Конвертер электрического тока • Электротехника • Определения единиц • Онлайн-конвертеры единиц измерения
Электротехника
Электротехника — область технических наук, изучающая получение, распределение, преобразование и использование электрической энергии. Электротехника включает в себя такие области техники как электроэнергетику, электронику, системы управления, обработку сигналов и связь.
Конвертер электрического тока
Электрический ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц в проводящей среде. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы, в плазме — ионы и электроны.
Сила тока в Международной системе единиц (СИ) измеряется в амперах. Ампер является одной из семи основных единиц СИ. В СИ ампер определяется с учетом фиксированного численного значения элементарного заряда e, равного величине 1.602176634×10⁻¹⁹, выраженной в кулонах, 1 К = 1 А⋅с, причем секунда определяется на основании фиксации точного значения ΔνCs. Один ампер можно также определить как силу постоянного тока, при котором заряд, равный одному кулону проходит через поперечное сечение за одну секунду. До 20 мая 2019 г. ампер определялся как сила тока, который при прохождении по двум параллельным прямым проводникам бесконечной длины и малого диаметра, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает на участке проводника длиной 1 м силу взаимодействия, равную 0,2 мкH.
Использование конвертера «Конвертер электрического тока»
На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.
Пользуйтесь конвертером для преобразования нескольких сотен единиц в 76 категориях или несколько тысяч пар единиц, включая метрические, британские и американские единицы. Вы сможете перевести единицы измерения длины, площади, объема, ускорения, силы, массы, потока, плотности, удельного объема, мощности, давления, напряжения, температуры, времени, момента, скорости, вязкости, электромагнитные и другие. », то есть «…умножить на десять в степени…». Компьютерная экспоненциальная запись широко используется в научных, математических и инженерных расчетах.
Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.
Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!
Канал Конвертера единиц TranslatorsCafe.com на YouTube
Единицы измерения напряжения, тока и сопротивления
Единицы измерения напряжения, тока и сопротивления. [c.10]
Понятие об электрическом токе. Проводники и изоляторы электрического тока. Напряжение. Единицы измерения напряжения — вольт. Сила тока. Единица измерения силы тока — ампер. Сопротивление. Единица измерения сопротивления — ом. Закон Ома. [c.551]
Величина, которая характеризует противостояние вещества электрическому току, называется сопротивлением и обозначается буквой К, измеряется в Омах(1 Ом Единица измерения Ом (иногда обозначается буквой греческого алфавита ii) названа в честь немецкого ученого Георга Симона Ома, который в 1827 году определил отношения между напряжением, током и сопротивлением. [c.334]
Для измерения тока, сопротивления и величины напряжения введены следующие единицы ампер (а), ом и вольт в).
[c.10]
Понятие о величине тока, сопротивлении проводника и напряжении тока закон Ома. Измерение величины и напряжения тока, правила включения в электрическую цепь амперметра и вольтметра. Понятие о мощности и работе тока единицы их измерения. [c.520]
Сопротивление проводника и единицы измерения сопротивления. Закон Ома. Последовательное и параллельное соединение потребителей тока. Свойства электрического тока тепловое, магнитное и химическое. Короткое замыкание и плавкие предохранители. Электродвижущая сила и потеря напряжения. Закон Кирхгофа. [c.589]
Разделим сечения всех тел на элементы с примерно постоянной плотностью тока и запишем для них уравнение (2.74), учитывая, что ZQ = Гр, под Гд и XQp понимаются сопротивления, приходящиеся на единицу длины, а UQ — кусочно-постоянное напряжение на элементах, измеренное относительно некоторого провода, взятого в качестве измерительного и( =Ов для Q B , UQ = [c.90]
Удельное объемное электрическое сопротивление р — величина. равная отношению модуля напряженности электрического поля к модулю плотности тока, скалярная для изотропного вещества и тензорная для анизотропного вещества (ПОСТ 19880-74) [9]. Эта величина позволяет оценить электрическое сопротивление материала при протекании через его объем постоянного тока. Для практических измерений часто используют дольную единицу Ом см. Величина р низкокачественных диэлектриков при нормальной температуре и влажности находится в пределах 10 …10 Ом м, для высококачественных — в пределах до l0 …10 Ом м. [c.160]
Измерительная схема (см. рис. 4.1) позволяет регулировкой корректирующих сопротивлений 1 и / к2 изменять К, т. е. устанавливать его величину, например /С=1, /(=0,1 и другие удобные значения в каждом конкретном случае в зависимости от соотнощения Г]/Г2. Регулируя /(к 1 и / к2, мы изменяем потенциалы в точках А ц. В измерительной схемы, тем самым даже при измерении одного и того же ионного пучка на обоих каналах мы изменяем значения К, не регулируя в действительности ни п. Гг, ни 5г. Пусть, например, требуется получить /(=1. Для этого любой ионный пучок, взятый из спектра остаточных газов или полученный при напуске в ионный источник какого-либо газа, поочередно переводится на приемные щели правого и левого усилителей. Напряжение на выходе каждого усилителя измеряют компенсационным методом, для чего декадный делитель напряжения Р подключают к батарее 10—15 в, относительно напряжения которой с помощью мостовой схемы сравнивают напряжение каждого усилителя. Затем регулировкой корректирующих сопротивлений /(кь Рк2 добиваются, чтобы потенциалы в точках А и В схемы были равны. Точное определение равенства контролируют при помощи гальванометра. Этим способом можно установить выходные напряжения усилителей так, чтобы К стал равным единице. Точность установки //1 Пг определяется стабильностью ионного тока измеряемого пика. [c.114]
Примечание. Ь технической литературе и в учебных пособиях и учебниках иногда применяются вместо указанных в таблице нижеследующие единицы измерений напряженность электрического поля — в вольтах на сантиметр (в1см), электрическое смещение — в кулонах на квадратный сантиметр к1см у, плотность тока — в амперах на квадратный миллиметр (а/ммЛ удельное сопротивление — ом, умноженный на сантиметр (омсм)
[c.329]
Применение национальных и международных эталонов как эталонов единиц системы не утратило своего значения, так как высокая точность, с которой можно сравнивать между собой разные эталоны одной и той же единицы, оказывается весьма полезной для практики. Дело в том. что относительная погрешность при измерении силы тока с помощью токовых весов, по которым определяется ампер, не меньше 5 Ю . В то же время эталоны электродвижущей силы и сопротивления позволяют производить то же измерение с точностью, па порядок большей. Здесь существенную роль сыграло открытие нового эффекта, теоретически предсказанного английским физиком Б. Джозефсоном в 1962 г.и затем доказанного экспериментально. Сущность эффекта Джозефсона состоит в том, что если. приложить напряжение I к двум сверхпроводникам, Ааежду которыми существует неплотный контакт (например, пленка окисла толщиной около 10″ м), то через этот контакт идет сверхпроводящий [c.280]
Нелинейные свойства резисторов. Величина сопротивления резистора. может зависеть также от факторов, характеризующих режим его работы (величина приложенного напряжения, протекающий ток, вид переменного поля — непрерывный или импульсный режим). Изхменения сопротивления при этом выражаются в процентах на единицу измерения фактора либо просто в процентах при переходе от не-пргрывного к импульсному режиму и оцениваются соответственно коэффициентами напряжения, нагрузки и импульсной нагрузки. [c.125]
В рассматриваемой нами замкнутой цепи ток создается благодаря воздействию э. д. с. источниг а. Та часть э. д. с., которая затрачивается на преодоление сопротивления внешней цепи или отдельного ее участка, называется напряжением. Напряжение и э. д. с. измеряются одними и теми же единицами — вольтами (в). Для измерения напряжения и э. д. с. служит прибор, называемый вольтметром. Если вольтметр 2 (см. рис. 33) подключить к полюсам источника тока, то при замкнутой цепи этот прибор покажет напряжение источника тока, а при разомкнутой — его а. д. с. [c.88]
Источник электрической энергии производит определенную работу по перемещению электрических зарядов в замкнутой цепи. Работа, соверщаемая источником электрической энергии при перемещении единицы положительного электричества в замкнутой электрической цепи, называется электродвижущей силой источника (ЭДС). Электродвижущая сила источника Е является причиной, поддерживающей разность электрических потенциалов (напряжение) на его зажимах. ЭДС источника вызывает электрический ток в замкнутой цепи, преодолевая ее внешнее и внутреннее сопротивление. Электродвижущая сила источника электроэнергии является одной из важнейших характеристик его. Единицей измерения ЭДС служит волы (В). [c.4]
ЛОГОМЕТРЫ, приборы, измеряющие отношение двух токов. Пользуясь Л., можно изм(рить непосредственно разнообразные величины. Для измерения сопротивления схему включения Л. осуществляют так, чтобы один из двух токов оставался постоянным, а другой изменялся бы в аависимости от искомого сопротивления. Тогда, измеряя отношение этих токов, мошно шкалу Л. градуировать непосредственно в единицах сопротивления. Применение Л. в таких случаях имеет то преимущество, что колебание напряжения источника обоих токов не влияет на измерение, т. к. при изменении напряжения одинаково изменяются оба тока, а их отношение остается неизменным. Для измерения отношения токов можно воспользоваться любой системой измерительных приборов магнитоэлектрический — для постоянного тока, электродинамической, электромагни гной или индукционной — для переменного тока. Во всех случаях Л имеет две цепи, по к-рым протекают два тока. Оба тока протекают по катушкам (подвижным или неподвижным) измеряющего механизма и создают два вращающих момента. Измеряющий механизм осуществляется так, чтобы эти моменты действовали навстречу друг другу. Поэтому один из моментов служит вращаюпцш, а другой противодействующим В Л. механических противодействуюищх моментов нет. Положение равновесия подвижной части прибора определяется равенством двух электрических моментов, создаваемых двумя токами. Показание Л. зависит от соотношения между этими токами и не зависит от абсолютной величины каждого из них. При отсутствии тока подвижная часть находится в безразличном равновесии и может остановиться в любом случайном положении. Это может послужить поводом к ошибочным [c.118]
Величину 2= роС называют удельным акустическим (волновым) сопротивлением среды. Она имеет важнейшее значение для описания распространения, излучения и отражения упругих волн. Выражение (2.7) иногда называют акус -тическим законом Ома. В самом деле, если поставить в соответствие электрическому напряжению акустическое давление, электрическому току — колебательную скорость, электрическому сопротивлению — удельное акустическое сопротивление, то можно сопоставить электрический закон Ома 11= 1К и акустический закон Ома p = vZ.B соответствии с этой аналогией единица измерения 2 получила название акустического Ома (1 акОм = 1 кг/(м с)).
[c.35]
Сопротивление (/ , г) — свойство тел препятствовать движению зарядов под действием электрического поля. Практическая единица сопротивления — ом—есть сопротивление проводника, по которому протекает ток в а при приложении к его концам напряжения в 1 в. Сопротивлением в 1 ом обладает при О С столб ртути постоянного сечения длиной 106,3 см, имеющий массу 14,4521 г. Для измерения больших сопротивлений употребляются килоом, равный 1 ком = 10 ом, и мегом, равный 1 мгом = 10 ом. [c.513]
К приборам, основанным на резонансных методах, относятся куметры — измерители добротности. Для определения С и 10 6х диэлектрика в них используется принцип вариации реактивной проводимости. С генератором Г высокой частоты индуктивно связан контур, который состоит из катушки связи, сменной катушки индуктивности (Ь, Я ) и конденсатора переменной емкости С параллельно конденсатору включен электронный вольтметр, шкала которого проградуирована в единицах добротности параллельно, кроме того, к зажимам может присоединяться испытуемый конденсатор (рис. 4-8, а). Конденсатор переменной емкости практически не имеет потерь, поэтому сопротивление контура без образца равняется сопротивлению Катушка связи нагружена на безреактивное сопротивление / д, величина которого весьма мала по сравнению с сопротивлением контура Я поэтому можно считать, что весь ток, измеряемый миллиамперметром, практически идет через сопротивление Я . Подводимое напряжение, которое равно напряжению на сопротивлении при измерениях не должно меняться. С этой целью поддерживается один и тот же ток в цепи катушки связи величина тока контролируется термомиллиамперметром (рис. 4-7), а в некоторых схемах — с помощью вспомогательного вольтметра. Иногда напряжение вводится в контур индуктивным путем [c.92]
Высокомегомные резисторы имеют величину сопротивления от единиц — десятков мегаом до тысячи гигаом. Отличительной особенностью этих резисторов является низкий уровень номинальной мощности рассеивания (порядка десятков милливатт). Точность резисторов 5—30%, ТКС ж 10″ 1/град, рабочие напряжения — сотни вольт, изменение сопротивления к концу срока службы 10—30%. Высокомегомные резисторы применяют в измерительной РЭА (для измерения весьма слабых токов низкой частоты, в дозиметрах излучений и т. п.). [c.142]
На Рис. 14.26 показана принципиальная схема Р-метра, основной частью которого является последовательный колебательный контур. К колебательному контуру через очень маленькое сопротивление порядка 0.02 Ом подключен генератор, который и обеспечивает протекание тока через контур. Такой генератор работает как источник напряжения с очень маленьким внутренним сопротивлением. Это напряжение обычно измеряется при помощи термопарного измерителя, у которого есть специальная шкала, выдающая значение коэффициента, на который необходимо умножить измеренное на переменном конденсаторе напряжение У . Это напряжение У может быть измерено при помощи электронного вольтметра, обладающего шкалой, непосредственно откалиброванной в единицах добротности. На рисунке штриховой линией показано подключение катушки индуктивности неизвестной величины для измерения добротности такого 1С-контура, а, следовательно, и величины индуктивности этой катушки. Правда, при таком подключении необходимо учитывать емкость самой катушки. [c.237]
| Адрес этой страницы (вложенность) в справочнике dpva. ru: главная страница / / Техническая информация / / Алфавиты, номиналы, единицы / / Перевод единиц измерения величин. Перевод единиц измерения физических величин. Таблицы перевода единиц величин. Перевод химических и технических единиц измерения величин. Величины измерения. Таблицы соответствия величин. / / Перевод единиц измерения Тока электрического, Электрического тока Поделиться:
Поиск в инженерном справочнике DPVA. Введите свой запрос: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Коды баннеров проекта DPVA.ru Консультации и техническая | Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator |
Единица измерения силы тока — как обозначается?
С самого рождения и в течение всей жизни человека окружают электрические приборы. К ним относятся: бытовая техника, освещение наших жилищ и улиц, средства мобильной связи, даже современные автомобили переходят на электроэнергию. Все эти приборы потребляют электрический ток, одни берут его из электросетей, другие черпают от батарей и аккумуляторов, третьи от альтернативных источников энергии («ветряки», солнечные батареи и прочее). А многие ли из людей знают, какова единица измерения силы тока, и что такое электрический ток? В данной статье мы ответим на эти вопросы.
Начнем, пожалуй, с основных понятий. Электрическим током называют направленное упорядоченное движение в проводнике заряженных частиц. Рассмотрим условия существования тока:
- наличие свободных электронов в металлическом проводнике;
- наличие электрического поля (такое поле создается благодаря источнику тока).
Теперь перейдем к рассмотрению такого понятия, как единица измерения силы тока. Эта скалярная величина обозначается латинской литерой I. Определение единицы силы тока осуществляется отношением заряда q, проходящего через поперечное сечение металлического проводника, к отрезку времени t, за которое электрический ток прошел через проводник. Соответственно формула имеет следующий вид: I = q/ t. Единица измерения силы тока показывает, какой заряд пройдет через поперечное сечение провода за единицу времени.
Все довольно элементарно. Теперь разберем, какие существуют общепринятые единицы измерения силы тока. Для этого достаточно заглянуть в международную систему единиц (СИ). Из нее следует, что единица измерения силы тока – Ампер. Эта единица получила свое название в честь французского физика-математика Андре-Мари Ампера (1775-1836). Он ввел такие термины, как электродинамика, электростатика, соленоиды, ЭДС, гальванометр, электрический ток, напряжение и другие. Ученый А. М. Ампер предугадал возникновение такой науки, как «кибернетика», он стал первооткрывателем механического взаимодействия проводников с электрическим током, ввел правило определения направлений тока.
Теперь попробуем разобрать это понятие с точки зрения элементарной физики. Для этого необходимо осветить свойства прохождения электрического тока по двум параллельным проводникам. Если заряженные частицы движутся по двум проводам в одном направлении, то такие проводники начнут притягиваться, а если частицы будут двигаться в разных направлениях, то проводники будут стремиться оттолкнуться друг от друга. За единицу силы тока в один ампер принято считать такую силу, благодаря которой два параллельных провода длиной в один метр, разнесенных на расстояние одного метра, начнут взаимодействовать с силой 0,0000002Н.
Подведя итог, скажем, что знание о таком понятии, как сила тока, поможет определить количество потребляемой энергии электрическими приборами. Благодаря этому легко рассчитать нагрузку проводки в вашем доме и, соответственно, обезопасить свое жилье от пожара или повреждения электрооборудования, которое часто возникает при неправильном распределении бытовых электрических приборов.
Что такое Ампер
Ампе́р (обозначение: А) — единица измерения силы электрического тока в системе СИ, а также единица магнитодвижущей силы и разности магнитных потенциалов (устаревшее наименование — ампер-виток).
1 Ампер это сила тока, при которой через проводник проходит заряд 1 Кл за 1 сек.
\[ \mbox{I} = \dfrac{\mbox{q}}{\mbox{t}} \qquad \qquad \mbox{1A} = \dfrac{\mbox{1Кл}}{\mbox{1c}} \]
Одним Ампером называется сила постоянного тока, текущего в каждом из двух параллельных бесконечно длинных бесконечно малого кругового сечения проводников в вакууме на расстоянии 1 метр, и создающая силу взаимодействия между ними 2×10−7 ньютонов на каждый метр длины проводника.
Ампер назван в честь французского физика Андре Ампера.
Сила тока – это такая физическая величина, которая показывает скорость прохождения заряда q через S поперечное сечение проводника за одну секунду t.
Сила тока – пожалуй, одна из самых основополагающих характеристик электрического тока. Она обозначает заглавной буквой I латинского алфавита и равняется Δq разделить на Δt, где Δt – это время, в течение которого через сечение проводника протекает заряд Δq.
Кратные и дольные единицы
Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | название | обозначение | ||
101 А | декаампер | даА | daA | 10−1 А | дециампер | дА | dA |
102 А | гектоампер | гА | hA | 10−2 А | сантиампер | сА | cA |
103 А | килоампер | кА | kA | 10−3 А | миллиампер | мА | mA |
106 А | мегаампер | МА | MA | 10−6 А | микроампер | мкА | µA |
109 А | гигаампер | ГА | GA | 10−9 А | наноампер | нА | nA |
1012 А | тераампер | ТА | TA | 10−12 А | пикоампер | пА | pA |
1015 А | петаампер | ПА | PA | 10−15 А | фемтоампер | фА | fA |
1018 А | эксаампер | ЭА | EA | 10−18 А | аттоампер | аА | aA |
1021 А | зеттаампер | ЗА | ZA | 10−21 А | зептоампер | зА | zA |
1024 А | йоттаампер | ИА | YA | 10−24 А | йоктоампер | иА | yA |
применять не рекомендуется |
Физическое значение данного параметра состоит в следующем:
- Элементарные частицы постоянно текут по бесконечно тонким и длинным проводникам в одном направлении;
- Цепь находится в вакууме, и потенциалы расположены параллельно друг к другу с расстоянием в один метр;
- Сила притяжения или отталкивания между ними составляет 2*10-7 Ньютона.
На практике такие условия даже в лаборатории воспроизвести невозможно, поэтому для установления эталона и тарирования измерительных приборов специалисты мерили уровень взаимодействия, возникающий между двумя катушками с большим количеством проводов минимального сечения.
Связь с другими единицами СИ
Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение проходит заряд, равный 1 кулону.
Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.
Сокращённое русское обозначение а, международное А. Весьма малые токи (например, в радиолампах) измеряются в тысячных долях а — миллиамперах (ма или mА), а особо малые токи — в миллионных долях а — микроамперах (мка или μА). Человек начинает ощущать проходящий через его тело ток, если он не ниже 0,5 ма. Ток в 50 ма опасен для жизни человека. Квартирный ввод рассчитывается на ток силой от 5 до 20 а; ток ламп накаливания мощностью 60 вт при напряжении 127 в имеет около 0,5 а.
Ампер-час — единица количества электричества, применяемая для измерения ёмкости аккумуляторов и гальванических элементов. Сокращённое русское обозначение а-ч, международное Аh. Один а-ч равен количеству электричества, проходящему через проводник в течение 1 часа при токе в 1 ампер. 1 а-ч = 3600 кулонам (основным единицам количества электричества).
Упрощенно электрический ток можно рассматривать как течение воды по трубе, то есть протекание электрических зарядов по проводу можно сопоставить с протекание воды по трубе. Так вот, по сути, скорость этой «воды», а именно скорость зарядов в проводе, она и будет прямым образом связана с силой тока. И чем быстрее «вода» течет по «трубе», а именно чем быстрее вместе все носители заряда двигаются по поводу, тем сила тока будет больше.
Как вы думаете, большая ли это сила тока в 1 ампер? Да, это большая сила тока, но на практике можно встретить различные силы тока: и миллиамперы, и микроамперы, и амперы, и килоамперы, и все они довольно разные.
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!Больше интересного в телеграм @calcsbox
Все способы измерения силы электрического тока.
Многие помнят из школьной физики закон Ома: сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
СИЛА ТОКА является количественной характеристикой электрического тока- это физическая величина, равная количеству электричества, протекающего через сечение проводника за единицу времени. Измеряется в амперах.
Для электропроводки в квартире сила тока играет огромную роль, потому что исходя из максимально возможного значения для отдельной линии, идущей от электрощита зависит сечение проводника и величина максимального тока автоматического выключателя, защищающего электрический кабель от повреждений в случае возникновения короткого замыкания или токов перегрузки.
Поэтому, если не правильно выбрано сечение и автоматический выключатель- его будет просто выбивать, а заменить его на более мощный просто не получится.
Например, самые распространенные провода и кабеля в электропроводке сечением 1.5 квадратных миллиметра- из меди или 2.5- из алюминия. Они рассчитаны на максимальный ток 16 Ампер или подключение мощности не более 3 с половиной киловатт. Если Вы подключите мощные электропотребители превышающие эти пределы, то просто заменить автомат на 25 А нельзя- не выдержит электропроводка и придется от щита перекладывать медный кабель сечением 2. 5 кв. мм, который рассчитан на максимальный ток 25 А.
Единицы измерения мощности электрического тока.
Кроме Амперов, Мы часто сталкиваемся с понятием мощности электрического тока. Эта величина показывает работу тока, совершенную в единицу времени.
Мощность равняется отношению совершенной работы ко времени, в течение которого она была совершена. Мощность измеряется в Ваттах и обозначается буквой Р. Высчитывается по формуле P = А х B, т. е. для того что бы узнать мощность- необходимо величину напряжения электросети умножить на потребляемый ток, подключенными к ней электроприборами, бытовой техникой, освещением и т. д.
На электропотребителях часто на табличках или в паспорте только указывается потребляемая мощность, зная которую легко можно высчитать ток. Например, потребляемая мощность телевизором 110 Ватт. Что бы узнать величину потребляемого тока- делим мощность на напряжение 220 Вольт и получаем 0. 5 А.
Но учтите, что это максимальная величина, в реальности она может быть меньше т. к. телевизор на низкой яркости и при других условиях будет меньше расходовать электроэнергии.
Приборы для измерения электрического тока.
Для того что бы узнать реальный расход электроэнергии с учетом работы в разных режимах для электроприборов, бытовой техники и т. п. — нам понадобятся электроизмерительные приборы:
- Амперметр— хорошо всем знакомый с практических уроков физики в школе (рисунок 1). Но в быту и профессионалами они не используются из-за непрактичности.
- Мультиметр— это электронное устройство выполняет многоразличных замеров, в том числе и силы тока (рисунок 2). Очень широко распространен, как среди электриков так и в быту. Как с его помощью измерять силу тока Я уже рассказывал в этой статье.
- Тестер— то же самое практически, что и мультиметр, но без использования электронники со стрелкой, которая указывает величину измерения по делениям на экране. Сегодня редко можно встретить, но они широко использовались в советское время.
- Измерительные клещи электрика (рисунок 3), именно ими Я пользуюсь в своей работе, потому что они не требуют разрыва проводника для измерения, нет необходимости лезть под напряжение и отключать нагрузку. Ими измерять одно удовольствие- быстро и легко.
Как правильно измерять силу тока.
Для того что бы измерить силу для потребителей постоянного тока, необходимо один зажим от амперметра, тестера или мультиметра присоединить к плюсовой клемме аккумулятора или проводу от блока питания или трансформатора, а второй зажим- к проводу идущему к потребителю и после включения режима измерения постоянного тока с запасом по верхнему максимальному пределу- делать замеры.
Будьте аккуратны при размыкании работающей цепи возникает дуга, величина которой возрастает вместе с силой тока.
Для того что бы измерить ток для потребителей подключаемых напрямую в розетку или к электрическому кабелю от домашней электросети, измерительное устройство переводится в режим измерения переменного тока с запасом по верхнему пределу. Далее тестер или мультиметр включаются в разрыв фазного провода. Что такое фаза читаем в этой статье.
Все работы необходимо проводить только после снятия напряжения.
После того как все готово, включаем и проверяем силу тока. Только следите, что бы Вы не касались оголенных контактов или проводов.
Согласитесь, что выше описанные методы очень не удобны и да же опасны!
Я уже давно в своей профессиональной деятельности электрика пользуюсь для измерения силы тока токоизмерительными клещами (на картинке справа). Они не редко идут в одном корпусе с мультиметром.
Мерить ими просто- включаем и переводим в режим измерения переменного тока, затем разводим находящиеся сверху усы и пропускаем во внутрь фазный провод, после этого следим что бы они плотно прилегли к друг другу и производим измерения.
Как видите- быстро, просто и можно измерять силу тока под напряжением данным способом, только будьте аккуратны не закоротите в электрощите случайно соседние провода.
Только помните, что для правильного замера- нужно делать обхват только одного фазного провода, а если обхватить цельный кабель, в котором вместе идут фаза и ноль- измерения провести будет не возможно!
Физика 8 класс. Сила тока. Единицы силы тока :: Класс!ная физика
Физика 8 класс. СИЛА ТОКА
Направленное движение заряженных частиц называется электрическим током.
Условия существования электрического тока в проводнике:
1. наличие свободных заряженных частиц ( в металлическом проводнике — свободных электронов),
2. наличие электрического поля в проводнике
(электрическое поле в проводнике
создается источниками тока.).
Электрический ток имеет направление.
За направление тока принимают направление движения положительно заряженных частиц.
Сила тока ( I )- скалярная величина, равная отношению заряда q , прошедшего через поперечное сечение проводника, к промежутку времени
t , в течение которого шел ток.
Сила тока показывает, какой заряд проходит через поперечное сечение
проводника за единицу времени.
Единица измерения силы тока в системе СИ:
[I] = 1 A (ампер)
В 1948 г. было предложено в основу определения единицы силы тока
положить явление взаимодействия двух поводников с током:
……………………
при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях отталкиваются.
За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника
длиной 1м, расположенные на растоянии 1м друг от друга, взаимодействуют с силой
0,0000002 Н.
АНДРЕ-МАРИ АМПЕР
(1775 — 1836)
— французский физик и математик
— ввел такие термины, как электростатика, электродинамика,
соленоид, ЭДС, напряжение, гальванометр, электрический ток и т.
д.;
— предположил, что, вероятно, возникнет новая наука об общих
закономерностях процессов управления и предложил назвать ее «кибернетикой»;
— открыл явление механического взаимодействия проводников
с током и правило определения направления тока;
— имеет труды во многих областях наук: ботанике, зоологии,
химии, математике, кибернетике;
— его именем названа единица измерения силы тока — 1 Ампер.
ЭЛЕКТРИЧЕСКИЕ ТОКИ В ПРИРОДЕ.
Мы живем в океане электрических разрядов, создаваемых машинами,
станками и людьми. Эти разряды — кратковременные электрические
токи не так мощны, и мы их часто не
замечаем. Но они все-таки существуют и могут принести немало вреда!
Что такое молния?
В результате движения и трения друг о друга воздушные слои в атмосфере
электризуются. В облаках с течением времени скапливаются большие заряды. Они-то и являются причиной молний.
В момент, когда заряд облака станет большим, между его частями,
имеющими противоположные по знаку заряды, проскакивает мощная электрическая искра – молния. Молния может образовываться между
двумя соседними облаками и между облаком и поверхностью Земли.
В этом случае под действием электрического поля отрицательного
заряда нижней части облака поверхность Земли под облаком электризуется
положительно. В результате молния ударяет в землю.
Природа молнии стала проясняться после исследований, проведенных
в XVIII столетии русскими учеными М.В.Ломоносовым и Г.Рихманом и американским ученым Б.Франклином.
НЕУЖЕЛИ ?
Обычно молнию рисуют бьющей сверху вниз. Между тем в действительности свечение
начинается снизу и только затем распространяется по вертикальному каналу.
Молния – точнее ее видимая фаза, оказывается, бьет снизу вверх!
ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ!
1. Как уберечься от молнии?
( или устройство громоотвода)
2. Эта загадочная молния!
А ЕСТЬ ЛИ ГРОМООТВОД У ТЕБЯ НА ДАЧЕ?
Одним из первых в мире громоотводов (молниеотводов) водрузил над крестом
своего храма сельский священник из Моравии по имени Прокоп Дивиш, крестьянский
сын, ученый и изобретатель.
Это было в июне 1754 года.
___
Первый в России молниеотвод появился в 1756 г. над Петропавловским собором в Петербурге.
Он был сооружен после того, как молния дважды ударила в шпиль собора и подожгла его.
Устали? — Отдыхаем!
Единица тока — Введение, Единица СИ, Стандартные электрические единицы и измерения
Электрический ток — один из наиболее важных и фундаментальных элементов в нашей повседневной жизни. Ток, протекающий в цепи, может использоваться для различных целей, от генерирования тепла до переключения схем или хранения информации в интегральной схеме. Мы много сталкивались с электрическими токами в наших классах, а также дома. Прохождение тока или заряда в электрических цепях называется электрическим током.Иногда ионы и электроны несут заряд одновременно. Электрический ток или заряд измеряется амперметром. Существуют разные методы измерения и единицы измерения тока. Вот подробное объяснение тока, его единицы СИ, стандартных электрических единиц и измерения.
Единица измерения электрического тока в системе СИ
Единица измерения тока в системе СИ — ампер. Его можно использовать для измерения потока электрического заряда через поверхность со скоростью один кулон в секунду. Поскольку заряд измеряется в кулонах и секундах, единицей измерения является кулон / сек (Кл / с) или ампер.Формула для электрического тока:
I = V / R
, где
I = электрический ток.
В = Напряжение.
R = Сопротивление материала.
Другие единицы тока
Ампер — одна из единиц тока в системе СИ. Помимо ампера, существуют различные стандартные единицы измерения электрических свойств, таких как напряжение, сопротивление, мощность, емкость, индуктивность, электрическое поле, электрический заряд, частота и магнитный поток, которые взаимосвязаны с электрическим током.
Напряжение рассчитывается с использованием Вольт и представляется как В или E
Сопротивление рассчитывается с использованием Ом, представлено как R или Ом
Емкость рассчитывается с использованием Фарада, представляется как C
Заряд составляет рассчитанная с использованием кулоновского метода представлена как Q
Индуктивность рассчитана с использованием Генри представлена как L или H
Мощность рассчитана с использованием ватт представлена как W
Импеданс, рассчитанный с использованием Ом, представлен как Z
Частота рассчитывается с использованием Герц отображается как Гц
Электропроводность рассчитывается с помощью Симена отображается как G или
Что такое основной показатель электроэнергии?
Все, что стоит измерить, связано с единицей измерения. В США мы используем дюймы и футы для измерения высоты объекта, фунты и унции для измерения веса объекта и градусы Фаренгейта для измерения температуры объекта. А как насчет электричества? Какие единицы измерения или используются, чтобы говорить об электричестве?
Прежде чем мы поговорим о том, как измерить электричество, нам сначала нужно понять, что это такое. На базовом уровне электричество — это движение электронов. Ваш компьютер, ваш свет, ваш телевизор, ваш холодильник и т. Д. — все работают с использованием одного и того же основного источника энергии — движения электронов.
Когда мы говорим о силе электричества, на самом деле мы говорим о заряде, создаваемом движущимися электронами.
Основными единицами измерения электричества являются ток, напряжение и сопротивление.
Ток (I)
Ток, измеряемый в амперах, — это скорость протекания заряда — скорость движения электронов. Амперы, или амперы, являются основной единицей измерения электричества и измеряют, сколько электронов проходит через точку каждую секунду. Один ампер равен 6.25 x 1018 электронов в секунду.
Напряжение (В)
Напряжение, измеряемое в вольтах, представляет собой разницу зарядов между двумя точками. Проще говоря, это разница в концентрации электронов между двумя точками.
Сопротивление (R)
Сопротивление — это способность материала сопротивляться прохождению заряда (тока). Измеряется в омах.
Аналогия с водопроводной трубой
Теперь давайте реализуем эти идеи. Наиболее распространенная аналогия, используемая для понимания этих идей, — это вода в трубе.Когда вы думаете о том, как быстро вода может двигаться по трубе, необходимо учитывать три основных компонента: давление воды, скорость потока и размер трубы. Чтобы объединить эти две идеи, напряжение эквивалентно давлению воды, ток — это скорость потока, а сопротивление — это размер трубы.
Итак, когда мы говорим об этих величинах, мы на самом деле описываем движение заряда и, следовательно, поведение электронов. Цепь — это замкнутая петля, которая позволяет заряду перемещаться из одного места в другое.Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.
Закон Ома
Закон Ома — это основное и очень важное уравнение, которое используется для определения взаимодействия тока, напряжения и сопротивления. В нем говорится, что ток равен напряжению, деленному на сопротивление, или I = V / R. Закон Ома можно использовать для точного описания проводимости большинства электропроводящих материалов. Если вы знаете два значения, можно определить третье.Три варианта этого уравнения: I = V / R, V = IR, R = V / I
Ватт
Есть еще один термин, который вы, возможно, слышали применительно к электричеству: ватты. Ватты измеряют скорость использования или передачи энергии, а не только для электроники. Ватт — это основная единица измерения электрической, механической или тепловой мощности. Один ватт равен одному амперу при давлении в один вольт. (Ватт = Ампер x Вольт)
Для более подробного изучения напряжения, тока, сопротивления и закона Ома прочтите этот пост.
Что означают вольт, ампер, ом и ватт?
Стандартные единицы измерения установлены официальной организацией, которой поручена стандартизация международных весов и измерений, гарантирующая, что во всем мире используются одни и те же стандарты веса и измерения. Французская организация называется Bureau International des Poids et Mesures или BIPM, что в переводе на английский означает Международное бюро мер и весов.Определения на этой странице взяты из официальных определений, которые можно найти в Международной системе единиц BIPM, или SI. Ссылки и ссылки включены для каждого определенного термина, который относится к информации, предоставленной BIPM.
Пожалуйста, свяжитесь с администратором веб-сайта, если вы считаете, что информация, которую вы видите на этой странице, неточна, чтобы мы своевременно устраняли любые проблемы. Спасибо.
Что такое вольт?
«Вольт» — это единица измерения электрического потенциала, также известная как электродвижущая сила, и представляет собой «разность потенциалов между двумя точками проводящего провода, по которому проходит постоянный ток в 1 ампер, когда мощность, рассеиваемая между этими точками, равна 1. ватт.» [1] Другими словами, потенциал в один вольт появляется на сопротивлении в один ом, когда через это сопротивление протекает ток в один ампер. Вольт можно выразить в основных единицах системы СИ таким образом: 1 В = 1 кг, умноженное на m 2 раз s -3 раз A -1 (квадратный килограмм-метр в секунду в кубе на ампер), или …
Что такое напряжение?
«Напряжение» (В) — это потенциал движения энергии, аналогично давлению воды.Характеристики напряжения подобны характеристикам воды, протекающей по трубам. Это известно как «аналогия с потоком воды», которую иногда используют для объяснения электрических цепей, сравнивая их с замкнутой системой заполненных водой труб или «водяным контуром», который нагнетается насосом. На изображении ниже показано, как работают напряжение и электрический ток …
Ток (I) — это скорость потока, измеряемая в амперах (A). Ом (R) — это мера сопротивления, аналогичная размеру водопровода.Ток пропорционален диаметру трубы или количеству воды, протекающей при этом давлении.
Напряжение — это выражение доступной энергии на единицу заряда, которая управляет электрическим током по замкнутой цепи в электрической цепи постоянного тока (DC). Увеличение сопротивления, сравнимое с уменьшением размера трубы в водяном контуре, будет пропорционально уменьшать ток или поток воды в водяном контуре, который управляется через контур под действием напряжения, которое сравнимо с гидравлическим давлением в водяном контуре. .
Соотношение между напряжением и током определяется (в омических устройствах, таких как резисторы) законом Ома. Закон Ома аналогичен уравнению Хагена – Пуазейля, поскольку оба являются линейными моделями, связывающими поток и потенциал в своих соответствующих системах. Электрический ток (I) — это скорость потока, измеряемая в амперах (A). Ом (R) — это мера сопротивления, сравнимая с размером водопровода.
Что такое усилок?
«Ампер», сокращенно от «ампер», — это единица измерения электрического тока, которую СИ определяет в терминах других основных единиц путем измерения электромагнитной силы между электрическими проводниками, по которым проходит электрический ток.Ампер — это тот постоянный ток, который, если его поддерживать в двух прямых параллельных проводниках бесконечной длины, с ничтожно малым круглым поперечным сечением и помещать на расстоянии одного метра в вакууме, создавал бы между этими проводниками силу, равную 2 × 10 −7 ньютонов на метр длины. [2]
Что такое сила тока?
«Сила тока» — это сила электрического тока, выраженная в амперах.
Что такое ом?
Ом — единица электрической цепи, которая определяется как электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов в один вольт, приложенная к этим точкам, вызывает в проводнике ток в один ампер, проводник не являясь местом действия какой-либо электродвижущей силы. [3] Ом выражается как …
Что такое ватт?
Ватт — это мера мощности. Один ватт (Вт) — это скорость, с которой выполняется работа, когда один ампер (А) тока проходит через разность электрических потенциалов в один вольт (В). Ватт можно выразить как …
Как все эти термины относятся к солнечной энергии?
Важно знать термины и формулы на этой странице, потому что они помогают при расчете количества энергии и размера солнечной энергосистемы, вне зависимости от того, является ли она автономной или подключенной к сети.
Есть еще формула мощности. В этой формуле P — мощность, измеренная в ваттах, I — ток, измеренный в амперах, и V, — разность потенциалов (или падение напряжения) на компоненте, измеренная в вольтах. это также отображается как W = V * A или ватты равны вольтам, умноженным на амперы.
Давайте переупорядочим эту формулу для примера:
- Вт = В * А
- В = Вт / Д
- А = В / В
Этот пример покажет, почему более высокое напряжение постоянного тока лучше всего в больших солнечных системах.
Допустим, у вас есть нагрузка на 1000 Вт. Это равно:
- 83,3 А при 12 В
- 41,6 А при 24 В
- 20,8 А при 48 В
- 8,3 А при 120 В
- 4,1 ампера при 240 вольт
Знание того, какой ток течет к вашей нагрузке, очень важно при выборе правильного провода. Мы принимаем во внимание расстояние, чтобы рассчитать потерю напряжения. В идеале мы не хотим превышать 3% потери напряжения.Другая половина этого расчета — текущая. Вам понадобится провод большего диаметра, чтобы пропустить больше тока. Если у вас есть выбор, лучше всего подойдет более высокое напряжение.
Эти формулы также полезны при расчете мощности переменного тока (переменного тока) для определения размера инвертора, который преобразует электричество постоянного тока от солнечной батареи в переменный ток, который затем может использоваться для питания освещения и бытовой техники в домах и на предприятиях. Приборы имеют лицевую панель, на которой указаны все электрические данные. Предположим, у вас есть микроволновая печь.Производитель указывает требования к усилителю в электрических характеристиках лицевой панели, которая обычно крепится к задней части духовки. Допустим, на лицевой панели указан номинал 8,3 ампера. Чтобы рассчитать ватт, умножьте 8,3 ампера на домашнее напряжение 120 вольт. Это равно 996 Вт.
Теперь давайте посчитаем, сколько энергии микроволновая печь будет использовать за один день. Если вы используете микроволновую печь 2 часа в день, умножьте количество часов в день на ватты, чтобы получить ватт-часы в день. Итак, у вас есть 996 ватт, умноженное на 2 часа, что равняется 1992 ватт-часам в день.
При определении размера солнечной энергосистемы эта формула необходима для определения общей мощности, которую вы используете в день.
Ватт = Ампер x Вольт
Вольт = Ватт / Ампер
Ампер = Ватт / Вольт
Сноски
Электрическое сопротивление | Единицы измерения Wiki
Электрическое сопротивление — это мера степени, в которой объект препятствует прохождению электрического тока.
Резистор
А
Как измеряли []
В системе СИ единицей электрического сопротивления является ом. Его обратная величина составляет , электрическая проводимость , измеренная в сименсах.
Что такое сопротивление []
Сопротивление — это свойство любого объекта или вещества сопротивляться или противодействовать прохождению электрического тока. Величина сопротивления в электрической цепи определяет количество тока, протекающего в цепи для любого заданного напряжения, приложенного к цепи.Соответствующая формула:
- R = V / I
где
- R — сопротивление объекта, обычно измеряемое в омах.
- В — разность потенциалов на объекте, обычно измеряемая в вольтах (постоянный ток).
- I — ток, проходящий через объект, обычно измеряемый в амперах
Характеристика []
Для самых разных материалов и условий электрическое сопротивление не зависит от величины протекающего тока или величины приложенного напряжения. В можно измерить непосредственно на объекте или рассчитать путем вычитания напряжений относительно контрольной точки. Первый метод проще для одного объекта и, вероятно, будет более точным. Также могут возникнуть проблемы с предыдущим методом, если напряжение питания переменного тока и два измерения от контрольной точки не совпадают по фазе друг с другом.
Потеря сопротивления []
Когда ток I протекает через объект с сопротивлением R , электрическая энергия преобразуется в тепло со скоростью (мощностью), равной
где
- P — мощность, измеренная в ваттах
- I — ток, измеренный в амперах
- R — сопротивление, измеренное в омах
Этот эффект полезен в некоторых приложениях, таких как лампы накаливания. освещение и электрическое отопление, но нежелательно при передаче энергии.Обычные способы борьбы с резистивными потерями включают использование более толстого провода и более высоких напряжений. Сверхпроводящий провод используется в специальных приложениях.
Сопротивление проводника []
Сопротивление постоянному току []
Пока плотность тока в проводнике полностью однородна, сопротивление постоянному току R проводника с регулярным поперечным сечением можно вычислить как
где
- L — длина проводника, измеренная в метрах
- A — площадь поперечного сечения, измеренная в квадратных метрах
- ρ (греч .: rho) — удельное электрическое сопротивление ( также называют удельным электрическим сопротивлением () материала, измеряемым в Ом · метр.Удельное сопротивление — это мера способности материала противодействовать прохождению электрического тока.
По практическим соображениям почти любое подключение к реальному проводнику почти наверняка будет означать, что плотность тока не является полностью однородной. Однако эта формула по-прежнему дает хорошее приближение для длинных тонких проводников, таких как провода.
Сопротивление переменного тока []
Если провод проводит высокочастотный переменный ток, то эффективная площадь поперечного сечения провода, доступная для проведения тока, уменьшается.(См. Скин-эффект).
Формула Термана дает диаметр проволоки, сопротивление которой увеличивается на 10%.
где
- — рабочая частота, измеренная в герцах (Гц)
- — диаметр провода в миллиметрах.
Эта формула применима к изолированным проводам. В проводнике в непосредственной близости от других проводников фактическое сопротивление выше из-за эффекта близости.
Причины сопротивления []
Металлы []
Металл состоит из решетки атомов, каждый из которых имеет оболочку из электронов. Внешние электроны могут диссоциировать от своих родительских атомов и путешествовать через решетку, делая металл проводником. Когда к металлу прикладывается электрический потенциал (напряжение), электроны дрейфуют от одного конца проводника к другому под действием электрического поля. В реальном материале атомная решетка никогда не бывает идеально регулярной, поэтому ее несовершенства рассеивают электроны и вызывают сопротивление.Повышение температуры заставляет атомы вибрировать сильнее, вызывая еще больше столкновений и еще больше увеличивая сопротивление.
Чем больше площадь поперечного сечения проводника, тем больше электронов может переносить ток, поэтому тем ниже сопротивление. Чем длиннее проводник, тем больше случаев рассеяния происходит на пути каждого электрона через материал, поэтому тем выше сопротивление. [1]
В полупроводниках и изоляторах []
Полупроводники обладают свойствами, которые частично отличаются от свойств металлов и изоляторов.Кремниевая були имеет сероватый металлический блеск, как металл, но хрупкая, как стекло. Можно управлять резистивными свойствами полупроводниковых материалов, легируя эти материалы атомарными элементами, такими как мышьяк или бор, которые создают электроны или дырки, которые могут перемещаться по решетке материала.
В ионных жидкостях / электролитах []
В электролитах электрическая проводимость осуществляется не зонными электронами или дырками, а движущимися целыми атомными частицами (ионами), каждый из которых несет электрический заряд.Удельное сопротивление ионных жидкостей сильно зависит от концентрации соли — в то время как дистиллированная вода является почти изолятором, соленая вода является очень эффективным проводником электричества. В клеточных мембранах токи переносятся ионными солями. Небольшие отверстия в мембранах, называемые ионными каналами, избирательны по отношению к определенным ионам и определяют сопротивление мембраны.
Сопротивление различных материалов []
Теория лент []
Уровни энергии электронов в изоляторе.
Квантовая механика утверждает, что энергия электрона в атоме не может быть произвольной величиной.Скорее, существуют фиксированные уровни энергии, которые могут занимать электроны, и значения между этими уровнями невозможны. Уровни энергии сгруппированы в две зоны: валентная зона и зона проводимости (последняя обычно выше первой). Электроны в зоне проводимости могут свободно перемещаться по веществу в присутствии электрического поля.
В изоляторах и полупроводниках атомы вещества влияют друг на друга так, что между валентной зоной и зоной проводимости существует запрещенная зона энергетических уровней, которую электроны просто не могут занять.Для протекания тока электрону необходимо передать относительно большое количество энергии, чтобы он мог перепрыгнуть через этот запрещенный промежуток в зону проводимости. Таким образом, большие напряжения дают относительно небольшие токи.
Дифференциальное сопротивление []
Когда сопротивление может зависеть от напряжения и тока, дифференциальное сопротивление , инкрементное сопротивление или наклонное сопротивление определяется как наклон графика V-I в определенной точке, таким образом:
Эту величину иногда называют просто сопротивлением , , хотя эти два определения эквивалентны только для омического компонента, такого как идеальный резистор. Если график V-I не является монотонным (т. Е. Имеет пик или впадину), дифференциальное сопротивление будет отрицательным для некоторых значений напряжения и тока. Это свойство часто называют отрицательным сопротивлением , , хотя правильнее его называть отрицательным дифференциальным сопротивлением , поскольку абсолютное сопротивление В, /, все еще является положительным.
Температурная зависимость []
Около комнатной температуры электрическое сопротивление типичного металлического проводника возрастает линейно с температурой:
- ,
где a — коэффициент термического сопротивления.
Электрическое сопротивление типичного собственного (нелегированного) полупроводника экспоненциально уменьшается с температурой:
При повышении температуры, начиная с абсолютного нуля, примесные (легированные) полупроводники сначала уменьшают сопротивление, когда носители покидают доноры или акцепторы, а затем, когда большинство доноров или акцепторов теряют свои носители, сопротивление снова начинает немного увеличиваться из-за уменьшение подвижности носителей (как в металле), а затем, наконец, начинают вести себя как собственные полупроводники, поскольку носители от доноров / акцепторов становятся незначительными по сравнению с термически генерируемыми носителями
Электрическое сопротивление электролитов и изоляторов сильно нелинейно и зависит от конкретного случая, поэтому здесь не приводятся обобщенные уравнения.
См. Также []
Внешние ссылки []
FAQs: Руководство по измерению сопротивления
При измерении сопротивления точность — это все. Это руководство — это то, что мы знаем о достижении максимально возможного качества измерений.
Индекс
- Введение в измерение сопротивления
- Приложения
- Сопротивление
- Принципы измерения сопротивления
- Методы 4-х контактных соединений
- Возможные ошибки измерения
- Выбор подходящего инструмента
- Примеры применения
- Полезные формулы и диаграммы
- Узнать больше
1.Введение
Измерение очень больших или очень малых величин всегда затруднено, и измерение сопротивления не является исключением. При значениях выше 1 ГОм и ниже 1 Ом возникают проблемы с измерением.
Cropico — мировой лидер в области измерения низкого сопротивления; мы производим широкий ассортимент омметров низкого сопротивления и принадлежностей, которые подходят для большинства измерительных приложений. В этом справочнике дается обзор методов измерения низкого сопротивления, объясняются распространенные причины ошибок и способы их предотвращения.Мы также включили полезные таблицы с характеристиками проводов и кабелей, температурными коэффициентами и различными формулами, чтобы вы могли сделать наилучший выбор при выборе измерительного прибора и техники измерения. Мы надеемся, что вы найдете это руководство ценным дополнением к вашему набору инструментов.
2. Приложения
Производители компонентов
Резисторы, катушки индуктивности и дроссели — все должны убедиться, что их продукция соответствует указанному допуску по сопротивлению, окончанию производственной линии и контролю качества.
Производители переключателей, реле и соединителей
Требуется проверка того, что контактное сопротивление ниже установленных пределов. Это может быть достигнуто в конце тестирования производственной линии, обеспечивая контроль качества.
Производители кабелей
Необходимо измерять сопротивление медных проводов, которые они производят, слишком высокое сопротивление означает, что токонесущая способность кабеля снижается; слишком низкое сопротивление означает, что производитель слишком великодушен к диаметру кабеля, используя больше меди, чем ему нужно, что может быть очень дорогостоящим.
Установка и обслуживание силовых кабелей, распределительных устройств и устройств РПН
Для этого требуется, чтобы кабельные муфты и переключающие контакты имели минимально возможное сопротивление, что позволяет избежать чрезмерного нагрева стыка или контакта, плохого кабельного стыка или переключающего контакта. вскоре выходят из строя из-за этого нагревающего эффекта. Регулярное профилактическое обслуживание с регулярными проверками сопротивления обеспечивает максимально возможный срок службы.
Производители электродвигателей и генераторов
Требуется определить максимальную температуру, достигаемую при полной нагрузке. Для определения этой температуры используется температурный коэффициент медной обмотки. Сопротивление сначала измеряется при холодном двигателе или генераторе, то есть при температуре окружающей среды, затем блок работает с полной нагрузкой в течение определенного периода времени, а сопротивление измеряется повторно. По изменению значения сопротивления можно определить внутреннюю температуру двигателя / генератора. Наши омметры также используются для измерения отдельных катушек обмотки двигателя, чтобы убедиться в отсутствии коротких или разомкнутых витков цепи и в том, что каждая катушка сбалансирована.
Автомобильная промышленность
Требование к измерению сопротивления сварочных кабелей для роботов, чтобы гарантировать, что качество сварки не ухудшается, т.
Изготовители предохранителей
Для контроля качества и измерения сопротивления соединений на самолетах и военных транспортных средствах необходимо обеспечить, чтобы все оборудование, установленное на самолетах, было электрически подключено к раме, включая оборудование камбуза. Те же требования предъявляются к танкам и другой военной технике. Производители и пользователи больших электрических токов — все должны измерять распределение сопротивления соединений, сборных шин и соединителей по электродам для гальваники.
Железнодорожные коммуникации
Включая трамваи и подземные железные дороги (Метро) — для измерения соединений силовых кабелей, включая сопротивление стыков рельсовых путей, поскольку рельсы часто используются для передачи информации.
3.Сопротивление
Закон Ома V = I x R (Вольт = ток x сопротивление). Ом (Ом) — это единица электрического сопротивления, равная сопротивлению проводника, в котором ток в один ампер создается потенциалом в один вольт на его выводах. Закон Ома, названный в честь его первооткрывателя, немецкого физика Георга Ома, является одним из важнейших основных законов электричества. Он определяет взаимосвязь между тремя фундаментальными электрическими величинами: током, напряжением и сопротивлением. Когда напряжение подается на цепь, содержащую только резистивные элементы, ток течет в соответствии с законом Ома, который показан ниже.
4. Принципы измерения сопротивления
Амперметр Метод вольтметра
Этот метод восходит к основам. Если мы используем аккумулятор в качестве источника напряжения, вольтметр для измерения напряжения и амперметр для измерения тока в цепи, мы можем рассчитать сопротивление с разумной точностью. Хотя этот метод может обеспечить хорошие результаты измерений, он не является практическим решением повседневных задач измерения.
Двойной мост Кельвина
Мост Кельвина является разновидностью моста Уитстона, который позволяет измерять низкие сопротивления.Диапазон измерения обычно составляет от 1 мОм до 1 кОм с наименьшим разрешением 1 мкОм. Ограничения моста Кельвина: —
- требует ручной балансировки
- чувствительный нуль-детектор или гальванометр требуется для определения состояния баланса
- измерительный ток должен быть достаточно высоким для достижения достаточной чувствительности
Двойной мост Кельвина обычно заменяют цифровыми омметрами.
Цифровой мультиметр — двухпроводное соединение
Простой цифровой мультиметр можно использовать для более высоких значений сопротивления.Они используют двухпроводной метод измерения и подходят только для измерения значений выше 100 Ом и там, где не требуется высокая точность.
При измерении сопротивления компонента (Rx) через компонент проходит испытательный ток, и измерительный прибор измеряет напряжение на его выводах. Затем измеритель рассчитывает и отображает результирующее сопротивление и называется двухпроводным измерением. Следует отметить, что измеритель измеряет напряжение на своих выводах, а не на компоненте.В результате падение напряжения на соединительных выводах также включается в расчет сопротивления. Измерительные провода хорошего качества будут иметь сопротивление примерно 0,02 Ом на метр. В дополнение к сопротивлению выводов, сопротивление соединения выводов также будет включено в измерение, и оно может быть таким же высоким или даже выше, чем сопротивление самих выводов.
При измерении больших значений сопротивления эту дополнительную ошибку сопротивления проводов можно игнорировать, но, как вы можете видеть из приведенной ниже таблицы, ошибка становится значительно выше, когда измеренное значение уменьшается, и совершенно неприемлемо для значений ниже 10 Ом.
ТАБЛИЦА 1
Примеры возможных ошибок измерения
RX | Сопротивление измерительного провода R1 + R2 | Сопротивление подключения R3 + R4 | Rx, измеренный на клеммах цифрового мультиметра = Rx + R1 + R2 + R3 + R4 | Ошибка | Ошибка% |
1000 Ом | 0,04 Ом | 0.04 Ом | 1000,08 Ом | 0,08 Ом | 0,008 |
100 Ом | 0,04 Ом | 0,04 Ом | 100,08 Ом | 0,08 Ом | 0,08 |
10 Ом | 0,04 Ом | 0,04 Ом | 10,08 Ом | 0,08 Ом | 0,8 |
1 Ом | 0,04 Ом | 0. 04 Ом | 1,08 Ом | 0,08 Ом | 8 |
100 мОм | 0,04 Ом | 0,04 Ом | 180 мОм | 0,08 Ом | 80 |
10 мОм | 0,04 Ом | 0,04 Ом | 90 мОм | 0,08 Ом | 800 |
1 мОм | 0,04 Ом | 0,04 Ом | 81 мОм | 0.08 Ом | 8000 |
100 мкОм | 0,04 Ом | 0,04 Ом | 80,1 мкОм | 0,08 Ом | 8000 |
Для измерения истинного постоянного тока резистивные омметры обычно используют 4-проводное измерение. Постоянный ток проходит через приемник и внутренний эталон омметра. Затем измеряется напряжение на Rx и внутреннем стандарте, и отношение двух показаний используется для расчета сопротивления.При использовании этого метода ток должен быть стабильным только в течение нескольких миллисекунд, необходимых для того, чтобы омметр сделал оба показания, но для этого требуются две схемы измерения. Измеряемое напряжение очень мало, и обычно требуется чувствительность измерения мкВ.
В качестве альтернативы используется источник постоянного тока для пропускания тока через Rx. Затем измеряется падение напряжения на Rx и рассчитывается сопротивление. Для этого метода требуется только одна измерительная цепь, но генератор тока должен быть стабильным при всех условиях измерения.
Четырехпроводное соединение
Четырехпроводный метод измерения (Кельвина) предпочтителен для значений сопротивления ниже 100 Ом, и все миллиомметры и микрометры Seaward используют этот метод. Эти измерения производятся с использованием 4 отдельных проводов. 2 провода несут ток, известный как источник или токоподводы, и пропускают ток через Rx. Два других провода, известные как измерительные или потенциальные выводы, используются для измерения падения напряжения на Rx. Хотя в сенсорных выводах будет течь небольшой ток, им можно пренебречь.Таким образом, падение напряжения на измерительных клеммах омметра практически такое же, как падение напряжения на Rx. Этот метод измерения даст точные и последовательные результаты при измерении сопротивлений ниже 100 Ом.
С точки зрения измерения это лучший тип подключения с 4 отдельными проводами; 2 тока (C и C1) и 2 потенциала (P и P1). Токовые провода всегда должны быть размещены вне потенциала, хотя точное размещение не критично.Потенциальные провода должны быть подключены точно в тех точках, между которыми вы хотите измерить. Измеренное значение будет между потенциальными точками. Хотя это дает лучшие результаты измерений, это часто нецелесообразно. Мы живем в несовершенном мире, и иногда приходится идти на небольшие компромиссы. Cropico может предложить ряд практических измерительных решений.
5. Способы 4-х концевого подключения
Зажимы Кельвина
Зажимы Кельвина похожи на зажимы типа «крокодил» («Аллигатор»), но каждая челюсть изолирована от другой.Токоподвод подключается к одной челюсти, а потенциальный — к другой. Зажимы Кельвина предлагают очень практичное решение для подключения четырех клемм к проводам, шинам, пластинам и т. Д.
Duplex Handspikes
Handspikes — еще одно очень практичное решение для соединения, особенно для листового материала, сборных шин и там, где доступ может быть проблемой. Шип состоит из двух подпружиненных шипов, заключенных в рукоятку. Один всплеск — это текущая связь, а другой — потенциальная или чувственная связь.
Составное соединение выводов
Иногда единственное практическое решение для соединения с приемником — это использование соединительных выводов. Токоподвод вставляется сзади потенциального вывода. Этот метод дает небольшие ошибки, потому что точка измерения будет там, где потенциальный вывод соединяется с токоподводом. Для измерения образцов из труднодоступных мест это может быть лучшим компромиссным решением.
Кабельные зажимы
При измерении кабелей в процессе производства и в целях контроля качества необходимо поддерживать постоянные условия измерения. Длина образца кабеля обычно составляет 1 метр, и для обеспечения точного измерения длины в 1 метр следует использовать кабельный зажим. Cropico предлагает широкий выбор кабельных зажимов, которые подходят для большинства размеров кабелей. Измеряемый кабель помещается в зажим, а концы кабеля зажимаются в токовых клеммах. Точки потенциального соединения обычно имеют форму ножевых контактов, которые находятся на расстоянии ровно 1 метр друг от друга.
Приспособления и приспособления
При измерении других компонентов, таких как резисторы, предохранители, переключающие контакты, заклепки и т. Д.Невозможно переоценить важность использования испытательного приспособления для фиксации компонента. Это гарантирует, что условия измерения, то есть положение измерительных проводов, одинаковы для каждого компонента, что приведет к последовательным, надежным и значимым измерениям. Приспособления часто должны быть специально разработаны для соответствия условиям применения.
6. Возможные ошибки измерения
Есть несколько возможных источников погрешности измерения, связанных с измерениями низкого сопротивления.Наиболее распространенные из них описаны ниже.
Грязные соединения
Как и при любых измерениях, важно убедиться, что подключаемое устройство чистое и не содержит оксидов и грязи. Соединения с высоким сопротивлением вызовут ошибки при считывании и могут помешать измерениям. Также следует отметить, что некоторые покрытия и оксиды на материалах являются хорошими изоляторами. Анодирование имеет очень высокое сопротивление и является классическим примером. Обязательно счистите покрытие в точках соединения.Кропикоомметры включают предупреждение об ошибке провода, которое указывает на слишком высокое сопротивление соединений.
Слишком высокое сопротивление проводов
Хотя теоретически четырехконтактный метод измерения не зависит от длины проводов, необходимо следить за тем, чтобы сопротивление проводов не было слишком высоким. Потенциальные выводы не являются критическими и обычно могут составлять до 1 кОм, не влияя на точность измерения, но токоподводы имеют решающее значение. Если токоподводы имеют слишком высокое сопротивление, падение напряжения на них приведет к недостаточному напряжению на тестируемом устройстве (тестируемое устройство) для получения разумных показаний.Кропикоомметры проверяют это согласованное напряжение на ИУ и предотвращают выполнение измерения, если оно падает слишком низко. Также имеется предупреждающий дисплей; предотвращение считывания, гарантируя, что не будут выполнены ложные измерения. Если вам нужно использовать длинные измерительные провода, увеличьте диаметр кабелей, чтобы уменьшить их сопротивление.
Шум измерения
Как и при любом типе измерения низкого напряжения, шум может быть проблемой. Шум возникает внутри измерительных проводов, когда они находятся под воздействием изменяющегося магнитного поля или когда провода движутся в этом поле. Чтобы свести к минимуму этот эффект, провода следует делать максимально короткими, неподвижными и идеально защищенными. Компания Cropico понимает, что существует множество практических ограничений для достижения этого идеала, и поэтому разработала схемы в своих омметрах, чтобы минимизировать и устранить эти эффекты. Термическая ЭДС Термоэдс в ИУ, вероятно, является самой большой причиной ошибок при измерениях низкого сопротивления. Сначала мы должны понять, что мы подразумеваем под термоэдс и как она генерируется. Термоэдс — это небольшие напряжения, которые возникают, когда два разнородных металла соединяются вместе, образуя так называемый спай термопары.Термопара будет генерировать ЭДС в зависимости от материалов, используемых в соединении, и разницы температур между горячим и эталонным или холодным спаем.
Этот эффект термопары приведет к ошибкам в измерениях, если не будут приняты меры для компенсации и устранения этих термоэдс. Микроомметры и миллиомметры Cropico устраняют этот эффект, предлагая автоматический режим усреднения для измерения, который иногда называют методом переключения постоянного или среднего значения. Измерение производится с током, протекающим в прямом направлении, затем второе измерение выполняется с током в обратном направлении. Отображаемое значение является средним из этих двух измерений. Любая термоэдс в измерительной системе будет добавлена к первому измерению и вычтена из второго; отображаемое результирующее среднее значение исключает или отменяет термоэдс из измерения. Этот метод дает наилучшие результаты для резистивных нагрузок, но не подходит для индуктивных образцов, таких как обмотки двигателя или трансформатора.В этих случаях омметр, вероятно, переключит направление тока до того, как индуктивность будет полностью насыщена, и правильное измеренное значение не будет достигнуто.
Измерение сопротивления соединения двух сборных шин
Неправильный тестовый ток
Всегда следует учитывать влияние измерительного тока на ИУ. Устройства с небольшой массой или изготовленные из материалов с высоким температурным коэффициентом, таких как тонкие жилы медной проволоки, должны быть измерены с минимальным доступным током, чтобы избежать нагрева. В этих случаях может потребоваться одиночный импульс тока, чтобы вызвать минимальный нагрев. Если ИУ подвержено влиянию термоэдс, тогда подходит метод коммутации тока, описанный ранее. Омметры серии Cropico DO5000 имеют выбираемые токи от 10% до 100% с шагом 1%, а также режим одиночного импульса и, следовательно, могут быть настроены для большинства приложений.
Влияние температуры
Важно знать, что сопротивление большинства материалов зависит от их температуры.В зависимости от требуемой точности измерения может быть необходимо контролировать среду, в которой проводятся измерения, таким образом поддерживая постоянную температуру окружающей среды. Это будет иметь место при измерении эталонов сопротивления, которые измеряются в контролируемой лаборатории при 20 ° C или 23 ° C. Для измерений, когда невозможно контролировать температуру окружающей среды, можно использовать функцию ATC (автоматическая температурная компенсация). Датчик температуры, подключенный к омметру, измеряет температуру окружающей среды, и показание сопротивления корректируется до эталонной температуры 20 ° C. Двумя наиболее часто измеряемыми материалами являются медь и алюминий, и их температурные коэффициенты показаны напротив.
Температурный коэффициент меди (близкая к комнатной температуре) составляет +0,393% на ° C. Это означает, что при повышении температуры на 1 ° C сопротивление увеличится на 0,393%. Алюминий +0,4100% на ° C.
7. Выбор подходящего инструмента
ТАБЛИЦА 2
Типовая таблица технических характеристик прибора
Диапазон | Разрешение | Измерение тока | Точность при 20 ° C ± 5 ° C, 1 год | Температурный коэффициент / o C |
60 Ом | 10 мОм | 1 мА | ± (0.15% показания + 0,05% полной шкалы) | 40 частей на миллион изобр. + 30 частей на миллион FS |
6 Ом | 1 мОм | 10 мА | ± (0,15% показания + 0,05% полной шкалы) | 40 частей на миллион изобр. + 30 частей на миллион FS |
600 мОм | 100 мкОм | 100 мА | ± (0,15% показания + 0,05% полной шкалы) | 40 частей на миллион изобр. + 30 частей на миллион FS |
60 мОм | 10 мкОм | 1A | ± (0.15% показания + 0,05% полной шкалы) | 40 частей на миллион изобр. + 30 частей на миллион FS |
6 мОм | 1 мкОм | 10A | ± (0,2% показания + 0,01% полной шкалы) | 40 частей на миллион изобр. + 30 частей на миллион FS |
600 мкОм | 0,1 мкОм | 10A | ± (0,2% показания + 0,01% полной шкалы) | 40 частей на миллион изобр. + 250 частей на миллион FS |
Диапазон:
Максимально возможное значение при этой настройке
Разрешение:
Наименьшее число (цифра), отображаемое для этого диапазона
Измеряемый ток:
Номинальный ток, используемый этим диапазоном
Точность:
Погрешность измерения в диапазоне температур окружающей среды от 15 до 25 ° C
Температурный коэффициент:
Дополнительная возможная погрешность при температуре окружающей среды ниже 15 ° C и выше 25 ° C
При выборе лучшего инструмента для вашего применения следует учитывать следующее: —
Точность лучше описать как неопределенность измерения, которая представляет собой близость согласия между результатом измеренного значения и истинным значением. Обычно он выражается в двух частях, то есть в процентах от показаний плюс процент от полной шкалы. Заявление о точности должно включать применимый температурный диапазон, а также время, в течение которого точность будет оставаться в указанных пределах. Предупреждение: некоторые производители дают очень высокую точность, но это действительно только в течение короткого периода 30 или 90 дней. Все омметры Cropico указывают точность на полный год.
Разрешение — это наименьшее приращение, которое будет отображать измерительный прибор.Следует отметить, что для достижения высокой точности измерения необходимо подходящее высокое разрешение, но высокое разрешение само по себе не означает, что измерение имеет высокую точность.
Пример: Для измерения 1 Ом с точностью 0,01% (± 0,0001) требуется, чтобы измерение отображалось с минимальным разрешением 100 мкОм (1.0001 Ом).
Измеренное значение также может отображаться с очень высоким разрешением, но с низкой точностью, т. е. 1 Ом измеряется с точностью до 1%, но разрешение 100 мкОм будет отображаться как 1.0001 Ом. Единственными значимыми цифрами будут 1.0100, последние две цифры показывают только колебания измеренных значений. Эти колебания могут вводить в заблуждение и указывать на любую нестабильность тестируемого устройства. Следует выбрать подходящее разрешение, чтобы обеспечить комфортное чтение с дисплея.
Измерение Длина шкалы
Цифровые измерительные приборы отображают измеренное значение с помощью дисплеев с максимальным счетом, часто 1999 (иногда обозначается цифрой 3 Ом). Это означает, что максимальное отображаемое значение — 1999 год, а наименьшее разрешение — 1 цифра в 1999 году.При измерении 1 Ом на дисплее отобразится 1.000, разрешение 0,001 мОм. Если мы хотим измерить 2 Ом, нам нужно будет выбрать более высокий диапазон 19,99 Ом полной шкалы, и значение будет отображаться как 2,00 Ом, разрешение 0,01 Ом. Таким образом, вы можете видеть, что желательно иметь большую длину шкалы, чем традиционная шкала 1999 года. Кропикоомметры предлагают длину шкалы до 6000 отсчетов, что дает отображаемое значение 2,000 с разрешением 0,001 Ом.
Выбор диапазона
Выбор диапазона может быть ручным или автоматическим.Хотя автоматический выбор диапазона может быть очень полезным, когда значение Rx неизвестно, измерение занимает больше времени, поскольку прибору необходимо найти правильный диапазон. Для измерений на нескольких одинаковых образцах лучше выбирать диапазон вручную. В дополнение к этому, различные диапазоны инструментов будут измерять с разными токами, которые могут не подходить для тестируемого устройства. При измерении индуктивных образцов, таких как двигатели или трансформаторы, измеренное значение увеличивается по мере насыщения индуктивности до достижения конечного значения.В этих приложениях не следует использовать автоматический выбор диапазона, поскольку при изменении диапазонов измерительный ток прерывается, и его величина также может быть изменена, а окончательное стабильное показание вряд ли будет достигнуто.
Длина шкалы | 1,999 | 19,99 | 2.000 | 20,00 | 3.000 | 30,00 | 4.000 | 40,000 | |
Показание дисплея | |||||||||
Измеренные значения | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ||||
2.000 | Диапазон до | 2,00 | 2.000 | 2.000 | 2.000 | ||||
3.000 | Диапазон до | 3.00 | Диапазон до | 3,00 | 3.000 | 3.000 | |||
4.000 | Диапазон до | 4,00 | Диапазон до | 4,00 | Диапазон до | 4,00 | 4.000 |
Температурный коэффициент
Температурный коэффициент измерительного прибора важен, поскольку он может существенно повлиять на точность измерения. Измерительные приборы обычно калибруются при температуре окружающей среды 20 или 23 °. Температурный коэффициент показывает, как на точность измерения влияют колебания температуры окружающей среды.
Величина и режим тока
Выбор прибора с соответствующим измерительным током для конкретного применения очень важен. Например, если нужно измерить тонкую проволоку, то сильный измерительный ток нагреет проволоку и изменит ее значение сопротивления. Медный провод имеет температурный коэффициент 4% на ° C при температуре окружающей среды, поэтому для провода с сопротивлением 1 Ом повышение температуры на 10 ° C увеличит его значение до 10 x 0.004 = 0,04 Ом. Однако в некоторых приложениях используются более высокие токи.
Режим измерения тока также может иметь значение. Опять же, при измерении тонких проводов короткий измерительный импульс тока, а не постоянный ток, минимизирует эффект нагрева. Переключаемый режим измерения постоянного тока также может быть подходящим для устранения ошибок термоэдс, но для измерения обмоток двигателя или трансформаторов импульс тока или коммутируемый постоянный ток не подходят. Постоянный ток необходим для насыщения индуктивности и получения правильного измеренного значения.Автоматическая компенсация температуры При измерении материалов с высоким температурным коэффициентом, таких как медь, значение сопротивления будет увеличиваться с увеличением температуры. Измерения, проведенные при температуре окружающей среды 20 ° C, будут на 0,4% ниже, чем измерения при 30 ° C. Это может ввести в заблуждение при попытке сравнить значения в целях контроля качества. Для решения этой проблемы в некоторых омметрах предусмотрена автоматическая температурная компенсация (ATC). Температура окружающей среды измеряется датчиком температуры, а отображаемое значение сопротивления корректируется с учетом изменений температуры, считая показания на 20 ° C.
Скорость измерения
Скорость измерения обычно не слишком важна, и большинство омметров будут выполнять измерения примерно со скоростью 1 показание в секунду, но в автоматизированных процессах, таких как выбор компонентов и тестирование производственной линии, высокая скорость измерения, до 50 измерений в секунду , может быть желательно. Конечно, при измерении на этих скоростях омметром необходимо дистанционно управлять с помощью компьютера или интерфейсов ПЛК.
Удаленное подключение
Для удаленного подключения может потребоваться интерфейс IEEE-488, RS232 или PLC.Интерфейс IEEE-488 — это параллельный порт для передачи 8 бит (1 байт) информации за один раз по 8 проводам. Его скорость передачи выше, чем у RS232, но длина соединительного кабеля ограничена до 20 метров.
Интерфейс RS232 — это последовательный порт для передачи данных в последовательном битовом формате. RS232 имеет более низкую скорость передачи, чем IEEE-488, и требует всего 3 линий для передачи данных, приема данных и заземления сигнала.
Интерфейс ПЛК позволяет осуществлять базовое дистанционное управление микрометром с помощью программируемого логического контроллера или аналогичного устройства.
Окружающая среда
Следует учитывать тип окружающей среды, в которой будет использоваться омметр. Нужен ли портативный блок? Должна ли конструкция быть достаточно прочной, чтобы выдерживать условия строительной площадки? В каком диапазоне температуры и влажности он должен работать?
Ознакомьтесь с ассортиментом Милломметров и Микрометров для получения дополнительной информации о наших продуктах.
Загрузите полное руководство в формате PDF, которое содержит все главы:
НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ СКАЧАТЬ ПОЛНОЕ РУКОВОДСТВО
Что такое блок измерения источника или SMU?
Источник измерения (SMU) — это прибор, который сочетает в себе функцию поиска и функцию измерения на одном контакте или соединителе.Он может подавать напряжение или ток и одновременно измерять напряжение и / или ток. Он объединяет в себе возможности источника питания или функционального генератора, цифрового мультиметра (DMM) или осциллографа, источника тока и электронной нагрузки в одном плотно синхронизированном приборе.
Рисунок 1. Блок-схема одного канала ADALM1000 SMU.
ADALM1000 по своей сути является источником измерения, но его также можно рассматривать как отдельный осциллограф и функциональный генератор. Однако, поскольку выходная функция (генератор) и входная функция (осциллограф) имеют общий вывод, если рассматривать их как отдельные, одновременно может использоваться только одна функция.
Почему так важно иметь программируемый источник-измеритель?
Для некоторых видов тестирования может быть не важно наличие программируемого инструмента. Вы можете просто прочитать значение один или несколько раз. Однако во многих случаях может потребоваться сбор большого количества данных, чтобы построить график или график производительности во времени. Однако выполнение этого вручную требует много времени и может привести к ошибкам.
Существует также множество различных экспериментов, которые требуют автоматизированного сбора данных для получения более быстрых и точных измерений или проведения измерений в течение длительного периода времени (месяцы или даже годы). Здесь вам обязательно понадобится компьютер для сбора данных и их экспорта в базу данных для анализа.
Почему важно иметь отрицательное напряжение?
Не для всех экспериментов требуются отрицательные напряжения, и в некоторых случаях этого можно избежать. Однако многие устройства разных типов работают по-разному, если подается положительное или отрицательное напряжение. Чтобы полностью понять, как работают такие устройства, нам нужно иметь возможность изменять знак приложенного напряжения. Каждый канал SMU в ADALM1000 может выдавать напряжение только от 0 В до 5 В относительно земли.Предусмотрены фиксированные выходы 2,5 В и 5 В, которые могут обеспечивать как источник, так и сток. Тестируемое устройство может быть подключено между выходом 2,5 В и выходом SMU, а не к земле, чтобы изменять напряжение на ИУ от –2,5 В до +2,5 В. Кроме того, поскольку ADALM1000 имеет два SMU, ИУ может быть подключено между два выхода SMU. При изменении одного канала от 0 В до 5 В и изменении другого от 5 В до 0 В напряжение на ИУ изменяется от –5 В до +5 В.
В качестве примера рассмотрим диод — устройство, позволяющее электричеству проходить через него только в одном направлении.Чтобы оценить, работает ли диод, нам нужно посмотреть, будет ли он пропускать ток в обоих направлениях. Мы можем сделать это одним из двух способов. Мы можем измерить диод в одном направлении, вручную повернуть его и измерить в другом направлении, а затем объединить наборы данных вместе. Однако мы могли бы просто измерить ток, подавая как положительное, так и отрицательное напряжение. Фактически, этот метод настолько полезен, что используется для характеристики многих типов устройств, которые имеют поведение диодов: солнечные элементы и светодиоды являются хорошими примерами.На рисунке 2 показано, как подключить диод к ADALM1000 для изменения напряжения от –5 В до +5 В.
Рис. 2. Диод качания от –5 В до +5 В.
Если канал A запрограммирован на качание от 0 В до 5 В, а канал B запрограммирован на качание от 5 В до 0 В, разница между каналами появляется на резисторе. , который используется для ограничения тока и диода. Осциллограммы во временной области показаны на рисунке 3. Зеленая кривая — напряжение канала A, оранжевая кривая — напряжение канала B, а желтая кривая — ток канала B (ток канала A не показан, но будет просто обратной величиной. ток канала B).
Рис. 3. Кривые напряжения и тока в зависимости от времени.
Мы можем построить график зависимости этих измерений друг от друга и одновременно выполнить некоторые простые вычисления. Мы хотим построить график зависимости тока через диод от напряжения на диоде. Чтобы рассчитать напряжение на диоде, мы можем вычесть падение напряжения на резисторе (V = I × R) из разницы между напряжениями в каналах A и B. Следующее уравнение Python (используемое в ALICE) делает это:
Где 100 — номинал резистора.График зависимости тока диода от этого уравнения показан на рисунке 4.
Рис. 4. График зависимости тока диода от напряжения в диапазоне от –5 В до +5 В.
Каковы области применения блока измерения источника?
Многие предметы повседневного обихода будут протестированы с помощью SMU в рамках заводских испытаний и процесса контроля качества. Если вы используете светодиоды для освещения своего дома или имеете солнечные батареи на крыше, они будут протестированы с помощью SMU в рамках производственного процесса.
ADALM1000 разработан для студентов инженерных специальностей, изучающих новое поколение электронных устройств.Для понимания того, как огромное количество материалов и устройств проводят электричество, от углеродных нанотрубок и гетероструктур с квантовыми ямами до биомембран и биосенсоров, требуется SMU. Короче говоря, вы можете использовать ADALM1000, чтобы понять электрические характеристики любого компонента на постоянном токе или низких частотах в диапазоне напряжений от –5 В до +5 В, измеряя ток от ± 0,1 мА до 180 мА.
Можете ли вы привести мне конкретный пример измерения, для которого требуется исходная единица измерения?
Возьмем, к примеру, солнечную батарею.В исследовательских лабораториях инженеры ищут способы сделать более эффективные и недорогие солнечные элементы. Чтобы понять, насколько хорошо работает солнечный элемент, производится небольшое испытательное устройство — размером от нескольких квадратных миллиметров до нескольких квадратных сантиметров — а затем охарактеризованы его характеристики. Эти испытательные ячейки слишком малы, чтобы генерировать какую-либо полезную мощность, помимо освещения, скажем, одного светодиода, но они достаточно велики, чтобы характеризовать базовый рабочий диапазон и эффективность. В этом примере лаборатории используется ADALM1000 для измерения небольшого солнечного элемента.
Ключевой характеристикой солнечного элемента является то, насколько эффективно он преобразует энергию солнечного света в электрическую. Это можно сделать, осветив испытательную ячейку светом известной интенсивности и измерив электрическую мощность, произведенную на единицу площади. Поскольку мощность — это напряжение, умноженное на ток, отправной точкой является измерение напряжения на клеммах (V) и производимого тока (I).
Генерируемое напряжение можно измерить, подключив вольтметр к клеммам элемента, когда он светится.Точно так же ток можно измерить с помощью амперметра на клеммах ячейки. Если разделить измеренный ток на площадь солнечного элемента, мы получим плотность тока.
Однако есть проблема: если вы умножите напряжение на ток (или плотность тока), то это только скажет нам, сколько мощности (или мощности на единицу площади) мы можем произвести, если бы у нас было идеальное устройство. Причина в том, что вольтметр имеет почти бесконечное внутреннее сопротивление, и когда мы измеряем напряжение самостоятельно, ток не будет течь.В этом случае генерируется нулевая мощность (измеренное напряжение × нулевой ток = ноль). Это измерение называется напряжением холостого хода. Точно так же, когда мы помещаем амперметр на клеммы для измерения тока, мы проверяем ячейку, когда она была замкнута накоротко, потому что амперметр должен иметь почти нулевое внутреннее сопротивление. В этом случае есть ток, но нет приложенного напряжения. Опять же, мощность не генерируется (измеренный ток × нулевое напряжение = ноль). Это измерение называется током короткого замыкания.
Для любого практического (реального) солнечного элемента напряжение, которое он выдает, будет зависеть от того, какой ток вырабатывается, и поэтому используется SMU — так, чтобы напряжение можно было изменять при измерении изменения тока.
График на Рисунке 5 показывает типичную ВАХ для конкретного небольшого солнечного элемента (в данном случае солнечного элемента размером 3 см × 3 см от солнечного садового светильника). Ток отрицательный, потому что ток проходит в канал SMU (поглощается им). Ток при 0 В — это ток короткого замыкания, а напряжение при токе 0 — это напряжение холостого хода.
Рисунок 5. График зависимости I от солнечного элемента. Ось x: напряжение (В), ось y: ток I (мА).
ВАХ показывает, как изменяются напряжение и ток, и позволяет рассчитать фактическое количество энергии, которое генерирует солнечный элемент. На рисунке 6 показана зависимость мощности в мВт от напряжения на ячейке. Мощность просто V × I. Следующее уравнение Python вычисляет мощность в мВт:
Рисунок 6. Зависимость мощности солнечных элементов от напряжения. Ось x: напряжение (В), ось y: P — мВт
Пик графика — это точка, в которой генерируется максимальная мощность (так называемая точка максимальной мощности).Мощность отрицательная, потому что SMU поглощает мощность, производимую элементом.
Если бы мы использовали метод, показанный на Рисунке 2, мы могли бы также измерить солнечный элемент при приложении отрицательного напряжения (обратное смещение). Это дает нам некоторую полезную информацию. Во-первых, это говорит нам о том, что устройство не выходит из строя при обратном смещении. Это признак хорошего качества устройства. Во-вторых, он сообщает нам, есть ли в наличии дополнительный ток. Применяя отрицательное напряжение, мы можем эффективно высасывать из устройства заряды, которые иначе не были бы извлечены.Хотя эти всасываемые заряды не могут быть использованы для выработки энергии (на этом этапе мы фактически подводим питание к устройству, а не извлекаем его), они позволяют нам понять некоторые механизмы потери тока на фото. Таким образом, измерение ВАХ — один из наиболее важных инструментов, используемых при разработке и оптимизации солнечных элементов. Точно так же получение ВАХ чрезвычайно важно для понимания широкого спектра других типов устройств, включая светодиоды и OLED, транзисторы, датчики и многие другие устройства.
Рис. 7. Блок измерения источника ADALM1000 от Analog Devices.
Начиная с этой статьи, мы начнем ежемесячную серию статей о SMU ADLAM100 и покажем некоторые интересные эксперименты с ним. Если вы хотите следить за экспериментами и заинтересованы в ADALM1000, вы можете получить их у наших дистрибьюторов: Digi-Key и Mouser.
Тест:
Вопрос 1:
На рисунке 5 дана максимальная мощность солнечного элемента. Какой физический размер
имеет влияние?
Вопрос 2:
Какую максимальную мощность вы можете получить от солнечного элемента?
Вопрос 3:
Как вызывается функция для поддержания максимальной выходной мощности?
(Совет: см. ADP5091)
Вы можете найти ответы в блоге StudentZone.
Общие сведения об электричестве | Единицы измерения
Электричество | Единицы измерения | Hydro-Qubec
Глоссарий терминов
Ниже приведен список наиболее часто используемых единиц измерения (согласно Имперской системе и Международной системе единиц) с соответствующими символами. За ними следует таблица кратных и долей десятичной системы счисления.
А | |
---|---|
ампер | А |
ампер-час | Ач |
ампер-виток | Atr |
Верх | |
В | |
бар | бар |
Британская тепловая установка | BTU |
Верх | |
С | |
калорий | кал |
кандела | компакт-диск |
сантиметр | см |
квадратный сантиметр | см 2 |
кубический сантиметр | см 3 |
сантиметр в секунду | см / с |
круглая мил | СМ |
тысяча круговых милов | MCM |
кулон | С |
Верх | |
Д | |
децибел | дБ |
децилитр | дл |
дециметр | дм |
градус Цельсия | или С |
градуса Фаренгейта | o F |
dyne | дин |
Верх | |
E | |
электрон-вольт | эВ |
Верх | |
ф | |
фарад | Ф |
фут | фут |
фут в минуту | фут / мин |
фут в секунду | фут / с |
кубических футов | футов 3 |
кубических футов в минуту | фут 3 / мин |
кубических футов в секунду | футов 3 / с |
квадратных футов | фут 2 |
фут-кандела (см. Люмен на квадратный фут) | FC |
фут-фунт | фут-фунт |
Верх | |
G | |
галлон | галлон |
Британский галлон | британский галлон |
галлон США | галлонов США |
гигагерц | ГГц |
гигаджоуль | GJ |
гигаватт | GW |
грамм | г |
грамм на квадратный сантиметр | г / см 2 |
Верх | |
H | |
герц | Гц |
л.с. | л.с. |
метрическая мощность | |
час | ч |
Верх | |
I | |
дюйм | в |
кубический дюйм | в 3 |
квадратный дюйм | в 2 |
дюйм-фунт | дюйм-фунт |
Верх | |
Дж | |
джоуль | Дж |
Верх | |
К | |
кельвин | К |
килограмм | кг |
килограмм на сантиметр | кг / см |
килогерц | кГц |
килоджоулей | кДж |
килолитр | кл |
километр | км |
километр в час | км / ч |
килопаскаль | кПа |
килопунт | килограмм |
килопунт на квадратный дюйм | кг / дюйм 2 |
килопунт-дюйм | кг-дюйм |
киловар | квар |
киловольт | кВ |
киловольтампер | кВА |
киловатт | кВт |
кВтч | кВтч |
L | |
литр | л |
литр в минуту | л / мин |
литр в секунду | л / с |
люмен | лм |
люмен на квадратный фут | лм / фут 2 |
люкс | лк |
Верх | |
М | |
мегагерц | МГц |
мегаджоуль | MJ |
мегавар | Мвар |
мегаватт | МВт |
МОм | МОм |
метр | м |
куб. м | м 3 |
кв.м | м 2 |
метр в минуту | м / мин |
метр в секунду | м / с |
метрическая мощность | |
мкА | мкА |
микрометр (микрон) | мкм |
мил | мил |
круглая мил | СМ |
тыс.круглых станков | MCM |
миля | миль |
квадратный мил | миль 2 |
миля в час | миль / ч |
мельница | мельница |
миллиампер | мА |
миллиграмм | мг |
миллилитр | мл |
миллиметр | мм |
кубический миллиметр | мм 3 |
квадратный миллиметр | мм 2 |
минута (угол) | ‘ |
минута (время) | мин. |
Верх | |
№ | |
ньютон | N |
Верх | |
О | |
Ом | Ом |
унция | унция |
Верх | |
п. | |
паскаль | Па |
пинта | |
фунт | фунтов |
фунтов на квадратный фут | фунт / фут 2 |
фунта на кубический фут | фунт / фут 3 |
фунтов на квадратный дюйм | фунт / дюйм 2 |
фунт-фут (см. Фут-фунт) | |
Верх | |
р | |
радиан | рад |
рад в секунду | рад / с |
оборотов в минуту | об / мин |
Верх | |
S | |
вторая (угол) | « |
секунда (время) | с |
Верх | |
т | |
тераватт | TW |
метрическая тонна | MT |
короткая тонна | СТ |
статутная тонна | |
Верх | |
U | |
Британская тепловая установка | БТЕ |
Верх | |
В | |
var | var |
вольт | В |
Верх | |
Вт | |
Вт | Вт |
Вт-ч | Вт · ч |
неделя | недель |
Верх | |
Y | |
двор | ярд |
кубический ярд | ярд 3 |
ярд | ярд 2 |
Верх
Кратные и доли десятичной системы счисления
Приведенные ниже префиксы используются для обозначения кратных обычно используемых киловатт-часов (кВтч), мегаватт (МВт), киловольт (кВ) и т. Д.когда мы говорим о производстве, передаче, распределении или потреблении электроэнергии:
Префикс | Символ | |
---|---|---|
10 = 10 1 | дека | da |
100 = 10 2 | га | ч |
1000 = 10 3 | кг | к |
1000000 = 10 6 | мега | M |
1000000000 = 10 9 | гига | G |
1000000000000 = 10 12 | тера | Т |
100000000000000 = 10 15 | пета | -P |
1000000000000000000 = 10 18 | exa | E |
0.1 = 10 -1 | деци | д |
0,01 = 10 -2 | сенти | с |
0,001 = 10 -3 | милли | м |
0,000 001 = 10 -6 | микро | µ |
0,000 000 001 = 10 -9 | нано | n |
0. |