26.06.2024

Электрическая схема магнитного пускателя: Схемы подключения магнитного пускателя для управления асинхронным электродвигателем

Содержание

Схемы подключения магнитного пускателя для управления асинхронным электродвигателем

 

Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.



Рис. 1. Схема включения нереверсивного магнитного пускателя: а — монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя

На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 — С1, Л2 — С2, Л3 — С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.



Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 — 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.



Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.



Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Схема нереверсивного магнитного пускателя — Стройпортал Biokamin-Doma.ru

Схемы подключения магнитного пускателя для управления асинхронным электродвигателем

Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

Рис. 1. Схема включения нереверсивного магнитного пускателя: а — монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя

На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 — С1, Л2 — С2, Л3 — С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 — 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Реверсивный контактор

Реверсивный контактор, представляющий собой одну из разновидностей электромагнитных пускателей. Он обеспечивает вращение вала в обоих направлениях, поддерживает устойчивую работу двигателей, своевременно отключает питание, защищает оборудование в аварийных ситуациях.

С точки зрения устройства, такие контакторы являются улучшенным образцом электромагнитного пускового аппарата и предназначаются для прямой работы с двигателями. Некоторые модели оборудованы дополнительными устройствами, выполняющими аварийное отключение при обрывах фаз и коротких замыканиях.

Устройство и принцип работы

Магнитные контакторы или пускатели относятся к коммутационным устройствам, выполняющим дистанционный пуск электродвигателей и прочего оборудования.

Конструкция и схема этих приборов очень похожа на электромагнитное реле. Важной дополнительной функцией является возможность своевременно подключать и отключать трехфазную нагрузку. Основным конструктивным элементом служит магнитный сердечник, изготовленный в виде буквы Ш. В качестве материала использовалась электротехническая сталь в виде тонких листов.

Сам сердечник состоит из двух половинок, одна из которых является неподвижной и закрепляется на основании прибора. Другая часть – подвижная – при отсутствии тока удерживается на некотором расстоянии от неподвижной части при помощи пружины. Таким образом, между обеими частями возникает воздушный зазор.

Управление пускателем осуществляется через катушку, помещенную на центральный стержень сердечника, расположенный в неподвижной части. К подвижному магнитопроводу закрепляются контакты посредством мостового соединения. В момент срабатывания пускателя эти мостики перемещаются одновременно с магнитопроводом и совершают замыкание с неподвижной контактной группой.

Пусковое устройство срабатывает после того, как на катушку управления будет подано напряжение. Возникает электромагнитная сила, под действием которой происходит притягивание подвижной части сердечника к неподвижной детали. В результате, силовые контактные группы оказываются замкнутыми, и ток начинает поступать к выходным клеммам. После прекращения подачи напряжения катушка обесточивается, и подвижная часть возвращается на свое место. В этот момент в работу включается возвратная пружина, обеспечивающая размыкание контактов.

Во время выключения на каждом полюсе контактов образуется двойной разрыв, способствующий более эффективному гашению электрической дуги. Функцию дугогасительной камеры выполняет крышка устройства, под которой располагаются контакты.

В пускателе имеется не только основная контактная группа, но и дополнительная – в виде блок-контактов, используемая для вспомогательных целей. В основном, они используются в управлении, в сигнальных и блокирующих схемах.

Типы и модификации пусковых устройств

Основными параметрами, по которым выполняется классификация пускателей:

  • Величина рабочего тока, коммутируемого главными контактами.
  • Значение рабочего напряжения в подключенной нагрузке.
  • Параметры тока и напряжения в катушке управления.
  • Категория и область применения.

Значения номинальных токов коммутационной аппаратуры представлены стандартным рядом в границах 6,3-250 А. Подобная классификация использовалась для устаревших приборов, которые в настоящее время используются все реже. Номинальному току соответствовал определенный класс – от 0 до 7.

Подобная классификация утратила свое значение с появлением на отечественном рынке зарубежной продукции. При выборе того или иного устройства в первую очередь рассматривается величина номинального тока. Поскольку электромагнитные пускатели, в том числе и контакторы с функцией реверса, являются низковольтными устройствами, следовательно, они могут работать с напряжением, не превышающим 1000 В. Эти границы предполагают использование двух видов стандартных напряжений – 380 и 660 вольт. Конкретное значение для данной модели отображается на корпусе и в технической документации устройства.

Значительно большим разнообразием отличаются напряжения, с которыми могут работать катушки управления. Это связано с тем, что магнитные пускатели и контакторы используются в разных условиях, и подключаются к различным типам потребителей и автоматическим системам управления. Для подобных систем вовсе недостаточно обычных сетевых фаз. Питание осуществляется с помощью специальных цепей оперативного тока с собственными параметрами тока и напряжения. Обычно, катушки управления рассчитаны на переменное напряжение 12-660 вольт и постоянное – 12-440 В.

Кроме того, контакторы и магнитные пускатели различаются внешним видом и комплектацией. В большинстве случаев, это модели, помещаемые в пластиковый корпус с кнопками запуска и остановки, расположенными снаружи. Многие приборы изначально комплектуются тепловыми защитными реле.

Отличия реверсивных и обычных контакторов-пускателей

Прежде чем рассматривать отличия обоих устройств следует отметить, что магнитный пускатель является усовершенствованной версией контактора, предназначенной для работы с низковольтным оборудованием и установками.

По сравнению с обычными контакторами, магнитные пускатели отличаются более компактными размерами и меньшим весом. Они предназначены для узкоспециализированных действий по включению и отключению электродвигателей. Контакторы же выполняют более широкий круг задач в силовых электрических цепях.

Многие пускатели дополнительно оборудуются тепловыми реле, выполняющими аварийные отключения и защищающие при обрывах фазы. Управление пуском и отключением производится с помощью специальных кнопок или отдельной системой, состоящей из катушки и слаботочной контактной группы. В некоторых модификациях могут использоваться оба варианта.

Все магнитные пускатели разделяются на два вида. Они могут быть реверсивными и нереверсивными. Реверсивный контактор состоит из двух отдельных магнитных пускателей, объединенных в общем корпусе и соединенных друг с другом электрическим путем. Оба компонента устанавливаются на общее основание, но одновременно работать они не могут. По команде оператора включается лишь один из них – первый или второй.

Управление реверсивным магнитным пускателем осуществляется при помощи блокировочных контактов нормально-замкнутого типа. Их основная функция заключается в предотвращении одновременного включения обеих контактных групп – реверсивной и обычной. В противном случае может произойти межфазное замыкание. Для этой же цели некоторые модели выпускаются с механической блокировкой. Поочередный запуск контакторов обеспечивает такое же поочередное переключение фаз. В результате, прибор начинает выполнять свою основную задачу – изменять направление вращения вала электродвигателя.

Оба варианта включения необходимо рассмотреть более подробно. Чтобы лучше понять суть реверсного запуска, необходимо вначале остановиться на обычном способе включения.

Обычная нереверсивная схема включения

Простейшим вариантом включения считается нереверсивная схема, обеспечивающая вращение вала электродвигателя только в одну сторону. В качестве примера можно взять обычный пускатель с управляющей катушкой на 220 В.

Подключение схемы начинается в трехфазном автомате, подходит к силовым клеммам пускового устройства, и далее соединяется с тепловым реле. Управляющая катушка с одной из сторон соединяется с нулевым проводником, а с противоположной – с фазой путем использования в этой цепи функциональных кнопок.

В состав кнопочного поста входят две кнопки: ПУСК – с контактами нормально-разомкнутого типа и СТОП – с нормально-замкнутыми контактами. Одновременно с кнопкой запуска выполняется подключение нормально-замкнутого контакта управляющего катушечного элемента. За счет теплового реле, включенного в промежуток фазной линии, обеспечивается защита двигателя от чрезмерных перегрузок. Его нормально-замкнутый контакт оказывается соединенным с элементами управления.

Когда трехфазный автомат оказывается включенным, начинается течение тока в сторону силовых контактов пусковой аппаратуры и к управляющей цепи. После этого схема приходит в работоспособное состояние. С целью запуска электродвигателя вполне достаточно воздействия на пусковую кнопку. Далее, в управляющие компоненты подается питание. Цепь оказывается замкнутой, после чего якорь начинает втягиваться и в то же время замыкать контакт прибора управления. К силовой контактной группе двигателя подается ток, и вал начинает вращение. После возврата в исходное состояние пусковой кнопки, питание к обмотке контактора будет поступать, проходя по вспомогательному контакту, благодаря чему работа двигателя продолжится без перерыва.

Прекратить работу нереверсивного агрегата возможно имеющейся кнопкой СТОП. Это вызовет разрыв цепи, и питающее напряжение перестает подходить к блоку управления. Начинается размыкание шунтирующего контакта и возврат якоря в исходное состояние с одномоментным размыканием основных контактов. По окончании этого процесса, наступает остановка электродвигателя. Когда кнопка СТОП окажется отпущенной, контакт управляющего элемента будет пребывать в разомкнутом положении до следующего запуска схемы.

Чтобы защитить электродвигатель во время нереверсивного пуска, применяется тепловое реле на основе биметаллических контактных пластин. Под влиянием возрастающего тока они начинают выгибаться. Поскольку эпластины соединяются с расцепителем, контакт в управляющей обмотке прерывает поступление питающего напряжения. Контакты прибора разъединяются и переходят в первоначальное состояние.

Реверсивная схема

Для того чтобы создать реверсивную схему включения электродвигателя, потребуется использование двух магнитных контакторов и трех кнопок управления. Оба пускателя устанавливаются в непосредственной близости для удобства соединений и подключений в том числе и с механической блокировкой.

Клеммы для подключения питания соединяются между собой на обоих устройствах. Контакты, подключаемые к электродвигателю, соединяются перекрестным способом. Провод питания электродвигателя может соединяться с любыми питающими клеммами одного из пускателей.

Следует помнить, что перекрестная схема подключения, категорически запрещает одновременное включение двух пускателей, поскольку это обязательно вызовет короткое замыкание. В связи с этим, проводники блокирующих цепей в каждом из приборов вначале соединяются с замкнутым контактом управления другого устройства, а потом – с разомкнутым контактом собственного. При включении второго контактора первый будет отключаться и наоборот.

Вторая клемма кнопки СТОП, находящейся в замкнутом положении, соединяется не с двумя, как обычно, а с тремя проводами. Два из них являются блокирующими, а через третий – подается питание на пусковые кнопки, соединенные параллельно между собой. Подобная схема позволяет отключить кнопкой остановки любой включенный пускатель и остановить вращение электродвигателя.

Нереверсивная схема подключения магнитного пускателя

В этой статье мы подробно рассмотрим нереверсивную схему подключения магнитного пускателя для управления трехфазным асинхронным электродвигателем.

Также я для Вас записал видео с подробным описанием работы схемы, которое Вы можете просмотреть в конце этой статьи.

Вначале давайте рассмотрим схему подключения магнитного пускателя с катушкой на 220В.

Три фазы питающего напряжения подаются на клеммы асинхронного двигателя через:

— силовые контакты магнитного пускателя КМ;

— тепловое реле Р.

Обмотка катушки магнитного пускателя подключена с одной стороны к нулевому рабочему проводу N, с другой, через кнопочный пост к одной из фаз, в нашей схеме — к фазе С.

Кнопочный пост содержит 2 кнопки:

1) нормально-разомкнутую кнопку ПУСК ;

2) нормально-замкнутую — СТОП .

Нормально-разомкнутый вспомогательный контакт пускателя КМ подключен параллельно кнопке ПУСК .

Для защиты электродвигателя от перегрузок используется тепловое реле Р, которое устанавливается в разрыв питающих фаз. Вспомогательный нормально-замкнутый контакт теплового реле Р включен в цепь обмотки магнитного пускателя.

Рассмотрим работу схемы.

Включаем трехполюсный автоматический выключатель , его контакты замыкаются, питающее напряжение подается к силовым контактам пускателя и в цепь управления. Схема готова к работе.

Запуск.

Для запуска двигателя нажимаем кнопку ПУСК . Цепь питания обмотки магнитного пускателя замыкается, якорь катушки притягивается, замыкая силовые контакты КМ и подавая три питающих фазы на обмотки двигателя. Происходит запуск и двигатель начинает вращаться.

Одновременно с этим замыкается вспомогательный контакт пускателя КМ, шунтируя кнопку ПУСК .

Теперь, отпуская кнопку ПУСК , питание на обмотку пускателя продолжает поступать через его замкнутый вспомогательный контакт КМ. Двигатель запущен и продолжает работать.

Останов.

Чтобы остановить двигатель, нажимаем кнопку СТОП . Цепь питания обмотки пускателя разрывается. Якорь под действием пружины возвращается в исходное состояние, размыкая силовые контакты, обесточивая тем самым обмотки электродвигателя. Он начинает останавливаться.

Одновременно с этим размыкается вспомогательный контакт КМ в цепи питания обмотки пускателя.

После отпускания кнопки СТОП питание на обмотку не подается, поскольку вспомогательный контакт КМ разомкнут. Двигатель выключен и цепь готова к следующему запуску.

Защита от перегрузок.

Предположим, что двигатель запущен. Если по каким-то причинам ток нагрузки двигателя увеличится, биметаллические пластины теплового реле Р под действием повышенного тока начнут изгибаться, и приведут в действие механизм расцепителя. Он разомкнет вспомогательный контакт Р в цепи обмотки магнитного пускателя. Цепь обмотки пускателя разомкнется, силовые и вспомогательный контакты пускателя вернуться в исходное разомкнутое состояние, двигатель остановится.

Если катушка магнитного пускателя рассчитана на 380В, то схема подключения будет, как на рисунке ниже.

В этом случае, обмотка пускателя подключается к любым двум фазам, на схеме к фазам В и С.

Для дополнительной защиты цепи управления магнитным пускателем устанавливают предохранитель FU. В случае, например, межвиткового замыкания в катушке пускателя, плавкая вставка предохранителя перегорит, обесточив цепь управления.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео оказалось для Вас полезным, нажмите НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, и Вы первым узнаете о выходе новых интересных видео по электрике!

Рекомендую также прочитать:

Реверсивная и нереверсивная схема подключения пускателя

Магнитный пускатель – это коммутационный прибор, с помощью которого на расстоянии многократно можно включать и отключать потребителя (электродвигатели, электрические ТЭНы, электрокотлы и так далее). Перед тем как разбираться в теме статьи – схема подключения пускателя, необходимо понять принцип его работы.

В основном магнитные пускатели используются сегодня для управления двигателей асинхронного типа. С его помощью производится «пуск», «стоп» и реверс мотора. Но есть еще один момент, который не надо упускать из вида. Это возможность разгружать маломощные электрические сети, где установлены обычные автоматические выключатели (автоматы). Для того чтобы это понять, необходимо привести пример.

Если в распределительном щите установлен автомат номиналом 10 ампер, то его пропускная мощность рассчитывается по закону Ома: P=UI=220х10=2200 Вт или 2,2 кВт. По сути, такой автомат может выдержать освещение, в котором присутствует двадцать две лампочки по 100 ватт каждая. Чтобы увеличить мощность потребления электрической цепочки, к примеру, в два раза, не стоит разделять ее на участки, куда придется устанавливать несколько автоматических выключателей и делать монтаж отдельной электропроводки. Достаточно установить магнитный пускатель, к примеру, третьей величины.

У такого прибора контакты рассчитаны на 40 ампер. Отсюда и возможность выдерживать потребляемую мощность: 40х220=8800 Вт или 8,8 кВт. То есть, соединив последовательно 88 лампочек мощностью по 100 Вт, можно одним щелчком включать и отключать их одновременно.

В основе конструкции магнитного пускателя лежит электромагнитная катушка. Так вот в момент пуска (включения) прибор потребляет 200 ватт. В рабочем состоянии мощность не превышает 25 Вт. Даже если рассчитать силу тока в момент пуска, то на будет незначительных параметров: 200 Вт/220 В = 0,9 ампер. То есть, этой величины достаточно, чтобы прибор включил основную электрическую цепь. Получается так, что даже самый небольшой магнитный пускатель может легко управлять автоматом. При этом на контактах последнего всегда будет сниженный ток, что не приведет к их подгоранию. А, значит, автоматический выключатель будет отключать своими контактами достаточно большие мощности.

Внимание! Существует несколько видов магнитных пускателей, у которых катушка рассчитана на разное напряжение. Это 220 вольт, 380 и 36.

Тепловое реле в пускателе

Это обязательная составляющая часть пускателя, которая будет отключать сеть от перегрузов и от неполнофазного режима (когда отсутствует одна из трех фаз). Причины последнего – большое разнообразие.

  • От вибрации открутился соединительный винтик.
  • Подгорел контакт.
  • Перегорела вставка (плавкая) на фазе.
  • Некачественный неплотный контакт.

Обе причины создают увеличение силы тока, который проходит через тепловое реле. При этом в самом приборе начинают нагреваться биметаллические пластины, которые под действием тепла начинают выгибаться, размыкая контакт в самом реле. Последний отключает пускатель, а тот в свою очередь, к примеру, электродвигатель.

Схемы подключения

Итак, теперь переходим к основной теме статьи – схемы подключения пускателя. Их две:

Как подключить нереверсивную схему. Она является стандартной, когда подключаемый к сети электродвигатель будет вращаться в одну сторону.

На схеме четко видно, что запуск мотора производится кнопкой «Пуск», расположенной на магнитном пускателе КМ 1. Чтобы не удерживать данную кнопку, ее шунтируют с контактами аппарата. То есть, при нажатии кнопки «Пуск» она замыкает контакты пускателя, через которые ток будет подаваться на электромагнитную катушку прибора.

Отключение производится кнопкой «Стоп». На схеме пускателя она обозначена буквой «С». Эта кнопка просто размыкает контакты. При этом сердечник под действием пружин возвращается в нормальное состояние, электродвигатель отключается.

В принципе, точно также работает и тепловое реле, обозначенное на схеме подключения пускателя буквой «Р».

Реверсивная схема

По сути, данная схема в независимости от величины пускателя работает аналогично предыдущей. Конечно, она более сложная, потому что в нее добавляется еще одна кнопка – реверс, и еще один магнитный пускатель.

Сам по себе реверс – это переподключение двух фаз местами. Но тут необходимо соблюсти один момент – нужно, чтобы второй пускатель в это время не включался. То есть, необходима его блокировка. По схеме понятно, что если включатся два пускателя одновременно, то произойдет короткое замыкание.

Вот динамика работы схемы:

  • включается автомат QF;
  • нажимается кнопка «Пуск 1»;
  • напряжение подается на электродвигатель, который начинает работать.

При реверсе происходит следующее:

  • нажимается кнопка «Стоп 1», с помощью которой производится отключение электродвигателя от питания;
  • затем необходимо нажать на кнопку «Пуск 2», которая подает напряжение на КМ 2;
  • начинает работать двигатель только его вращение меняется на противоположное.

Обе рассмотренные схемы подключения относятся к трехфазным потребителям. Двухфазные системы по принципу работы ничем от них не отличаются. Правда, схема подключения здесь проще. Вот эта нереверсивная схема:

Технические характеристики

Не будем здесь рассматривать все параметры прибора, потому что выбор всегда делается по величине пускателя, которая характеризуется номинальным током нагрузки, действующей на контакты прибора. Существует семь величин пускателя, каждой из которых соответствует допустимая токовая нагрузка. На фотографии ниже обозначены эти самые величины, и в каких областях такие магнитные пускатели применяются.

Необходимо отметить, что небольшие погрешности в параметрах допустимы. Но в некоторых случаях надо учитывать, в каком диапазоне срабатывает тепловое реле. Если величины пускателей имеют завышенную нагрузку, а реле заниженный минимальный показатель теплового отключения, то может быть несоответствие заданной мощности электрической цепочки или потребителя.

Что такое реверсивный пускатель: принципы работы и структурные особенности

Всем нам известна пара слов – «аверс и реверс». Эти лексемы — латинского происхождения. Имеют семантику, противоположную друг другу, означая: «прямой и обратный», «лицевая сторона и оборотная сторона» и так далее. Эти понятия часто используют в нумизматике, но физика и математика не являются в этом плане исключением. Например, существует реверсивный пускатель, который просто незаменим в электромеханике, ему и будет посвящена данная статья. Но прежде чем разбираться, как устроен реверсивный пускатель, стоит понять принципы его работы. Для этого рекомендуем обратить внимание на ключевые понятия, связанные с магнитным пускателем.

Что такое магнитный пускатель, и какое он имеет предназначение?

Стандартный магнитный пускатель – это типичное электромеханическое устройство, которое нацелено на работу с трехфазными электродвигателями. Его целевое назначение – обеспечение непрерывной и безопасной работы двигателя, включая контроль отключения питания агрегата, если будут возникать внештатные или аварийные ситуации.

Используемая схема реверсивного пускателя позволяет успешно его применять для электрокотлов, тэнов, электродвигателей, то есть когда необходимо проявить функционал коммутационного аппарата или осуществить автоматическое подключение или отключение от электрического источника.

Определим основные задачи магнитного пускателя, а они следующие:

  • дистанционное управление агрегатами. Например, асинхронным двигателем. Созданная схема реверсивного пускателя с кнопками позволяет менять направление вращения вала.
  • контроль нагрузок агрегата. Применятся для разгрузки маломощных контактов. Даже есть возможность подключить магнитный пускатель к домашнему выключателю, подготавливая его к работе с большим количеством лампочек.

Как устроен магнитный пускатель: все его основные составляющие

Стандартный магнитный пускатель состоит из следующих основополагающих элементов:

  • внешнего защитного кожуха;
  • основного инструмента управления;
  • специального контактора;
  • тепловогореле.

Конструктивные особенности реверсивного магнитного пускателя простые, но достаточно эффективные и надежные. Все агрегаты усовершенствованы и модифицированы настолько, что их компактность и функциональность переоценить просто нельзя. Они легкие и удобные в применении, особенно те виды оборудования, которые оснащены специальными тепловыми реле, отвечающими за аварийное отключение. С такой защитой работа выполняется бесперебойно и без отклонения от норм, так как просто не может произойти обрыва фаз, и следовательно, аварийная ситуация и долгий простой оборудования практически исключаются.

Имеющаяся в устройстве катушка отвечает за необходимую коммутацию всех силовых контактов и провоцирует замыкание силовой цепи, а когда выполняется отключение питания, то происходит, соответственно, размыкание созданной цепи. Существующая схема подключения реверсивного пускателя включает и блокировочные контакты, которые служат для управления силовыми элементами цепи, не исключая контроль. Причем все имеющиеся в схеме контакты могут находиться в двух состояниях: нормально-разомкнутом и нормально-замкнутом.

Что такое реверсивный магнитный пускатель и в чем его преимущества?

Пришло время более детально обсудить технические особенностии узнать, что же это такое реверсивный пускатель трехфазный. Как уже становится ясно, существует два вида магнитных пускателей. Первый – прямой или нереверсивный. Второй – реверсивный, о котором дальше пойдет в речь в статье.

Обычно стандартные реверсивные пускатели оснащаются двумя магнитными пускателями, собранными в одном корпусе и соединенными между собой. Если присмотреться к схеме, то можно рассмотреть место крепления и соединения на общем основании двух этих магнитных элементов. Ну а теперь о главной особенности реверсивного пускателя – может работать только один из элементов, то если либо первый, либо второй. Такая переменность необходима, чтобы исключить межфазное замыкание.

По принятому режиму работы, да и по схеме реверсивного магнитного пускателя запуск происходит через замкнутые блокировочные контакты, которые обеспечивают попеременное, то есть неодновременное включение реверсивных и нереверсивных режимов. При этом реализуется главенствующая задача реверсивного пускателя – смена направлений вращения того или иного электрического двигателя, иными словами: все взаимосвязано, если изменился порядок чередования фаз, то, соответственно, выполняются преобразования имеющегося у оборудования ротора, меняется направление вращения.

Где и когда используются реверсивные магнитные пускатели?

Сфера применения реверсивных магнитных пускателей расширена. Например, при помощи бесконтактного реверсивного пускателя не обходится работа асинхронных двигателей, которые применяются в различных станках и мощных насосах.

Нередки случаи, что выполняется подключение реверсивного пускателя для расширенных систем вентиляции, для надежности запорной арматуры. Всегда ценится специалистами «беспроблемное оборудование», управлять которым несложно, а эксплуатация длительная и надежная. К современным бонусам относят дистанционное управление – это достаточно выгодная опция, которая может быть обеспечена применением магнитного пускателя. Многие виды надежных электрических замков используют специальные пускатели для управления, а также выполняется внедрение такого незаменимого электромеханического элемента в систему отопления, работу лифтов.

Чем отличается схема магнитного реверсивного пускателя: правила комплектации

Представим, что появилась необходимость разобраться в особенностях устройства, в котором электрический двигатель способен работать в двух направления – прямом и обратном, то есть реверсивном. И если такая особенность очевидна, значит, в схеме агрегата предусмотрено наличиемагнитного реверсивного пускателя. Его использование не такое и простое, необходимо продумать режим работы, чтобы не допустить опасное замыкание фаз.

В схеме обязательно можно найти обозначение дополнительной цепи управления и кнопки запуска реверса. В виду такой продуманности, созданная схема отличается надежностью, так как защищена от короткого замыкания.

А за счет чего проходит реверс? Это легко объяснимо. — За счет переворачивания местами двух имеющихся в системе фаз: когда одна прекращает работу, а другая, наоборот, запускается. Для более надежной защиты, обязательно в схеме продумана блокировка, отвечающая за точную и своевременную остановку одного из пускателей, первого или второго. Все зависит от поставленных задач. Напомним, что в случае срабатывания двух пускателей мгновенно произойдет короткое замыкание на силовых контактах агрегата.

Отметим, что реверсивное движение запускается не мгновенно, так как требуется срабатывание нескольких важных пунктов. Во-первых, обязательно рекомендуется остановить работу двигателя, нажать кнопку «Стоп». Во-вторых, надо обратить внимание на состояние катушки, снять с нее напряжение, иначе процесс реверсивного запуска даст сбой. Если все сделано правильно, то пускатель вернется в исходное положение под действием пружины. Все, агрегат готов к реверсу. Нажимаем кнопку «Пуск», соответственно, подается нужное напряжение на катушку, значит, процесс запущен. С панели управления устройства можно считать информацию замыкании электрической цепи. А это значит, что в систему поступил ток, и он постепенно подается в катушку. Одновременно выполняется блокирование всех не вступивших в работу контактов. Этого требует безопасность.

Отметим, что в случае срабатывания теплового реле, произойдет остановка агрегата во избежание аварийной ситуации.

Таким образом, магнитный пускатель играет важную роль в работе двигателей. Свое место назначения также достойно занимаем и реверсивный пускатель, обеспечивая бесперебойную работу станков, тэнов, лифтов и другого электрического оборудования. Пускатели относятся в надежным и безопасным образцам, особенно если они дополнительно оснащены блокировочными системными механизмами. Они находятся внутри кожуха и не допускают срабатывание одновременно двух катушек, не доводя до замыкания фаз.

Схема реверсивного пускателя

Для переключения вращения электропривода в прямом и обратном направлении применяется схема реверсивного пускателя. Ниже рассмотрены пусковые и рабочие режимы, защитные мероприятия. Дополнительные рекомендации предотвратят ошибки при монтаже и аварии в процессе эксплуатации.

Нереверсивное подключение электродвигателя

Сначала следует рассмотреть относительно простой вариант, когда электрический двигатель выполняет свои функции с вращением только в одном направлении. Такие решения вполне достаточны для насосных станций, компрессорных установок.

В этом варианте подключен трехфазный источник питания 220 V последовательно через автомат и магнитный пускатель «КМ». Реле «Р» в нулевой цепи обеспечивает защиту при чрезмерном нагреве силового агрегата. Второй контакт обмотки пускателя подсоединен к одной из фаз «С» через плавкий предохранитель «FU», ограничивающий силу тока. Двумя кнопками устанавливают соответствующие режимы: «Пуск» и «Стоп».

Нереверсивный запуск

Включение автомата – подготовительный этап. Электродвигатель начинает вращение после нажатия кнопки «Пуск». Это действие подключает питание обмоток. Силой магнитной индукции якорь перемещается в нужное положение. Комбинированный контактор пускателя подает напряжение на рабочие обмотки. В этом положении шунт замыкает вспомогательную цепь, что сохраняет питание силового агрегата в рабочем режиме при отжатой кнопке.

Остановка

Для остановки нажимают «Стоп». В этом положении отключается питание катушек пускателя. Пружина перемещает якорь в исходное положение с одновременным размыканием силовых контактов.

Защита двигателя при нереверсивном пуске

При попадании в механический привод посторонних предметов ток в обмотках двигателя увеличивается. Нагрев изгибает биметаллические элементы теплового реле. На определенном уровне повышения температуры цепь нулевого провода разрывается. Контактные группы «КМ» возвращаются в исходное положение. Плавкий предохранитель выполняет свои функции при коротком замыкании между витками катушки индукции магнитного пускателя.

Устройство магнитного пускателя для реверсного пуска

Стандартный пускатель состоит из следующих компонентов:

  • сердечник с закрепленной на нем катушкой индукции;
  • якорь с механизмом перемещения контактных групп;
  • корпус, обеспечивающий целостность конструкции вместе с защитой от внешних воздействий.

При подаче (отключении) тока питания движением якоря замыкаются (отсоединяются) соответствующие контакты силовых цепей. Реверсивные модификации создают из двух обычных пускателей, установленных на одной монтажной панели. Дополнительными проводниками обеспечивается блокировка, препятствующая одновременному включению двух изделий.

К сведению. В некоторых моделях блокировка организована с применением специальных механических приспособлений.

В этом варианте используют отдельные клавиши, которые инициируют вращение ротора в прямом и обратном направлении. Первый рабочий режим сопровождается шунтированием контактной группой «КМ1» соответствующей цепи. Если нажать после этого клавишу «Назад», ничего не произойдет.

Для активизации обратного вращения следует сначала остановить двигатель, чтобы исключить поломку. Нажатием «Стоп» (С – на рисунке ниже) отключают питающее напряжение 380 V. После можно подать ток в нужные обмотки через силовые контактные группы «КМ2».

Как подключается реверсивный пускатель

Такие пускатели применяют в станках и других устройствах, где необходимо попеременное вращение двигателя в разных направлениях. Принцип подключения однофазной сети аналогичен рассматриваемому варианту. В обоих случаях устанавливают плавкие предохранители для предотвращения повреждения цепей сильными токами.

Как происходит включение

На первой стадии основной выключатель «QF» обеспечивает подачу трех фаз на все входные контакты двух пускателей. Разомкнутая цепь управления отключает питание обмоток двигателя.

Как происходит переключение

Нажатием второй клавиши «Пуск-2» подают ток в обмотки для вращения двигателя в обратном направлении. Как видно по схеме, одновременное включение двух устройств невозможно.

Реверсивное подключение трехфазного двигателя

В остановленном положении система управления готова к работе. Однократным нажатием «Пуск-1» подают питание на обмотки для вращения ротора в прямом направлении. Шунт поддерживает целостность электрической цепи после возврата кнопки пружиной в исходное положение.

Переключение системы при противоположном вращении

Первый пускатель отключается, так как электромагнитный привод второго разрывает цепь контактной группы «КМ2» (схема реверс).

Изменение поворотного движения

Изменение режимов через остановку предотвращает быструю подачу напряжения на другие обмотки электродвигателя. Действие с определенной временной задержкой предотвращает механические повреждения, исключает сильные броски напряжения при подключении к источнику нагрузки с индуктивными характеристиками.

Схема подключения

Далее подробно рассмотрена однолинейная схема подключения реверсивного магнитного пускателя.

После включения силового автомата QF питание поступает на верхнюю группу контактов пускателей. Цепь управления подключается к фазе «А» и нейтральному проводнику, но находится в разомкнутом состоянии, которое поддерживается соответствующим положением элементов: SB2 (3), КМ 1.1. (2.1.).

Работа цепей управления при вращении двигателя влево

Однократное нажатие кнопки «Влево» подает питание на катушку для перемещения якоря и замыкания контактов КМ2. Шунт КМ 1. 1. поддерживает целостность электрической цепи в рабочем режиме.

Работа цепей управления при вращении двигателя вправо

Для активации противоположного вращения меняют местами две фазы на обмотках двигателя. Предварительно нажимают «Стоп» (SB1), так как без этой промежуточной операции включить второй реверсивный магнитный пускатель не получится.

Силовые цепи

На следующих рисунках показано, как именно переключаются обмотки в схеме реверсивного пуска для вращения ротора в одну и другую стороны. Фаза «А» остается на том же месте. Меняются местами «В» и «С».

Защита силовых цепей от короткого замыкания или «защита от дурака»

Если переключение пускателей выполнить без перерыва, две фазы будут одновременно поданы на силовые клеммы КМ1. Короткое замыкание повредит конструкцию. Для предотвращения подобных ситуаций применяют отдельные контактные группы (КМ 2.2. и КМ1.2.), которые устанавливают перед катушками КМ1 и КМ2. При подключении этих устройств, кроме соответствия по нагрузкам, отдельное внимание следует уделить корректному монтажу и защитным мероприятиям.

Следует учитывать особенности решения разных практических задач. Так, асинхронный двигатель подключают через пусковой конденсатор. Обеспечить функциональность пускателя от источника постоянного напряжения можно. Однако в этом случае понадобится ограничить силу тока специальным резистором, чтобы предотвратить повреждение катушки. Придется подобрать оптимальное электрическое сопротивление для сохранения работоспособности привода якоря.

Видео

Пускатель электромагнитный (магнитный пускатель)

Пускатель электромагнитный (магнитный пускатель) — это низковольтное электромагнитное (электромеханическое) комбинированное устройство распределения и управления, предназначенное для пуска и разгона электродвигателя до номинальной скорости, обеспечения его непрерывной работы, отключения питания и защиты электродвигателя и подключенных цепей от рабочих перегрузок. Пускатель представляет собой контактор, комплектованный дополнительным оборудованием: тепловым реле, дополнительной контактной группой или автоматом для пуска электродвигателя, плавкими предохранителями.

Категории применения пускателей

a) Контакторы переменного тока

  • АС-1 – активная или малоиндуктивная нагрузка;

  • АС-2 – пуск электродвигателей с фазным ротором, торможение противовключением;

  • АС-3 – пуск электродвигателей с короткозамкнутым ротором. Отключение вращающихся двигателей при номинальной нагрузке;

  • АС-4 – пуск электродвигателей с короткозамкнутым ротором. Отключение неподвижных или медленно вращающихся электродвигателей. Торможение противовключением.

б) Контакторы постоянного тока

  • ДС-1 – активная или малоиндуктивная нагрузка;

  • ДС-2 – пуск электродвигателей постоянного тока с параллельным возбуждением и их отключение при номинальной частоте вращения;

  • ДС-3 – пуск электродвигателей с параллельным возбуждением и их отключение при неподвижном состоянии или медленном вращении ротора;

  • ДС-4 – пуск электродвигателей с последовательным возбуждением и их отключение при номинальной частоте вращения;

  • ДС-5 — пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.

Схема подключения нереверсивного магнитного пускателя

На рис. 1 показана электрическая принципиальная схема включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором.

Рис 1. Схема включения нереверсивного магнитного пускателя


электрическая принципиальная

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт, что создаст параллельную цепь питания катушки магнитного пускателя. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис.2.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Полезные ссылки

Схема магнитного пускателя. Принцип работы

Для включения освещения применяются выключатели, для бытовых электроприборов — кнопки и переключатели. Это электрооборудование объединяет одно: они потребляют небольшую мощность. А также – не включаются дистанционно или устройствами автоматики. Эти задачи решаются с помощью магнитных пускателей.

Cхема магнитного пускателя. Устройство

Пускатель состоит из двух частей, расположенных в одном корпусе: электромагнита управления и контактной системы.

Электромагнит управления включает в себя катушку с магнитопроводом, включающим в себя подвижную и неподвижную части, удерживаемых в разомкнутом состоянии пружиной. При подаче напряжения на катушку подвижная часть магнитопровода притягивается к неподвижной. Подвижная часть механически связана с контактной системой.

В контактную систему входят подвижные и неподвижные группы контактов. При подаче напряжения на катушку пускателя магнитопровод притягивает подвижные контакты к неподвижным и силовые цепи замыкаются. При снятии напряжения с катушки под действием пружины подвижная часть магнитопровода вместе с контактами приводятся в исходное положение.

Устройство магнитного пускателя и его работа

К силовым контактам пускателя добавляется дополнительная контактная группа, предназначенная для использования в цепях управления. Контакты ее выполняются нормально разомкнутыми (обознаются номерами «13» и «14») или нормально замкнутыми («23» и «24»).

Маркировка контактов пускателя

Электрические характеристики магнитных пускателей

Номинальный ток пускателя – это ток, выдерживаемый силовыми контактами в течение продолжительного времени. У некоторых моделей устаревших пускателей для разных диапазонов токов меняются габаритные размеры или «величина».

Номинальное напряжение – напряжение питающей сети, которое выдерживает изоляция между силовыми контактами.

Напряжение катушки управления – рабочее напряжение, на котором работает катушка управления пускателя. Выпускаются пускатели с катушками, работающие от сети постоянного или переменного тока.

Управление пускателем не обязательно питается напряжением силовых цепей, в некоторых случаях схемы управления имеют независимое питание. Поэтому катушки управления выпускаются на широкий ассортимент напряжений.

Напряжения катушек управления пускателей
Переменный ток123648110220380
Постоянный ток123648110220

Реверсивный магнитный пускатель, кнопочная станция

Самое распространенное применение пускателей – управление электродвигателями. Изначально и название устройства образовано от слова «пуск». В схемах используются дополнительные контакты, встроенные в корпус: для подхвата команды от кнопки «Пуск». Нормально замкнутыми контактами кнопки «Стоп» цепь питания катушки разрывается, и пускатель отпадает.

Типовая схема управления пускателем

Выпускаются реверсивные блоки, имеющие в своем составе два обычных пускателя, соединенные электрически и механически. Механическая блокировка не позволяет им включиться одновременно. Электрические соединения обеспечивают реверс двух фаз при работе разных пускателей, а также исключение возможности подачи питания на обе катушки управления одновременно.

Внешний вид реверсивного магнитного пускателяСхема управления реверсивным магнитным пускателем

Для удобства монтажа пускатели выпускают в корпусах совместно с кнопками управления. Для подключения достаточно подсоединить к ним кабель питания и отходящий кабель.

Пускатель в корпусе с кнопками управления

В других случаях для управления работой используются кнопочные станции, коммутирующие цепь катушки управления и связанные с пускателем контрольным кабелем. Для обычных пускателей используются две кнопки, объединенные в одном корпусе – «Пуск» и «Стоп», для реверсивных – три: «Вперед», «Назад» и «Стоп». Кнопку «Стоп» для быстрого отключения в случае аварии или опасности выполняют грибовидной формы.

Виды кнопочных станций

В зависимости от назначения пускатели выполняют трех- или четырехполюсными. Но есть и аппараты, имеющие один или два полюса.

Производители дополняют линейку выпускаемых аппаратов аксессуарами, расширяющими их возможности. К ним относятся:

  • дополнительные контактные блоки, позволяющие подключать к схеме управления сигнальные лампы и формировать команды, зависящие от состояния пускателя, для работы других устройств;
  • блоки выдержки времени, задерживающие срабатывание или отключение пускателя;
  • наборы аксессуаров, превращающих два пускателя в сборку реверсивных;
  • контактные площадки, позволяющие подключить к пускателю кабели большего сечения.

Магнитный пускатель с тепловым реле

Для защиты электродвигателей от перегрузок совместно с пускателями применяются тепловые реле. Производители выпускают их под соответствующие модели аппаратов. Тепловое реле содержит контакт, размыкающийся при срабатывании и разрывающий цепь питания катушки пускателя. Для повторного включения контакт нужно вернуть в исходное положение нажатием кнопки на корпусе. Для защиты от коротких замыканий перед пускателем устанавливается автоматический выключатель, отстроенный от пусковых токов электродвигателя.

Оцените качество статьи:

Магнитный пускатель: устройство, применение и электрические схемы

В этой статье мы рассмотрим магнитный пускатель, который позволяет нам управлять двигателями различных исполнительных механизмов, его устройство и принцип работы.

Сфера применения пускателей достаточно широка. Их применяют там, где нужно включить, отключить двигатель и защитить его от перегрузки. Это и сельское хозяйство, и промышленность, и вспомогательное обеспечение инфраструктурных объектов, и частные дома. Самым распространенным применением пускателей является: включение или отключение вентиляции, запуск различных насосов, открытие или закрытие дверей и ворот, управление малыми конвейерами.

Структура магнитного пускателя

Прежде чем рассматривать устройство магнитного пускателя, необходимо дать ему определение. Пускатель в соответствии с МЭС 441-14-38 – это комбинация всех коммутационных устройств, необходимых для пуска и остановки двигателя с защитой от перегрузок.

Всеми этими свойствами в полной мере обладают магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima.

Они состоят из:

  1. Корпуса
  2. Кнопочного поста
  3. Контактора КМЭ (электромагнитного реле)
  4. Теплового реле

Корпус магнитного пускателя обеспечивает защиту IP65. Для этого используются сальники, которые поставляются в комплекте с пускателем, на разъёме корпуса и в кнопках имеется специальный уплотнитель, не позволяющий влаге и пыли проникать внутрь прибора.

Корпуса пускателей КМЭ IP65 на токи до 32 А выполнены из пластика, на токи от 40 до 95 А – из железа.

Тепловое реле установлено непосредственно на контактор.

Как работает пускатель

Нажатие зеленой кнопки «Пуск» замыкает контактную группу и включает электромагнитный контактор. Происходит это почти мгновенно. После этого кнопка может быть отпущена. Дальше работу электромагнитного контактора обеспечивает встроенный нормально открытый контакт. Через него происходит «самоподхват» цепи питания катушки управления контактором. Также в его цепи питания задействовано тепловое реле своими дополнительными клеммами. В рабочем состоянии ток проходит через силовой контакт магнитного контактора, далее через тепловое реле перегрузки и поступает на нагрузку через кабель. При нажатии на кнопку «Стоп» толкатель нажимает на кнопку «остановка» теплового реле, которая прерывает питание.

Таким образом, исполнительным механизмом пускателей для включения и отключения нагрузки служит контактор. Тепловое реле играет роль защиты двигателя от перегрузок и неполнофазных режимов работ. Основным элементом, обеспечивающим защиту от перегрузки, в нем является биметалическая пластина. Эта пластина, как видно из названия, состоит из двух металлов с разным тепловым расширением, и при нагревании такая пластина изгибается в сторону металла с меньшим тепловым расширением. На этом эффекте и основана защита. Биметаллическая пластина находится рядом с проводником, по которому протекает рабочий ток, и, нагреваясь от него, изгибается. При определенном изгибе биметалическая пластина размыкает контакты теплового реле, а поскольку катушка магнитного пускателя запитана через эти контакты, то при их размыкании происходит отключение контактора. Тепловое реле имеет 2 контакта: нормально закрытый – он используется при подключении катушки – и нормально открытый. Этот контакт используется как сигнальный контакт для подачи сигнала о срабатывании теплового реле по схемам перегрузок.

В тепловом реле есть 2 режима работы – автоматический, когда после остывания тепловое реле включает контактор без участия человека, и ручной, когда оператор должен устранить причину срабатывания и вручную включить реле.

Тепловое реле срабатывает при повышении тока на любой из фаз свыше нормы. На этом и основана защита от неполнофазных режимов работы двигателя, ведь когда пропадает одна из фаз для работы двигателя, необходимо пропорционально увеличить ток на оставшихся фазах. Поскольку ток на оставшихся двух фазах будет увеличен, то происходит срабатывание теплового реле по перегрузке.

Магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima имеют в номенклатуре исполнения и с опцией индикации включения. Такая индикация осуществляется световым индикатором, который расположен на передней панели магнитного пускателя. Индикатор зажигается при подаче напряжения на катушку управления и гаснет при его снятии. Такая опция удобна, когда исполнительный механизм находится не в прямой видимости и слышимости от самого пускателя.

Область применения

Магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima могут быть применены везде, где необходимо управление и защита двигателя. Это и местная вентиляция, и открытие и закрытие ворот, различные электрические помпы от полива воды до включения погружного насоса, компрессоры.

Поскольку вся внутренняя схема управления магнитным аппаратом собрана, то это значительно экономит время для его подключения. Пользователю остаётся только подвести силовой кабель.

Электрические схемы

Магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima производятся с управляющим напряжением 400 В и 230 В переменного тока 50 Гц. Электрические схемы этих магнитных пускателей разные.

Электрическая схема пускателя КМЭ 9А-32А с катушками управления 400 В

Электрическая схема пускателя КМЭ 9А-32А с катушками управления 230 В

Если пускатель с управляющим напряжением 400 В может быть интегрирован в трехпроводную систему питания двигателя, то для инсталляции магнитного пускателя с управляющим напряжением 230 В необходима четырехпроводная система с нейтралью, при этом нейтральный провод при выключении контактора не разрывается.

Как видно из электрической схемы на тепловом реле остается не задействован один нормальнооткрытый дополнительный контакт. На схематическом изображении он обозначен 97-98. Этот контакт может быть использован для дистанционного подачи сигнала об аварийном отключении устройства, которым управляет пускатель.

Схемы передачи электричества магнитными пускателями собраны для ручного управления пускателем, но это не отменяет возможности и дистанционного управления пускателями КМЭ в корпусе IP65 EKF PROxima.

Для организации универсального – дистанционного и ручного управления подключением двух кнопок импульсного действия необходимо:

  1. К клеммам теплового реле 95 и катушки управления контактором А2 с помощью проводников подключить дистанционную кнопку управления на замыкание с контактом 1NO. Она будет дублировать кнопку «Пуск».
  2. В разрез линии питания контактора у клеммы 95 теплового реле необходимо установить кнопку на размыкание 1NC – она будет дублировать кнопку «Стоп».

Таким образом, магнитные пускатели КМЭ в корпусе IP65 9-95А EKF PROxima могут применяться как для ручного, так и для дистанционного пуска устройств, имеют функцию защиты двигателя по перегрузке, обратную связь по аварийной остановке магнитного пускателя и могут применяться в автоматизированных системах управления процессами.

Складская номенклатура пускателей КМЭ в корпусе IP65 EKF PROxima начинается с номинальных токов 9 А и заканчивается токами на 93 А. В 2017 году компания EKF открыла сборочный участок, и теперь доступны для заказа пускатели на номинальные токи от 0,4 до 7 А. Эти пускатели имеют в своём составе тепловые реле на малые токи и контакторы на 9 А. Срок изготовления пускателей КМЭ в оболочке на малые токи составляет около недели. И это значит, что заказчик, например, из Владивостока может получить свой заказ через 2–2,5 недели после его оформления.

Как подключить реверсивный магнитный пускатель: схема, описание

В каждой установке, в которой требуется запуск электродвигателя в прямом и обратном направлении обязательно присутствует магнитный пускатель реверсивной схемы. Подключение такого компонента не является столь сложной задачей как, кажется, на первый взгляд. К тому же востребованность таких задач появляется довольно часто. К примеру, в сверлильных станках, отрезных установках или же лифтах, если это касается не бытового использования.

Принципиальным отличием такой схемы от одинарной является наличие дополнительной цепи управления и немного измененной силовой части. Также для осуществления переключения такая установка оснащена кнопкой (SB3 на рисунке). Такая система, как правило, защищена от короткого замыкания. Для этого перед катушками в силовой цепи предусмотрено наличие двух нормально — замкнутых контакта (КМ1.2 и КМ2.2) производные от контактных приставок, размещенных в позиции магнитных пускателей (КМ1 и КМ2).

Для того чтобы приведенная схема была читабельной, изображения цепи на ней и силовые контакты имеют различное цветовое оформление. Также для упрощения, здесь не были указаны пары силовых контактов, обычно имеющие цифробуквенные аббревиатуры. Впрочем, с данными вопросами можно ознакомиться в статьях, посвященных подключению стандартных магнитных пусковых систем.

Описание этапов включения

При задействовании выключателя QF1, одновременно все три фазы примыкают к силовым контактам пускателя (КМ1 и КМ2) и пребывают в таком положении. При этом первая фаза, представляющая собой запитку для цепи управления, проходя через автомат защиты всей схемы управления SF1 и кнопку выключения SB1, подает напряжение на контактную группу под третьим номером, который относится к кнопкам: SB2, SB3. При этом
существующий у пускателей (КМ1 и КМ2) контакт под аббревиатурой 13НО приобретает значение дежурного. Таким образом система является полностью готовой к работе.

Прекрасная схема, которая наглядно показывает механизм монтажа реальных элементов представлена на фото ниже.

Переключение системы при обратном вращении двигателя

Задействовав кнопку SB2, мы направляем напряжение первой фазы на катушку, которая относится к магнитному пускателю КМ1. После этого происходит задействование нормально –разомкнутых контактов и отключение нормально –замкнутых. Таким образом, замыкая контакт КМ1 происходит эффект самозахвата пускателя. При этом все три фазы поступают на соответствующей обмотке двигателя, который, в свою очередь, начинает создавать вращательное движение.

Созданная схема предусматривает наличие только одного рабочего пускателя. К примеру, может работать только КМ1 или же, наоборот, КМ2. На приведенном рисунке, вы можете увидеть схему, при которой двигатель работает в нормальном направлении. Указанная цепь обладает реальными элементами.

Изменение вращательного движения

Теперь для придания обратного направления движения, вам необходимо изменить положение силовых фаз, что удобно сделать при помощи переключателя КМ2.

Важно! В процессе изменения вектора вращения должна присутствовать функция остановки двигателя перед запуском нового цикла.

Все происходит благодаря размыканию первой фазы. При этом все контакты возвращаются в исходно положение, обесточив обмотку двигателя. Данная фаза является ждущим режимом.

Задействование кнопки SB3 приводит в действие магнитный пускатель с аббревиатурой КМ2, который, в свою очередь, меняет положение второй и третьей фазы. Это действие заставляет двигатель вращаться в обратном направлении. Теперь КМ2 является ведущим и пока не произойдет его размыкание КМ1 будет не задействован.

Силовые цепи

Фотография, представленная ниже, наглядно описывает работу силовых цепей. В таком положении двигатель имеет нормальное вращение.

Теперь же мы видим, что произошел переброс фазового напряжения и поскольку вторая и третья фазы изменили положение, двигатель приобрел обратное вращение.

На фотографии, где представлены реальные элементы вы можете увидеть схему подключения, на которой первая фаза отмечена белым цветом, вторая красным и третья голубым цветом.

Как производится защита силовых цепей от короткого замыкания

Как уже было сказано ранее, прежде чем произвести процесс изменения фазности, следует остановить вращение двигателя. Для этого в системе как раз и предусмотрены нормально –замкнутые контакты. Поскольку при их отсутствии, невнимательность оператора рано или поздно привела бы к межфазному замыканию, которое бы произошло в обмотке двигателя второй и третьей фазы. Предложенная схема является оптимальной, поскольку допускает работу только одного магнитного пускателя.

Заключение

Представленная информация может с первого взгляда показаться сложной. Однако, предоставленные схемы и фото являются наглядным примером решения подобной задачи. Их изучение гарантировано обеспечит успех создаваемой системы. Нередко в помощь начинающим отличным примером может служить видеокурс.

Поскольку информация, представленная в движении, имеет куда большую наполненность и структурную ценность.

Также нелишним будет ознакомиться с информацией, касающейся защиты всей цепи электрического двигателя, что даст возможность к созданию надежных систем.

Электромагнитный пускатель: устройство, принцип действия, типы

Коммутационная аппаратура помогает обеспечивать удобство и безопасность эксплуатации практически всего электрооборудования, как в бытовой, так и в промышленной сети. Кнопки пуска и обычные клавишные модели выключателей позволяют обеспечивать подачу электроэнергии к нужному потребителю. Однако силовое электрооборудование существенно отличается от линейных потребителей, из-за скачка пускового тока и сам прибор, и коммутатор подвергаются существенному воздействию токовой нагрузки. Поэтому для электрических машин, крупных промышленных предприятий и специального оборудования применяется электромагнитный пускатель.

Устройство и принцип действия

Конструктивно электромагнитный пускатель представляет собой электромеханическое устройство, в котором при подаче напряжения на рабочий элемент возникает физическое перемещение контактной группы из одной позиции в другую. Вариант простейшего устройства электромагнитного пускателя приведен на рисунке ниже:

Рис. 1. Устройство электромагнитного пускателя

Как видите, данный образец состоит из:

  • подвижных контактов – предназначены для перемещения в пространстве, обеспечивая разрыв в магнитном пускателе;
  • неподвижных контактов – осуществляют токосъем для передачи электроэнергии от внешней сети к трехфазному двигателю;
  • контактных пружин – предназначены для возвратного сбрасывания блока контактов в исходное положение при отключении пускателя;
  • магнитопровода из электромагнитной стали – состоят из подвижного и неподвижного сердечника  служит для передачи силовых линий магнитной индукции от катушки электромагнита до стали подвижных контактов.
  • соленоида  — предназначена для формирования магнитного потока внутри витков за счет протекания электрического тока, как правило, имеет отдельные выводы для питания.

Принцип действия электромагнитного пускателя

Как видите на рисунке, принцип действия условно можно разобрать на двух положениях. В изначальном состоянии электромагнитный пускатель обесточен, в трехфазной электрической цепи отсутствует ток по причине наличия разрыва. Но, как только на катушку будет подано напряжение, в ее цепи сразу начнет протекать электроток,  мощный электромагнит создает достаточный поток для преодоления сердечником воздушного промежутка. В результате перемещения контакты замыкаются, и к электрическому двигателю подается напряжение, происходит запуск электрической машины.

Работа продолжается до тех пор, пока не будет нажат кнопка стоп, выключатель или оператор в любой другой способ не прекратит подачу питания на катушку электромагнитного пускателя. После этого силовые контакты сразу разомкнуться и питание потребителя будет прекращено. Также отключение может происходить в случае перегрузки или при возникновении аварийного режима в питаемом оборудовании от срабатывания тепловой или электромагнитной защиты.

Назначение

Основным назначением электромагнитных пускателей является пуск и длительное электроснабжение синхронных и асинхронных электродвигателей, питаемых по трехфазной схеме. Дополнительно их комплектуют вспомогательными контактами, которые могут управлять вспомогательными цепями.

Но благодаря простоте устройства и неприхотливости в эксплуатации электромагнитный коммутатор также используется для включения и отключения систем освещения, конвейерного оборудования, крановых установок, системами обогрева и прочих устройств.

Разновидности и типы

Рис. 3. Разновидности электромагнитных пускателей

В зависимости от конструктивных особенностей и выполняемых функций электромагнитные пускатели подразделяются на несколько категорий. Наиболее актуальные принципы разделения по видам и типам мы и рассмотрим.

По типу питаемой нагрузки:

  1. ПМЛ – применяется для трехфазных электродвигателей с короткозамкнутым ротором или печного отопления;
  2. ПМА – используется для подключения асинхронных электрических машин;
  3. КМИ – применяется для пуска трехфазной нагрузки, имеет схожие характеристики с первым вариантом, но существенно более широкий функционал;
  4. ПМЕ – используется для реверсивного пуска электрических машин асинхронного типа.

По номиналу, при котором могут размыкаться и замыкаться силовые контакты электромагнитные пускатели подразделяются на четыре категории:

  • Первой – для нагрузки в пределах от 10 до 16А;
  • Второй – питаемые нагрузку до 25А;
  • Третей – для электрических машин с номиналом до 40А;
  • Четвертый – для включения и отключения трехфазных двигателей на 63А.

Таким же образом электромагнитные пускатели могут разделяться на категории 24В, 220В, 380В, 660В и т. д. Напряжение соответствует питающему номиналу, чтобы фактическое значение было не выше допустимого для конкретного коммутатора.

В зависимости от места размещения выделяют разную категорию защищенности пускателя от проникновения пыли и влаги, которая маркируется буквами IP и двумя цифрами. На практике, чем больше числовое значение, тем выше устойчивость к факторам.

Различают такие типы:

  • Открытого – для монтажа исключительно в шкафы, ящики и т.д.;
  • Защищенного – в помещениях с минимальным количеством пыли и низкой вероятностью проникновения влаги;
  • Пыле- влагозащищенного – могут монтироваться для размыкания и замыкания силовых цепей на улице.

По коммутационной износостойкости различают три категории:

  • А – самая высокая устойчивость контактов к изнашиванию при подключении магнитных устройств;
  • Б – средняя изнашиваемость;
  • В – низкий уровень износоустойчивости.

Правила монтажа

При подключении магнитного пускателя важно обращать внимание на поверхность или элемент, к которому планируется производить крепление. Нарушение правил монтажа может привести к ложным отключениям в последующем, возникновению шумовых эффектов и прочих неприятностей.

В щитках, шкафах, ящиках вы должны подобрать ровную плоскую поверхность, расположенную в вертикальной плоскости. Место установки должно иметь надежную, жесткую фиксацию в пространстве. Запрещается устанавливать электромагнитные пускатели в местах сильного нагрева, подверженных ударам, толчкам и прочим механическим воздействиям.

Для уменьшения механической нагрузки от кабеля на контактные группы, проводник нужно изогнуть в кольцо или П-образно. Такой же прием используется для дополнительных контактов.

Перед вводом в эксплуатацию обязательно производится осмотр конструктивных элементов на предмет выявления повреждений. Проверяется правильность подключения, маркировка и последовательность.

Схемы подключения

На практике могут применяться различные схемы включения электромагнитных коммутаторов. Поэтому для начала рассмотрим простейший вариант.

Рис. 4. Простейшая схема включения электромагнитного пускателя

Как видите на рисунке, подключение электромагнитного пускателя производится на линейное напряжение между фазами B и C. Питание осуществляется через предохранитель PU, который разорвет и обесточит цепь в аварийном режиме. Та же роль возлагается на контакты теплового реле Р, которые в нормальном состоянии замкнуты, но разрывают цепь в случае возникновения аварийной ситуации на электрической машине.

Запуск происходит за счет включения кнопки Пуск, после чего по катушке КМ начинает протекать электроток это приводит к включению силовых контактов КМ и подаче питания на нагрузку. Одновременно происходит шунтирование кнопки запуска блок контактами БК, которые замыкают цепь после возвратного движения кнопочного устройства. В штатном режиме схема отключается за счет кнопки Стоп.

Второй вариант ввода в работу электромагнитного пускателя – это схема подключения с нулевым проводником.

Рис. 5. Схема подключения с нейтральным проводником

Как видите, принцип действия полностью идентичен с описанным ранее вариантом. Кардинальное отличие от предыдущего способа подключения электромагнитного пускателя – это способ подачи питания. В этой схеме пускатель подключен не между фазами, между фазой C и нулем N.

Наиболее сложным вариантом является реверсивная схема подключения электромагнитного пускателя.

Рис. 6. Реверсивная схема включения пускателя

Как видите на рисунке, для ее реализации применяются специальные реверсивные магнитные пускатели с двумя катушками, первая из которых запускает вращение мотора вперед, а вторая, в обратную сторону. Отличительной особенностью  такой схемы является электрическая блокировка, состоящая из пары контактов от кнопок вперед КМ1 и назад КМ2, которые блокируют включение противоположного движения без предварительного отключения электрической машины. В остальном принцип действия реверсивного устройства идентичен базовому.

Уход в процессе эксплуатации

В ходе эксплуатации для каждого электромагнитного пускателя периодически осуществляется проверка его технического состояния.

Обязательно нужно обращать внимание на:

  • появление загрязнений, пыли, грязи, строительного мусора и т.д. – их удаляют и обеспечивают чистоту поверхности, контактных групп;
  • целостность корпуса, клемм, катушки – при выявлении трещин или других дефектов электромагнитный пускатель или его отдельные части подлежат замене;
  • состояние пружин, работоспособность кнопок электромагнитного пускателя – проверяется способность отбрасывания и другие функции;
  • состояние тепловой защиты – осматривается место, где устанавливается реле, измерительного датчика и т.д.

Проверка рабочих параметров электромагнитного пускателя, его переходного сопротивления выполняется специальными приборами, которые имеют соответствующую поверку и предел измерений.

Электрические схемы пускателя двигателя

— База знаний VintageMachinery.org (Wiki)

Хорошо, хорошо, становится лучше. Довольно хорошо. Превосходно . Будьте осторожны! Информация, представленная ниже, является результатом совместных усилий нескольких человек. Люди, предоставляющие эту информацию, могут предоставлять или не предоставлять полностью точную информацию. Информация может относиться или не иметь отношения к вашей ситуации или конкретному оборудованию, а также может соответствовать или не соответствовать местным нормам. Информация должна использоваться только в качестве справочного источника.Если вы не уверены в чем-либо представленном, пожалуйста, не рискуйте своей безопасностью, имуществом или жизнью. Нанять электрика. Пускатели двигателей — это выключатели, специально разработанные для запуска двигателей. Эти переключатели предназначены для того, чтобы выдерживать большие нагрузки, требуемые двигателями. В основном существует два типа пускателей двигателей: ручные пускатели и магнитные пускатели. Пускатели двигателя

служат двум основным целям:

  1. Контакты реле предназначены для тяжелых условий эксплуатации и рассчитаны на пусковой ток двигателя.
  2. Автоматические выключатели Service Panel предназначены для защиты электропроводки здания, а не двигателей, подключенных к настенным розеткам. Если автоматический выключатель вашей электрической коробки срабатывает до того, как ваш двигатель сгорит, это случайно, а не специально. Однако пускатели двигателей рассчитаны на срабатывание при перегрузке нагревателя до того, как двигатель сгорит.

Ручные пускатели двигателя — это просто ручные переключатели, предназначенные для управления большими токовыми нагрузками, типичными для управления двигателем. Они могут быть небольшими и похожими на выключатели света в вашем доме, или они могут быть гораздо более крупными выделенными выключателями, предназначенными для управления цепями с высокой силой тока.Эти пускатели двигателей могут быть как однополюсными (переключение только одной линии), так и двухполюсными / трехполюсными устройствами (переключение 2/3 линий). Когда двухполюсный ручной пускатель двигателя выключен, питание от силового кабеля полностью отключается от двигателя. Ручные пускатели двигателей также могут быть оснащены согласованными нагревателями, которые представляют собой устройства защиты от перегрузки, предназначенные для размыкания при слишком высокой токовой нагрузке. Эти нагреватели должны соответствовать размеру двигателя, который они защищают, иначе они либо откроются слишком быстро, либо не защитят двигатель.Недостатком ручного управления двигателем является то, что они не могут иметь удаленно расположенные элементы управления включением и выключением.

НЕ ИСПОЛЬЗУЙТЕ ВЫКЛЮЧАТЕЛИ ДЛЯ ЗАПУСКА ДВИГАТЕЛЕЙ

Ручной стартер? Следуйте последовательности подключения, указанной ниже, и просто игнорируйте проводку управления, выделенную КРАСНЫМ.

Существуют однополюсные пускатели, которые следует использовать только для двигателей на 120 вольт. L1 — это линия 1 входа и должен быть «горячим» черным проводом. T1 — выход двигателя 1, идущий от стартера к двигателю. В этом случае нейтраль «белого цвета» проходит к двигателю, полностью минуя стартер.Эту проводку нельзя использовать в цепях с напряжением 240 В.

Однофазные двигатели на 240 В должны использовать 2-полюсный пускатель. L1 — это линия 1 входа и должен быть подключен к одному из «горячих» проводов, L2 — это линия 2 входа и должен быть подключен к другому «горячему» проводу. T1 и T2 являются соответствующими выходными соединениями двигателя и должны проходить через двигатель.

Трехфазные двигатели требуют трехполюсного пускателя, и каждая из «горячих» линий должна переключаться через пускатель. Магнитные пускатели

— это, по сути, реле для тяжелых условий эксплуатации, часто оснащенные нагревателем / тепловой перегрузкой, согласованной с запускаемым ими двигателем.Затем они управляются с помощью цепи более легкого режима (низкого или высокого напряжения), контактов вспомогательного реле и станции управления (или нескольких станций), использующих переключатели более легкой нагрузки (обычно мгновенные, иногда с фиксацией). Эти переключатели не смогут переключать большие нагрузки, необходимые для двигателей. Поскольку схема управления отделена от цепи нагрузки, элементы управления включением / выключением могут быть установлены удаленно и даже при желании могут быть дублированы.

Этот тип пускателя двигателя обычно имеет вспомогательный контактный выключатель: меньший набор контактов, которые размыкаются или замыкаются вместе с движением главных контакторов. Эти контакты будут использоваться для фиксации системы во включенном состоянии (контакты показаны на рисунке ниже как 2- || -3). Фиксация означает, что вспомогательный контакт обходит кнопку включения, поэтому соленоид остается под напряжением, пока отдельная кнопка выключения не отключит питание. Также могут быть предусмотрены дополнительные контакты (нормально разомкнутые и нормально замкнутые), которые могут использоваться для вспомогательных цепей или для обеспечения обратной связи для остальной системы о том, что пускатель включен и на двигатель подается питание.

Некоторые стартеры двигателя старого типа имеют встроенную фиксацию.Эти стартеры имеют четыре клеммы с метками 3, P, E и C (исторические остатки от старых моделей). Клеммы E и C предназначены для горячего и нейтрального проводов соответственно, и остаются под напряжением. Когда питание подается на 3 и P одновременно, стартер будет включаться до тех пор, пока питание не будет отключено от P. Питание может быть отключено от 3 в любое время, не влияя на работу. Электропроводка для этих пускателей ниже не рассматривается …………

ТИПОВАЯ ПОДКЛЮЧЕНИЕ

Номера разъемов зависят от производителя — типичные номера указаны в скобках ().

Для однофазных соединений два токоведущих провода обозначены как «горячий» и «нейтральный». Для сети на 240 В в Северной Америке они оба будут «горячими проводами», но для простоты мы придерживаемся названия «горячий / нейтральный».

  • L1 (1) — первая линия на входе от источника питания (фаза 1 для 3-фазной / нейтраль для 1-фазной)
  • L2 (3) — вторая линия на входе от источника питания (фаза 2 для 3-фазной / Hot для 1 фаза * см. Ниже альтернативную проводку с использованием L2 и L3)
  • L3 (5) — третья линия на входе от источника питания (фаза 3 для 3 фазы / NC для 1 фазы)
  • T1 (2) — выход первой линии к двигателю (фаза 1 для 3-фазной цепи / нейтраль для 1-фазной передачи)
  • T2 (4) — вторая линия к двигателю (фаза 2 для 3-фазной фазы / Hot для 1-фазной схемы * альтернативное подключение см. ниже) — третья линия к двигателю (фаза 3 для 3 фазы / NC для 1 фазы)
  • — || — (1-2, 13-14, 53-54) — нормально открытый нормально разомкнутый контакт (замыкается при срабатывании реле)
  • — | / | — (95-96) — нормально замкнутый нормально замкнутый контакт (размыкается при срабатывании тепловой перегрузки, если она связана с блокировкой перегрузки — как показано на всех трех диаграммах)
  • — | / | — — нормально замкнутый нормально замкнутый контакт (размыкается при включении реле, если он связан с катушкой реле в качестве вспомогательной цепи — как показано на схеме реверсирования двигателя как контакты изоляции катушки)
  • M — Катушка реле

Дублирование элементов управления

  • Кнопка START должна быть подключена параллельно друг другу
  • Кнопки STOP должны быть подключены последовательно друг с другом

ПРИМЕЧАНИЯ:

  • Управление низким напряжением с трансформатором — Выход трансформатора должен быть рассчитан на соответствующее значение для катушки реле (обычно 12 или 24 В переменного тока) в вашем конкретном пускателе. Это не должно быть проблемой для заводского магнитного пускателя двигателя, так как трансформатор будет выбран производителем в соответствии с катушкой. Входная мощность трансформатора поступает от двух ветвей первичной входной мощности, выбранных в соответствии с требованиями к входному напряжению трансформатора.

  • Управление линейным напряжением без трансформатора — Магнитные пускатели двигателей, которые имеют катушки реле на уровнях мощности линии, не используют трансформаторы. Питание реле стартера берется с двух выводов первичной входной мощности, выбираемых в соответствии с требованиями к входному напряжению катушки реле.

  • В любом случае питание следует брать снизу от ручного разъединителя (если он используется). Это гарантирует, что после включения ручного отключения в коробке не будет питания.

  • Все схемы предназначены для иллюстрации логики схемы управления с фиксацией. В пускателе двигателя может использоваться внутренняя проводка пускателя, проводка, отличная от схем и т. Д. В случае сомнений обратитесь к документации производителя.

Если вы не знаете, как выполнить подключения на вашем оборудовании, наймите электрика. Неправильная проводка может убить, повредить, вызвать возгорание, сжечь двигатели или любое / все вышеперечисленное.

3-фазный стартер / 3-фазный двигатель

Трехфазный (3-фазный) стартер, управляющий линейным напряжением, управляющий трехфазным двигателем (версия от 8 августа 2006 г.)

На приведенной выше схеме подключения предполагается, что ваш магнитный пускатель имеет катушку 240 В. Если у вас есть катушка 120 В, вместо того, чтобы использовать линию от Coil — Overload — L2 , вы должны запустить Coil — Overload — Neutral .

Ручной стартер? Просто игнорируйте проводку управления в RED

3-фазный стартер / 1-фазный двигатель

Управление линейным напряжением Трехфазный (3-фазный) пускатель двигателя, управляющий однофазным двигателем (версия от 08 августа 2006 г. )
Некоторым трехфазным магнитным пускателям двигателей требуется, чтобы ток был измерен при каждой из трех перегрузок. Это может быть выполнено путем направления выхода второй схемы обратно на вход третьей (ранее не использовавшейся) схемы и отключения двигателя от выхода третьей цепи (а не второй).После этого проводка становится:
Линия 1 → L1 → T1 → Двигатель 1 (L1-горячий 240 В или нейтраль 120 В)
Линия 2 → L2 → T2 → L3 → T3 → Двигатель 2 (L2-горячий, 120 В или 240 В)

Ручной стартер? Просто игнорируйте проводку управления в RED

3-фазный стартер / 3-фазный двигатель / Реверсивный

Управление линейным напряжением — двухконтактный пускатель трехфазного двигателя, управляющий реверсивным трехфазным двигателем (версия от 8 августа 2006 г.)
(Примечание: L1 становится T3, а L3 становится T1, когда срабатывает реле заднего хода.)
Двигатель должен быть ОСТАНОВЛЕН перед РЕВЕРСИЕЙ, если контактор не допускает реверсирование на лету.Катушки блокируются через нормально замкнутые контакты (M1, M2), обычно содержащиеся в механической блокировке. Когда катушка № M1 задействована, катушка № M2 заблокирована, и наоборот.

Воздушный компрессор или поплавковый насос / 3-фазный стартер / 1-фазный двигатель

Магнитный пускатель с управлением напряжением сети, управляемый реле давления воздушного компрессора (NC). Включает автоматический / ручной / выключенный контроль и переключатель низкого уровня масла (NC). Оба они являются необязательными и могут присутствовать не во всех приложениях. В некоторых случаях переключатель будет включать только Авто / Выкл.Автоматический / ручной / выключенный режим иногда является неотъемлемой частью заводского реле давления. Авто позволяет автоматически запускать компрессор без присмотра, когда давление воздуха в резервуаре падает ниже установленного предела. Ручное (ручное управление) позволяет включать насос независимо от положения реле давления. Это может подходить или не подходить для всех приложений и показано только в интересах полноты. Руку следует использовать с осторожностью и с должным вниманием к тому, что происходит в цепи. Выкл. Не требует пояснений. Если переключатель низкого уровня масла отсутствует, просто удалите его из цепи и продолжите провода от пускового переключателя обратно к катушке.

Кстати, эту же схему можно использовать для питания отстойника. Поплавковый выключатель (NO) для поддона должен быть подключен вместо реле давления. Когда переключатель обнаруживает жидкость, контакты замыкаются, и двигатель насоса запускается — при условии, что переключатель запуска находится в положении Auto. Очевидно, что ручное управление желательно при применении водоотливного насоса, поскольку оно позволяет активировать насос, даже если поплавковый выключатель не работает.

Магнитный пускатель — станции управления

Одним из преимуществ магнитных пускателей является возможность добавления постов управления. Эти станции могут быть расположены в любом удобном месте и при необходимости дублированы. Максимальное количество станций и их расположение не ограничены для всех практических целей. Станции построены с использованием нормально замкнутых (СТОП) и нормально разомкнутых (СТАРТ) контактных выключателей мгновенного действия. Эти переключатели должны быть рассчитаны как минимум на напряжение цепи управления. Переключатели с завышенными номиналами будут работать нормально.Многие производители включают в себя нормально разомкнутые (NO) и нормально замкнутые (NC) контакты в одном корпусе переключателя. Переставив переключатель, вы можете поменять его с одного на другой. Многие производители также предоставляют сменные кнопки как минимум красного и зеленого цвета.

Для завершения цепи всегда должна быть предусмотрена последняя станция. Промежуточные станции могут повторяться сколько угодно раз. Требуется соответствующая 3-проводная управляющая проводка от пускателя к каждой из станций управления по очереди (гирляндная цепь).

Таблицы размеров стартера NEMA

Основная проводка для управления двигателем — Руководство по техническим характеристикам

Схемы подключения

На схемах показаны подключения к контроллеру. Схемы подключения, иногда называемые « основной » или « конструкция », схемы , показывают фактические точки подключения проводов к компонентам и клеммам контроллера.

Основная проводка для управления двигателем — Технические характеристики

Они показывают взаимное расположение компонентов.Их можно использовать в качестве руководства при подключении контроллера. Рисунок 1 — это типовая электрическая схема для трехфазного магнитного пускателя двигателя .

Рисунок 1 — Типовая электрическая схема

Линейные диаграммы показывают схемы работы контроллера

Линейные диаграммы , также называемые « схема » или « элементарная », диаграммы , показывают схемы, которые образуют базовую операцию контроллера. Они не указывают физические отношения различных компонентов в контроллере.Они являются идеальным средством для поиска неисправностей в цепи.

На рисунке 2 показана типичная линия или схематическая диаграмма.

Рисунок 2 — Типичная линейная или принципиальная схема

Стандартизированные символы упрощают чтение схем

Как линейные, так и электрические схемы представляют собой язык изображений. Выучить основные символы несложно. Как только вы это сделаете, вы сможете быстро читать схемы и часто сможете понять схему с первого взгляда. Чем больше вы работаете с линейными и электрическими схемами, тем лучше вы их анализируете.

Американская ассоциация стандартов ( ASA ) и Национальная ассоциация производителей электрооборудования ( NEMA ) являются агентствами, которые несут ответственность за создание и поддержание стандартов символов.

Благодаря этим стандартам вы сможете читать все диаграммы, встречающиеся на вашем рабочем месте.

Базовая проводка для управления двигателем

Соответствующее содержимое EEP с рекламными ссылками

Промышленные пускатели для управления двигателями | Магнитный пускатель двигателя

Введение

Пускатели двигателя — одно из основных изобретений в области управления двигателями.Как следует из названия, стартер — это электрическое устройство, которое регулирует электрическую мощность для запуска двигателя. Эти электрические устройства также используются для остановки, реверсирования и защиты электродвигателей. Ниже приведены два основных компонента пускателя:

  1. Контактор: Основная функция контактора — регулирование электрического тока двигателя. Контактор может включать или отключать питание цепи.
  2. Реле перегрузки: Перегрев и потребление слишком большого тока могут привести к перегоранию двигателя и его практически бесполезному использованию.Реле перегрузки предотвращают это и защищают двигатель от любой потенциальной опасности.

Пускатель — это сборка этих двух компонентов, которая позволяет включать или выключать электродвигатель или электрическое оборудование, управляемое электродвигателем. Пускатель также обеспечивает необходимую защиту цепи от перегрузки.

Типы пускателей двигателей

Существует несколько типов пускателей двигателей. Однако существуют два основных типа этих электрических устройств:

Ручные пускатели

Ручные пускатели — это устройства, которые управляются вручную. Эти стартеры чрезвычайно просты в эксплуатации и не требуют вмешательства специалиста. Стартер включает в себя кнопку (или поворотную ручку), которая позволяет пользователю включать или выключать подключенное оборудование. Кнопки оснащены механическими связями, которые размыкают или замыкают контакты, запуская или останавливая двигатель. Следующие особенности ручного пускателя делают его предпочтительным выбором по сравнению с другими типами:

  • Эти стартеры обеспечивают безопасную и экономичную работу.
  • Компактные размеры этих устройств делают их пригодными для широкого спектра приложений.
  • Они обеспечивают защиту двигателя от перегрузки, защищая его от любого потенциального повреждения.
  • Эти устройства поставляются с большим выбором корпусов.
  • Первоначальная стоимость ручного стартера невысока.

Магнитный пускатель двигателя

Это другой основной тип пускателя двигателя. Он работает от электромагнита. Это означает, что нагрузка двигателя, подключенная к пускателю двигателя, обычно запускается и останавливается с использованием более низкого и безопасного напряжения, чем напряжение двигателя.Как и другие пускатели двигателей, магнитный пускатель также имеет электрический контактор и реле перегрузки для защиты устройства от слишком большого тока или перегрева.

Схема и работа стартера двигателя

В пускателе двигателя есть две цепи, а именно:

  1. Силовая цепь: Силовая цепь соединяет линию с двигателем. Он обеспечивает передачу электроэнергии через контакты стартера, реле перегрузки, а затем на двигатель.Ток двигателя передается по силовым (главным) контактам контактора.
  2. Цепь управления: Это другая цепь пускателя двигателя, которая управляет контактором, чтобы включить или выключить его. Главные контакты контактора отвечают за разрешение или прерывание прохождения тока к двигателю. Для этого контакты в цепи управления либо разомкнуты, либо замкнуты. Схема управления возбуждает катушку контактора, которая создает электромагнитное поле. Силовые контакты притягиваются этим электромагнитным полем в закрытое положение.Это замыкает цепь между двигателем и линией. Таким образом, дистанционное управление становится возможным с помощью схемы управления. Схема управления может быть подключена двумя способами:
    1. Метод 1: Один из наиболее широко используемых методов подключения схемы управления называется «Двухпроводным методом». При двухпроводном способе подключения схемы управления используется пилотное устройство с поддерживаемым контактом, такое как датчик присутствия, термостат или поплавковый выключатель.
    2. Method 2: В отличие от двухпроводного метода, «трехпроводный метод» подключения цепи управления использует контакт удерживающей цепи и управляющие устройства мгновенного контакта.

Цепь управления может получать мощность одним из следующих трех способов:

  • Общее управление: Этот тип управления возникает, когда источник питания схемы управления такой же, как и у двигателя.
  • Раздельное управление: Это самый популярный тип управления. Как следует из названия, в этой схеме схема управления получает питание от отдельного источника. Как правило, получаемая мощность имеет меньшее напряжение по сравнению с источником питания двигателя.
  • Управление трансформатором: Как следует из названия, цепь управления получает питание от трансформатора цепи управления. Как правило, получаемая мощность имеет меньшее напряжение по сравнению с источником питания двигателя.

Типы пускателей с магнитным приводом

В зависимости от того, как они подключены в цепь, существует множество типов пускателей с магнитным приводом, например:

1. Пускатель с прямым подключением

-Онлайн-пускатель — это простейший вариант пускателя двигателя, кроме ручного пускателя.Контроллер этого стартера обычно представляет собой простую кнопку (но может быть селекторным переключателем, концевым выключателем, поплавковым выключателем и т. Д.). Нажатие кнопки пуска замыкает контактор (путем подачи питания на катушку контактора), подключенный к основному источнику питания и двигателю. Это обеспечивает ток питания двигателя. Для выключения мотора предусмотрена кнопка остановки. Для защиты от перегрузки по току цепь управления подключается через нормально замкнутый вспомогательный контакт реле перегрузки. Когда реле перегрузки срабатывает, нормально замкнутый вспомогательный контакт размыкается и обесточивает катушку контактора, а главные контакты контактора размыкаются.

Преимущества использования пускателей двигателя с прямым включением:

  • Они имеют компактную конструкцию.
  • Они экономичны.
  • Имеют простую конструкцию.

2. Стартер сопротивления ротора

В пускателе сопротивления ротора три сопротивления соединены так, что они включены последовательно с обмотками ротора. Это помогает значительно снизить ток ротора, а также увеличивает крутящий момент двигателя.

Преимущества использования пускателей электродвигателей с сопротивлением ротора:

  • Они экономичны.
  • У них простой метод регулирования скорости.
  • Они обеспечивают низкий пусковой ток, большой пусковой момент и большой момент отрыва.

3. Пускатель сопротивления статора

Пускатель сопротивления статора состоит из трех резисторов, которые последовательно соединены с каждой фазой обмоток статора. На каждом резисторе возникает падение напряжения, поэтому возникает необходимость подавать низкое напряжение на каждую фазу.Эти сопротивления устанавливаются в начальное или максимальное положение на этапе запуска двигателя. Пусковой ток в пускателях этого типа поддерживается на минимальном уровне. Кроме того, необходимо поддерживать пусковой момент двигателя.

Преимущества использования пускателей электродвигателя с сопротивлением статора:

  • Они подходят для использования в системах управления скоростью.
  • Они обладают чрезвычайно гибкими пусковыми характеристиками.
  • Обеспечивают плавный разгон.

4.Пускатель автотрансформатора

С пускателем автотрансформатора трансформатор подает определенный процент первичного напряжения на вторичную обмотку трансформатора. Автотрансформатор подключен по схеме звезды. В пускателе этого типа три вторичных обмотки трансформатора с ответвлениями подключены к трем фазам двигателя. Это помогает снизить напряжение, подаваемое на клеммы двигателя.

Преимущества использования пускателей двигателей с автотрансформатором:

  • Их можно использовать для ручного управления скоростью, но с ограниченными возможностями.
  • Они обладают чрезвычайно гибкими пусковыми характеристиками.
  • Имеют высокий выходной крутящий момент.

5.

Стартер звезда-треугольник

По сравнению с другими типами пускателей, пускатель звезда-треугольник широко используется. Как следует из названия, в пускателях звезда-треугольник три обмотки соединены звездой. Определенное время устанавливается таймером или любой другой схемой контроллера. По прошествии этого времени обмотки подключаются по схеме треугольник.Фазное напряжение при соединении звездой снижается до 58%, а общий потребляемый ток составляет 58% от нормального тока. Это приводит к снижению крутящего момента.

Преимущества использования пускателей электродвигателей звезда-треугольник:

  • Они идеальны для длительного разгона.
  • У них меньший импульсный ток на входе по сравнению с другими пускателями.
  • Они имеют более простую конструкцию по сравнению с другими пускателями.

Особенности пускателей двигателей

Сегодня пускатели двигателей широко используются из-за их ряда полезных свойств.Ниже приведены некоторые особенности этих очень полезных электрических устройств:

  1. Они облегчают запуск и остановку двигателя.
  2. Пускатели рассчитываются по мощности (в лошадиных силах, киловатт) и току (в амперах).
  3. Обеспечивают необходимую защиту двигателя от перегрузки.
  4. Электрическое устройство обеспечивает функцию дистанционного включения / выключения.
  5. Эти устройства позволяют быстро включать и отключать ток (включение и толчок).

Основные функции пускателей двигателей

Ниже приведены наиболее важные функции, которые должен выполнять пускатель:

  1. Управление: Функция управления в основном выполняется контактором пускателя.Он контролирует размыкание и замыкание силовой электрической цепи. Переключение осуществляется главными контактами (полюсами) контактора. Электромагнитная катушка находится под напряжением, которая размыкает или замыкает контакты. Эта электромагнитная катушка имеет номинальное управляющее напряжение и может быть переменным или постоянным напряжением.
  2. Защита от короткого замыкания: В промышленных приложениях нормальный ток нагрузки может достигать тысяч ампер. В случае короткого замыкания ток короткого замыкания может превысить 100 000 ампер.Это может серьезно повредить оборудование. Защита от короткого замыкания отключает питание и безопасным образом предотвращает возможное повреждение. Защита от короткого замыкания обеспечивается предохранителями или автоматическими выключателями в комбинированном контроллере двигателя.
  3. Защита от перегрузки: Когда двигатель потребляет больше тока, чем рассчитано, возникает состояние перегрузки. Основная задача реле перегрузки — обнаружение избыточных токов. При обнаружении перегрузки вспомогательный контакт реле перегрузки размыкает цепь и предотвращает перегрев или перегрев двигателя.Электронные или электромеханические реле перегрузки используются в сочетании с контактором для обеспечения необходимой защиты от перегрузки.
  4. Отключение и отключение: Чтобы предотвратить непреднамеренный перезапуск, необходимо отключить двигатель от основной цепи питания. Чтобы безопасно выполнять техническое обслуживание двигателя или стартера, двигатель должен отключаться и быть изолированным от источника питания. Эту функцию выполняет размыкающий выключатель цепи. Отключение и отключение обеспечивается размыкающим выключателем или автоматическим выключателем в Комбинированном контроллере двигателя (или может быть установлен удаленно от стартера).

Стандарты и номиналы

Номинальные параметры пускателя двигателя зависят от многих факторов, таких как тепловой ток, длительный ток, напряжение двигателя и мощность.

Тепловой ток зависит от теплопроводности (k), которая является свойством, указывающим на теплопроводность материала. Это означает, что тепловой ток прямо пропорционален теплопроводности.

Продолжительный ток, который также обычно называют номинальным постоянным током, является мерой способности пускателя, управляющего двигателем, выдерживать ток в течение непрерывного времени.

Номинальная мощность пускателя двигателя зависит от типа используемого двигателя. Пускатели двигателей постоянного тока рассчитаны на мощность постоянного тока. С другой стороны, пускатели двигателей переменного тока имеют номинальную мощность однофазного и трехфазного тока.

Параметры пускателя двигателя основаны на размере и типе нагрузки, для которых он был разработан. Стартеры соответствуют стандартам и рейтингам Underwriters Laboratories (UL), Канадской ассоциации стандартов (CSA), Международной электротехнической комиссии (IEC) и Национальной ассоциации производителей электрооборудования (NEMA).

Рейтинг NEMA

Рейтинг NEMA стартера в значительной степени зависит от максимальной номинальной мощности, указанной в стандарте ISCS2 Национальной ассоциации производителей электрооборудования. Выбор стартеров NEMA осуществляется на основе их размера NEMA, который варьируется от размера 00 до размера 9.

Стартер NEMA с его заявленной мощностью может использоваться для широкого спектра приложений, от простых до и от приложений до приложений для подключения и бега трусцой, которые более требовательны. При выборе подходящего пускателя двигателя NEMA необходимо знать напряжение и мощность двигателя. В случае значительного количества закупорок и толчков, потребуется снижение номинальных характеристик устройства, соответствующего требованиям NEMA.

Рейтинг IEC

Международная электротехническая комиссия (МЭК) определила рабочие и рабочие характеристики устройств МЭК в публикации МЭК 60947. Стандартные размеры не указаны МЭК.Типичный рабочий цикл устройств IEC определяется категориями использования. Что касается общих применений для пуска двигателей, AC3 и AC4 являются наиболее распространенными категориями использования.

В отличие от типоразмеров NEMA, они обычно рассчитываются по максимальному рабочему току, тепловому току, номинальной мощности и / или кВт.

Существуют и другие параметры, которые важно учитывать при выборе пускателей двигателя, например, ускорение с ограничением по времени, ускорение линии тока, управляющее напряжение, количество полюсов и рабочая температура. Мы расскажем об этом в будущем официальном документе.

Мы надеемся, что этот краткий технический документ дал вам хорошее базовое представление о пускателях двигателей. Другие статьи c3controls ищите на c3controls.com/blog.

Заявление об отказе от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг.Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может учесть все соответствующие факторы и желаемые результаты. Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к конкретным обстоятельствам или условиям. Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

Что это такое, как это работает и многое другое

Главная »О нас» Новости »Магнитные пускатели двигателей: основы

Опубликовано: автором springercontrols

Магнитный пускатель двигателя — это устройство с электромагнитным управлением, которое запускает и останавливает подключенную нагрузку двигателя.Магнитные пускатели состоят из электрического контактора и устройства защиты от перегрузки, которая обеспечивает защиту в случае внезапной потери мощности.

Контактор и реле

Контактор похож на реле, но предназначен для переключения большего количества электроэнергии и работы с нагрузками с более высоким напряжением. В отличие от реле, контактор не имеет общего полюса под напряжением, который переключается между нормально разомкнутым и нормально замкнутым полюсами. Контактор состоит из держателя контактов с электрическими контактами для подключения входящего сетевого силового контакта к контакту нагрузки, электромагнита (обычно называемого «катушкой»), который обеспечивает силу для замыкания контактов, чтобы позволить току течь, и корпус, который представляет собой изолирующий материал, удерживающий детали вместе и обеспечивающий некоторую степень защиты от прикосновения человека к клеммам.Контакторы обычно изготавливаются с нормально разомкнутыми контактами, что означает, что мощность не будет поступать на нагрузку до тех пор, пока не сработает катушка, которая замыкает контактор. Активация катушки обычно выполняется оператором управления, либо вручную, то есть человеком, нажимающим кнопку / щелчком переключателя, либо автоматически с помощью датчика или таймера, который переключается при достижении определенного условия. Контакторы могут быть снабжены вспомогательными контактами (нормально разомкнутыми или нормально замкнутыми) для выполнения дополнительных операций, когда контактор замкнут.

Когда контактор замкнут, это позволяет току проходить на «катушку» (электромагнит). Это может быть то же самое напряжение, что и мощность, проходящая через контакты, или часто более низкое «управляющее» напряжение используется только для возбуждения катушки. Когда катушка находится под напряжением, это создает магнитную связь между контактами и держателем контактов, позволяя им оставаться вместе, и ток течет к двигателю или другой нагрузке, пока система не отключится путем отключения питания катушки. В обесточенном состоянии пружина заставляет контакты разъединяться и останавливать поток мощности через контакты, тем самым выключая двигатель или нагрузку.

Реле тепловой перегрузки: что такое и как работает

Тепловое реле перегрузки предназначено для защиты двигателя или другой нагрузки от повреждений в случае короткого замыкания или перегрузки и перегрева. Простейшее реле перегрузки срабатывает из-за тепла, вызванного протеканием большого тока через перегрузку и по биметаллической полосе. Биметаллическая полоса — это полоса из двух разных металлов, прикрепленных друг к другу, причем каждый металл имеет свой коэффициент теплового расширения.Когда эта биметаллическая полоса нагревается, один металл будет расширяться быстрее, чем другой, и приведет к изгибу сборки. Когда он станет достаточно горячим, кривизны будет достаточно, чтобы контакты в перегрузке разъединились. Поскольку перегрузка имеет контакт, подключенный к цепи управления контактора, это эффективно размыкает цепь и обесточивает систему. Как только биметаллическая полоса остынет, она выпрямится и позволит цепи снова замкнуться.

Режимы работы реле перегрузки

Реле перегрузки можно настроить на 4 различных режима работы.

  • Только ручной сброс — оператор должен нажать кнопку для перезапуска системы. Этот параметр обычно используется в целях безопасности, чтобы система не перезапустилась сама по себе.
  • Только автоматический сброс — когда биметаллическая полоса остывает, система автоматически перезагружается. Это полезно, когда система находится в удаленном месте, что затрудняет ручной перезапуск, а автоматический перезапуск вряд ли создаст опасное состояние.
  • Ручной сброс / остановка — Аналогичен только ручному сбросу, но позволяет использовать кнопку для ручной остановки системы. Это полезно для простых систем, где отдельный выключатель не требуется.
  • Автоматический отдых / остановка — Аналогичен только автоматическому сбросу, но позволяет использовать кнопку для остановки системы вручную. Это полезно для простых систем, где отдельный выключатель не требуется.

Реле перегрузки обычно компенсируются по температуре окружающей среды, и настройка отключения часто регулируется в относительно узком диапазоне.Реле перегрузки более старых версий доступны с фиксированными точками срабатывания по температуре с использованием биметаллических лент. Их обычно называют «нагревателями», и они специфичны для каждой точки срабатывания (тока). Новые реле перегрузки доступны с электронным управлением и используются для различных функций двигателя.


Остались вопросы по магнитным пускателям двигателей?

Если у вас все еще есть вопросы о магнитных пускателях двигателей и их применении, специалисты Springer Controls готовы помочь. Свяжитесь с нами сегодня, и мы будем рады вам помочь!

в рубрике: Новости

Магнитный пускатель двигателя: основы | EC&M

NEC определяет контроллер несколькими способами. В ст. 100 контроллер описывается как «устройство или группа устройств, которые служат для управления некоторым заранее определенным образом электрической мощностью, подаваемой в устройство, к которому он подключен». Немного конкретнее, определение в ст.430.2 гласит: «Контроллер — это любой переключатель или устройство, которое обычно используется для запуска и остановки двигателя путем включения и отключения тока в цепи двигателя». В этой статье мы сконцентрируемся на контроллерах, в частности на разнообразных контроллерах магнитных пускателей.

Магнитный пускатель двигателя представляет собой набор контактов с электромагнитным управлением, который запускает и останавливает подключенную нагрузку двигателя. Цепь управления с мгновенными контактными устройствами, подключенными к катушке магнитного пускателя двигателя, выполняет эту функцию пуска и останова.Трехполюсный пускатель магнитного двигателя полного напряжения состоит из следующих компонентов: набора неподвижных контактов, набора подвижных контактов, нажимных пружин, катушки соленоида, стационарного электромагнита, набора катушек магнитного затенения и подвижная арматура.

Также важно помнить, что магнитный пускатель двигателя — это контактор, который имеет дополнительный узел реле перегрузки, обеспечивающий защиту двигателя от перегрузки при работе. Выбор теплового реле перегрузки осуществляется с помощью таблицы производителя, прилагаемой к пускателю магнитного двигателя. Кроме того, убедитесь, что вам известны ток полной нагрузки (FLC) двигателя, коэффициент обслуживания (SF) двигателя и температура окружающей среды, в которой работает оборудование. Тепловые единицы рассчитаны на температуру окружающей среды 40 ° C (104 ° F).

Типичные распространенные магнитные пускатели двигателей включают: полное напряжение (линейное), пониженное напряжение и реверсирование. Как следует из названия, магнитный пускатель двигателя с полным напряжением или с параллельным подключением ( Рис. 1 ) подает на двигатель полное напряжение.Это означает, что магнитный пускатель двигателя спроектирован так, чтобы правильно выдерживать уровни пускового тока, который будет развиваться при запуске двигателя. Пускатели пониженного напряжения, разработанные для ограничения воздействия пускового тока при запуске двигателя, доступны в электромеханическом и электронном вариантах. См. «Руководство по стандартной цепи управления двигателем» в июньском выпуске EC&M на стр. 18 для более подробного обсуждения типов пускателей пониженного напряжения.

Реверсивные пускатели предназначены для реверсирования вала трехфазного двигателя.Это достигается путем замены любых двухлинейных проводов, питающих нагрузку двигателя. Реверсивный пускатель магнитного двигателя ( Рис. 2 ) включает в себя пускатель прямого и обратного хода как часть узла. Предусмотрены электрические и механические блокировки, гарантирующие, что в любой момент времени может быть задействован только прямой или обратный пускатель, но не одновременно.

Магнитные пускатели двигателей

NEMA доступны в различных номинальных значениях напряжения и мощности с обозначениями от размера 00 до размера 9.Эти размеры NEMA классифицируют пускатели магнитных двигателей по напряжению и максимальной мощности. Напряжение на катушке обычно бывает 24 В, 120 В, 208 В, 240 В, 277 В, 480 В и 600 В. Магнитный пускатель двигателя также предлагается в различных типах корпусов, в зависимости от среды, в которой будет работать оборудование. Типичными защитными кожухами являются: NEMA 1 (общего назначения), NEMA 4 (водонепроницаемые), NEMA 12 (пыленепроницаемые) и NEMA 7 (опасные зоны).

Магнитные пускатели двигателей

IEC обычно доступны в модульном формате с силовой базой и блоком управления.Трехфазные силовые базы доступны в вариантах 208 В, 230 В, 460 В и 575 В с соответствующими максимальными значениями мощности. Блок управления функционирует как регулируемый узел реле перегрузки, который отличается от фиксированного типа блока теплового перегрузки, применяемого в магнитных пускателях двигателя типа NEMA. Устройства IEC обычно меньше по размеру и дешевле, чем сопоставимые устройства типа NEMA. Магнитные пускатели двигателей IEC часто поставляются как часть оборудования OEM (производитель оригинального оборудования).

Если мы сравним пускатель магнитного двигателя NEMA с пускателем магнитного двигателя IEC, можно заметить следующие различия:

  1. Устройство IEC физически меньше сопоставимого устройства NEMA.

  2. Устройство IEC обычно дешевле, чем сопоставимое устройство NEMA.

  3. Жизненный цикл устройства IEC составляет приблизительно один миллион операций, в то время как жизненный цикл сопоставимого устройства NEMA почти в четыре раза больше.

  4. Устройство IEC имеет регулируемый узел реле перегрузки, в то время как сопоставимое устройство NEMA имеет фиксированный и съемный узел реле перегрузки.

  5. Устройство IEC обычно должно быть защищено быстродействующими токоограничивающими предохранителями, в то время как устройство NEMA может быть защищено обычными предохранителями с выдержкой времени.

Конечный пользователь должен внимательно рассмотреть все эти требования, прежде чем принимать решение об установке магнитного пускателя двигателя NEMA или магнитного пускателя двигателя IEC в конкретном приложении.Национальная ассоциация производителей электрического оборудования (NEMA) и Международная электротехническая комиссия (IEC), два органа по стандартизации, которые классифицируют электрическое оборудование, также являются хорошими источниками дополнительной информации.

Видал — президент компании Joseph J. Vidal & Sons, Inc., Throop, Pa.

Примечание автора: Я хотел бы посвятить эту статью своему отцу Джо, который неожиданно скончался 10 июня 2007 года. Мой отец проработал в сфере электротехники более 50 лет и проработал до двух дней до этого. его прохождение.Он познакомил меня с этим бизнесом в очень молодом возрасте, вдохновив меня продолжить свое образование в качестве инженера. Я действительно буду скучать по его руководству и вдохновению.

Стандартные цепи управления двигателем — журнал IAEI

Время считывания: 6 минут

Однофазные и трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором нуждаются в каком-либо типе цепи для запуска функции запуска или остановки. Обычно однофазные двигатели и трехфазные двигатели меньшей мощности могут запускаться при полном напряжении на линии.Однако трехфазные двигатели большей мощности требуют методов пуска с пониженным напряжением.

Силовые цепи и цепи управления

Обычно в управлении двигателем используются два типа цепей — цепь напряжения , силовая цепь и цепь управления , . Силовая цепь при пуске через сеть с полным напряжением состоит из устройства защиты от сверхтока (OCPD), будь то предохранители или автоматический выключатель; линейные проводники, заканчивающиеся на клеммах L1, L2 и L3; магнитный пускатель двигателя или твердотельное устройство; и проводники нагрузки, которые заканчиваются на клеммах T1, T2 и T3.

Цепь управления состоит из компонентов лестничной диаграммы, таких как кнопки пуска и останова, катушки реле, контрольные лампы и любые другие разнообразные устройства замыкания контактов, такие как концевые выключатели, реле давления, контроллеры температуры, датчики приближения или поплавковые выключатели. Схема управления может быть дополнительно классифицирована как двухпроводная или трехпроводная в зависимости от области применения. Также важно отметить, что мощность силовой цепи рассчитывается в соответствии с номинальным напряжением нагрузки двигателя: 115 В, 200 В, 230 В, 460 В или 575 В. Схема управления может работать при том же напряжении, что и силовая цепь, но также может работать и при более низких напряжениях за счет использования трансформатора станка для понижения напряжения до более безопасных уровней.

Схема типичной цепи линейного пуска при полном напряжении показана на рисунке 1. На этой схеме показаны силовая цепь и цепь управления . Обратите внимание, что схема управления представляет собой схему управления с трехпроводной лестничной схемой, которая хорошо работает с трехфазными двигателями меньшей мощности.У электроэнергетической компании будут правила, определяющие, насколько большой двигатель может быть запущен через линию. Если мощность двигателя превышает это значение, необходимо использовать методы пуска при пониженном напряжении. Двигатели — индуктивные нагрузки; следовательно, они имеют очень высокие пусковые токи, в 2,5–10 раз превышающие рабочий ток двигателя при полной нагрузке. Этот чрезмерный пусковой ток, также называемый током заторможенного ротора, вызывает колебания напряжения в линиях. Вы, вероятно, наблюдали эффект пускового тока всякий раз, когда свет в здании опускается, когда оборудование HVAC подключается к сети.Когда этот чрезмерный пусковой ток потребляется от источника напряжения в течение нескольких секунд, он вызывает падение напряжения. Это падение напряжения означает, что для оборудования доступно более низкое напряжение; и осветительные приборы, в частности, будут мерцать.

Рисунок 1. Трехпроводное управление с полным напряжением

Пускатели пониженные

В основном существует шесть типов пускателей пониженного напряжения: первичный резистор, реактор, автотрансформатор, неполная обмотка, звезда-треугольник и твердотельный. Твердотельные пускатели пониженного напряжения очень распространены, поскольку они хорошо взаимодействуют с частотно-регулируемыми приводами (VFD) и программируемыми логическими контроллерами (PLC).

Пускатели с первичным резистором используют резисторы, включенные последовательно с выводами двигателя во время функции запуска. Поскольку теперь это последовательная цепь, приложенное напряжение падает между последовательным резистором и обмоткой двигателя, вызывая более низкий пусковой ток. Реле времени управляет реле управления, контакты которого замыкают последовательные резисторы после запуска.

Пускатели реакторов работают аналогично, за исключением того, что вместо резисторов используются реакторы.Стартеры реакторов встречаются гораздо реже, чем раньше.

В пускателях автотрансформатора используются автотрансформаторы с ответвлениями, причем ответвления обычно устанавливаются на 50%, 65% от 80% доступного сетевого напряжения. Опираясь на концепцию «коэффициента трансформации» в трансформаторе, этот тип пускателя допускает меньшие токи на стороне сети, с точки зрения электросети, и большие токи на стороне нагрузки, с точки зрения двигателя во время запуска. Автотрансформатор отличается от двухобмоточного трансформатора тем, что не обеспечивает гальванической развязки между первичной и вторичной обмотками. Повышающий автотрансформатор часто называют «повышающим» автотрансформатором, а понижающий автотрансформатор — «компенсирующим» автотрансформатором.

Помните «коэффициент трансформации» трансформатора? При рассмотрении напряжения вы полагаетесь на следующую формулу:

В первичный / В вторичный = N первичный / N вторичный

Для тока вы полагаетесь на эту формулу:

I первичный / I вторичный = N вторичный / N первичный

Рассмотрим простой пример для иллюстрации.Трансформатор на 1 кВА имеет первичную обмотку 240 В и вторичную обмотку 120 В. Первичный ток составляет 4,17 А при 240 В, а вторичный ток — 8,33 А при 120 В. Трансформатор имеет соотношение 2: 1. Напряжение понижается в два раза, а ток увеличивается в два раза. Этот принцип позволяет работать пускателю автотрансформаторного типа.

Пускатель с частичной обмоткой разработан для работы с электродвигателем с частичной обмоткой, который имеет два набора идентичных обмоток. Вы можете использовать двигатели с двойным напряжением 230/460 В, но вы должны соблюдать особую осторожность.Идея заключается в том, что двигатель 230/460 В работает от 230 В с параллельными обмотками. Таким образом, половина обмоток двигателя находится в цепи при запуске; затем через несколько секунд в цепь подключается другая половина обмоток двигателя. Серьезные проблемы могут возникнуть, если схема синхронизации не подключает другую половину обмоток двигателя сразу после запуска.

Пускатель звезда-треугольник работает, позволяя двигателю запускаться по схеме звезды, а затем работать по схеме треугольник.Использование этой конфигурации позволяет снизить пусковой ток во время запуска при сохранении пускового момента примерно на 33%. Разомкнутый переход — важное соображение, о котором следует помнить при использовании пускателей по схеме звезда-треугольник, потому что между конфигурацией звезды для пуска и конфигурацией треугольником для работы будет период времени, когда обмотки двигателя будут отключены. Пускатели с закрытым переходом преодолевают этот недостаток, но имеют гораздо более высокую стоимость.

Твердотельные пускатели часто называют пускателями с плавным пуском, потому что они используют кремниевые выпрямители (SCR) для выполнения этой задачи.Газонаполненные вакуумные лампы, называемые тиратронами, были ранней версией семейства твердотельных тиристоров, которое включает в себя триаки, диаки и UJT (однопереходные транзисторы). SCR состоит из трех элементов: анода, катода и затвора. Подавая сигнал на элемент затвора точно в нужное время, вы можете контролировать, какой ток SCR будет пропускать или блокировать в течение цикла; это называется фазовым контролем. Способность этого устройства обеспечивать частичную или полную проводимость в течение цикла дает конструктору большую гибкость.Эта возможность позволяет точно контролировать ток нагрузки двигателя во время запуска.

Цепи управления лестничной диаграммой

Обычно используются два типа лестничных цепей управления: двухпроводная схема управления и трехпроводная схема управления. Двухпроводная схема управления использует устройства с поддерживаемым контактом для управления магнитным пускателем двигателя. В трехпроводной схеме управления используются устройства с мгновенным контактом, управляющие пускателем магнитного двигателя.

Двухпроводная схема управления показана на рисунке 2.Он состоит из нормально разомкнутого устройства с поддерживаемым контактом, которое при замыкании приводит в действие катушку магнитного пускателя двигателя, которая, в свою очередь, питает подключенную нагрузку двигателя. Двухпроводная схема управления обеспечивает так называемый «расцепитель низкого напряжения». В случае сбоя питания магнитный пускатель двигателя отключится. После восстановления питания магнитный пускатель двигателя автоматически возобновит подачу питания при условии, что ни одно из поддерживаемых контактных устройств не изменило состояние. Это может быть очень полезно в таких приложениях, как охлаждение или кондиционирование воздуха, где вам не нужно, чтобы кто-то перезапускал оборудование после сбоя питания. Однако это может быть чрезвычайно опасно в приложениях, где оборудование запускается автоматически, подвергая опасности оператора.

Рисунок 2. Двухпроводное управление с полным напряжением

Трехпроводная схема управления показана на рисунке 1. Она состоит из нормально замкнутой кнопки останова (СТОП), нормально разомкнутой кнопки пуска (ПУСК), уплотнительного контакта (M) и катушки пускателя магнитного двигателя. При нажатии нормально разомкнутой кнопки пуска катушка магнитного пускателя двигателя (M) находится под напряжением.Вспомогательный контакт (M) герметизирует кнопку пуска, обеспечивая замыкание цепи. Нажатие нормально замкнутой кнопки останова приводит к нарушению цепи. Трехпроводная схема управления обеспечивает так называемую «защиту от низкого напряжения». В случае сбоя питания магнитный пускатель двигателя отключится. Однако в этом случае, как только питание будет восстановлено, магнитный пускатель двигателя не включится автоматически. Оператор должен нажать кнопку пуска, чтобы снова запустить последовательность операций.

По сравнению с двухпроводной схемой управления трехпроводная схема управления обеспечивает гораздо большую безопасность оператора, поскольку оборудование не запускается автоматически после восстановления подачи электроэнергии. На рисунке 3 показана схема управления с несколькими кнопками пуска и останова. В этой схеме несколько нормально замкнутых кнопок останова размещены последовательно, а несколько нормально разомкнутых пусковых кнопок размещены параллельно для управления пускателем магнитного двигателя. Это обычное применение трехпроводной схемы управления, в которой вам необходимо запускать и останавливать один и тот же двигатель из нескольких мест на предприятии.Трехпроводная схема управления может использоваться различными способами для соответствия конкретному применению схемы.

Рисунок 3. Схема управления несколькими остановками / пусками

Управление двигателями переменного тока

— очень интересный и специализированный сегмент нашей отрасли. Электромеханические магнитные пускатели двигателей были стандартом на протяжении многих лет. Твердотельные устройства позволили лучше контролировать параметры схемы, обеспечивая при этом настоящую интеграцию с частотно-регулируемыми приводами и программируемыми логическими контроллерами.

DOL Starter (Direct Online Starter): электрическая схема и принцип работы

Что такое DOL Starter?

Пускатель DOL (также известный как пускатель прямого включения или через пускатель сети) — это метод пуска трехфазного асинхронного двигателя. В пускателе DOL асинхронный двигатель подключается непосредственно к его трехфазному источнику питания, и пускатель DOL подает полное линейное напряжение на клеммы двигателя.

Несмотря на прямое подключение, двигатель не причиняет вреда.Пускатель двигателя DOL содержит устройства защиты и, в некоторых случаях, средства контроля состояния. Схема подключения DOL-пускателя показана ниже:

Поскольку DOL-пускатель подключает двигатель непосредственно к основной линии питания, двигатель потребляет очень высокий пусковой ток по сравнению с током полной нагрузки двигателя (до 5 -8 раз выше). Значение этого большого тока уменьшается, когда двигатель достигает своей номинальной скорости.

Пускатель прямого включения может использоваться только в тех случаях, когда высокий пусковой ток двигателя не вызывает чрезмерного падения напряжения в цепи питания.Если необходимо избежать высокого падения напряжения, следует использовать пускатель звезда-треугольник. Пускатели прямого включения обычно используются для пуска небольших двигателей, особенно трехфазных асинхронных двигателей с короткозамкнутым ротором.

Как мы знаем, уравнение для тока якоря в двигателе. Значение обратной ЭДС (E) зависит от скорости (N), то есть E прямо пропорционально N.

При запуске значение E равно нулю. Так что пусковой ток очень высок. В двигателе небольшого номинала ротор имеет более значительную осевую длину и малый диаметр.Так что он быстро ускоряется.

Следовательно, скорость увеличивается, и, следовательно, значение тока якоря быстро уменьшается. Таким образом, двигатели небольших номиналов работают без сбоев при прямом подключении к трехфазной сети.

Если мы подключим большой двигатель непосредственно через 3-фазную линию, он не будет работать плавно и будет поврежден, потому что он не будет ускоряться так быстро, как меньший двигатель, поскольку он имеет короткую осевую длину и больший диаметр более массивного ротора. Однако для двигателей большой мощности мы можем использовать масляный пускатель прямого тока.

Схема подключения стартера DOL

Схема подключения статера DOL показана ниже. Устройство прямого пуска в режиме онлайн состоит из двух кнопок: ЗЕЛЕНОЙ кнопки для запуска и КРАСНОЙ кнопки для остановки двигателя. Пускатель DOL состоит из MCCB или автоматического выключателя, контактора и реле перегрузки для защиты. Эти две кнопки, т.е. зеленая и красная или кнопки запуска и остановки, управляют контактами.

Чтобы запустить двигатель, мы замыкаем контакт, нажимая Зеленую кнопку, и на двигателе появляется полное линейное напряжение.Контактор может быть 3-х полюсным или 4-х полюсным. Ниже приведен контактор 4-х полюсного типа.

Он содержит три NO (нормально разомкнутых) контакта, которые соединяют двигатель с линиями питания, а четвертый контакт — «удерживающий контакт» (вспомогательный контакт), который включает катушку контактора после отпускания кнопки пуска.

При возникновении какой-либо неисправности вспомогательная катушка обесточивается, и, следовательно, стартер отключает двигатель от сети питания.

Трехфазный пускатель двигателя с защитой от перегрузки

Когда двигатель потребляет чрезмерный ток для удовлетворения требований к нагрузке, так что требования к нагрузке превышают номинальный предел, это называется перегрузкой.

Защита от тепловой перегрузки — это тип защиты, когда двигатель потребляет сверхток или чрезмерный ток и вызывает перегрев оборудования. Перегрузка также является видом перегрузки по току. Таким образом, реле перегрузки используются для ограничения количества потребляемого тока.

Но это не значит, что защищает от короткого замыкания. Предохранитель или автоматический выключатель, используемый в системе, защищает от перегрузки по току. Защита от перегрузки размыкает цепь при относительно малых токах, которые немного превышают номинальные значения двигателя.

Токи перегрузки могут привести к повреждению, если они сохраняются в течение длительного времени, то есть он не сработает, если в течение короткого периода времени протекает ток высокого значения, например, при запуске двигателя.

Мы часто обеспечиваем защиту от перегрузки через реле перегрузки. Реле перегрузки могут быть твердотельными устройствами с регулируемой настройкой срабатывания, также называемыми электронными реле, или взаимодействующими с соответствующими датчиками температуры, называемыми тепловыми реле, или, если они работают только для избыточного тока, называемыми магнитными реле.

Для большинства двигателей максимальный номинал устройства защиты от перегрузки составляет 125% от номинального тока полной нагрузки.

Принцип работы прямого стартера

Принцип работы прямого стартера начинается с подключения двигателя к трехфазной сети. Цепь управления подключается к любым двум фазам и получает питание только от них.

Когда мы нажимаем кнопку пуска, ток течет через катушку контактора (катушку намагничивания), а также цепь управления.

Ток возбуждает катушку контактора и приводит к замыканию контактов, и, следовательно, на двигатель становится доступно трехфазное питание. Схема управления пускателем DOL показана ниже.

Если мы нажмем кнопку остановки, ток через контакт прекратится, следовательно, питание на двигатель будет недоступно, и то же самое произойдет, когда сработает реле перегрузки. Поскольку подача двигателя прекращается, машина остановится.

Катушка контактора (катушка намагничивания) получает питание, даже если мы отпускаем кнопку пуска, потому что, когда мы отпускаем кнопку пуска, она будет получать питание от первичных контактов, как показано на схеме Direct Online Starter .

Преимущества стартера DOL

К преимуществам стартера DOL относятся:

  1. Простой и наиболее экономичный стартер.
  2. Более удобный в проектировании, эксплуатации и управлении.
  3. Обеспечивает почти полный пусковой момент при пуске.
  4. Легко понять и устранить неполадки.
  5. Пускатель прямого включения подключает питание к обмотке двигателя, соединенной треугольником.

Недостатки DOL-пускателя

К недостаткам DOL-пускателя можно отнести:

  1. Высокий пусковой ток (в 5-8 раз больше тока полной нагрузки).
  2. DOL Стартер вызывает значительное падение напряжения, поэтому подходит только для небольших двигателей.
  3. DOL Starter сокращает срок службы машины.
  4. Механически прочный.
  5. Излишний высокий пусковой крутящий момент

Применение прямого пускателя

Применение прямого пускателя — это в первую очередь двигатели, в которых высокий пусковой ток не вызывает чрезмерного падения напряжения в цепи питания (или где такое высокое падение напряжения допустимо).

Пускатели прямого включения обычно используются для запуска небольших водяных насосов, конвейерных лент, вентиляторов и компрессоров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *