Что такое динистор и тиристор?
Что такое динистор и тиристор?
♦ Тиристор – полупроводниковый прибор на основе монокристалла полупроводника с многослойной структурой типа p –n –p – n обладает свойствами управляемого электрического вентиля. В качестве полупроводника обычно применяют кремний.
Обычно тиристор имеет три вывода: два из них (катод и анод) контактируют с крайними областями монокристалла, а третий вывод – управляющий. Такой управляемый тиристор называется иногда триодным, или тринистором.
Неуправляемый тиристор, имеющий всего два вывода (анод — катод), называется диодным тиристором или динистором.
Четырехслойная структура тиристора изображена на рис 1.
На рисунке 2 — его транзисторный аналог.
♦ Вольт-амперная характеристика, ВАХ динистора, имеет вид на рисунке 3.
Устойчивое состояние (точка D на ВАХ) достигается в результате перехода транзисторов тиристора в режим насыщения. Падение напряжения на открытом динисторе — тиристоре составляет около 1,5 – 2,0 вольта.
Если на анод подать положительное напряжение относительно катода, то крайние электронно-дырочные переходы П1 и П3 оказываются смещенными в прямом направлении, а центральный переход П2 в обратном.
С увеличением анодного напряжения Uа, ток через динистор сначала растет медленно (участок А — В на ВАХ). Сопротивление перехода П2 , в этом режиме еще велико, это соответствует запертому состоянию динистора.
При некотором значении напряжения (участок В — С на ВАХ). называемым напряжением переключения Uпер (напряжение лавинного пробоя перехода П2), динистор переходит в проводящее состояние.
В цепи устанавливается ток (участок D – E на ВАХ), определяемый сопротивлением внешней цепи Rн и величиной приложенного напряжения U (рис 2).
Напряжение пробоя динистора, в зависимости от экземпляра, изменяется в широких пределах и имеет значения порядка десятков и сотен вольт.
На вольт – амперной характеристике, ВАХ (рис 3.), обозначены участки:
— А – В участок в прямом включении, здесь динистор заперт и приложенное к его выводам напряжение меньше, чем необходимо для возникновения лавинного пробоя;
— В – С участок пробоя коллекторного перехода;
— C — D участок отрицательного сопротивления;
— D — E участок открытого состояния динистора (динистор включен).
Динистор имеет два устойчивых состояния:
— заперт (А – В)
— открыт (D — E)
В участке A – D – E явно просматривается кривая ВАХ диода.
♦ Тиристор имеющий три электрода – анод, катод и управляющий электрод – называется тринистором или просто тиристором. Четырех слойная структура типа p – n – p – n является единой для тиристора – динистора. Просто, у динистора отсутствует дополнительный вывод управляющего электрода.
При подаче тока в цепь управляющего электрода, тиристор переключается в открытое состояние при меньших значениях напряжения переключения Uпер.
Если каким-то образом уменьшать ток, проходящий через динистор — тиристор, то при некотором его значении (точка D на ВАХ) тиристор закроется.Минимальный ток, при котором тиристор — динистор переходит из открытого в закрытое состояние (при токе управляющего электрода Iу =0) называется током удержания Iуд.
Если через управляющий электрод тиристора пропустить отпирающий ток, то тиристор перейдёт в открытое состояние. Включение транзисторного аналога тиристора (рис 2) можно осуществить по двум входам: между электродами (Э1 –Б1), либо между электродами (Э2 – Б2).
♦ Вольтамперная характеристика тиристора (Рис 4), похожа на вольтамперную характеристику динистора.
Однако отпирание тиристора обычно происходит при существенно более низком напряжении, чем необходимо динистору. К раннему открыванию тиристора приводит протекание тока через управляющий электрод. Чем больше ток управляющего электрода от Iy1 до Iy4, тем при более низком напряжении Ua тринистор перейдёт в открытое состояние. Это отражено на вольтамперной характеристике тиристора.
♦ Тиристоры изготавливают на разные мощности: маломощные (ток 50 мА. – 100 мА), средней мощности (ток до 20 ампер) и большой мощности (токи 20 – 10000 ампер) и величины напряжения от нескольких вольт до 10 тысяч вольт.
♦ По назначению и принципу действия тиристоры делятся на: запираемые, быстродействующие, импульсные, симметричные и фототиристоры. Тиристор и динистор пропускают ток только в одном направлении – от анода к катоду.
♦ В настоящее время появились двунаправленные динисторы (пропускают ток в обоих направлениях) и двунаправленные тиристоры (симисторы).
Симистор имеет в своем составе как бы два тиристора, включенных встречно, с управлением от одного управляющего электрода.ВАХ (вольт — амперная характеристика) симистора представлена на рис 5.
Она имеет две одинаковые ветви. При положительном полупериоде сетевого напряжения действует правая ветвь, при отрицательном полупериоде – левая.
На управляющий электрод, относительно катода, также подается соответственно то положительное, то отрицательное управляющее напряжение. В схемах управления, симистор может заменить два тиристора.
♦ Динисторы применяют в регуляторах и переключателях, чувствительных к изменениям напряжений.
Наличие двух устойчивых состояний (включен — выключен), а также низкая мощность рассеяния тиристора, обусловили широкое использование их в различных устройствах.
Тиристоры применяются в регулируемых источниках питания, генераторах мощных импульсов, в линиях передачи энергии постоянного тока, в системах автоматического управления и т.д.
Внешний вид тиристора и его обозначение на схемах:
Симисторы нашли широкое применение в устройствах регулирования скорости вращения электродвигателей, в системах регулирования освещения, в электронагревателях, в преобразовательных установках.
Внешний вид симистора такой же как и у обычного тиристора.
Триггер-диод (Динистор) — принцип работы, как проверить мультимертом, характеристики и маркировка
Динистор – разновидность неуправляемого тиристора, который имеет структуру их четырех слоев. Ими являются p-n-p-n-структуру. Изготавливаются эти радиодетали обычно из кремния, либо из материлов на его основе. Анод связывается с положительным (плюсовым) контактом питания и является областью перехода типа р. Катод имеет область перехода n. Самые крайние части динистора являются эмиттерами, а средние – его базой.
В статье будет разобраны все особенности устройства динистора, а также где они используются. В качестве дополнения, данный материал содержит несколько интересных роликов на данную тему и одну скачиваемую статью.
Динистор.
Как работает динистор
Динисторы, это подкласс двухвыводных тиристоров (без управляющего вывода). Динисторы можно разделить по типу вольтамперной характеристики на симметричные и несимметричные. Динистор с несимметричной ВАХ имеет катод и анод, работает только при положительном смещении. При обратном смещении прибор может выйти из строя. Когда напряжение на выводах динистора достигает значения напряжения переключения Uпер, динистор триггерно переходит из закрытого в открытое состояние, и начинает проводить ток от минимального значения тока удержания Iуд, до максимально допустимого значения. При уменьшении значения тока ниже тока удержания динистор переходит в закрытое состояние.
Динистор – это двунаправленный триггерный неуправляемый диод, аналогичный по устройству тиристору небольшой мощности. В его конструкции отсутствует управляющий электрод. Он обладает низкой величиной напряжения лавинного пробоя, до 30 В.
Принципиально это два однополярных динистора включенных встречно параллельно. У симметричных динисторов нельзя выразить катод и анод, поскольку принципиально оба вывода равнозначны. Виды популярных моделей динисторов приведены в таблице.
Таблица видов динисторов.
ВАХ симметричного динистора отражает две рабочие области, симметричные относительно нуля. Такой динистор можно использовать в цепях переменного напряжения. На ВАХ имеются обозначения величин со знаком минус, это подчёркивает значение величин при токе противоположного направления. Uпер и -Uпер – напряжения переключения динистора; Iпер, -Iпер, Iуд и -Iуд – токи переключения и удержания соответственно.
Разновидность динистора.
Устройства, их аналоги и тиристоры
Наряду с приборами, предназначенными для линейного усиления сигналов, в электронике, в вычислительной технике и особенно в автоматике широкое применение находят приборы с падающим участком вольт-амперной характеристики. Эти приборы чаще всего выполняют функции электронного ключа и имеют два состояния: закрытое, характеризующееся высоким сопротивлением; и открытое, характеризующееся минимальным сопротивлением.
Динистор
В результате переходы Πι и П3 окажутся в прямом направлении, а переход П2 — в обратном. В результате получится, что в одном приборе как бы сочетаются два транзистора. Наличие отрицательного участка на характеристике динистора обусловлено той же причиной, что и у лавинного транзистора: у обоих приборов на этом участке задан постоянный ток базы, причем у динистора он равен нулю.
Предпочтением пользуются кремниевые динисторы, так как у них коэффициент инжекции при малых токах близок к нулю и с ростом тока увеличивается весьма медленно. Еще одним преимуществом кремниевого прибора является малая величина тока в запертом состоянии. Вместе с тем кремниевые переходы характеризуются большой величиной падения прямого напряжения на переходе и большим сопротивлением слоев. Это ухудшает параметры динистора в открытом состоянии.
Динисторы модели КН102А
Аналог динистора
Если в устройстве нет возможности установить требуемый динис- тор, можно пойти по другому пути и собрать схему. В данном случае роль основного проводящего элемента играет тринистор VS1 (КУ221), электрические параметры которого определяют характеристики аналога динистора. Момент открывания зависит от стабисто- ра VD1, а обратный ток — от диода VD2. Такой аналог может быть использован в радиолюбительских разработках различной сложности и стать настоящей палочкой-выручалочкой при отсутствии нужного динистора. Данный узел имеет следующие электрические характеристики: напряжение до 120 В и ток до 0.8 А. Эти характеристики будет иными, если в схеме будут использованы другие элементы, например тиристор КУ202Л. Такая схема включения элементов является универсальной.
В практике радиолюбителя возможны случаи, когда требуется замена популярного динистора КН102Ж (или с другим буквенным индексом). Так, при необходимости использовать аналог в электрических цепях с большим напряжением, например в цепи осветительной сети 220 В, сопротивление резистора Ri увеличивают до 1 кОм, ста- бистор заменяют на КС620А. Если в запасе не окажется нужного три- нистора (типа КУ201, КУ202, КУ221 и аналогичных по электрическим характеристикам), его заменяют тиристором КУ101Д. Кроме того, если под рукой не окажется динистора КН102Ж, его можно заменить последовательной цепью динисторов серии КН102 (или аналогичных) с меньшим напряжением включения. Динистор КН102Ж открывается при напряжении 130…150В. Это следует учитывать при замене аналоговой схемой или цепочкой динисторов.
Вообще, одной из причин популярности динисторов, используемых в электронных узлах с большим напряжением, является конкурентоспособность этого прибора по сравнению со стабилитроном: найти стабилитроны на высокое напряжение не просто, да и стоимость такого прибора достаточно высока. Кроме того, падение напряжения на динисторе во включенном состоянии невелико, а рассеиваемая мощность (и рост температуры) значительно меньше, чем при установке стабилитрона.
Электронные устройства с динисторами (многие из этих устройств являются источниками питания и преобразователями напряжения) имеют такие преимущества; как малая рассеиваемая мощность и высокая стабильность выходного напряжения. Одним из недостатков является ограниченный выбор выходных напряжений, обусловленный напряжением включения (открывания) динисторов. Устранение этого недостатка — задача разработчиков и производителей современной элементной базы динисторов.
Это интересно! Все о полупроводниковых диодах.
Тиристор
Снабдим одну из баз динистора, например щ, внешним выводом и используем этот третий электрод для задания дополнительного тока через переход р\-щ. Для реальных четырехслойных структур характерна различная толщина баз. В качестве управляющей используется база, у которой коэффициент передачи оц близок к единице. В этом случае прибор будет обладать свойствами тиратрона. Для такого прибора, или тиристора, используется та же терминология, что и для обычного транзистора: выходной ток называется коллекторным, а управляющий — базовым. Эмиттером считается слой, примыкающий к базе, хотя с физической точки зрения эмиттером является и второй внешний слой, в данном случае — п2.
При увеличении управляющего тока Iq напряжение прямого переключения уменьшается, отчасти возрастает ток прямого переключения и уменьшается ток обратного переключения. В результате отдельные кривые с ростом тока 1(, как бы «вписываются» друг в друга вплоть до полного исчезновения отрицательного участка (такую кривую называют спрямленной характеристикой).
Мощные тиристоры используются в качестве контакторов, коммутаторов тока, а также в преобразователях постоянного напряжения, инверторах и выпрямительных схемах с регулируемым выходным напряжением. Время переключения у тиристоров значительно меньше, чем у тиратронов. Даже у мощных приборов (с токами в десятки ампер и больше) время прямого переключения составляет около 1 мкс, а время обратного переключения не превышает 10…20 мкс.
Наряду с конечной длительностью фронтов напряжения и тока имеют место задержки фронтов по отношению к моменту подачи управляющего импульса. Наряду с мощными тиристорами разрабатываются и маломощные высокочастотные варианты. В таких приборах время прямого переключения составляет десятки, а время обратного переключения — сотни наносекунд. Столь высокое быстродействие обеспечивается малой толщиной слоев и наличием электрического поля в толстой базе. Маломощные быстродействующие тиристоры используются в различных спусковых и релаксационных схемах.
Динисторы КН102И.
Динистор: вах , основные соотношения для токов
Динистор – это неуправляемый тиристор, имеющий четырехслойную p-n-p-n-структуру, изготовленную на основе кремния.При приложении напряжения переходы П1 и П3 в прямом, а П2 в обратном смещении, поэтому все напряжение припадет к П2. 1 – если увеличивать напряжение, то в области p1 и p2 будут инжектироваться заряды, эти носители приближаются к переходу П2 и, перебрасываясь через него, образуют ток I0, при малом напряжении это напряжение почти полностью поглощается на П2.
- 2 – Ток через П2 увеличивается, но сопротивление уменьшается значительно сильнее, поэтому напряжение П2 уменьшается;
- 3 – При открытии всех переходов ток возрастает и ограничивается внешним сопротивлением;
- Alpha1 и alpha2 – коэф передачи тока соответствующих переходов.
Тиристор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий в прямом направлении двумя устойчивыми состояниями — состоянием низкой проводимости (тиристор заперт) и состоянием высокой проводимости (тиристор открыт). В обратном направлении тиристор обладает только запирающими свойствами. Т.е тиристор — это управляемый диод. Тиристоры подразделяются на тринисторы, динисторы и симисторы. Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор: либо воздействие напряжением (током), либо светом (фототиристор). Тиристор имеет нелинейную разрывную вольтамперную характеристику (ВАХ).
Основная схема тиристорной структуры представлена на рис. 1. Она представляет собой четырёхполюсный p-n-p-n прибор, содержащий три последовательно соединённых p-n перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n прибор может иметь два управляющих электрода (базы), присоединённых к внутренним слоям. Прибор без управляющих электродов называется диодным тиристором (или динистором). Прибор с одним управляющим электродом называют триодным тиристором или тринистором (или просто тиристором).
Режим обратного запирания
Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:
– Лавинный пробой.
– Прокол обеднённой области.
В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом. В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).
Интересно почитать: инструкция как прозвонить транзистор.
Режим прямого запирания
При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ.
Динисторы в бумажной упаковке.
В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.
Режим прямой проводимости
Когда тиристор находится во включенном состоянии, все три перехода смещены в прямом направлении. Дырки инжектируются из области p1, а электроны — из области n2, и структура n1-p2-n2 ведёт себя аналогично насыщенному транзистору с удалённым диодным контактом к области n1. Следовательно, прибор в целом аналогичен p-i-n (p+-i-n+)-диод.
Заключение
Рейтинг автора
Автор статьи
Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.
Написано статей
Подробнее о работе динисторов можно узнать из статьи Динисторы и его аналоги. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки статьи:
www.studfile.net
www.volt-info.ru
www.instrument16.ru
www.electrik.info
www.nauchebe.net
Предыдущая
ПолупроводникиSMD транзисторы
Следующая
ПолупроводникиЧто такое симистор (триак)
Динистор. Принцип работы и свойства.
Принцип работы и свойства динистора
Среди огромного количества всевозможных полупроводниковых приборов существует динистор.
В радиоэлектронной аппаратуре динистор встречается довольно редко, ходя его можно встретить на печатных платах широко распространённых энергосберегающих ламп, предназначенных для установки в цоколь обычной лампы. В них он используется в цепи запуска. В маломощных лампах его может и не быть.
Также динистор можно обнаружить в электронных пускорегулирующих аппаратах, предназначенных для ламп дневного света.
Динистор относится к довольно большому классу тиристоров.
Динисторы
Условное графическое обозначение динистора на схемах.
Для начала узнаем, как обозначается динистор на принципиальных схемах. Условное графическое обозначение динистора похоже на изображение диода за одним исключением. У динистора есть ещё одна перпендикулярная черта, которая, судя по всему, символизирует базовую область, которая и придаёт динистору его свойства.
Условное графическое обозначение динистора на схемах
Также стоит отметить тот факт, что изображение динистора на схеме может быть и другим. Так, например, изображение симметричного динистора на схеме может быть таким, как показано на рисунке.
Возможное обозначение симметричного динистора на схеме
Как видим, пока ещё нет какого-либо чёткого стандарта в обозначении динистора на схеме. Скорее всего, связано это с тем, что существует огромный класс приборов под названием тиристоры. К тиристорам относится динистор, тринистор (triac), симистор, симметричный динистор. На схемах все они изображаются похожим образом в виде комбинации двух диодов и дополнительных линий, обозначающих либо третий вывод (тринистор) либо базовую область (динистор).
В зарубежных технических описаниях и на схемах, динистор может иметь названия trigger diode, diac (симметричный динистор). Обозначается на принципиальных схемах буквами VD, VS, V и D.
Чем отличается динистор от полупроводникового диода?
Во-первых, стоит отметить, что у динистора три (!) p-n перехода. Напомним, что у полупроводникового диода p-n переход всего один. Наличие у динистора трёх p-n переходов придаёт динистору ряд особенных свойств.
Принцип работы динистора.
Суть работы динистора заключается в том, что при прямом включении он не пропускает ток до тех пор, пока напряжение на его выводах не достигнет определённого значения. Значение этого напряжения имеет определённую величину и не может быть изменено. Это связано с тем, что динистор является неуправляемым тиристором – у него нет третьего, управляющего, вывода.
Известно, что и обычный полупроводниковый диод также имеет напряжение открытия, но оно составляет несколько сотен милливольт (500 милливольт у кремниевых и 150 у германиевых). При прямом включении полупроводникового диода он открывается при приложении к его выводам даже небольшого напряжения.
Чтобы подробно и наглядно разобраться в принципе работы динистора обратимся к его вольт-амперной характеристике (ВАХ). Вольт-амперная характеристика хороша тем, что позволяет наглядно увидеть то, как работает полупроводниковый прибор.
На рисунке ниже вольт-амперная характеристика (англ. Current-voltage characteristics) импортного динистора DB3. Отметим, что данный динистор является симметричным и его можно впаивать в схему без соблюдения цоколёвки. Работать он будет в любом случае, вот только напряжение включения (пробоя) может чуть отличаться (до 3 вольт).
Вольт-амперная характеристика симметричного динистора
На ВАХ динистора DB3 наглядно видно, что он симметричный. Обе ветви характеристики, верхняя и нижняя, одинаковы. Это свидетельствует о том, что работа динистора DB3 не зависит от полярности приложенного напряжения.
График имеет три области, каждая из которых показывает режим работы динистора при определённых условиях.
Красный участок на графике показывает закрытое состояние динистора. Ток через него не течёт. При этом напряжение, приложенное к электродам динистора, меньше напряжения включения VBO – Breakover voltage.
Синий участок показывает момент открытия динистора после того, как напряжение на его выводах достигло напряжения включения (VBO или Uвкл.). При этом динистор начинает открываться и через него начинает протекать ток. Далее процесс стабилизируется и динистор переходит в следующее состояние.
Зелёный участок показывает открытое состояние динистора. При этом ток, который протекает через динистор ограничен только максимальным током Imax, который указывается в описании на конкретный тип динистора. Падение напряжения на открытом динисторе невелико и колеблется в районе 1 – 2 вольт.
Получается, что динистор в своей работе похож на обычный полупроводниковый диод за одним исключением. Если пробивное напряжение или по-другому напряжение открытия для обычного диода составляет значение менее вольта (150 – 500 мВ), то для того, чтобы открыть динистор необходимо подать на его выводы напряжение включения, которое исчисляется десятками вольт. Так для импортного динистора DB3 типовое напряжение включения (VBO) составляет 32 вольта.
Чтобы полностью закрыть динистор, необходимо уменьшить ток через него до значения меньше тока удержания. При этом динистор выключиться – перейдёт в закрытое состояние.
Если динистор несимметричный, то при обратном включении («+» к катоду, а «-» к аноду) он ведёт себя как диод и не пропускает ток до тех пор, пока обратное напряжение не достигнет критического для данного типа динистора и он сгорит. Для симметричных, как уже говорилось, полярность включения в схему не имеет значения. Он в любом случае будет работать.
В радиолюбительских конструкциях динистор может применяться в стробоскопах, переключателях мощной нагрузки, регуляторах мощности и многих других полезных приборах.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
ДИНИСТОРЫ, ИХ АНАЛОГИ И ТИРИСТОРЫ – СДЕЛАЙ САМ
Наряду с приборами, предназначенными для линейного усиления сигналов, в электронике, в вычислительной технике и особенно в автоматике широкое применение находят приборы с падающим участком вольт-амперной характеристики. Эти приборы чаще всего выполняют функции электронного ключа и имеют два состояния: закрытое, характеризующееся высоким сопротивлением; и открытое, характеризующееся минимальным сопротивлением.
Динистор
Рассмотрим работу диода, состоящего из четырех чередующихся -слоев (Рис. 1.26).
Рис. 1.26. Структурная схема прибора с четырьмя слоями
Рис. 1.27. Структурная схема переходов динистора
Если на такой диод подать не очень большое напряжение V, плюсом на слой р\ и минусом на слой щ, ток потечет в направлении стрелки, показанной на Рис. 1.26. В результате переходы Πι и П3 окажутся в прямом направлении, а переход П2 — в обратном. В результате получится, что в одном приборе как бы сочетаются два транзистора (Рис. 1.27).Комбинация транзисторов р-п-р и п-р-п имеет свойства динистора, при этом один транзистор образован-слоями, а другой —
-слоями. Слои р\ и щ являются эмиттерами, р2 — базой для одного транзистора и коллектором для другого. Во избежание путаницы их называют базами, а переход П2 — коллекторным.
Наличие отрицательного участка на характеристике динистора обусловлено той же причиной, что и у лавинного транзистора: у обоих приборов на этом участке задан постоянный ток базы, причем у динистора он равен нулю.
Предпочтением пользуются кремниевые динисторы, так как у них коэффициент инжекции при малых токах близок к нулю и с ростом тока увеличивается весьма медленно. Еще одним преимуществом кремниевого прибора является малая величина тока в запертом состоянии. Вместе с тем кремниевые переходы характеризуются большой величиной падения прямого напряжения на переходе и большим сопротивлением слоев. Это ухудшает параметры динистора в открытом состоянии.
Аналог динистора
Если в устройстве нет возможности установить требуемый динис- тор, можно пойти по другому пути и собрать схему, приведенную на Рис. 1.28.
Рис. 1.28. Электрическая схема диодного тринистора — аналога динистора
В данном случае роль основного проводящего элемента играет тринистор VS1 (КУ221), электрические параметры которого определяют характеристики аналога динистора. Момент открывания зависит от стабисто- ра VD1, а обратный ток — от диода VD2. Такой аналог может быть использован в радиолюбительских разработках различной сложности и стать настоящей палочкой-выручалочкой при отсутствии нужного динистора.
Данный узел имеет следующие электрические характеристики: напряжение до 120 В и ток до 0.8 А. Эти характеристики будет иными, если в схеме будут использованы другие элементы, например тиристор КУ202Л. Такая схема включения элементов является универсальной.
В практике радиолюбителя возможны случаи, когда требуется замена популярного динистора КН102Ж (или с другим буквенным индексом). Так, при необходимости использовать аналог в электрических цепях с большим напряжением, например в цепи осветительной сети 220 В, сопротивление резистора Ri увеличивают до 1 кОм, ста- бистор заменяют на КС620А. Если в запасе не окажется нужного три- нистора (типа КУ201, КУ202, КУ221 и аналогичных по электрическим характеристикам), его заменяют тиристором КУ101Д или
КУ101Е. Если обратный ток в данной цепи не актуален, диод VD2 из схемы исключается.
Кроме того, если под рукой не окажется динистора КН102Ж, его можно заменить последовательной цепью динисторов серии КН102 (или аналогичных) с меньшим напряжением включения. Динистор КН102Ж открывается при напряжении 130…150В. Это следует учитывать при замене аналоговой схемой или цепочкой динисторов.
. Вообще, одной из причин популярности динисторов, используемых в электронных узлах с большим напряжением, является конкурентоспособность этого прибора по сравнению со стабилитроном: найти стабилитроны на высокое напряжение не просто, да и стоимость такого прибора достаточно высока. Кроме того, падение напряжения на динисторе во включенном состоянии невелико, а рассеиваемая мощность (и рост температуры) значительно меньше, чем при установке стабилитрона.
. Помимо диодных тиристоров (динисторов) распространение получили симметричные динисторы (например, входящие в сборку КР1125КПЗА). Микросборка удобна благодаря возможности подключения ее к разным выводам, что позволяет использовать или динистор из ее состава, или симметричный динистор (Рис. 1.29 и Рис. 1.30).
При установке в высоковольтные схемы (110…220 В) максимальный постоянный или пульсирующий ток через КР1125КПЗА определяется рассеиваемой им мощностью и составляет около 60 мА. Как правило, этой величины недостаточно, и симметричный динистор включают по схеме, в которой присутствуют дополнительные дискретные элементы (Рис. 1.29 и Рис. 1.30)
Рис. 1J29. Электрическая схема включения симметричного динистора КР1125КПЗА совместно с тиристором КУ202 для увеличения мощности
Рис. 1.30. Электрическая схема включения симметричного динистора КР1125КПЗА совместно с динистором КУ208 для увеличения мощности
В этой схеме используется только одна часть микросборки КР1125КПЗА.
При другом подключении выводов КР1125КПЗА появляется возможность выделить из ее части симметричный динистор.
Электронные устройства с динисторами (многие из этих устройств являются источниками питания и преобразователями напряжения) имеют такие преимущества; как малая рассеиваемая мощность и высокая стабильность выходного напряжения. Одним из недостатков является ограниченный выбор выходных напряжений, обусловленный напряжением включения (открывания) динисторов. Устранение этого недостатка — задача разработчиков и производителей современной элементной базы динисторов.
Тиристор
Снабдим одну из баз динистора, например щ, внешним выводом и используем этот третий электрод для задания дополнительного тока через переход р\-щ. Для реальных четырехслойных структур характерна различная толщина баз. В качестве управляющей используется база, у которой коэффициент передачи оц близок к единице. В этом случае прибор будет обладать свойствами тиратрона. Для такого прибора, или тиристора, используется та же терминология, что и для обычного транзистора: выходной ток называется коллекторным, а управляющий — базовым. Эмиттером считается слой, примыкающий к базе, хотя с физической точки зрения эмиттером является и второй внешний слой, в данном случае — п2.
При увеличении управляющего тока Iq напряжение прямого переключения уменьшается, отчасти возрастает ток прямого переключения и уменьшается ток обратного переключения. В результате отдельные кривые с ростом тока 1(, как бы «вписываются» друг в друга вплоть до полного исчезновения отрицательного участка (такую кривую называют спрямленной характеристикой).
Мощные тиристоры используются в качестве контакторов, коммутаторов тока, а также в преобразователях постоянного напряжения, инверторах и выпрямительных схемах с регулируемым выходным напряжением.
Время переключения у тиристоров значительно меньше, чем у тиратронов. Даже у мощных приборов (с токами в десятки ампер и больше) время прямого переключения составляет около 1 мкс, а время обратного переключения не превышает 10…20 мкс. Наряду с конечной длительностью фронтов напряжения и тока имеют место задержки фронтов по отношению к моменту подачи управляющего импульса. Наряду с мощными тиристорами разрабатываются и маломощные высокочастотные варианты. В таких приборах время прямого переключения составляет десятки, а время обратного переключения — сотни наносекунд. Столь высокое быстродействие обеспечивается малой толщиной слоев и наличием электрического поля в толстой базе. Маломощные быстродействующие тиристоры используются в различных спусковых и релаксационных схемах.
Источник: Кяшкаров А. П., Собери сам: Электронные конструкции за один вечер. — М.: Издательский дом «Додэка-ХХ1», 2007. — 224 с.: ил. (Серия «Собери сам»).
Динистор — это… Что такое Динистор?
Обозначение на схемах
Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий в прямом направлении двумя устойчивыми состояниями — состоянием низкой проводимости (тиристор заперт) и состоянием высокой проводимости (тиристор открыт). В обратном направлении тиристор обладает только запирающими свойствами. Т.е тиристор — это управляемый диод. Тиристоры подразделяются на тринисторы, динисторы и симисторы. Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор: либо воздействие напряжением (током), либо светом (фототиристор). Тиристор имеет нелинейную разрывную вольтамперную характеристику (ВАХ).
Устройство тиристора
Рис. 1. Схемы тиристора: a) Основная четырёхслойная p-n-p-n структура b) Диодный тиристор с) Триодный тиристор.
Основная схема тиристорной структуры представлена на рис. 1. Она представляет собой четырёхполюсный p-n-p-n прибор, содержащий три последовательно соединённых p-n перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n прибор может иметь два управляющих электрода (базы), присоединённых к внутренним слоям. Прибор без управляющих электродов называется диодным тиристором (или динистором). Прибор с одним управляющим электродом называют триодным тиристором или тринистором (или просто тиристором).
Вольт-амперная характеристика тиристора
Рис. 2. Вольтамперная характеристика тиристора
ВАХ тиристора (с управляющими электродами или без них) приведена на рис 2. Она имеет несколько участков:
- Между точками 0 и 1 находится участок, соответствующий высокому сопротивлению прибора — прямое запирание.
- В точке 1 происходит включение тиристора.
- Между точками 1 и 2 находится участок с отрицательным дифференциальным сопротивлением.
- Участок между точками 2 и 3 соответствует открытому состоянию (прямой проводимости).
- В точке 2 через прибор протекает минимальный удерживающий ток Ih.
- Участок между 0 и 4 описывает режим обратного запирания прибора.
- Участок между 4 и 5 — режим обратного пробоя.
По типу нелинейности ВАХ тиристор относят к S-приборам.
Режимы работы тиристора
Режим обратного запирания
Рис. 3. Режим обратного запирания тиристора
Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:
- Лавинный пробой.
- Прокол обеднённой области.
В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом (см. рис. 3). В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).
Режим прямого запирания
Рис. 4. Двухтранзисторная модель триодного тиристора, соединение транзисторов и соотношение токов в p-n-p транзисторе.
При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.
Двухтранзисторная модель
Для объяснения характеристик прибора в режиме прямого запирания используем двухтранзисторную модель. Тиристор можно рассматривать как соединение p-n-p транзистора с n-p-n транзистором, причём коллектор каждого из них соединён с базой другого, как показано на рис. 4 для триодного тиристора. Центральный переход действует как коллектор дырок, инжектируемых переходом J1, и электронов, инжектируемых переходом J3. Взаимосвязь между токами эмиттера IE, коллектора IC и базы IB и статическим коэффициентом усиления по току α1 p-n-p транзистора также приведена на рис. 4, где IСо— обратный ток насыщения перехода коллектор-база.
Аналогичные соотношения можно получить для n-p-n транзистора при изменении направления токов на противоположное. Из рис. 4 следует, что коллекторный ток n-p-n транзистора является одновременно базовым током p-n-p транзистора. Аналогично коллекторный ток p-n-p транзистора и управляющий ток Ig втекают в базу n-p-n транзистора. В результате, когда общий коэффициент усиления в замкнутой петле превысит 1, оказывается возможным регенеративный процесс.
Ток базы p-n-p транзистора равен IB1 = (1 — α1)IA — ICo1. Этот ток также протекает через коллектор n-p-n транзистора. Ток коллектора n-p-n транзистора с коэффициентом усиления α2 равен IC2 = α2IK + ICo2.
Приравняв IB1 и IC2, получим (1 — α1)IA — ICo1 = α2IK + ICo2. Так как IK = IA + Ig, то
Рис. 5. Энергетическая зонная диаграмма в режиме прямого смещения: состояние рановесия, режим прямого запирания и режим прямой проводимости.
Это уравнение описывает статическую характеристику прибора в диапазоне напряжений вплоть до пробоя. После пробоя прибор работает как p-i-n-диод. Отметим, что все слагаемые в числителе правой части уравнения малы, следовательно, пока член α1 + α2 < 1, ток IA мал. (Коэффициенты α1 и α2 сами зависят от IA и обычно растут с увеличением тока) Если α1 + α2 = 1, то знаменатель дроби обращается в нуль и происходит прямой пробой (или включение тиристора). Следует отметить, что если полярность напряжения между анодом и катодом сменить на обратную, то переходы J1 и J3 будут смещены в обратном направлении, а J2 — в прямом. При таких условиях пробой не происходит, так как в качестве эмиттера работает только центральный переход и регенеративный процесс становится невозможным.
Ширина обеднённых слоёв и энергетические зонные диаграммы в равновесии, в режимах прямого запирания и прямой проводимости показаны на рис. 5. В равновесии обеднённая область каждого перехода и контактный потенциал определяются профилем распределения примесей. Когда к аноду приложено положительное напряжение, переход J2 стремится сместиться в обратном направлении, а переходы J1 и J3 — в прямом. Падение напряжения между анодом и катодом равно алгебраической сумме падений напряжения на переходах: VAK = V1 + V2 + V3. По мере повышения напряжения возрастает ток через прибор и, следовательно, увеличиваются α1 и α2. Благодаря регенеративному характеру этих процессов прибор в конце концов перейдёт в открытое состояние. После включения тиристора протекающий через него ток должен быть ограничен внешним сопротивлением нагрузки, в противном случае при достаточно высоком напряжении тиристор выйдет из строя. Во включенном состоянии переход J2 смещён в прямом направлении (рис. 5, в), и падение напряжения VAK = (V1 — |V2| + V3) приблизительно равно сумме напряжения на одном прямосмещенном переходе и напряжения на насыщенном, транзисторе.
Режим прямой проводимости
Когда тиристор находится во включенном состоянии, все три перехода смещены в прямом направлении. Дырки инжектируются из области p1, а электроны — из области n2, и структура n1-p2-n2 ведёт себя аналогично насыщенному транзистору с удалённым диодным контактом к области n1. Следовательно, прибор в целом аналогичен p-i-n (p+-i-n+)-диоду…
Отличие динистора от тринистора
Принципиальных различий между динистором и тринистором нет, однако если включение динистора происходит при повышении напряжения между анодом и катодом, то в тринисторе для этого используют подачу импульса тока определённой длительности и величины на управляющий электрод при положительной разности потенциалов между анодом и катодом. Тринисторы являются наиболее распространёнными приборами из «тиристорного» семейства.
Выключение тиристоров производят либо снижением тока через тиристор до значения Ih, либо изменением полярности напряжения между катодом и анодом. В настоящее время разработан целый класс запираемых тиристоров, которые переходят в закрытое состояние после подачи на управляющий электрод напряжения отрицательной полярности.
Характеристики тиристоров
Современные тиристоры изготовляют на токи от 1 мА до 10 кА напряжения от нескольких В до нескольких кВ; скорость нарастания в них прямого тока достигает 109 А/сек, напряжения — 109 В/сек, время включения составляет величины от нескольких десятых долей до нескольких десятков мкс, время выключения — от нескольких единиц до нескольких сотен мкс; кпд достигает 99 %.
Применение
Ссылки
См. также
54. Тиристоры (динисторы, тринисторы, симисторы) (устройство, параметры, обозначение, конструкции, применения).
Тиристор —
полупроводниковый прибор, выполненный
на основе монокристалла полупроводника
с тремя или более p-n-переходами и имеющий
два устойчивых состояния: закрытое
состояние, то есть состояние низкой
проводимости, и открытое состояние, то
есть состояние высокой проводимости.
Тиристор
можно рассматривать как электронный
выключатель (ключ).
У
всех тиристоров на вольтамперной
характеристике присутствует участок
отрицательного дифференциального
сопротивления. Тиристоры в основном
производят по технологии диффузии.
Основные
параметры тиристоров:
Амплитуда
повторяющегося импульсного напряжения,
которое прикладывают к закрытому
тиристору, B.
Длительность
включения, т.е. такой отрезок времени,
за который тиристор переходит в открытое
состояние под действием импульса тока,
протекающего по управляющему электроду,
мс.
Критическая
скорость нарастания напряжения на
закрытом тиристоре, т.е. значение такой
максимальной скорости нарастания
напряжения, которое не приведёт к
отпиранию тиристора, dU / dt.
Напряжение
включения, т.е. такое напряжение,
приложенное к динистору, при котором
он переходит в открытое состояние, В.
Напряжение
переключения, т.е. приложенное к тиристору
напряжение во время переключения, В.
Неповторяющийся
ударный ток тиристора в открытом
состоянии, т.е. предельно допустимый
ток через открытый тиристор, который
не вызовет выход компонента из строя
при кратковременном воздействии, по
завершении которого сила тока станет
много меньше, А.
Постоянный
обратный ток, протекающий по выводам
анод-катод тиристора в закрытом состоянии,
мА.Предельно допустимая амплитуда
импульсов тока, протекающего через
выводы анод-катод открытого тиристора,
А.
Предельно
допустимый постоянный ток через выводы
анод-катод открытого тиристора, А.
Ток
запирания, т.е. такой ток, протекающий
по управляющему электроду, который
инициирует переход тиристора из открытого
состояния в закрытое состояние, А.
Ток
удержания, т.е. минимальный ток такой
силы, под действием которого тиристор
не переходит в закрытое состояние, А.
Динистор
Динистором,
или, по-другому, диодным тиристором,
называют переключательный компонент
с двумя выводами, который переходит в
открытое состояние при превышении
определённого напряжения, которое
прикладывают между его выводами.
Динисторы содержат три электронно-дырочных
перехода. Схематичное изображение
структуры динистора дано на рисунке.
Вывод
от внешней зоны n2 называют катодом, а
от зоны p1 – анодом. Зоны n1 и p2 носят
название баз динистора. Переход между
зонами p1, n1 и p2, n2 именуют эмиттерным, а
между зонами n1 и p2 – коллекторным
переходом.
Динисторы
применяют в
регуляторах и переключателях,
чувствительных к изменениям напряжений.
обозначение
на схемах
симмитричный
динистор
Тринистор
Тринистором,
или, иначе, триодным тиристором, называют
переключательный компонент с тремя
электронно-дырочными переходами, и
тремя выводами – анодом, катодом и
управляющим электродом. Тринисторы
обладают аналогичной динисторам
структурой, а отличие состоит в наличии
управляющего электрода – дополнительного
вывода, подключённого к одной из баз.
Если через управляющий электрод
тринистора пропустить отпирающий ток,
то тринистор перейдёт в открытое
состояние. В зависимости от того, к какой
именно из баз будет подсоединён
управляющий электрод, можно организовать
включение тринистора при приложении
отпирающего напряжения между управляющим
электродом и либо анодом, либо катодом.
Вольтамперная
характеристика тринистора похожа на
вольтамперную характеристику динистора.
Однако отпирание тринистора обычно
происходит при существенно более низком
прямом напряжении, чем необходимо
динистору, и к открыванию тринисторной
структуры приводит протекание тока
через управляющий электрод. Чем больше
ток управляющего электрода, тем при
более низком прямом напряжении тринистор
перейдёт в открытое состояние, что
отражено на вольтамперной характеристике
тринистора, изображённой на рисунке.
Катодный
управляющий элемент, анодный. Симмитричный
тринистор.
Тринисторы
широко применяют в
регуляторах мощности, контакторах,
ключевых преобразователях и инверторах
и пр. Некоторое ограничение на внедрение
тринисторов накладывает их частичная
управляемость.
Симистор
Симисторы,
в отличие от обычных тиристоров, проводят
ток анод-катод при протекании тока по
управляющему электроду, как в прямом
направлении, так и в обратном. В результате
этого их вольтамперная характеристика
симметрична, что отражено на рисунке.
обозначение
на схемах
Таким
образом, на вольтамперной характеристике
каждого симистора присутствуют два
участка отрицательного дифференциального
сопротивления.
Структура
симистора содержит
пять слоёв, что отражено на рисунке
Симисторы
нашли широкое применение в
устройствах регулирования скорости
вращения электродвигателей, в системах
освещения, в электронагревателях, в
преобразовательных установках.
БИЛЕТ
15.
примеры применения динистора и тиристора
♦Динистор и тиристор в цепях постоянного тока.
♦ Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод), это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод), это тринистор, или в обиходе его называют просто тиристор.
♦ С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».
Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр, то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U < Uпр), если подать импульс напряжения положительной полярности между управляющим электродом и катодом.
♦ В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:
- — если уменьшить напряжение между анодом и катодом до U = 0;
- — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд.
- — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).
Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.
Работа динистора и тиристора в цепях постоянного тока.
Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов.
В качестве динистора используем КН102А-Б.
♦ Работает генератор следующим образом.
При нажатии кнопки Кн, через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).
Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
♦ При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.
Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2.
♦ При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом, не более, например телефонный капсюль ТК-67-Н.
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).
♦ У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (разное напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт, что не всегда возможно и удобно.
Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.
Устройство работает следующим образом.
♦ В исходном состоянии тиристор закрыт и лампочка не горит.
Нажмем на кнопку Кн в течении 1 – 2 секунды. Контакты кнопки размыкаются, цепь катода тиристора разрывается.
В этот момент конденсатор С заряжается от источника питания через резистор R1. Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем кнопку Кн.
В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.
В цепи управляющего электрода потечет ток, тиристор «откроется».
Загорается лампочка по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго.
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.
♦ Для выключения лампочки необходимо кратковременно нажать на кнопку Кн. При этом основная цепь питания лампочки обрывается. Тиристор «закрывается». Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).
Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208.
♦ Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог.
Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3.
Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.
Аналог тиристора имеет два управляющих входа.
Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).
Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).
Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.
Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод.
♦ Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд), будут зависеть от свойств применяемых транзисторов.
♦ Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2. А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4.
Если в схеме генератора звуковых частот (рис 1), вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5).
Напряжение питания такой схемы составит от 5 до 15 вольт. Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.
Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.
Потом можно заменить его на постоянный резистор.
Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.
♦ Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6).
Если ток в нагрузке превысит 1 ампер, сработает защита.
Стабилизатор состоит из:
- — управляющего элемента– стабилитрона КС510, который определяет напряжение выхода;
- — исполнительного элемента–транзисторов КТ817А, КТ808А, исполняющих роль регулятора напряжения;
- — в качестве датчика перегрузки используется резистор R4;
- — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503.
♦ На входе стабилизатора в качестве фильтра стоит конденсатор С1. Резистором R1 задается ток стабилизации стабилитрона КС510, величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт.
Резистор R5 задает начальный режим стабилизации выходного напряжения.
Резистор R4 = 1,0 Ом, включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.
В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт. Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.
Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4. При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта.
Это есть напряжение перехода анод — катод открытого аналога тиристора.
Одновременно загорается светодиод Д1, сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта.
Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн, сбросив блокировку защиты.
На выходе стабилизатора вновь будет напряжение 9 вольт, а светодиод погаснет.
Настройкой резистора R3, можно подобрать ток срабатывания защиты от 1 ампера и более. Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.
/span
Тиристоры (SCR)
- Изучив этот раздел, вы сможете:
- Распознать типичные пакеты SCR:
- Опишите типичную конструкцию SCR:
- Понять типовые диаграммы характеристик SCR:
- Ознакомьтесь с соображениями безопасности при демонстрации SCR.
Тиристорные блоки (SCR)
Фиг.6.0.1 Типичные пакеты SCR
Тиристор — это общее название ряда высокоскоростных переключающих устройств, часто используемых при управлении мощностью переменного тока и переключении переменного / постоянного тока, включая симисторы и тиристоры (выпрямители с кремниевым управлением). SCR — это очень распространенный тип тиристоров, и несколько примеров распространенных корпусов SCR показаны на рисунке 6.0.1. Доступны многие типы, которые могут переключать нагрузки от нескольких ватт до десятков киловатт. Обозначение схемы для SCR показано на рисунке 6.0.2. и предполагает, что SCR действует в основном как КРЕМНИЙНЫЙ ВЫПРЯМИТЕЛЬНЫЙ диод с обычными соединениями анода и катода, но с дополнительной клеммой CONTROL, называемой GATE. Отсюда и название выпрямитель с кремниевым управлением.
Триггерное напряжение, приложенное к затвору, когда анод более положительный, чем катод, включает тиристор, чтобы позволить току течь между анодом и катодом. Этот ток будет продолжать течь, даже если триггерное напряжение будет удалено, пока ток между анодом и катодом не упадет почти до нуля из-за внешних воздействий, таких как отключение цепи, или форма волны переменного тока, проходящая через нулевое напряжение как часть его цикл.
Рис. 6.0.2 Типовое обозначение конструкции и схемы SCR
Выпрямитель с кремниевым управлением (SCR)
SCR
, в отличие от обычных двухслойных выпрямителей с PN-переходом, состоят из четырех слоев кремния в структуре P-N-P-N, как можно увидеть в разрезе SCR на рис. 6.0.2. Добавление затвора к этой структуре позволяет переключать выпрямитель из непроводящего состояния с прямой блокировкой в состояние с низким сопротивлением и прямой проводимостью (см.также рис.6.0.3). Таким образом, небольшой ток, приложенный к затвору, может включить гораздо больший ток (также при гораздо более высоком напряжении), приложенный между анодом и катодом. Когда тиристор проводит ток, он ведет себя как обычный кремниевый выпрямитель; ток затвора может быть удален, и устройство останется в проводящем состоянии.
SCR заставляется проводить, подавая пусковой импульс на вывод затвора, в то время как выводы основного анода и катода смещены в прямом направлении. Когда устройство смещено в обратном направлении, стробирующий импульс не действует.Чтобы выключить SCR, ток между анодом и катодом должен быть уменьшен ниже определенного критического значения «тока удержания» (близкого к нулю).
Обычно тиристоры используются для переключения нагрузок большой мощности. Они являются переключающим элементом во многих домашних регуляторах освещенности, а также используются в качестве элементов управления в регулируемых или регулируемых источниках питания.
Рис. 6.0.3 Характеристики SCR
SCR Характеристики
На рис. 6.0.3 показана типичная характеристическая кривая для SCR.Видно, что в области обратной блокировки он ведет себя аналогично диоду; весь ток, за исключением небольшого тока утечки, блокируется до тех пор, пока не будет достигнута область обратного пробоя, и в этот момент изоляция из-за истощенных слоев на переходах разрушится. В большинстве случаев обратный ток, протекающий в области пробоя, может разрушить тиристор.
Однако, когда тиристор смещен в прямом направлении, в отличие от обычного диода, ток не начинает течь, когда чуть больше 0.При подаче напряжения 6В не течет никакой ток, кроме небольшого тока утечки. Это называется режимом прямой блокировки, который распространяется на сравнительно высокое напряжение, называемое «прямое напряжение переключения». SCR обычно работает при напряжениях, значительно меньших, чем перенапряжение прямого прерывания, поскольку любое напряжение, превышающее перенапряжение прямого прерывания, вызовет неконтролируемое поведение SCR; затем SCR внезапно показывает очень низкое прямое сопротивление, позволяя протекать большому току.Этот ток «фиксируется» и будет продолжать течь до тех пор, пока либо напряжение на аноде и катоде не уменьшится до нуля, либо прямой ток не уменьшится до очень низкого значения, меньшего, чем «ток удержания», показанный на рис. 6.0.3. . Однако прямой разрыв по проводимости может произойти, если SCR используется для управления напряжением переменного тока (например, от сети или сети), и возникает внезапный всплеск напряжения, особенно если он совпадает с пиковым значением переменного тока (или близок к нему). Если SCR случайно переведен в режим прямого прерывания, это может вызвать внезапный, но кратковременный скачок максимального тока, который может иметь катастрофические последствия для других компонентов в цепи.По этой причине часто обнаруживается, что в SCR есть какой-то метод подавления выбросов, включенный либо в конструкцию SCR, либо в качестве внешних компонентов, обычно называемых «демпфирующей схемой».
Правильный способ инициирования включения SCR — это подать ток на затвор SCR, пока он работает в «области прямой блокировки», затем SCR «срабатывает», и его прямое сопротивление падает до очень низкая стоимость. Это создает «ток фиксации», который из-за низкого прямого сопротивления SCR в этом режиме позволяет очень большим (несколько ампер) токам протекать в «прямой проводящей области» практически без изменения прямого напряжения (примечание что характеристическая кривая после срабатывания SCR практически вертикальна).В этой области будет течь ток, который может изменяться, но если прямой ток упадет ниже значения «удерживающего тока» или напряжение между анодом и катодом уменьшится почти до 0 В, устройство вернется в свою зону прямой блокировки, эффективно поворачивая выпрямитель. выключен, пока он не сработает еще раз. Использование затвора для запуска проводимости таким образом позволяет контролировать проводимость, что позволяет использовать SCR во многих системах управления переменного и постоянного тока.
Рис. 6.0.4 Двухтранзисторная модель SCR
Как работает SCR
Модель SCR на двух транзисторах
Фактическую работу SCR можно описать со ссылкой на рис.6.0.4 (a) и (b), где показаны упрощенные схемы структуры SCR с помеченными слоями P и N и переходами. Чтобы понять работу SCR, четыре уровня SCR теоретически можно рассматривать как небольшую схему, состоящую из двух транзисторов (один PNP и один NPN), как показано на рис. 6.0.4 (b). Обратите внимание, что слой P2 образует как эмиттер Tr1, так и базу Tr2, а слой N1 формирует базу Tr1 и коллектор Tr2.
Состояние «выключено»
Ссылаясь на Рис.6.0.4 (c), при отсутствии сигнала затвора и затворе (g) с тем же потенциалом, что и катод (k), любое напряжение (меньше, чем перенапряжение прямого размыкания), приложенное между анодом (a) и катодом (k ), так что анод положительный по отношению к катоду не будет создавать ток через SCR. Tr2 (NPN-транзистор) имеет 0В, приложенное между базой и эмиттером, поэтому он не будет проводить, и поскольку его напряжение коллектора обеспечивает базовое возбуждение для Tr1 (транзистор PNP), его переход база / эмиттер будет смещен в обратном направлении.Таким образом, оба транзистора выключены, и между анодом SCR и катодом не будет протекать ток (за исключением небольшого обратного тока утечки), и он работает в области прямой блокировки.
Запуск SCR
Когда SCR работает в области прямой блокировки (см. Характеристики SCR на рис. 6.0.3), если затвор и, следовательно, база Tr2, см. Рис. 6.0.4 (c), становятся положительными по отношению к катоду (также эмиттер Tr2) путем применения стробирующего импульса, так что небольшой ток, обычно от нескольких мкА до нескольких мА в зависимости от типа тиристора, вводится в базу Tr2, Tr2 включается, и напряжение на его коллекторе падает.Это вызовет протекание тока через PNP-транзистор Tr1 и быстрое повышение напряжения на коллекторе Tr1 и, следовательно, на базе Tr2. Базовый эмиттерный переход Tr2 станет еще более смещенным вперед, быстро включив Tr1. Это увеличивает напряжение, приложенное к базе Tr2, и сохраняет проводимость Tr2 и Tr1, даже если исходный стробирующий импульс или напряжение, которое запустило процесс включения, теперь удаляются. Теперь между слоями анода P1 (a) и катода N2 (k) будет протекать большой ток.
Сопротивление между анодом и катодом падает почти до нуля Ом, так что теперь ток тринистора ограничивается только сопротивлением любой цепи нагрузки.Описанное действие происходит очень быстро, поскольку включение Tr2 с помощью Tr1 является формой положительной обратной связи, когда каждый коллектор транзистора подает большие изменения тока на базу другого.
Поскольку коллектор Tr1 подключен к базе Tr2, действие включения Tr1 фактически подключает базу Tr2 (вывод затвора) к высокому положительному напряжению на аноде (a). Это гарантирует, что Tr2 и, следовательно, Tr1 остаются проводящими, даже когда стробирующий импульс удален. Чтобы выключить транзисторы, напряжение на аноде (a) и катоде (k) должно иметь обратную полярность, как это произошло бы в цепи переменного тока в то время, когда положительный полупериод волны переменного тока достигал 0 В, прежде чем стать отрицательным. на вторую половину его цикла или в цепи постоянного тока ток, протекающий через тиристор, отключается.В любом из этих случаев ток, протекающий через тиристор, будет снижен до очень низкого уровня, ниже уровня удерживающего тока (показанного на рис. 6.0.3), поэтому переходы база-эмиттер больше не имеют достаточного прямого напряжения для поддержания проводимости.
Рис. 6.0.5 Низковольтное питание SCR
Демонстрация работы SCR
Поскольку SCR обычно используются для управления высокомощными высоковольтными нагрузками, это представляет значительный риск поражения электрическим током для пользователей в любых экспериментальных или образовательных средах.Однако схемы, описанные на следующих веб-страницах Модуля 6, предназначены для демонстрации различных методов управления, используемых с тиристорами с использованием низкого напряжения (12 В, RMS, ) переменного тока, как показано на рис. 6.0.5, вместо того, чтобы подвергать пользователя опасностям. использования сетевого (линейного) напряжения. Обратите внимание, что схемы, показанные в этом модуле, предназначены только для демонстрации низкого напряжения, а не как рабочие схемы управления для сетевых (линейных) цепей. Для реальных рабочих примеров вы должны обратиться к инструкциям по применению, выпущенным производителями SCR.
Часть схемы, содержащая SCR (SCR C106M), вместе с токоограничивающим резистором 33R и лампой 12 В 100 мА, построена на небольшом куске Veroboard (прототипной платы), который можно легко прикрепить к макетной плате с помощью ‘Blu Tack ‘или аналогичный временный клей, позволяющий экспериментально конструировать различные схемы управления на макетной плате. На SCR подается переменный ток через двухполюсный переключатель и изолирующий трансформатор с 230 В на 12 В (идеален небольшой медицинский изолирующий трансформатор) с предохранителем 250 мА во вторичной цепи, все они размещены в коробке с двойной изоляцией.
Рис. 6.0.6 Цепи питания низковольтного SCR
Мостовой выпрямитель находится в отдельном изолированном корпусе с резистором с проволочной обмоткой 1K8, подключенным к выходу, чтобы обеспечить постоянную нагрузку. Это гарантирует, что формы выходных сигналов двухполупериодного выпрямленного выхода 12 В могут быть надежно отображены на осциллографе. Эти отдельные схемы, показанные на рис. 6.0.6, просто сконструированы и представляют собой полезный набор для демонстрации и экспериментов с различными типами SCR или работы источника питания при низком напряжении.
.
Как работают тиристоры? | Сравнение тиристоров и транзисторов
Криса Вудфорда. Последнее изменение: 11 апреля 2020 г.
Транзисторы — крошечные электронные компоненты
которые изменили мир: вы найдете их в
все от калькуляторов и
компьютеры для
телефоны, радио и
слуховые аппараты. Они удивительно универсальны, но это не значит, что они могут все.
Хотя мы можем использовать их для включения крошечных электрических токов и
выключен (это основной принцип компьютерной памяти), и
преобразовать малые токи в несколько большие (вот как
усилитель работает), они не особо полезны в обращении
гораздо большие токи.Еще один недостаток — они отключаются
сразу после снятия тока переключения, что означает
они не так полезны в устройствах, таких как будильники, где вы хотите
цепь для срабатывания и остается включенной неопределенно долго. Для такого рода работ
мы можем обратиться к похожему электронному компоненту, называемому
тиристор, имеющий общие черты с
диоды, резисторы,
и транзисторы. Триристоры довольно легко понять,
хотя большинство объяснений, которые вы найдете в Интернете, излишне
сложный и часто невероятно запутанный.Итак, это наш старт
точка: давайте посмотрим, сможем ли мы ясно и просто взглянуть на то, что
бывают тиристоры, как они работают и какие
вещи, для которых мы можем их использовать!
Изображение: Типичный тиристор немного похож на транзистор — и работает в
близкородственный способ.
Что такое тиристоры?
Во-первых, давайте разберемся с терминологией. Некоторые люди
используйте термин кремниевый выпрямитель (SCR)
взаимозаменяемо с «тиристором». Фактически, кремниевый
выпрямитель — это торговая марка, которую компания General Electric представила
опишите один конкретный тип тиристора, который он сделал.Есть
различные другие типы тиристоров (в том числе называемые
диаки и симисторы, которые
предназначены для работы с переменным током), поэтому условия не полностью
синоним. Тем не менее, эта статья о хранении вещей
просто, поэтому поговорим о тиристорах в самом общем виде
термины и предполагают, что SCR — это одно и то же. Мы будем называть их тиристорами.
Фото: Тиристоры широко используются в электронных схемах управления мощностью, подобных этому.
Три соединения
Так что же такое тиристор? Это электронный
компонент с тремя выводами, называемый анодом (положительный вывод),
катод (отрицательный вывод) и затвор. Это несколько аналогичные
к трем выводам транзистора, которые, как вы помните, называются
эмиттер, коллектор и база (для обычного транзистора) или
исток, сток и затвор (в полевом транзисторе или FET).
В обычном транзисторе один из трех выводов (база) действует
как элемент управления, который регулирует, сколько тока течет между другими
два отведения.То же самое и с тиристором: затвор управляет
ток, протекающий между анодом и катодом.
(Стоит отметить, что можно получить триисторы
с двумя или четырьмя выводами, а также с тремя выводами. Но мы сохраняем
здесь все просто, поэтому мы просто поговорим о наиболее распространенной разновидности.)
Сравнение транзисторов и тиристоров
Если транзистор и тиристор выполняют одну и ту же работу,
какая между ними разница? С транзистором, когда маленький
ток течет в базу, это делает больший ток между
эмиттер и коллектор.Другими словами, он действует как
переключатель и усилитель одновременно:
Как работает транзистор: небольшой ток, протекающий в базу, вызывает больший ток между эмиттером и коллектором. Это транзистор n-p-n с красным, обозначающим кремний n-типа, синим, обозначающим p-тип, черными точками, представляющими электроны, и белыми точками, обозначающими дырки.
То же самое происходит внутри полевого транзистора, за исключением того, что мы прикладываем небольшое напряжение к затвору, чтобы произвести
электрическое поле, которое помогает току течь от источника к
слив.Если мы удалим малый ток в базе (или затворе), большой ток
немедленно перестает течь от эмиттера к коллектору (или от истока к стоку в полевом транзисторе).
Сейчас часто это не то, чего мы хотим. В
что-то вроде цепи охранной сигнализации (где, возможно, злоумышленник
наступает на нажимную подушечку, и колокольчики начинают звенеть), мы хотим, чтобы
небольшой ток (активируется нажимной подушечкой) для отключения большего
ток (звон колокольчиков) и чтобы больший ток продолжал течь
даже когда меньший ток прекращается (так что колокола все еще звонят, даже если
наш незадачливый злоумышленник осознает свою ошибку и отходит от площадки).В тиристоре это
именно то, что происходит. Небольшой ток на затворе вызывает много
больший ток между анодом и катодом. Но даже если мы тогда
удалите ток затвора, больший ток продолжает течь из
анод к катоду. Другими словами, тиристор остается («защелкивается») включенным.
и остается в этом состоянии до сброса схемы.
Там, где транзистор обычно имеет дело с крошечными электронными
токи (миллиампер) тиристор выдерживает настоящие (электрические)
силовые токи (обычно несколько сотен вольт и 5–10 ампер).Вот почему мы можем использовать их в таких вещах, как заводские выключатели питания,
регуляторы скорости электродвигателей,
бытовые диммеры, выключатели зажигания автомобилей,
сетевые фильтры и
термостаты. Время переключения
практически мгновенно (измеряется в микросекундах), и эта полезная функция,
в сочетании с отсутствием движущихся частей и высокой надежностью, поэтому тиристоры часто используются
как электронные (твердотельные) версии реле
(переключатели электромагнитные).
Как работает тиристор?
Тиристоры являются логическим продолжением диодов и
транзисторы, поэтому давайте кратко рассмотрим эти компоненты.Если
вы не знакомы с твердотельной электроникой, у нас больше и
более четкие объяснения того, как работают диоды и
и как работают транзисторы,
которую вы, возможно, захотите прочитать в первую очередь.
А тиристор как два диода
Напомним, что диод — это два слоя полупроводника.
(p-тип и n-тип) зажаты вместе, чтобы создать соединение
где происходят интересные вещи. В зависимости от того, как вы подключаете
диод, ток либо будет течь через него, либо нет, что делает его
электронный эквивалент улицы с односторонним движением.С положительной связью
к p-типу (синий) и отрицательному соединению к n-типу (красный) диод
смещение вперед, поэтому электроны (черные точки) и дыры (белые точки) перемещаются
благополучно через переход и нормальный ток течет:
Диод с прямым смещением: через переход между p-типом (синий) и n-типом (красный) протекает ток, переносимый электронами (черные точки) и дырками (белые точки).
В противоположной конфигурации, с плюсовым подключением к n-типу и
отрицательный к p-типу, диод имеет обратное смещение:
соединение становится огромной пропастью, которую электроны и дырки не могут пересечь
и нет тока:
Диод с обратным смещением: при обратном подключении батареи «зона истощения» на переходе становится шире, поэтому ток не течет.
В транзисторе есть три слоя полупроводника, расположенных поочередно (p-n-p или n-p-n), что дает
два перекрестка, где могут происходить интересные вещи. (Полевой транзистор немного
разные, с дополнительными слоями металла и оксида, но все же
по сути, бутерброд n-p-n или p-n-p.). Тиристор — это просто следующий шаг в
последовательность: четыре слоя полупроводника, снова расположенные попеременно
дайте нам p-n-p-n (или n-p-n-p, если вы поменяете местами) с тремя
переходы между ними. Анод соединяется с внешним слоем p,
катод к внешнему n слою, а затвор к внутреннему p
слой, например:
Тиристор похож на два соединенных диода, соединенных вместе, но с дополнительным подключением к одному из внутренних слоев — «затвору».«
Вы можете видеть, что это похоже на два соединительных диода, соединенных последовательно, но с дополнительным соединением затвора внизу.
Тиристор, как и диод, является выпрямителем: он проводит только в одном направлении. Вы не можете сделать тиристор, просто подключив два диода последовательно: дополнительное соединение затвора означает, что это еще не все. Если вы хорошо знакомы с электроникой, вы заметите сходство между тиристором и диодом Шокли (своего рода двойной диод с
четыре чередующихся полупроводниковых слоя, изобретенные пионером транзисторов Уильямом Шокли
в 1956 г.).Тиристоры произошли от работы транзисторов и диодов Шокли,
который был разработан Джуэллом Джеймсом Эберсом,
кто разработал двухтранзисторную модель, о которой мы расскажем дальше.
Тиристор как два транзистора
Менее очевидно то, что четыре слоя работают как два
транзисторы (n-p-n и p-n-p), которые соединены вместе, так что
выход из одного формирует вход в другой. Ворота служат
как своего рода «стартер» для их активации.
Тиристор также похож на два транзистора, соединенных вместе, поэтому выход каждого из них служит входом для другого.
Три состояния тиристора
Так как же это работает? Мы можем перевести его в три возможных состояния, во всех трех из которых он либо полностью выключен, либо полностью включен, что означает, что это, по сути, двоичное цифровое устройство. Чтобы понять, как работают эти состояния, полезно помнить о диодах и транзисторах:
Прямая блокировка
Обычно, когда ток не течет в затвор, тиристор выключен: ток не может течь из
анод к катоду.Почему? Представьте тиристор как два соединенных диода.
вместе. Верхний и нижний диоды смещены в прямом направлении.
Однако это означает, что соединение в центре имеет обратное смещение, поэтому ток не может
пройти весь путь сверху вниз. Это состояние называется вперед
блокировка. Хотя это похоже на прямое смещение в обычном диоде, ток не течет.
Блокировка обратного хода
Предположим, мы поменяем местами соединения анод / катод. Теперь вы, вероятно, видите, что оба
верхний и нижний диоды имеют обратное смещение, поэтому ток через тиристор по-прежнему не течет.Это
называется обратной блокировкой (аналогично обратному смещению в простом диоде).
Форвардное ведение
Третье состояние действительно интересно. Нам нужно, чтобы анод был
положительный и отрицательный катод. Затем, когда ток течет в затвор, он
включает нижний транзистор, который включает верхний,
который включает нижний и так далее. Каждый транзистор
активирует другой. Мы можем рассматривать это как своего рода внутреннюю положительную обратную связь, в которой два транзистора продолжают подавать ток друг другу.
пока они оба не будут полностью активированы, после чего через них может течь ток.
как от анода к катоду.Это состояние называется прямым ведением, и именно так
тиристор «защелкивается» (остается постоянно) включенным. После фиксации тиристора
на таком, его нельзя выключить, просто сняв ток с
вентиль: в этот момент ток затвора не имеет значения — и вы должны
прервать основной ток, протекающий от анода к
катод, часто отключая питание всей цепи. Не следите за этим?
Посмотрите анимацию в поле ниже, и я надеюсь, что это проясняет ситуацию.
Типы тиристоров
Несколько упрощено, вот в чем суть того, как
тиристор работает.Есть множество вариантов, в том числе
устройства отключения ворот (GTO)
(который может быть включен или выключен действием затвора), AGT (тиристор с анодным затвором)
устройства, которые имеют затвор, идущий во внутренний слой n-типа около анода (вместо слоя p-типа около катода),
фотоэлектрические тиристоры, в которых база активируется светом, и все другие виды. Но все они работают примерно одинаково,
с затвором, отключающим один транзистор, который затем отключает другой.
Узнать больше
На этом сайте
Вам могут понравиться эти другие статьи на нашем сайте на похожие темы:
Книги
Блоки тиристоров
Не беспокойтесь, что эти книги «старые»: вообще говоря, физика полупроводников никогда не устаревает.
- Данные по тиристорному устройству: Motorola, 1988. Подробный сборник технических данных и многое другое.
- Физика тиристоров
Адольф Блихер, Springer, 1976. Подробный взгляд на физику твердого тела тиристоров. Вы можете прочитать весь текст в Интернете, если «позаимствуете» книгу виртуально из Интернет-архива. - 110 Проекты тиристоров
автор R.M. Marston, Newnes, 1972. Огромная коллекция практических схем тиристоров, включая проекты переключения мощности, сигнализации, схемы с выдержкой времени, контроллеры ламп, контроллеры нагревателей и контроллеры двигателей. - Руководство по выпрямителю с кремниевым управлением от General Electric, 1964 г. Это исчерпывающее (400 страниц) руководство по тиристорам собственной марки GE.
Учебники общеобразовательные
Статьи
- Как Б. Джаянт Балига преобразовал силовые полупроводники Дэвида Шнайдера. IEEE Spectrum, 27 апреля 2014 г. Празднование работы Б. Джаянта Балиги, лауреата Почетной медали IEEE 2014 г., в разработке тиристоров и других силовых полупроводников.
- Попробуйте симистор Чарльза Платта.Make, 10 января 2014 г. Узнайте о симисторах из этого практического светодиодного проекта.
- Кремниевый p-n-p-n переключатель и управляемый выпрямитель (тиристор) Ник Холоняк-младший. IEEE Transactions on Power Electronics, январь 2001 г., том 16, выпуск 1, стр. 8–16. В этой интересной статье (изобретателя светодиода) описывается историческое развитие тиристоров Уильямом Шокли, Джимом Эберсом и другими.
- Ранняя история силовых полупроводников в GE: Музей полупроводников представляет раннюю историю кремниевого управляемого выпрямителя, рассказанную в устной истории одним из его пионеров, Ф.В. «Билл» Гуцвиллер.
Патенты
.
Сравните цены на тиристоры — Купите тиристоры по лучшей цене на AliExpress
у международных продавцов
Отличные новости! Вы выбрали тиристор в правильном месте. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как этот лучший тиристор в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели тиристор на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в тиристорах и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести тиристор по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
.