Электрическое поле, электрический ток. Электрическое поле что это


ЭЛЕКТРИЧЕСКОЕ ПОЛЕ - это... Что такое ЭЛЕКТРИЧЕСКОЕ ПОЛЕ?

 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ (электростатическое поле), область вокруг электрического заряда, в которой на каждую заряженную частицу действует некоторая сила. Объект с противоположным зарядом испытывает силу притяжения. Объект, имеющий такой же заряд, как и окружающее его поле, испытывает отталкивающее воздействие. Сила поля относительно единичного заряда на расстоянии r от заряда Q равна: Q/4pr2e, где e - диэлектрическая проницаемость среды, окружающей заряд. Переменное магнитное поле также может создать электрическое поле. см. также ЭЛЕКТРОМАГНЕТИЗМ.

Научно-технический энциклопедический словарь.

  • ЭЛЕКТРИЧЕСКИЙ ТОК
  • ЭЛЕКТРИЧЕСТВО

Смотреть что такое "ЭЛЕКТРИЧЕСКОЕ ПОЛЕ" в других словарях:

  • ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — частная форма проявления (наряду с магн. полем) электромагнитного поля, определяющая действие на электрич. заряд (со стороны поля) силы, не зависящей от скорости движения заряда. Представление об Э. п. было введено М. Фарадеем в 30 х гг. 19 в.… …   Физическая энциклопедия

  • ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, одна из форм электромагнитного поля. Создается электрическими зарядами или переменным магнитным полем. Характеризуется напряженностью электрического поля (или электрической индукцией). Напряженность электрического поля у… …   Современная энциклопедия

  • ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — (14, а) …   Большая политехническая энциклопедия

  • ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — частная форма проявления электромагнитного поля; создается электрическими зарядами или переменным магнитным полем и характеризуется напряженностью электрического поля …   Большой Энциклопедический словарь

  • Электрическое поле — одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду этой частицы и не зависящей от ее скорости... Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ …   Официальная терминология

  • электрическое поле — Одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду этой частицы и не зависящей от ее скорости. [ГОСТ Р 52002 2003] EN electric field constituent of an… …   Справочник технического переводчика

  • Электрическое поле —     Классическая электродинамика …   Википедия

  • электрическое поле — 06.01.07 электрическое поле [ electric field]: Составляющая электромагнитного поля, которая характеризуется векторами напряженности электрического поля Е и электрической индукции D. Примечание Во французском языке термин «champ electrique»… …   Словарь-справочник терминов нормативно-технической документации

  • Электрическое поле — Демонстрация поля электростатического заряда. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, одна из форм электромагнитного поля. Создается электрическими зарядами или переменным магнитным полем. Характеризуется напряженностью электрического поля (или электрической… …   Иллюстрированный энциклопедический словарь

  • электрическое поле — частная форма проявления электромагнитного поля; создаётся электрическими зарядами или переменным магнитным полем и характеризуется напряжённостью электрического поля. * * * ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, частная форма проявления… …   Энциклопедический словарь

Книги

  • Теоретические основы электротехники. Электромагнитное поле, Л. А. Бессонов. Рассмотрены традиционные и появившиеся за последние годы новые вопросы теории и методы расчета физических процессов в электрических, магнитных и электромагнитных полях, предусмотренные… Подробнее  Купить за 750 руб
  • Почему у свитых проводников с током отсутствует электромагнитное поле? Электромагнитное поле, магнитное поле, электрическое поле проводника с током. Импульсное поле витка с током и катушки (теория аб, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. В книге доказано, что электромагнитное поле проводника с током образовано электронами. Электромагнитное поле - есть пространство, заполненное направленно движущимися по винтовым траекториям… Подробнее  Купить за 740 грн (только Украина)
  • Почему у свитых проводников с током отсутствует электромагнитное поле? Теория абсолютности, Гуревич Гарольд Станиславович, Каневский Самуил Наумович. Почему у свитых проводников с током отсутствует электромагнитное поле? Электромагнитное поле, магнитное поле, электрическое поле проводника с током. Импульсивноеполе витка с током и катушки… Подробнее  Купить за 715 руб
Другие книги по запросу «ЭЛЕКТРИЧЕСКОЕ ПОЛЕ» >>

dic.academic.ru

Электрическое поле — WiKi

Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле[1], существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела[2].

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Основным действием электрического поля является силовое воздействие на неподвижные относительно наблюдателя электрически заряженные тела или частицы. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Энергия электрического поля

Классификация

Однородное поле

  Направление линий напряжённости между двумя разнозаряженными пластинами

Однородное поле — это электрическое поле, в котором напряжённость одинакова по модулю и направлению во всех точках пространства. Приблизительно однородным является поле между двумя разноимённо заряженными плоскими металлическими пластинами. В однородном электрическом поле линии напряжённости направлены параллельно друг другу.

Наблюдение электрического поля в быту

Для того, чтобы создать электрическое поле, необходимо создать электрический заряд. Натрите какой-нибудь диэлектрик о шерсть или что-нибудь подобное, например, пластиковую ручку о собственные чистые волосы. На ручке создастся заряд, а вокруг — электрическое поле. Заряженная ручка будет притягивать к себе мелкие обрывки бумаги. Если натирать о шерсть предмет большей ширины, например, резиновую ленту, то в темноте можно будет видеть мелкие искры, возникающие вследствие электрических разрядов.

Электрическое поле часто возникает возле телевизионного экрана (относится к телевизорам с ЭЛТ) при включении или выключении телеприёмника. Это поле можно почувствовать по его действию на волоски на руках или лице.

Электрическое поле внутри проводников с избыточными зарядами

Из опытов, приводимых в электростатике, известно, что избыточные заряды привнесённые в проводник извне, перемещаются к поверхности проводника и остаются у поверхности проводника. Само перемещение избыточных зарядов к поверхности проводника свидетельствует о наличии электрического поля внутри проводника в период перемещения к поверхности проводника.

Электрическое поле внутри проводников с недостатком собственных электронов

При недостатке собственных электронов тело получает положительный заряд «дырочной» природы. Дырки при этом ведут себя подобно электронам и также распределяются по поверхности тела.

Методы расчета электрического поля

Расчёты электрического поля можно проводить аналитическими[3][4][5] или численными методами[6]. Аналитические методы удается применить лишь в простейших случаях, на практике в основном используются численные методы. Численные методы включают в себя: метод сеток или метод конечных разностей; вариационные методы; метод конечных элементов; метод интегральных уравнений; метод эквивалентных зарядов[6].

См. также

Примечания

Литература

  • Орир, Джей — Популярная физика: [пер. с англ.].: Мир, 1966. — 446 с.
  • Учебник «Элементарный учебник физики» под ред. Ландсберга Г. С., Часть 2 (Электричество и магнетизм.)
  • Трофимова Т. И. Курс физики: Учеб. пособие для вузов.—2-е изд., перераб. и доп.— М.: Высш. шк., 1990.—478 с.: ил. ISBN 5-06-001540-8

ru-wiki.org

Электрическое поле Википедия

Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле[1], существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела[2].

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Основным действием электрического поля является силовое воздействие на неподвижные относительно наблюдателя электрически заряженные тела или частицы. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Энергия электрического поля

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

u=12(E→D→),{\displaystyle u={\frac {1}{2}}\left({\vec {E}}{\vec {D}}\right),}

где E — напряжённость электрического поля, D — индукция электрического поля.

Классификация

Однородное поле

Направление линий напряжённости между двумя разнозаряженными пластинами

Однородное поле — это электрическое поле, в котором напряжённость одинакова по модулю и направлению во всех точках пространства. Приблизительно однородным является поле между двумя разноимённо заряженными плоскими металлическими пластинами. В однородном электрическом поле линии напряжённости направлены параллельно друг другу.

Наблюдение электрического поля в быту

Для того, чтобы создать электрическое поле, необходимо создать электрический заряд. Натрите какой-нибудь диэлектрик о шерсть или что-нибудь подобное, например, пластиковую ручку о собственные чистые волосы. На ручке создастся заряд, а вокруг — электрическое поле. Заряженная ручка будет притягивать к себе мелкие обрывки бумаги. Если натирать о шерсть предмет большей ширины, например, резиновую ленту, то в темноте можно будет видеть мелкие искры, возникающие вследствие электрических разрядов.

Электрическое поле часто возникает возле телевизионного экрана (относится к телевизорам с ЭЛТ) при включении или выключении телеприёмника. Это поле можно почувствовать по его действию на волоски на руках или лице.

Электрическое поле внутри проводников с избыточными зарядами

Из опытов, приводимых в электростатике, известно, что избыточные заряды привнесённые в проводник извне, перемещаются к поверхности проводника и остаются у поверхности проводника. Само перемещение избыточных зарядов к поверхности проводника свидетельствует о наличии электрического поля внутри проводника в период перемещения к поверхности проводника.

Электрическое поле внутри проводников с недостатком собственных электронов

При недостатке собственных электронов тело получает положительный заряд «дырочной» природы. Дырки при этом ведут себя подобно электронам и также распределяются по поверхности тела.

Методы расчета электрического поля

Расчёты электрического поля можно проводить аналитическими[3][4][5] или численными методами[6]. Аналитические методы удается применить лишь в простейших случаях, на практике в основном используются численные методы. Численные методы включают в себя: метод сеток или метод конечных разностей; вариационные методы; метод конечных элементов; метод интегральных уравнений; метод эквивалентных зарядов[6].

См. также

Примечания

Литература

  • Орир, Джей — Популярная физика: [пер. с англ.].: Мир, 1966. — 446 с.
  • Учебник «Элементарный учебник физики» под ред. Ландсберга Г. С., Часть 2 (Электричество и магнетизм.)
  • Трофимова Т. И. Курс физики: Учеб. пособие для вузов.—2-е изд., перераб. и доп.— М.: Высш. шк., 1990.—478 с.: ил. ISBN 5-06-001540-8

wikiredia.ru

Электрическое поле — Традиция

Материал из свободной русской энциклопедии «Традиция»

Электрическое поле — один из двух составляющих электромагнитного поля, представляющий собой векторное поле[1], существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающий при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле визуально невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела[2].

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Основным действием электрического поля является силовое воздействие на неподвижные относительно наблюдателя электрически заряженные тела или частицы. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Электрическое поле — особая форма материи, существующая вокруг тел или частиц, обладающих электрическим зарядом, а также в свободном виде в электромагнитных волнах. Электрическое поле непосредственно невидимо, но может наблюдаться по его действию и с помощью приборов. Основным действием электрического поля является ускорение тел или частиц, обладающих электрическим зарядом.

traditio.wiki

Свойства и основные характеристики электрических полей

Свойства и характеристики электрического поля изучают почти все технические специалисты. Но университетский курс часто бывает написан сложным и непонятным языком. Поэтому в рамках статьи доступно будут описаны характеристики электрических полей, чтобы в них мог разобраться каждый человек. Кроме этого, отдельное внимание мы уделим взаимосвязанным понятиям (суперпозиция) и возможностям развития данной сферы физики.

Общая информация

Согласно современным представлениям, электрические заряды между собой не взаимодействуют непосредственно. Из этого вытекает интересная особенность. Так, каждое заряженное тело имеет своё электрическое поле в окружающем пространстве. Оно оказывает влияние на другие субъекты. Характеристики электрических полей представляют для нас тот интерес, что они показывают воздействие поля на электрические заряды и силу, с которой оно осуществляется. Какой из этого можно сделать вывод? Заряженные тела не оказывают взаимного непосредственного воздействия. Для этого используются электрические поля. Как их можно исследовать? Для этого можно воспользоваться пробным зарядом – небольшим точечным пучком частиц, что не окажет заметного влияния на сложившуюся структуру. Так какие величины являются характеристиками электрического поля? Всего их три: напряженность, напряжение и потенциал. Каждая из них имеет свои особенности и сферы влияния на частицы.

Электрическое поле: что это такое?

Но прежде чем переходить к основному предмету статьи, необходимо иметь определённый багаж знаний. Если они есть, то эту часть можно уверенно пропустить. Первоначально давайте рассмотрим вопрос причины существования электрического поля. Для того чтобы оно было, необходим заряд. Причем свойства пространства, в котором пребывает заряженное тело, должно отличаться от тех, где его нет. Здесь есть такая особенность: если в определённую систему координат поместить заряд, то изменения произойдут не мгновенно, а только с определённой скоростью. Они будут, подобно волнам, распространяться в пространстве. Это будет сопровождаться появлением механических сил, что действуют на другие носители в этой системе координат. И тут мы подходим к главному! Возникающие силы являются результатом не непосредственного влияния, а взаимодействия через среду, которая качественно изменилась. Пространство, в котором и происходят подобные изменения, и называется электрическим полем.

Особенности

Заряд, расположенный в электрическом поле, двигается в направлении силы, что действует на него. Является ли возможным достижение состояния покоя? Да, это вполне реально. Но для этого силу электрического поля должно уравновешивать какое-то иное влияние. Как только происходит нарушение равновесия, заряд снова начинает двигаться. Направление в данном случае будет зависеть от большей силы. Хотя если их много – конечный результат будет чем-то сбалансированным и универсальным. Чтобы лучше представлять, с чем приходится работать, изображают силовые линии. Их направления соответствуют действующим силам. Следует отметить, что силовые линии обладают и началом, и концом. Иными словами, они не замыкаются на себе. Начинаются они на положительно заряженных телах, а заканчиваются на отрицательных. Это не всё, более детально о силовых линиях, их теоретической подоплеке и практической реализации мы поговорим немного дальше по тексту и рассмотрим их вместе с законом Кулона.

Напряженность электрического поля

Эта характеристика используется для того, чтобы количественно определить электрическое поле. Это довольно сложно для понимания. Эта характеристика электрического поля (напряженность) является физической величиной, равной отношению силы действия на положительный пробный заряд, что размещен в определённой точке пространства, к его величине. Тут есть один особенный аспект. Эта физическая величина является векторной. Её направление совпадает с направлением силы, которая действует на положительный пробный заряд. Также следует ответить на один весьма распространённый вопрос и отметить, что силовой характеристикой электрического поля является именно напряженность. А что происходит с неподвижными и не меняющимися субъектами? Их электрическое поле считается электростатическим. При работе с точечным зарядом и исследовании напряженности интерес предоставляют силовые линии и закон Кулона. Какие особенности здесь существуют?

Силовая характеристика электрического поля в этом случае работает только для точечного заряда, что находится на расстоянии определённого радиуса от него. А если взять это значение по модулю, то у нас будет кулоновское поле. В нём направление вектора напрямую зависит от знака заряда. Так, если он является плюсовым, то поле будет «передвигаться» по радиусу. В противоположной ситуации вектор будет направлен непосредственно к самому заряду. Для наглядного понимания того, что и как происходит, можно найти и ознакомиться с рисунками, где изображены силовые линии. Основные характеристики электрического поля в учебниках хотя и довольно сложно объясняются, но рисунки, следует им отдать должное, в них качественные. Правда следует отметить такую особенность книг: при построении рисунков силовых линий их густота является пропорциональной модулю вектора напряженности. Эта небольшая подсказка, которая может оказать очень существенную помощь при контроле знаний или экзамене.

Потенциал

Заряд всегда движется, когда нет уравновешивания сил. Это говорит нам о том, что в таком случае электрическое поле обладает потенциальной энергией. Иными словами – оно может совершать какую-то работу. Давайте рассмотрим небольшой пример. Электрическое поле переместило заряд из точки А в Б. Как результат, наблюдается уменьшение потенциальной энергии поля. Это происходит из-за того, что была совершена работа. Эта силовая характеристика электрического поля не изменится, если перемещение было совершено под сторонним влиянием. В таком случае потенциальная энергия будет не уменьшаться, а увеличиваться. Причем данная физическая характеристика электрического поля изменится прямо пропорционально приложенной сторонней силе, что переместила заряд в электрическом поле. Следует отметить, что в этом случае вся совершаемая работа будет израсходована на увеличение потенциальной энергии. Для понимания темы давайте разберём следующий пример. Итак, у нас есть положительный заряд. Он расположен за пределами электрического поля, что рассматривается. Благодаря этому воздействие настолько мало, что его можно проигнорировать. Возникает сторонняя сила, что вносит заряд в электрическое поле. Ею же совершается работа, необходимая для перемещения. При этом преодолеваются силы поля. Таким образом, возникает потенциал действий, но уже в самом электрическом поле. Следует отметить, что это может быть неоднородный показатель. Так, энергия, что относится к каждой конкретной единице положительного заряда, называется потенциалом поля в этой точке. Он численно равен работе, которая была совершена сторонней силой для перемещения субъекта к данному месту. Потенциал поля измеряют в вольтах.

Напряжение

В любом электрическом поле можно наблюдать, как положительные заряды «мигрируют» от точек с высоким потенциалом к тем, что имеют низкие показатели данного параметра. Отрицательные следуют по этому пути в обратном направлении. Но в обоих случаях это происходит только благодаря наличию потенциальной энергии. Из неё высчитывается напряжение. Для этого необходимо знать величину, на которую стала меньшей потенциальная энергия поля. Напряжение же численно равно работе, которая была совершена для переноса положительного заряда между двумя конкретными точками. Из этого можно заметить интересное соответствие. Так, напряжение и разность потенциалов в данном случае являются одной и той же физической сущностью.

Суперпозиция электрических полей

Итак, нами были рассмотрены основные характеристики электрического поля. Но чтобы лучше разбираться в теме, предлагаем дополнительно рассмотреть ещё ряд параметров, которые могут иметь важность. И начнём мы с суперпозиции электрических полей. Ранее нами рассматривались ситуации, по условию которых был только один определённый заряд. Но ведь в полях их огромное количество! Поэтому, рассматривая приближенную к реальности ситуацию, давайте представим, что у нас есть несколько зарядов. Тогда выходит, что на пробный субъект будут действовать силы, которые подчиняются правилу сложения векторов. Также принцип суперпозиции говорит о том, что сложное движение поддаётся разделению на два или большее количество простых. Разрабатывать реалистическую модель движения невозможно без учета суперпозиции. Иными словами, на рассматриваемую нами частицу в существующих условиях влияют различные заряды, каждый из которых имеет своё электрическое поле.

Использование

Следует отметить, что сейчас возможности электрического поля используются не на полную силу. Даже, правильней сказать, его потенциал нами почти не применяется. В качестве практической реализации возможностей электрического поля можно привести люстру Чижевского. Ранее, в середине прошлого столетия, человечество начало осваивать космос. Но перед учеными стояло много нерешенных вопросов. Один из них – это воздух и вредоносные его компоненты. За решение этой проблемы взялся советский ученый Чижевский, которого одновременно интересовала энергетическая характеристика электрического поля. И следует отметить, что у него получилось действительно хорошая разработка. В основу этого прибора была положена техника создания аэроионных потоков воздуха благодаря небольшим разрядам. Но в рамках статьи нас интересует не столько само устройство, как принцип его работы. Дело в том, что для функционирования люстры Чижевского использовался не стационарный источник питания, а именно электрическое поле! Для концентрации энергии использовались специальные конденсаторы. Значительно на успешность работы прибора влияла энергетическая характеристика электрического поля окружающей обстановки. То есть это устройство разрабатывалось специально для космических кораблей, которые буквально напичканы электроникой. Питалось же оно от результатов деятельности других приборов, подключенных к постоянным источникам питания. Следует отметить, что направление не было заброшено, и возможность брать энергию от электрического поля исследуется и сейчас. Правда, необходимо отметить, что значительных успехов пока что достичь не удалось. Также необходимо отметить и относительно небольшую масштабность проводимых исследований, и то, что большую часть их при этом выполняют изобретатели-добровольцы.

На что влияют характеристики электрических полей?

Зачем необходимо их изучать? Как уже говорилось ранее, характеристиками электрического поля являются напряженность, напряжение и потенциал. В жизни обычного рядового человека эти параметры не могут похвастаться значительным влиянием. Но когда возникают вопросы о том, что следует сделать что-то крупное и сложное, то не учитывать их – непозволительная роскошь. Дело в том, что излишнее количество электронных полей (или их чрезмерная сила) приводит к тому, что возникают помехи при передаче сигналов техникой. Это ведёт к искажению передаваемой информации. Следует отметить, что это не единственная проблема данного типа. Кроме белых шумов техники, излишне сильные электронные поля могут негативно влиять и на работу человеческого организма. Следует отметить, что небольшая ионизация помещения всё же считается благом, поскольку способствует оседанию пыли на поверхностях человеческого жилища. Но если посмотреть, сколько всевозможной техники (холодильники, телевизоры, бойлеры, телефоны, системы электроэнергии и так далее) есть в наших домах, то можно сделать вывод, что это, увы, не полезно для нашего здоровья. Следует отметить, что невысокие характеристики электрических полей нам почти не вредят, поскольку к космическому излучению человечество уже давно привыкло. Но вот относительно электроники так сложно сказать. Конечно, отказаться от всего этого не получится, но можно успешно минимизировать негативное влияние электрических полей на человеческий организм. Для этого, кстати, достаточно применять принципы энергетически эффективного использования техники, которые предусматривают минимизацию времени работы механизмов.

Заключение

Мы рассмотрели, какая физическая величина является характеристикой электрического поля, где что используется, каков потенциал разработок и применение их в повседневной жизни. Но всё же хочется добавить немного заключительных слов о рассмотренной теме. Следует отметить, что ими интересовалось достаточно большое количество людей. Один из наиболее заметных следов в истории оставил известный сербский изобретатель Николай Тесла. Ему в этом удалось достичь немалых успехов относительно реализации задуманного, но, увы, не в плане энергетической эффективности. Поэтому, если есть желание поработать в этом направлении – неоткрытых возможностей очень много.

fb.ru

Электрическое поле, электрический ток | Кинезиолог

1. Понятие об электрическом поле. Силовая и энергетическая характеристики электрического поля

Электрическое поле – это вид материи, образующийся вокруг заряженных тел, посредством которого они взаимодействуют друг с другом.  Сила взаимодействия двух точечных зарядов определяется законом Кулона: F = k·q1·q2/r2. При этом если заряженные тела имеют одинаковые заряды, то они отталкиваются друг от друга, а разноимённые – притягиваются. Заряженные тела взаимодействуют друг с другом посредством их электрических полей. Выделяют следующие характеристики электрического поля:  1. Силовая характеристика – напряжённость электрического поля – это сила, которая действует на единицу заряда, помещённого в данное электрическое поле: E = F/q . Измеряется в [В/м]  Если определённый точечный заряд Q образует электрическое поле, то напряжённость этого поля в точке, находящейся на расстоянии r от заряда вычисляется по формуле: E = Q/(4πε0εr2) где Q– заряд, образующий данное электрическое поле;  ε0 = 8,84*10-12 Ф/м- электрическая постоянная;  ε- электрическая проницаемость среды, в которой образуется поле; r -расстояние от точечного заряда до точки, в которой исследуется напряжённость.  За направление напряжённости принимают направление силы, действующей на положительный заряд.  Величина напряжённости электрического поля графически изображается в виде силовых линий – тех линий, направление касательных к которым в любой точке совпадают с направлением напряжённости электрического поля. Чем больше линий – тем больше напряжённость.  2. Энергетическая характеристика электрического поля – потенциал.В каждой точке электрического поля на внесённый в это поле заряд действует определённая сила. При перемещении заряда в электрическом поле будет совершаться работа. При этом каждая точка электрического поля будет характеризоваться потенциалом.Потенциал поля в данной точке  – это потенциальная энергия электрического поля в этой точке, приходящаяся на единицу помещённого в эту точку заряда: φ = Wp/q [В] Потенциал поля характеризует возможную работу, которую совершает электрическое поле или которая совершается над электрическим полем при перемещении этого заряда в точку с другим потенциалом: Δφ = A/q.Поскольку работа будет совершаться только при перемещении заряда между точками, обладающими неодинаковыми потенциалами, то физический смысл имеет лишь разность потенциалов, или напряжение между двумя точками электрического поля. Поэтому, когда употребляют термин ″потенциал″, имеют в виду разность потенциалов между данной точкой, потенциал которой измеряют, и бесконечно удалённой точкой пространства, потенциал которой можно считать равным 0. При этом потенциал в данной точке поля, созданного точечным зарядом Q, равен: φ = Q/(4πε0εγ) и , если потенциал создается большим числом зарядов, то φ = ∑φ.Только разность потенциалов можно измерить с помощью вольтметра. Считают, что напряженность электрического поля – отрицательный градиент потенциала.

2. Действие электрического поля на вещества

Действие электрического поля на различные вещества неодинаково и зависит от их внутреннего строения. По этому действию все вещества делят на:- проводники электрического тока- полупроводники- изоляторы, или диэлектрики.Проводники характеризуются тем, что в них под действием электрического поля образуется электрический ток – направленное движение заряженных частиц. Это происходит благодаря тому, что в проводниках имеются свободные заряды. Существуют проводники 1 рода (металлы, в которых есть свободные электроны) и 2 рода (растворы электролитов, в которых свободными зарядами являются положительно заряженные ионы – катионы и отрицательно заряженные ионы – анионы).Полупроводники при обычной температуре имеют мало свободных зарядов. Причём когда электроны в полупроводниках становятся свободными, то на их месте образуется дырка – избыток положительного заряда. Поэтому носителями заряда в полупроводниках являются электроны и дырки.В диэлектриках нет свободных носителей зарядов, поэтому под действием электрического поля в них не возникает электрического тока, но возникает явление, называемое поляризацией диэлектрика – приобретение диэлектриком полярности за счёт разделения в нём положительных и отрицательных зарядов под действием электрического поля. Поляризация существует в 3 вариантах: ориентационная, электронная и ионная.Указанные различия хорошо описываются зонной теорией твёрдых тел, или квантовой теорией энергетического спектра электронов в кристалле. Согласно теории в кристалле существуют запрещённые и разрешённые энергетические зоны для электронов. Нижние зоны заполнены полностью электронам. Физические свойства кристаллов определяются верхними зонами, содержащими электроны. Если между верхней зоной и следующей разрешённой зоной запрещённая зона узкая (энергетический интервал невелик), то вещество является проводником, а если запрещённая зона велика – то диэлектриком.

3. Электрический ток

Основной характеристикой электрического тока является

сила тока

– количество заряда, пересекающее поперечное сечение проводника за единицу времени.  I

ср

= Δq/Δt или для мгновенной силы тока : I

= dq/dt. Единицей измерения силы тока является ампер (

A

). 1 ампер – сила тока, когда заряд 1 кулон проходит через поперечное сечение проводника за 1 секунду. Часто используют миллиампер (

мА

). 1

мА

= 0,001

A

. Обычно за направление электрического тока в проводнике принимают направление движения положительных зарядов.

Другой величиной, характеризующей электрический ток, является плотность тока – сила тока, приходящаяся на единицу площади проводника. Измеряется в амперах на квадратный метр: J = I/S. Различают:- Постоянный ток – электрический ток, параметры которого (сила и направление) не изменяются во времени. Источниками постоянного тока являются генераторы, которые поддерживают постоянную разность потенциалов на концах проводника.- Переменный ток – электрический ток, параметры которого изменяются во времени по закону синуса или косинуса. Электрический ток, передаваемый в потребительской электросети, представляет собой синусоидальное колебание частотой 50 Гц: I = Imax·cos(ωt + φ0).Основным законом, описывающим постоянный электрический ток, является закон Ома: сила тока в проводнике прямо пропорциональна разности потенциалов между его концами, или электрическому напряжению (U):  I = U/R.Величина R называется электрическим сопротивлением. Сопротивление является свойством проводников препятствовать прохождению через него электрического тока, при этом электрическая энергия превращается в тепловую энергию. Сопротивление возникает из-за столкновения заряженных частиц (носителей тока) с внутренними структурами проводника – атомами и молекулами. Единицей измерения сопротивления является Ом. Обратная величина сопротивлению называется электрической электропроводностью (D).Для многих веществ сопротивление является постоянной величиной, независимой от силы тока. Сопротивление проводника является функцией его размера, формы, строения и температуры. Величина сопротивления провода: R = ρ(1/S) (5), где l – длина проводника, S - площадь поперечного сечения проводника. Константа прямой пропорциональности ρ  называется удельным сопротивлением [ом·м] . Она зависит только от свойств вещества и температуры. Обратной величиной удельному сопротивлению является удельная электропроводность (γ) [ом-1·м-1]  .На основе удельной электропроводности характеризуют свойство веществ проводить электрический ток. Хорошие проводники тока имеют высокую удельную электропроводность. Изоляторы, или диэлектрики, имеют низкую удельную электропроводность. Полупроводники имеют промежуточную удельную электропроводность. Используя удельную электропроводность, как характеристику вещества, можно представить закон Ома в другой форме: J = γE.Из формулы следует, что плотность тока в проводнике прямо пропорциональна напряженности электрического поля (Е), создающего этот ток, и удельной электропроводности вещества проводника (γ).

Удельная электропроводность электролитов и биологических тканей

Плотность тока в растворе электролитов определяется электрическим зарядом положительных и отрицательных ионов, их концентрациями и скоростями движения в электрическом поле: J = q+n+v+ + q-n-v.Если принять, что концентрация и величина электрического заряда положительных и отрицательных ионов равны, то  J = qn(v+ + v-)(8)Скорость v ионов  пропорциональна напряженности электрического поля E и зависит от подвижности ионов u, которая, в свою очередь, является функцией размера, степени гидратации ионов, вязкости растворителя:v = uE (9)Тогда     J = qn(u+ + u-)·E    (10).Это выражение является  законом Ома для растворов электролитов.Хотя сопротивление биологических тканей постоянному электрическому току велико, и по удельной электропроводности биологические ткани близки к диэлектрикам, для объяснения различий в электропроводности различных тканей, их рассматривают как проводники 2 рода, носителями заряда в которых служат ионы.Биологические ткани не различаются существенно по их ионному составу, но отличаются условиями ионного перемещения. Поэтому ткани разнородны с точки зрения их электрических свойств. Мембраны клеток препятствуют перемещению ионов. Их электрическое сопротивление является наибольшим. Кровь, лимфа, цереброспинальная жидкость характеризуются низким сопротивлением электрическому току. Внутренние органы, содержащие много воды (мышцы, печень, почки, и т.п.), также имеют сравнительно низкое сопротивление. Но сопротивление таких тканей, как кожа и кости, очень высокое. Постоянный электрический ток плохо проникает через сухую кожу. Он распространяется в теле человека, главным образом, вдоль кровеносных и лимфатических сосудов и через мышцы.Причиной высокого сопротивления биологических тканей постоянному электрическому току – наличие статической ёмкости вследствие изоляционных свойств мембран и явления поляризации, происходящие в клетках, в результате которых возникает встречная эдс, препятствующая прохождению через ткань тока. Причём при малых значениях силы тока он не проходит через ткань вследствие влияния этой ЭДС, а при больших – происходит дезинтеграция (разрушение) клеточных структур, в результате чего сопротивление падает, однако дальнейшие исследования не имеют смысла.Поляризация – разделение положительных и отрицательных зарядов. многие полагают, что явление поляризации связано с наличием полупроницаемых мембран. Под действием электрического поля ионы начинают перемещаться, но не могут проникнуть через мембрану, в результате у внутренней поверхности мембраны возникает разделение зарядов. Внутри клетки образуется поляризационное поле. Как только его напряженность компенсирует внешнее поле перемещение ионов прекращается. Соответственно этому на внешней стороне мембраны концентрируются противоположно заряженные частицы.Другие, рассматривая клетки как слоистый диэлектрик, рассматривают явления поляризации как результат гетерогенности клеточных элементов по электропроводности, а также поляризацию связывают с дипольными молекулами (ориентация диполей вдоль силовых линий поля).Постоянный ток используют в медицинской практике, для реализации двух методов – гальванизации и лекарственного электрофореза.

Переменный ток. Полное сопротивление

Электрические цепи переменного тока включают такие основные электрические компоненты как резисторы, конденсаторы и индукторы. Их специфические свойства - сопротивление, емкость и индуктивность. Емкость. Если два проводника (пластины металла) разделены посредине изоляцией, они способны накапливать некоторое количество электрического заряда. Величина, равная отношению суммарного заряда, накопленного на пластинах, к разности потенциалов между пластинами называется емкостью (измеряется в Фарадах (F):   C = q/U (13). Индуктивность. Индуктивность L связана с наличием магнитного поля вокруг провода или катушки, через которые проходит электрический ток. Переменное магнитное поле порождает эдс (электродвижущую силу) самоиндукции, которая препятствует изменению силы тока в проводнике:ε = -L·dl/dt (14),   где ε - электродвижущая сила, dl/dt - мгновенная скорость изменения силы тока, L - индуктивность, которая зависит от геометрии цепи и от магнитных свойств вещества проводника и среды. Индуктивность измеряется в Генри (Г). Реактанс (или реактивное сопротивление). Ранее упоминалось, что сопротивление является свойством электрической цепи препятствовать прохождению через нее электрического тока и что электрическая энергия при этом превращается в тепловую. Реактанс - мера сопротивления переменному электрическому току. Реактанс связан с емкостью и индуктивностью некоторых частей цепи. Он не превращает электрическую энергию в энергию тепла. Реактанс присутствует дополнительно к сопротивлению, если через проводники протекает переменный ток. Когда в цепи течет постоянный электрический ток, то он подвергается только активному сопротивлению, но не реактансу. Реактанс бывает двух типов: индуктивный и емкостной. Емкостной реактанс XC является обратной величиной произведения угловой (циклической) частоты тока и емкости этой части цепи: XC = 1/(ω·C)(15). Индуктивный реактанс XL равен произведению угловой частоты переменного тока на индуктивность проводника:  XL = ωL     (16). Доказано, что индуктивный реактанс приводит к тому, что изменения напряжения в электрической цепи опережают изменения силы тока на четверть периода (π/2). Это можно объяснить тем, эдс самоиндукции препятствует нарастанию силы тока в цепи.Наоборот, емкостной реактанс приводит к тому, что изменения напряжения в электрической цепи отстают от изменения силы тока на четверть цикла (π/2). На рис. 3. проиллюстрировано данное явление.Поэтому общий реактанс X представляет собой разность индуктивного и емкостного реактансов:  X = XL - XC.Если суммировать активное сопротивление и общий реактанс, который препятствует прохождению переменного тока в электрической цепи, получим величину, которая называется полным сопротивлением Z – импедансом:

 Источники:

http://www.all-fizika.com/article/index.php?id_article=1979

kineziolog.su

Электрическое поле — Википедия с видео // WIKI 2

Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле[1], существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела[2].

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Основным действием электрического поля является силовое воздействие на неподвижные относительно наблюдателя электрически заряженные тела или частицы. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Энциклопедичный YouTube

  • 1/5

    Просмотров:

    101 485

    37 981

    32 426

    4 921

    15 976

  • Электрическое поле

  • Урок 218. Напряженность электрического поля

  • Электрические и магнитные поля

  • Электрическое поле, Напряженность, Линии напряженности, проводники в электрическом поле,

  • Электрическое поле. Напряженность электрического поля. Урок 52

Содержание

Энергия электрического поля

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

u=12(E→D→),{\displaystyle u={\frac {1}{2}}\left({\vec {E}}{\vec {D}}\right),}

где E — напряжённость электрического поля, D — индукция электрического поля.

Классификация

Однородное поле

Направление линий напряжённости между двумя разнозаряженными пластинами

Однородное поле — это электрическое поле, в котором напряжённость одинакова по модулю и направлению во всех точках пространства. Приблизительно однородным является поле между двумя разноимённо заряженными плоскими металлическими пластинами. В однородном электрическом поле линии напряжённости направлены параллельно друг другу.

Наблюдение электрического поля в быту

Для того, чтобы создать электрическое поле, необходимо создать электрический заряд. Натрите какой-нибудь диэлектрик о шерсть или что-нибудь подобное, например, пластиковую ручку о собственные чистые волосы. На ручке создастся заряд, а вокруг — электрическое поле. Заряженная ручка будет притягивать к себе мелкие обрывки бумаги. Если натирать о шерсть предмет большей ширины, например, резиновую ленту, то в темноте можно будет видеть мелкие искры, возникающие вследствие электрических разрядов.

Электрическое поле часто возникает возле телевизионного экрана (относится к телевизорам с ЭЛТ) при включении или выключении телеприёмника. Это поле можно почувствовать по его действию на волоски на руках или лице.

Электрическое поле внутри проводников с избыточными зарядами

Из опытов, приводимых в электростатике, известно, что избыточные заряды привнесённые в проводник извне, перемещаются к поверхности проводника и остаются у поверхности проводника. Само перемещение избыточных зарядов к поверхности проводника свидетельствует о наличии электрического поля внутри проводника в период перемещения к поверхности проводника.

Электрическое поле внутри проводников с недостатком собственных электронов

При недостатке собственных электронов тело получает положительный заряд «дырочной» природы. Дырки при этом ведут себя подобно электронам и также распределяются по поверхности тела.

Методы расчета электрического поля

Расчёты электрического поля можно проводить аналитическими[3][4][5] или численными методами[6]. Аналитические методы удается применить лишь в простейших случаях, на практике в основном используются численные методы. Численные методы включают в себя: метод сеток или метод конечных разностей; вариационные методы; метод конечных элементов; метод интегральных уравнений; метод эквивалентных зарядов[6].

См. также

Примечания

Литература

  • Орир, Джей — Популярная физика: [пер. с англ.].: Мир, 1966. — 446 с.
  • Учебник «Элементарный учебник физики» под ред. Ландсберга Г. С., Часть 2 (Электричество и магнетизм.)
  • Трофимова Т. И. Курс физики: Учеб. пособие для вузов.—2-е изд., перераб. и доп.— М.: Высш. шк., 1990.—478 с.: ил. ISBN 5-06-001540-8
Эта страница в последний раз была отредактирована 24 июня 2018 в 14:57.

wiki2.org


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.