к врачу при симптомах АГ и надежда на стабилизацию состояния при помощи народных средств могут привести к необратимым последствиям и развитию серьезных осложнений.
Любое народное средство может быть только дополнением к основному лечению и должно быть одобрено врачом-кардиологом.
Медикаментозное лечение
Схему медикаментозного лечения определяет врач-кардиолог после всестороннего обследования и определения причин артериальной гипертензии. Выбор методики производится с учетом пола, возраста пациента, наличия сопутствующих заболеваний и поставленных целей.
В лекарственный комплекс могут включаться диуретики, седативные препараты, средства, подавляющие вазомоторную активность и некоторые другие в зависимости от состояния органов-мишеней.
Диета
Диета при повышенном артериальном давлении должна быть направлена на снижение веса и нормализацию водно-солевого обмена. Из рациона необходимо исключить продукты, повышающие уровень холестерина — жирное мясо, не цельнозерновой хлеб и сдобу, снизить потребление острых и маринованных блюд, минимизировать потребление соли и сахара.
Возможные последствия
К сожалению, многие люди игнорируют периодическое повышение артериального давления и не торопятся обращаться к врачу. Иногда они начинают принимать гипотензивные (снижающие давление) препараты по совету родственников и знакомых, а это может серьезно усугубить ситуацию.
Отсутствие своевременного правильного лечения может привести к тяжелому течению патологии и серьезному поражению органов-мишеней.
Осложнения
Артериальная гипертензия — основная причина ранней смертности от сердечной недостаточности, инсульта и инфаркта миокарда. На фоне заболевания резко возрастает риск развития почечной недостаточности, атеросклероза сосудов головного мозга и других опасных патологий.
Профилактика артериальной гипертензии
Для профилактики развития артериальной гипертензии необходимо регулярно проходить скрининг, особенно людям в группе риска. Избежать патологии поможет правильное и сбалансированное питание, регулярная физическая активность, отказ от вредных привычек, нормализация эмоционального состояния.
Заключение
Артериальная гипертензия — распространенная патология сердечно-сосудистой системы. При отсутствии своевременной диагностики и правильного лечения она грозит развитием серьезных осложнений. Современная медицина умеет бороться с этим заболеванием, но успех лечения во многом зависит от самого пациента. Своевременное обследование и соблюдение рекомендаций врача помогает нормализовать состояние и избежать неприятных последствий.
Источники
- Гороховский, Б. И. Важнейшие органы — мишени гипертонической болезни / Б.И. Гороховский, Е.Г. Кадач. — М.: Миклош, 2019. — 640 c.
- Приверженность к лечению и контроль артериальной гипертензии в рамках российской акции скрининга МММ19. Российский кардиологический журнал. 2020;25(3)
Приборы для измерения давления. Виды и работа. Применение
Характеристикой давления является сила, которая равномерно воздействует на единицу площади поверхности тела. Эта сила оказывает влияние на различные технологические процессы. Давление измеряется в паскалях. Один паскаль равен давлению силы в один ньютон на площадь поверхности в 1 м2. Применяют приборы для измерения давления.
Виды давления
- Атмосферное давление образуется атмосферой Земли.
- Вакуумметрическое давление – это давление, не достигающее величины атмосферного давления.
- Избыточное давление – это величина давления, превосходящая значение атмосферного давления.
- Абсолютное давление определяется от величины абсолютного нуля (вакуума).
Виды и работа
Приборы, измеряющие давление, называются манометрами. В технике чаще всего приходится определять избыточное давление. Значительный интервал измеряемых величин давлений, особые условия измерения их во всевозможных технологических процессах обуславливает разнообразие видов манометров, которые имеют свои различия по конструктивным особенностям и по принципу работы. Рассмотрим основные из применяемых видов.
Барометры
Барометром называют прибор, измеряющий давление воздуха в атмосфере. Существует несколько видов барометров.
Ртутный барометр действует на основе перемещения ртути в трубке по определенной шкале.
Жидкостный барометр работает по принципу уравновешивания жидкости давлением атмосферы.
Барометр-анероид работает на изменении размеров металлической герметичной коробки с вакуумом внутри, под действием давления атмосферы.
Электронный барометр является более современным прибором. Он преобразовывает параметры обычного анероида в цифровой сигнал, отображающийся на жидкокристаллическом дисплее.
Жидкостные манометры
В этих моделях приборов давление определяется высотой столба жидкости, которое выравнивает это давление. Жидкостные приборы для измерения давления чаще всего выполняют в виде 2-х стеклянных сосудов, соединенных между собой, в которые залита жидкость (вода, ртуть, спирт).
Рис-1
Один конец емкости соединен с измеряемой средой, а второй открыт. Под давлением среды жидкость перетекает из одного сосуда в другой до выравнивания давления. Разность уровней жидкости определяет избыточное давление. Такими приборами замеряют разность давлений и разрежение.
На рисунке 1а изображен 2-х трубный манометр, измеряющий вакуум, избыточное и атмосферное давление. Недостатком является значительная погрешность измерения давлений, имеющих пульсацию. Для таких случаев применяют 1-трубные манометры (рисунок 1б). В них один край сосуда большего размера. Чашка соединена с измеряемой полостью, давление которой передвигает жидкость в узкую часть сосуда.
При замере берется во внимание только высота жидкости в узком колене, так как жидкость изменяет свой уровень в чашке незначительно, и этим пренебрегают. Чтобы произвести замеры малых избыточных давлений используют 1-трубные микроманометры с трубкой, наклоненной под углом (рисунок 1в). Чем больше наклон трубки, тем точнее показания прибора, вследствие увеличения длины уровня жидкости.
Особой группой считаются приборы для измерения давления, в которых движение жидкости в емкости действует на чувствительный элемент – поплавок (1) на рисунке 2а, кольцо (3) (рисунок 2в) или колокол (2) (рисунок 2б), которые связаны со стрелкой, являющейся указателем давления.
Рис-2
Преимуществами таких приборов является дистанционная передача и их регистрация значений.
Деформационные манометры
В технической области приобрели популярность деформационные приборы для измерения давления. Их принцип работы заключается в деформации чувствительного элемента. Эта деформация появляется под действием давления. Упругий компонент связан со считывающим устройством, имеющим шкалу с градуировкой единицами давления.
Деформационные манометры делятся на:
- Пружинные.
- Сильфонные.
- Мембранные.
Рис-3
Пружинные манометры
В этих приборах чувствительным элементом является пружина, соединенная со стрелкой передаточным механизмом. Давление воздействует внутри трубки, сечение старается принять круглую форму, пружина (1) пытается раскручиваться, в результате стрелка передвигается по шкале (рисунок 3а).
Мембранные манометры
В этих приборах упругим компонентом является мембрана (2). Она прогибается под давлением, и воздействует на стрелку с помощью передаточного механизма. Мембрану изготавливают по типу коробки (3). Это увеличивает точность и чувствительность прибора из-за большего прогиба при равном давлении (рисунок 3б).
Сильфонные манометры
В приборах сильфонного типа (рисунок 3в) упругим элементом является сильфон (4), который выполнен в виде гофрированной тонкостенной трубки. В эту трубку воздействует давление. При этом сильфон увеличивается в длину и с помощью механизма передачи передвигает стрелку манометра.
Сильфонные и мембранные виды манометров используют для замеров незначительных избыточных давлений и вакуума, так как упругий компонент имеет небольшую жесткость. При применении таких приборов для измерения вакуума они получили название тягомеров. Прибор, измеряющий избыточное давление, является напоромером, для измерения избыточного давления и вакуума служат тягонапоромеры.
Приборы для измерения давления деформационного типа имеют преимущество в сравнении с жидкостными моделями. Они позволяют производить передачу показаний дистанционно и записывать их в автоматическом режиме.
Это происходит вследствие преобразования деформации упругого компонента в выходной сигнал электрического тока. Сигнал фиксируется приборами измерений, которые имеют градуировку по единицам давления. Такие приборы имеют название деформационно-электрических манометров. Широкое использование нашли тензометрические, дифференциально-трансформаторные и магнитомодуляционные преобразователи.
Дифференциально-трансформаторный преобразователь
Рис-4
Принципом работы такого преобразователя является изменение силы тока индукции в зависимости от величины давления.
Приборы с наличием такого преобразователя имеют трубчатую пружину (1), которая передвигает стальной сердечник (2) трансформатора, а не стрелку. В итоге изменяется сила индукционного тока, подающегося через усилитель (4) на измерительный прибор (3).
Магнитомодуляционные приборы для измерения давления
В таких приборах усилие преобразуется в сигнал электрического тока вследствие передвижения магнита, связанного с упругим компонентом. При движении магнит воздействует на магнитомодуляционный преобразователь.
Электрический сигнал усиливается в полупроводниковом усилителе и поступает на вторичные электроизмерительные устройства.
Тензометрические манометры
Преобразователи на основе тензометрического датчика работают на основе зависимости электрического сопротивления тензорезистора от величины деформации.
Рис-5
Тензодатчики (1) (рисунок 5) фиксируются на упругом элементе прибора. Электрический сигнал на выходе возникает вследствие изменения сопротивления тензорезистора, и фиксируется вторичными устройствами измерения.
Электроконтактные манометры
В схемах сигнализации, системах авторегулирования технологических процессов, приборах тепловой защиты популярными стали электроконтактные манометры. На рисунке изображена схема и вид прибора.
Рис-6
Упругим компонентом в приборе выступает трубчатая одновитковая пружина. Контакты (1) и (2) выполняются для любых отметок шкалы прибора, вращая винт в головке (3), которая находится на внешней стороне стекла.
При уменьшении давления и достижении его нижнего предела, стрелка (4) с помощью контакта (5) включит цепь лампы соответствующего цвета. При возрастании давления до верхнего предела, который задан контактом (2), стрелка замыкает цепь красной лампы контактом (5).
Классы точности
Измерительные манометры разделяют на два класса:
- Образцовые.
- Рабочие.
Образцовые приборы определяют погрешность показаний рабочих приборов, которые участвуют в технологии производства продукции.
Класс точности взаимосвязан с допустимой погрешностью, которая является величиной отклонения манометра от действительных величин. Точность прибора определяется процентным соотношением от максимально допустимой погрешности к номинальному значению. Чем больше процент, тем меньше точность прибора.
Образцовые манометры имеют точность намного выше рабочих моделей, так как они служат для оценки соответствия показаний рабочих моделей приборов. Образцовые манометры применяются в основном в условиях лаборатории, поэтому они изготавливаются без дополнительной защиты от внешней среды.
Пружинные манометры имеют 3 класса точности: 0,16, 0,25 и 0,4. Рабочие модели манометров имеют такие классы точности от 0,5 до 4.
Применение манометров
Приборы для измерения давления наиболее популярные приборы в различных отраслях промышленности при работе с жидким или газообразным сырьем.
Перечислим основные места использования приборы для измерения давления в:
- Газо- и нефтедобывающей промышленности.
- Теплотехнике для контроля давления энергоносителя в трубопроводах.
- Авиационной отрасли промышленности, автомобилестроении, сервисном обслуживании самолетов и автомобилей.
- Машиностроительной отрасли при применении гидромеханических и гидродинамических узлов.
- Медицинских устройствах и приборах.
- Железнодорожном оборудовании и транспорте.
- Химической отрасли промышленности для определения давления веществ в технологических процессах.
- Местах с применением пневматических механизмов и агрегатов.
Похожие темы:
Отзывы об устройстве для измерения давления
— Интернет-магазины и отзывы на устройство для измерения давления на AliExpress
Отличные новости !!! Вы находитесь в нужном месте для устройства для измерения давления. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку это лучшее устройство для измерения давления вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что у вас есть устройство для измерения давления на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в устройстве для измерения давления и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести это устройство для измерения давления по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
ЕДИНИЦ ИЗМЕРЕНИЙ — Тематические тексты
Главная
→
ЕДИНИЦЫ ИЗМЕРЕНИЙ — Тематические тексты
Текст 1
Любые измерения — например, температуры, расстояния, времени или веса — основаны на единицах измерения.Единица — это фиксированная величина. В древности для измерения длины использовали части тела. (Греки использовали палец как основную единицу длины, 16 пальцев равнялись одной ноге). Изначально измерение веса основывалось на том, сколько человек может поднять. Эти неточные измерения превратились в систему общих единиц.
Текст 2
Связанные движения Земли, Луны и Солнца дают нам отметки времени. Полный день и ночь (24 часа) — это время, за которое Земля совершает один оборот вокруг своей оси. Время, необходимое для обращения Луны по орбите (кругу) вокруг Земли, составляет один месяц.Наши календарные месяцы варьируются от 28 до 31 дня, но лунный (лунный) месяц составляет ровно 29 ½ дней. Двенадцать календарных месяцев составляют один год или 365 дней, примерно столько же времени требуется Земле, чтобы вращаться вокруг Солнца. Каждый четвертый год является високосным, у него есть дополнительный день.
Текст 3
Примерно 5000 лет назад египтяне были первыми, кто измерил время. Они разделили свои дни на два периода по двенадцать равных часов, как мы это делаем сегодня. Первые часы включали солнечные часы и другие формы часов, которые измеряли изменения уровня воды или песка.Они были неточными, и только в 1600-х годах более надежные маятниковые часы были изобретены голландским ученым Кристианом Гюйгенсом (1629–1695).
Текст 4
Ваш вес — это сила, которую вы прилагаете к Земле. Это результат действия силы тяжести на ваше тело. Вес отличается от массы: ваша масса постоянна независимо от силы тяжести. Ученые измеряют массу в килограммах (кг). Это указывает на количество вещества в вашем теле. Ученые измеряют вес в ньютонах (Н), а 1 кг равен силе 9.81 Н. На Луне ваш вес будет намного меньше, чем на Земле, из-за меньшей гравитации.
Текст 5
Толчок или тяга, которые приводят в движение объект, — это сила. Силы не только заставляют вещи двигаться, они также могут ускорять или замедлять движущийся объект, заставлять его менять направление или даже искажать его форму. Как правило, чем сильнее сила, тем сильнее она влияет на объект.
Текст 6
Вы оказываете давление на что-то, когда прикладываете к этому силу.Величина давления зависит от двух вещей: величины силы и, что более важно, размера области, на которую она воздействует. Чем меньше площадь, тем больше давление. Этот принцип объясняет, почему тонкие туфли на шпильке проваливаются в деревянные полы и повреждают их. Это также объясняет, почему большие плоские лапы верблюда не позволяют ему погрузиться в песок в пустыне.
Текст 7
Все в мире движется. Некоторые формы движения мы можем ясно видеть, например, полет самолета.Но даже объекты, которые кажутся неподвижными, такие как камни и здания, содержат атомы (крошечные частицы), которые мгновенно движутся или вибрируют. Сама Земля движется вокруг Солнца, и вся Вселенная расширяется. Любое движение требует силы для начала, изменения скорости или направления или остановки.
Измерение давления: Понимание PSI, PSIA и PSIG
Измерение давления — это все о PSI. Это потому, что фунты на квадратный дюйм (PSI) являются наиболее распространенной единицей измерения давления в U.S. Важно понимать, что такое PSI и как он используется, поскольку измерение давления является важной частью жизни в 21 -м -м веке. Например, вам необходимо убедиться, что шины вашего автомобиля или велосипеда накачаны до надлежащего PSI, прежде чем вы едете или катаетесь, и сегодня оборудование всех типов включает датчики или манометры для помощи в мониторинге и диагностических операциях. Более того, десятки профессий, от инженера-строителя и инженера-механика до метеоролога и специалиста по приборам для измерения давления на нефтеперерабатывающем заводе, также включают понимание и использование измерений давления в своей повседневной деятельности.
Фунты на квадратный дюйм — PSI
Фунты на квадратный дюйм — это единица измерения давления, которая большую часть времени используется в Соединенных Штатах для домашнего, коммерческого или промышленного оборудования. В других странах давление измеряется в других единицах. В научных контекстах (физические лаборатории и т. Д.) Давление обычно измеряется в гораздо меньших единицах, называемых паскалями (названными в честь французского физика Блеза Паскаля). Для справки: 1 фунт / кв. Дюйм равняется 6 894,76 паскалей. Приборы для измерения давления, такие как манометры и датчики, обычно отображают измерения в фунтах на квадратный дюйм.Два часто используемых варианта PSI — PSIA и PSIG.
фунтов на квадратный дюйм манометра — PSIG Vs. Абсолютные фунты на квадратный дюйм — PSIA
PSIG
PSIG — это термин, обозначающий давление, указанное манометром или другим устройством для измерения давления. Он дает разницу между давлением в трубе или резервуаре и давлением атмосферы (атм).
PSIA
PSIA — это термин, описывающий абсолютное давление в фунтах на квадратный дюйм, включая давление атмосферы.Абсолютное давление также иногда называют «полным давлением».
Примеры расчета PSIG и PSIA
Обратите внимание, что PSIG всегда ниже, чем PSIA. Формулы для описания взаимосвязи: PSIG + 1 атм. = PSIA и PSIA — 1 атм. = PSIG (где атм — атмосферное давление). Легко рассчитать PSIA или PSIG или преобразовать их. Вы можете использовать фактическое значение атмосферного давления для вашего местоположения, если оно доступно, или вы также можете использовать 14,7 фунтов на квадратный дюйм (приблизительное атмосферное давление на уровне моря) в качестве стандартного значения для преобразования PSIG в PSIA и наоборот.(Если вы не живете на большой высоте или в глубокой долине, значение уровня моря будет работать.) Другими словами, поскольку атмосферное давление на уровне моря составляет 14,7 фунтов на квадратный дюйм, вы вычитаете PSIA, равную 14,7, из атмосферного давления, равного 14,7, до нуля. PSIG (14,7 (PSIA) — 14,7 (атм) = 0). Например, абсолютное давление на уровне моря составляет 14,70 фунтов на квадратный дюйм, а абсолютное давление на высоте 1000 футов — 14,18 фунтов на квадратный дюйм. На более высокой высоте давление меньше, поэтому, если показания манометра абсолютного давления читаются на высоте 1000 футов, его показания будут близки к.На 5 фунтов на квадратный дюйм (14,70 — 14,18 = 0,52) меньше, чем у стандартного манометра. Квалифицированный технический персонал WIKA с радостью ответит на любые ваши вопросы о PSI, PSIA, PSIG или измерении давления. С нами можно связаться по телефону или электронной почте, и мы обещаем незамедлительный ответ.
Неразрушающие испытания — Испытания под давлением — это неразрушающие испытания, проводимые для проверки целостности корпуса высокого давления на новом оборудовании, работающем под давлением.
Что подразумевается под давлением?
Испытание под давлением — это неразрушающий контроль, проводимый для проверки целостности корпуса, работающего под давлением, на новом оборудовании, работающем под давлением, или на ранее установленном оборудовании, работающем под давлением, и трубопроводном оборудовании, которое подвергалось изменению или ремонту на своих границах.
Испытания под давлением требуются большинством нормативов по трубопроводам для проверки того, что новая, модифицированная или отремонтированная система трубопроводов способна безопасно выдерживать номинальное давление и герметична. Соблюдение правил трубопроводов может быть предписано регулирующими и правоохранительными органами, страховыми компаниями или условиями контракта на строительство системы. Испытания под давлением, требуемые по закону или нет, служат полезной цели защиты рабочих и населения.
Испытание давлением может также использоваться для определения номинального давления для компонента или специальной системы, для которых невозможно определить безопасное значение расчетным путем.Прототип компонента или системы подвергается воздействию постепенно увеличивающегося давления до тех пор, пока не произойдет измеримая текучесть, или, альтернативно, до точки разрыва. Затем, используя коэффициенты снижения номинальных характеристик, указанные в нормах или стандарте, соответствующих компоненту или системе, можно установить номинальное расчетное давление на основе экспериментальных данных.
Коды трубопроводов
Существует множество правил и стандартов, касающихся систем трубопроводов. Два правила, имеющих большое значение для испытаний под давлением и герметичности, — это Кодекс ASME B31 для трубопроводов под давлением и Кодекс ASME по котлам и сосудам высокого давления.Хотя эти два правила применимы ко многим трубопроводным системам, другие нормы и стандарты могут быть соблюдены в соответствии с требованиями властей, страховых компаний или владельца системы. Примерами могут служить стандарты AWWA для трубопроводов систем передачи и распределения воды. Кодекс ASME B31 для напорных трубопроводов состоит из нескольких разделов. Их:
- ASME B31.1 для силовых трубопроводов
- ASME B31.2 для трубопровода топливного газа
- ASME B31.3 для технологических трубопроводов
- ASME B31.4 для систем транспортировки жидкостей для углеводородов, сжиженного нефтяного газа, безводного аммиака и спиртов
- ASME B31.5 для холодильных трубопроводов
- ASME B31.8 для газотранспортных и распределительных систем
- ASME B31.9 для строительных трубопроводов
- ASME B31.11 для трубопроводных систем для транспортировки жидкого навоза
Кодекс ASME по котлам и сосудам под давлением также включает несколько разделов, в которых содержатся требования к испытаниям под давлением и испытаниям на герметичность для трубопроводных систем, сосудов высокого давления и других устройств, удерживающих давление.Это:
- Раздел I для энергетических котлов
- Раздел III для компонентов атомной электростанции
- Раздел V неразрушающего контроля
- Раздел VIII для сосудов под давлением
- Раздел X для сосудов под давлением из армированного стекловолокном пластика
- Раздел XI по техническому осмотру компонентов атомной электростанции
Существует большое сходство требований и процедур тестирования среди многих кодексов.В этой главе будут обсуждаться различные методы испытаний на герметичность, планирование, подготовка, выполнение, документация и стандарты приемки для испытаний под давлением. Оборудование, полезное для опрессовки, также будет включено в обсуждение. Приведенный ниже материал не следует рассматривать как замену полному знанию или тщательному изучению конкретных требований кодов, которые должны использоваться для тестирования конкретной системы трубопроводов.
Методы проверки герметичности
Существует множество различных методов испытаний под давлением и испытаний на герметичность в полевых условиях.Семь из них:
- Гидростатические испытания с использованием воды или другой жидкости под давлением
- Пневматические или газожидкостные испытания с использованием воздуха или другого газа под давлением
- Комбинация пневматических и гидростатических испытаний, при которых сначала используется воздух низкого давления для обнаружения утечек
- Первоначальное сервисное испытание, которое включает в себя проверку на герметичность при первом запуске системы
- Испытание на вакуум, при котором используется отрицательное давление для проверки наличия утечки
- Испытание статическим напором, которое обычно проводится для дренажного трубопровода с водой, оставшейся в стояке на заданный период времени
- Обнаружение утечек галогена и гелия
Гидростатические испытания на герметичность
Гидростатические испытания — это предпочтительный и, возможно, наиболее часто используемый метод проверки на герметичность.Наиболее важной причиной этого является относительная безопасность гидростатических испытаний по сравнению с пневматическими испытаниями. Вода — гораздо более безопасная текучая среда для испытаний, чем воздух, потому что она почти несжимаема. Следовательно, объем работы, необходимый для сжатия воды до заданного давления в системе трубопроводов, существенно меньше работы, необходимой для сжатия воздуха или любого другого газа до того же давления. Работа сжатия сохраняется в жидкости в виде потенциальной энергии, которая может внезапно высвободиться в случае отказа во время испытания под давлением.
Расчет потенциальной энергии воздуха, сжатого до давления 1000 фунтов на квадратный дюйм (6900 кПа) по сравнению с потенциальной энергией того же конечного объема воды при 1000 фунтов на квадратный дюйм (6900 кПа), показывает соотношение более 2500 к 1. Следовательно, Потенциальное повреждение окружающего оборудования и персонала в результате отказа во время испытания под давлением намного серьезнее при использовании газообразной испытательной среды. Это не означает, что гидростатические испытания на герметичность не представляют никакой опасности. При гидростатическом испытании может возникнуть значительная опасность из-за попадания воздуха в трубопровод.Даже если весь воздух будет выпущен из трубопровода перед подачей давления, рабочим рекомендуется проводить любые испытания под высоким давлением с учетом требований безопасности.
Пневматические испытания на герметичность
Жидкость, обычно используемая для пневматических испытаний, представляет собой сжатый воздух или азот, если источником является газ в баллонах. Не следует использовать азот в закрытом помещении, если существует вероятность того, что выходящий азот может вытеснить воздух в ограниченном пространстве. Известно, что при таких обстоятельствах люди теряют сознание, прежде чем осознают, что им не хватает кислорода.Из-за большей опасности травмирования газообразной испытательной средой давление, которое может использоваться для визуального осмотра на предмет утечек, ниже для некоторых норм трубопроводов, чем в случае гидростатических испытаний. Например, для пневматических испытаний ASME B31.1 позволяет снизить давление до 100 фунтов на кв. Дюйм (690 кПа) или расчетного давления во время проверки на утечку.
Комбинированные пневматические и гидростатические испытания
Низкое давление воздуха, чаще всего 25 фунтов на кв. Дюйм (175 кПа), сначала используется для выявления серьезных утечек.Такое низкое давление снижает опасность получения травм, но все же позволяет быстро обнаруживать крупные утечки. При необходимости ремонт можно провести до гидростатических испытаний. Этот метод может быть очень эффективным для экономии времени, особенно если требуется много времени, чтобы заполнить систему водой только для обнаружения утечек с первой попытки. Если утечки будут обнаружены при гидростатическом испытании, потребуется больше времени, чтобы удалить воду и высушить трубопровод, чтобы произвести ремонт.
Гидростатико-пневматическое испытание на герметичность отличается от двухэтапного испытания, описанного в предыдущем абзаце.В этом случае испытание под давлением проводится с использованием воздуха и воды. Например, сосуд высокого давления, предназначенный для содержания технологической жидкости с паровой фазой или воздухом над жидкостью, может быть спроектирован так, чтобы выдерживать вес жидкости до определенной максимальной ожидаемой высоты жидкости. Если сосуд не был спроектирован так, чтобы выдерживать вес при полном заполнении жидкостью, можно было бы испытать этот сосуд только в том случае, если он был частично заполнен технологической жидкостью до уровня, дублирующего эффект максимально ожидаемого уровня.
Первоначальное тестирование на утечку при обслуживании
Эта категория тестирования ограничена кодами определенными ситуациями. Например, ASME B31.3 ограничивает использование этого метода для работы с жидкостями категории D. Гидравлические системы категории D определены как неопасные для человека и должны работать при давлении ниже 150 фунтов на квадратный дюйм (1035 кПа) и при температуре от -20 до 366 ° F (от -29 до 185 ° C). Код ASME B31.1, раздел 137.7.1, не разрешает начальные эксплуатационные испытания внешних трубопроводов котла. Однако тот же раздел ASME B31.1 позволяет проводить первоначальные эксплуатационные испытания других систем трубопроводов, если другие типы испытаний на герметичность нецелесообразны. Первоначальные эксплуатационные испытания также применимы к проверке компонентов атомной электростанции в соответствии с Разделом XI Кодекса ASME по котлам и сосудам высокого давления. Как указано, этот тест обычно выполняется при первом запуске системы. В системе постепенно повышается до нормального рабочего давления, как требуется в ASME B31.1, или до расчетного давления, как требуется в ASME B31.3. Затем давление поддерживается на этом уровне, пока проводится проверка на утечки.
Проверка на герметичность в вакууме
Проверка на герметичность в вакууме — это эффективный способ определить, есть ли утечка где-либо в системе. Обычно это делается путем создания вакуума в системе и удержания вакуума внутри системы. Утечка указывается, если захваченный вакуум повышается до атмосферного давления. Производитель компонентов довольно часто использует этот тип проверки на герметичность в качестве проверки на герметичность производства. Однако очень сложно определить место или места утечки, если таковая существует.Дымогенераторы использовались для определения места втягивания дыма в трубопровод. Это очень сложно использовать, если утечка не достаточно велика, чтобы втягивать весь или большую часть дыма в трубу. Если дыма образуется значительно больше, чем может быть втянут в трубу, дым, который рассеивается в окружающий воздух, может легко скрыть место утечки. Очевидно, что этот метод не подходит для испытания трубопровода при рабочем давлении или выше, если трубопровод не должен работать при вакууме.
Статическая Головка Испытание на герметичность
Данный метод иногда называют тест на падение, поскольку падение уровня воды в открытом стояка, добавлены к системе для создания необходимого давления, является показателем утечки. После того, как система и опускной заполнена водой, уровень опускной измеряются и отметил. После необходимого периода выдержки высота повторно проверяется, и любое снижение уровня и период выдержки записываются. Любое место утечки определяется визуальным осмотром.
Тестирование утечки галогена и гелия
В этих методах тестирования используется индикаторный газ для определения места утечки и количества утечки. В случае обнаружения утечки галогена в систему загружается газообразный галоген. Зонд галогенного детектора используется для определения утечки индикаторного газа из любого открытого стыка. Детектор утечки галогена, или анализатор, состоит из трубчатого зонда, который всасывает смесь вытекающего газа галогена и воздуха в прибор, чувствительный к небольшим количествам газообразного галогена.
В этом приборе используется диод для определения присутствия газообразного галогена. Утечка газообразного галогена проходит через нагретый платиновый элемент (анод). Нагреваемый элемент ионизирует газообразный галоген. Ионы текут на пластину коллектора (катод). Ток, пропорциональный скорости образования ионов и, следовательно, скорости потока утечки, отображается с помощью счетчика. Зонд галогенного детектора калибруется с помощью отверстия, через которое проходит известный поток утечки. Зонд детектора проходит над отверстием с той же скоростью, которая будет использоваться для проверки системы на утечку.Предпочтительным индикаторным газом является хладагент 12, но можно использовать хладагенты 11, 21, 22, 114 или хлористый метилен. Галогены нельзя использовать с аустенитными нержавеющими сталями.
Проверка на утечку гелия также может выполняться в режиме сниффера, как описано выше для галогенов. Однако, кроме того, испытание на утечку гелием может быть выполнено с использованием двух других методов, более чувствительных при обнаружении утечки. Это режим трассировки и режим капота или закрытой системы. В режиме индикатора создается вакуум в системе, и гелий распыляется на внешнюю поверхность соединений, которые проверяются на утечку.Вакуум системы всасывает гелий через любое негерметичное соединение и доставляет его на гелиевый масс-спектрометр. В режиме вытяжки тестируемая система окружена концентрированным гелием.
Испытание на герметичность гелием в вытяжном шкафу является наиболее чувствительным методом обнаружения утечек и единственным методом, признанным Разделом V Кодекса ASME как количественный. Производители компонентов, требующих герметичного уплотнения, будут использовать вытяжной метод обнаружения утечки гелия в качестве производственного испытания на герметичность. В этих случаях компонент может быть окружен гелием в камере.К компоненту подключается гелиевый течеискатель, который пытается довести внутренние компоненты компонента до вакуума, близкого к абсолютному нулю.
Любая утечка гелия из окружающей камеры в компонент будет втягиваться в гелиевый течеискатель под действием создаваемого им вакуума. Детектор утечки гелия содержит масс-спектрометр, сконфигурированный для определения присутствия молекул гелия. Этот метод тестирования с замкнутой системой позволяет обнаруживать утечки величиной от 1X10 -10 куб. См / с (6.1X10 -12 куб. Дюйм / сек), эквивалент стандартного атмосферного воздуха. Метод замкнутой системы не подходит для измерения большой утечки, которая может затопить детектор и сделать его бесполезным для дальнейших измерений до тех пор, пока из детектора не удастся извлечь каждую молекулу гелия.
Метод закрытой системы не подходит для трубопроводной системы в полевых условиях из-за больших объемов. Также он не показывает место утечки или утечек. Наконец, чувствительность обнаружения утечек с использованием замкнутой системы на много порядков выше, чем обычно требуется.Анализатор гелия является наименее чувствительным методом и может давать ложные показания, если гелий из большой утечки в одном месте системы диффундирует в другие места.
Большая утечка также может затопить детектор, временно сделав его бесполезным до тех пор, пока весь гелий не будет удален из масс-спектрометра. Давление гелия, используемое во всех этих методах, обычно составляет одну или две атмосферы, что достаточно для обнаружения очень небольших утечек. Низкое давление также служит для уменьшения количества гелия, необходимого для испытания.Испытания на утечку гелия редко, если вообще когда-либо, используются для демонстрации того, что система может безопасно выдерживать расчетное давление.
Детекторы утечек
с гелиевым покрытием не смогут найти утечки, если компонент или система трубопроводов не станут полностью сухими. Жидкость, содержащаяся в небольшом канале утечки из-за капиллярного действия, может перекрыть утечку из-за низкого давления гелия и поверхностного натяжения жидкости. Поэтому при использовании этого метода в абсолютно сухих условиях требуется большая осторожность.В противном случае эта система может оказаться даже менее чувствительной при обнаружении утечки, чем гидростатическое испытание под высоким давлением. Кроме того, гелиевый течеискатель легко загрязняется маслами и другими соединениями и становится неточным. В полевых условиях обычно не исключается возможность загрязнения течеискателя.
Испытательное давление
Выбранный метод испытания и жидкая испытательная среда, вместе с применимыми правилами, также устанавливают правила, которым необходимо следовать при расчете требуемого испытательного давления.В большинстве случаев давление, превышающее номинальное расчетное давление, применяется на короткое время, скажем, как минимум 10 минут. Величина этого начального испытательного давления часто как минимум в 1,5 раза превышает расчетное давление для гидростатических испытаний. Однако он может быть другим, в зависимости от того, какой код применим и от того, будет ли испытание гидростатическим или пневматическим.
Кроме того, испытательное давление никогда не должно превышать давление, которое могло бы вызвать податливость, или максимально допустимое испытательное давление какого-либо компонента, подвергаемого испытанию.В случае ASME B31, раздел 137.1.4 и Норм для котлов и сосудов высокого давления, максимальное испытательное давление не должно превышать 90 процентов от выхода для любого компонента, подвергающегося испытанию. Испытательное давление необходимо для демонстрации того, что система может безопасно выдерживать номинальное давление. После этого периода давления, превышающего расчетное, часто допустимо понизить давление до более низкого значения для проверки герметичности. Измерительное давление поддерживается в течение времени, необходимого для проведения тщательного
Код | Тип испытания |
ASME B31.1 | Гидростатическая (1) |
ASME B31.1 | Пневматический |
ASME B31.1 | Первичное обслуживание |
ASME B31.3 | гидростатический |
ASME B31.3 | Пневматический |
ASME B31.3 | Первичное обслуживание (3) |
ASME I | гидростатический |
ASME III Раздел 1 Подраздел NB | гидростатический |
ASME III Раздел 1 Подраздел NB | Пневматический |
ASME III Раздел 1 Подраздел NC | гидростатический |
ASME III Раздел 1 Подраздел NC | Пневматический |
ASME III Раздел 1 Подраздел ND | гидростатический |
ASME III Раздел 1 Подраздел ND | Пневматический |
Код | Испытательное давление минимум |
ASME B31.1 | В 1,5 раза больше конструкции |
ASME B31.1 | В 1,2 раза больше конструкции |
ASME B31.1 | Нормальное рабочее давление |
ASME B31.3 | 1,5-кратное исполнение (2) |
ASME B31.3 | в 1,1 раза больше дизайна |
ASME B31.3 | Расчетное давление |
ASME I | В 1,5 раза больше максимально допустимого рабочего давления (4) |
ASME III Раздел 1 Подраздел NB | 1.В 25 раз больше расчетного давления в системе (5) |
ASME III Раздел 1 Подраздел NB | Давление в системе в 1,25 раза больше расчетного (6) |
ASME III Раздел 1 Подраздел NC | В 1,5 раза больше расчетного давления в системе |
ASME III Раздел 1 Подраздел NC | Давление в системе в 1,25 раза больше расчетного |
ASME III Раздел 1 Подраздел ND | В 1,5 раза больше расчетного давления в системе для завершенных компонентов, в 1,25 раза больше расчетного давления в системе для трубопроводных систем |
ASME III Раздел 1 Подраздел ND | 1.В 25 раз больше расчетного давления в системе |
Код | Испытательное давление максимальное |
ASME B31.1 | Максимально допустимое испытательное давление для любого компонента или 90% предела текучести |
ASME B31.1 | В 1,5 раза больше расчетного или максимально допустимого испытательного давления для любого компонента |
ASME B31.1 | Нормальное рабочее давление |
ASME B31.3 | Предел текучести не должен превышать |
ASME B31.3 | В 1,1 раза больше расчетного давления плюс меньшее из 50 фунтов на кв. Дюйм или 10 процентов испытательного давления |
ASME B31.3 | Расчетное давление |
ASME I | Предел текучести не должен превышать 90% |
ASME III Раздел 1 Подраздел NB | Не превышать пределы напряжений, указанные в расчетном разделе NB-3226, или максимальное испытательное давление любого компонента системы (5) |
ASME III Раздел 1 Подраздел NB | Не превышать пределы напряжений, указанные в расчетном разделе NB-3226, или максимальное испытательное давление любого компонента системы |
ASME III Раздел 1 Подраздел NC | Если минимальное испытательное давление превышено на 6 процентов, установите предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента |
ASME III Раздел 1 Подраздел NC | Если минимальное испытательное давление превышено на 6 процентов, установите предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента |
ASME III Раздел 1 Подраздел ND | Если минимальное испытательное давление превышено на 6 процентов, установите предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента |
ASME III Раздел 1 Подраздел ND | Если минимальное испытательное давление превышено на 6 процентов, установите предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента |
Код | Испытательное давление время выдержки |
ASME B31.1 | 10 минут |
ASME B31.1 | 10 минут |
ASME B31.1 | 10 минут или время для завершения проверки герметичности |
ASME B31.3 | Время до завершения проверки герметичности, но не менее 10 минут |
ASME B31.3 | 10 минут |
ASME B31.3 | Время до завершения проверки герметичности |
ASME I | Не указано, обычно 1 час |
ASME III Раздел 1 Подраздел NB | 10 минут |
ASME III Раздел 1 Подраздел NB | 10 минут |
ASME III Раздел 1 Подраздел NC | 10 или 15 минут на дюйм проектной минимальной толщины стенки для насосов и клапанов |
ASME III Раздел 1 Подраздел NC | 10 минут |
ASME III Раздел 1 Подраздел ND | 10 минут |
ASME III Раздел 1 Подраздел ND | 10 минут |
Код | Обследование давление |
ASME B31.1 | Расчетное давление |
ASME B31.1 | Ниже 100 фунтов на кв. Дюйм или расчетного давления |
ASME B31.1 | Нормальное рабочее давление |
ASME B31.3 | В 1,5 раза больше конструкции |
ASME B31.3 | Расчетное давление |
ASME B31.3 | Расчетное давление |
ASME I | Максимально допустимое рабочее давление (4) |
ASME III Раздел 1 Подраздел NB | Давление больше расчетного или испытательное давление в 0,75 раза больше |
ASME III Раздел 1 Подраздел NB | Давление больше расчетного или испытательное давление в 0,75 раза больше |
ASME III Раздел 1 Подраздел NC | Давление больше расчетного или испытательное давление в 0,75 раза больше |
ASME III Раздел 1 Подраздел NC | Давление больше расчетного или испытательное давление в 0,75 раза больше |
ASME III Раздел 1 Подраздел ND | Давление больше расчетного или испытательное давление в 0,75 раза больше |
ASME III Раздел 1 Подраздел ND | Давление больше расчетного или испытательное давление в 0,75 раза больше |
Примечания:
1. | Внешний трубопровод котла должен пройти гидростатические испытания в соответствии с PG-99 стандарта ASME Code Section I. |
2. | ASME B31.3 гидростатическое давление должно быть увеличено до значения, превышающего 1,5-кратное расчетное давление, пропорционально пределу текучести при температуре испытания, деленному на прочность при расчетной температуре, но не должно превышать предела текучести при температуре испытания. Если речь идет о сосуде, расчетное давление которого меньше, чем в трубопроводе, и когда сосуд не может быть изолирован, трубопровод и сосуд могут быть испытаны вместе при испытательном давлении сосуда при условии, что испытательное давление сосуда составляет не менее 77 процентов испытательного давления трубопроводов. |
3. | ASME B31.3: начальные эксплуатационные испытания разрешены только для трубопроводов категории D. |
4. | Код ASME Раздел I. Гидростатическое испытание под давлением при температуре не менее 70 ° F (21 ° C) и испытательном давлении при температуре менее 120 ° F (49 ° C). Для парогенератора с принудительным потоком, с частями, работающими под давлением, рассчитанными на разные уровни давления, испытательное давление должно быть не менее 1,5-кратного максимального допустимого рабочего давления на выходе из пароперегревателя, но не менее 1.25-кратное максимально допустимое рабочее давление любой части котла. |
5. | Кодекс ASME, раздел III, раздел 1, подраздел NB, пределы испытательного давления определены в разделе NB3226; также компоненты, содержащие паяные соединения, и клапаны, которые перед установкой должны быть испытаны при давлении, в 1,5 раза превышающем расчетное для системы. |
6. | Кодекс ASME Раздел III, Раздел 1, подраздел NB, давление пневматического испытания для компонентов, частично заполненных водой, должно быть не менее 1.25-кратное расчетное давление системы. |
Отказ оборудования, работающего под давлением
Сосуды высокого давления и трубопроводные системы широко используются в промышленности и содержат очень большую концентрацию энергии. Несмотря на то, что их конструкция и установка соответствуют федеральным, государственным и местным нормам и признанным промышленным стандартам, продолжают происходить серьезные отказы оборудования, работающего под давлением.
Причин выхода из строя оборудования, работающего под давлением, много: деградация и истончение материалов в процессе эксплуатации, старение, скрытые дефекты во время изготовления и т. Д.. К счастью, периодические испытания, а также внутренние и внешние проверки значительно повышают безопасность сосуда высокого давления или системы трубопроводов. Хорошая программа испытаний и инспекций основана на разработке процедур для конкретных отраслей или типов судов.
Ряд аварий позволил сосредоточить внимание на опасностях и рисках, связанных с хранением, обращением и перемещением жидкостей под давлением. Когда сосуды под давлением действительно выходят из строя, это обычно является результатом разрушения корпуса в результате коррозии и эрозии (более 50% разрушения корпуса).
Новое судно разорвано во время гидроиспытаний
Все сосуды под давлением имеют свои собственные специфические опасности, включая большое накопленное потенциальное усилие, точки износа и коррозии, а также возможный отказ предохранительных устройств контроля избыточного давления и температуры.
Правительство и промышленность отреагировали на потребность в улучшенных испытаниях систем, работающих под давлением, разработав стандарты и правила, определяющие общие требования к безопасности под давлением (Кодекс ASME по котлам и сосудам высокого давления, Руководство по безопасности под давлением Министерства энергетики США и другие).
В этих правилах изложены требования к реализации программы безопасности при испытаниях под давлением. Очень важно, чтобы конструкторский и эксплуатационный персонал использовал эти стандарты в качестве критериев при написании и реализации программы безопасности при испытаниях под давлением.
Программа испытаний под давлением
Хорошая программа безопасности при испытаниях под давлением должна выявлять производственные дефекты и износ от старения, растрескивания, коррозии и других факторов до того, как они вызовут отказ сосуда, и определять (1) может ли сосуд продолжать работу при том же давлении, (2) какое могут потребоваться меры контроля и ремонта, чтобы система давления могла работать при исходном давлении, и (3) необходимо ли снизить давление для безопасной эксплуатации системы.
Все компании, работающие с оборудованием под давлением, почти все имеют расширенные технические инструкции по испытаниям сосудов под давлением и трубопроводных систем. Эти руководящие принципы подготовлены в соответствии со стандартами безопасности давления OSHA, DOT, ASME, местными, государственными и другими федеральными кодексами и стандартами.
Документация включает определение ответственности инженерного, управленческого персонала и персонала по безопасности; общие требования к оборудованию и материалам; процедуры гидростатических и пневматических испытаний для проверки целостности системы и ее компонентов; и руководящие принципы для плана испытаний под давлением, аварийных процедур, документации и мер контроля опасностей.Эти меры включают контроль сброса давления, защиту от воздействия шума, экологический и личный мониторинг, а также защиту от присутствия токсичных или легковоспламеняющихся газов и высокого давления.
Пуск нового резервуара при испытании на пневматическое давление воздухом
Определения испытаний под давлением
- Изменение — Изменение — это физическое изменение в любом компоненте, которое имеет последствия для конструкции, которые влияют на способность сосуда высокого давления выдерживать давление, выходящее за рамки элементов, описанных в существующих отчетах с данными.
- Допуск на коррозию — Дополнительная толщина материала, добавленная конструкцией, чтобы учесть потери материала в результате коррозионного или эрозионного воздействия.
- Коррозионная обработка — Любая услуга системы давления, которая из-за химического или другого взаимодействия с материалами конструкции контейнера, содержимым или внешней средой приводит к растрескиванию, охрупчиванию контейнера под давлением и потере более 0,01 дюйма толщину за год эксплуатации, или испортить любым способом.
- Расчетное давление — давление, используемое при расчете компонента давления вместе с совпадающей расчетной температурой металла с целью определения минимально допустимой толщины или физических характеристик границы давления. Расчетное давление для сосудов показано на производственных чертежах, а для трубопроводов максимальное рабочее давление указано в перечне трубопроводов. Расчетное давление для трубопровода больше на 110% от максимального рабочего давления или на 25 фунтов на кв. Дюйм от максимального рабочего давления.
- Инженерная инструкция по безопасности (ESN) — Утвержденный руководством документ с описанием предполагаемых опасностей, связанных с оборудованием, и проектных параметров, которые будут использоваться.
- Высокое давление — Давление газа выше 20 МПа по манометру (3000 фунтов на кв. Дюйм) и давление жидкости выше 35 МПа по манометру (5000).
- Промежуточное давление — Давление газа от 1 до 20 МПа (от 150 до 3000 фунтов на кв. Дюйм) и давление жидкости от 10 до 35 МПа (от 1500 до 5000 фунтов на кв. Дюйм).
- Leak Test — Испытание давлением или вакуумом для определения наличия, скорости и / или местоположения утечки.
- Низкое давление -Давление газа менее 1 МПа (150 фунтов на кв. Дюйм) или давление жидкости менее 10 МПа (1500 фунтов на кв. Дюйм).
- Работа в зоне с персоналом — Операция под давлением, которая может проводиться (в определенных пределах) в присутствии персонала.
- Максимально допустимое рабочее давление (МДРД) — максимальное допустимое давление в верхней части сосуда в его нормальном рабочем положении при рабочей температуре, указанной для данного давления.Это наименьшее из значений, найденных для максимально допустимого рабочего давления для любой из основных частей сосуда в соответствии с принципами, установленными в разделе VIII ASME. МДРД указано на паспортной табличке емкости. МДРД можно принять таким же, как расчетное давление, но по большей части МДРД основывается на изготовленной толщине за вычетом допуска на коррозию. MAWP относится только к сосудам под давлением.
- Максимальная расчетная температура — максимальная температура, используемая при проектировании, и не может быть ниже максимальной рабочей температуры.
- Максимальное рабочее давление (MOP) — Максимальное давление, ожидаемое во время работы. Обычно это на 10-20% ниже МДРД.
- Минимально допустимая температура металла (MAMT) — Минимальная температура для существующего сосуда, позволяющая выдерживать испытания или рабочие условия с низким риском хрупкого разрушения. MAMT определяется путем оценки сосудов под давлением, построенных до 1987 года. Этот термин используется в API RP 579 для оценки хрупкого разрушения существующего оборудования.Это может быть одна температура или диапазон допустимых рабочих температур в зависимости от давления.
- Минимальная расчетная температура металла (MDMT) — Минимальная температура металла, используемая при проектировании сосуда высокого давления. MDMT является термином кода ASME и обычно отображается на паспортной табличке сосуда или в форме U-1 для сосудов, спроектированных в соответствии с ASME Section VIII, Division 1, издание 1987 г. или более поздней версии.
- МПа — Абсолютное давление в единицах СИ. 1 атмосфера (14,7 фунта на кв. Дюйм) равна 0.1 МПа.
- Процедура обеспечения безопасности эксплуатации (OSP) — Документ, используемый для описания средств управления, необходимых для обеспечения того, чтобы риски, связанные с потенциально опасным исследовательским проектом или уникальной деятельностью, находились на приемлемом уровне.
- Оборудование, работающее под давлением — Любое оборудование, например сосуды, коллекторы, трубопроводы или другие компоненты, которое работает при давлении выше или ниже (в случае вакуумного оборудования) атмосферного давления.
- Сосуд под давлением — Компонент относительно большого объема под давлением (например, сферический или цилиндрический контейнер) с поперечным сечением больше, чем у соответствующего трубопровода.
- Proof Test — Испытание, в котором прототипы оборудования подвергаются воздействию давления для определения фактического выхода или давления разрыва (используется для расчета MAWP).
- Дистанционное управление — Операция под давлением, которую нельзя проводить в присутствии персонала. Оборудование должно быть установлено в испытательных камерах, за сертифицированными заграждениями или работать из безопасного места.
- Коэффициент безопасности (SF) — Отношение предельного давления (т. Е. Разрыва или отказа) (измеренного или рассчитанного) к МДРД.Фактор безопасности, связанный с чем-то другим, кроме давления отказа, должен быть обозначен соответствующим нижним индексом.
Коды, стандарты и ссылки
Американское общество инженеров-механиков (ASME)
- Котлы и сосуды высокого давления Код: Раздел VIII Сосуды высокого давления
- ASME B31.3 Трубопроводы для химических заводов и нефтеперерабатывающих заводов
- ASME B16.5 Трубные фланцы и фланцевые фитинги
Американское общество испытаний материалов (ASTM)
- ASTM E 1003 Стандартный метод испытаний на гидростатическую герметичность
Американский институт нефти (API)
- RP 1110 Испытание давлением стальных трубопроводов для транспортировки газа, нефтяного газа, опасных жидкостей…
- API 510 Техническое обслуживание, проверка, оценка, ремонт и изменение
- Обжиговые нагреватели API 560 для нефтеперерабатывающих заводов общего назначения
- API 570 Осмотр, ремонт, изменение и повторная оценка эксплуатационных трубопроводных систем
- API 579 Проект рекомендованной практики API для пригодности к эксплуатации
Роберт Б. Адамс
- Президент и главный исполнительный директор EST Group, Inc. Харлейсвилл, Пенсильвания
Интересные статьи об отказе при опрессовке
Отказ сосуда под давлением во время пневматического испытания
Отказ сосуда под давлением во время гидроиспытаний
Отказ сосуда под давлением во время испытания воздуха
Замечание (и) автора…
Испытания под давлением ASME B31.3
Трубопроводные системы обычно проектируются и изготавливаются в соответствии с применимыми нормами. Конечно, использование ASME B31.3 может быть применимо к судам, перевозящим нефть, но вы действительно должны следовать коду, для которого была разработана система трубопроводов. Поскольку я знаком с B31.3, а не с эквивалентом в Европе (или другой стране), я буду основывать свой ответ на B31.3.
ASME B31.3 требует «проверки герметичности» системы трубопроводов. Это не структурный тест, это всего лишь тест, чтобы определить, есть ли в системе точки утечки.* С другой стороны, существуют нормы, которые могут потребовать структурных испытаний, например, по нормам для котлов и сосудов высокого давления. В этом случае проводится гидростатическое испытание, чтобы убедиться, что резервуар и присоединенные к нему трубопроводы являются конструктивными, а не только герметичными.
ASME B31.3, п. 345.1 гласит:
До ввода в эксплуатацию и после завершения соответствующих обследований, требуемых п. 341, каждая система трубопроводов должна быть испытана на герметичность. Испытание должно представлять собой гидростатическое испытание на герметичность в соответствии с п.345.4, за исключением случаев, предусмотренных в данном документе.
Если владелец считает гидростатическое испытание на герметичность нецелесообразным, либо пневматическое испытание в соответствии с п. 345.5 или комбинированное гидростатико-пневматическое испытание в соответствии с п. 345.6 может быть заменен, учитывая опасность энергии, хранящейся в сжатом газе.
Таким образом, согласно правилам, испытание на герметичность с использованием воздуха может быть выполнено, если владелец системы считает гидростатическое испытание нецелесообразным.
Важно понимать, что давление, при котором проводится испытание, является функцией расчетного давления.Расчетное давление является функцией допустимых пределов напряжений в трубопроводе, которая также является функцией рабочей температуры.
- Для гидростатических испытаний, п. 345.4.2 требует давления, превышающего расчетное давление не менее чем в 1,5 раза.
- Для пневматического испытания, п. 345.5.4 требует давления не менее 110% от расчетного.
Следующим шагом для инженера (желательно проектировщика трубопроводной системы или специалиста по анализу напряжений) является создание процедур испытаний под давлением.Эти процедуры испытания под давлением рассматривают возможность хрупкого разрушения при низких температурах, что может быть проблемой при указанных температурах. Процедуры испытания под давлением на самом деле представляют собой набор процедур (обычно), которые включают в себя такие вещи, как метод создания давления в системе, положения клапана, снятие предохранительных устройств, изоляция частей системы трубопроводов и т. Д.
Относительно низкой температуры, п. 345.4.1 гласит: «Жидкость должна быть водой, если нет возможности повреждения из-за замерзания или неблагоприятного воздействия воды на трубопровод или технологический процесс (см. Параграф.F345.4.1). В этом случае можно использовать другую подходящую нетоксичную жидкость. «Итак, гликоль / вода разрешены.
Если испытание должно проводиться пневматически, испытательное давление следует повысить до 25 фунтов на квадратный дюйм, после чего должна быть проведена предварительная проверка, включая осмотр всех соединений. Настоятельно рекомендуется использование низкотемпературной пузырьковой жидкости.
Итак, вывод:
- Если вам дали задание провести гидроиспытание при 16 бар, то это должно быть 1.5-кратное расчетное давление 10,67 бар. Следовательно, согласно B31.3, пневматическое испытание следует проводить не при 16 бар, а при 1,1-кратном расчетном давлении или 11,7 бар. Доведите пневматическое давление до 11,7 бар.
- Возможность хрупкого разрушения должна быть рассмотрена соответствующим инженером. В случае температуры ниже 0 ° C следует проверить используемый материал, чтобы убедиться, что он не ниже минимально допустимой температуры для данной стали.
- Опытный инженер должен разработать набор процедур испытаний под давлением.В этих процедурах необходимо указать, какие участки трубы проверяются, в каких положениях следует размещать клапаны, какие предохранительные устройства необходимо снять (или установить) и т. Д.
- Пневматическое испытание необходимо начинать при давлении 25 фунтов на кв. Дюйм, а перед повышением давления необходимо провести предварительное обследование на утечки.
- Самое главное, знающий инженер должен также проверить проектную спецификацию трубопровода на предмет всех требований, относящихся к испытаниям на герметичность или давление.