Электро-магнитное поле. Электромагнитное поле это
Электромагнитное поле — Традиция
Материал из свободной русской энциклопедии «Традиция»
Электромагнитное поле — это совокупность электрических и магнитных полей, которые могут переходить друг в друга. Математически этот процесс описывается в электродинамике посредством системы уравнений Максвелла. Несколько иначе можно сказать, что электромагнитное поле (ЭМП) - область пространства, в которой наблюдаются электромагнитные взаимодействия (например пробного заряда в конкретной точке пространства с этим полем).
Процесс эволюции возмущений электромагнитных полей называются электромагнитным излучением, или электромагнитными волнами; колебаниями. Примерами электромагнитного излучения являются свет (в том числе инфракрасный и ультрафиолет), радиоволны, рентгеновские волны.
История открытия[править]
До начала XIXв. электричество и магнетизм считались явлениями, не связаннымыми друг с другом, и рассматривались в разных разделах физики.
В 1819г. датский физик Г. Х. Эрстед обнаружил, что проводник, по которому течёт электрический ток, вызывает отклонение стрелки магнитного компаса, из чего следовало, что электрические и магнитные явления взаимосвязаны.
Французский физик и математик А. Ампер в 1824г. дал математическое описание взаимодействия проводника тока с магнитным полем (см. Закон Ампера).
В 1831г. английский физик М. Фарадей экспериментально обнаружил явление электромагнитной индукции и дал его математическое описание.
В 1864г. Дж. Максвелл создаёт теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные компоненты единого целого — электромагнитного поля. Эта теория согласовывалась с предшествующими исследованиями, и, кроме того, из неё вытекало, что любые изменения электромагнитного поля должны порождать электромагнитные волны, распространяющиеся в диэлектрической среде (в т.ч. в пустоте) со скоростью света. Максвелл высказывал предположение, что свет является одним из проявлений электромагнитных волн. При жизни Максвелла учение об электромагнитных волнах оставалось «чистой» теорией, не имевшей никаких экспериментальных подтверждений.
В 1987г. немецкий физик Г. Герц поставил эксперимент, полностью подтвердивший теоретические выводы Максвелла. Его экспериментальная установка состояла из передатчика и приёмника электромагнитных волн, и фактически представляла собой исторически первую систему радиосвязи, хотя сам Герц не видел никакого практического применения своего открытия, и рассматривал его исключительно как экспериментальное подтверждение теории Максвелла.
Физические свойства[править]
В рамках квантовой электродинамики принято рассматривать электромагнитное поле как поток квантов света. Частицей-переносчиком электромагнитного взаимодействия является фотон - квант электромагнитного поля.
Электромагнитное взаимодействие — это один из основных видов фундаментальных взаимодействий. Существует теория, объединяющая электромагнитное и слабое взаимодействие в одно - электрослабое. Так же развивается теория, объединяющая электромагнитное и гравитационное взаимодействие.
Безопасность электромагнитных полей[править]
В связи со всё большим распространением источников ЭМП в быту (СВЧ-печи, мобильные телефоны, теле-радиовещание) и на производстве (оборудование ТВЧ, радиосвязь), большое значение приобретает нормирование уровней ЭМП.
Нормирование уровней ЭМП проводится раздельно для рабочих мест и санитарно-селитебной зоны. Контроль за уровнями ЭМП возложен на органы санитарного надзора и инспекцию электросвязи, а на предприятиях - на службу охраны труда.
Предельно-допустимые уровни ЭМП в разных радиочастотных диапазонах различны [1].
- ↑ ПРЕДЕЛЬНО ДОПУСТИМЫЕ УРОВНИ (ПДУ) ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ (ЭМП) ДИАПАЗОНА ЧАСТОТ 10 60 КГЦ (УТВ. МИНЗДРАВОМ СССР 31.07.1991 N 5803-91), по состоянию на 12 октября 2006 года.
traditio.wiki
Электромагнитное поле | Наука | FANDOM powered by Wikia
https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D0%BE%D0%BB%D0%B5
Электромагни́тное по́ле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, а также с телами, имеющими собственные дипольные и мультипольные электрические и магнитные моменты. Представляет собой совокупность электрического и магнитного полей, которые могут, при определённых условиях, порождать друг друга, а по сути, являются одной сущностью, формализуемой через тензор электромагнитного поля.
Электромагнитное поле (и его изменение со временем) описывается в электродинамике в классическом приближении посредством системы уравнений Максвелла. При переходе от одной инерциальной системы отсчета к другой электрическое и магнитное поле в новой системе отсчета — каждое зависит от обоих — электрического и магнитного — в старой, и это ещё одна из причин, заставляющая рассматривать электрическое и магнитное поле как проявления единого электромагнитного поля.
В современной формулировке электромагнитное поле представлено тензором электромагнитного поля, компонентами которого являются три компонента напряжённости электрического поля и три компонента напряжённости магнитного поля (или — магнитной индукции)[~ 1], а также четырёхмерным электромагнитным потенциалом — в определённом отношении ещё более важным.
Действие электромагнитного поля на заряженные тела описывается в классическом приближении посредством силы Лоренца.
Квантовые свойства электромагнитного поля и его взаимодействия с заряженными частицами (а также квантовые поправки к классическому приближению) — предмет квантовой электродинамики, хотя часть квантовых свойств электромагнитного поля более или менее удовлетворительно описывается упрощённой квантовой теорией, исторически возникшей заметно раньше.
Возмущение электромагнитного поля, распространяющееся в пространстве, называется электромагнитной волной (электромагнитными волнами)[~ 2]. Любая электромагнитная волна распространяется в пустом пространстве (вакууме) с одинаковой скоростью — скоростью света (свет также является электромагнитной волной). В зависимости от длины волны электромагнитное излучение подразделяется на радиоизлучение, свет (в том числе инфракрасный и ультрафиолет), рентгеновское излучение и гамма-излучение.
История открытия Править
Известные ещё со времён античности электричество и магнетизм до начала XIX в. считались явлениями, не связанными друг с другом, и рассматривались в разных разделах физики.
В 1819 г. датский физик Г. Х. Эрстед обнаружил, что проводник, по которому течёт электрический ток, вызывает отклонение стрелки магнитного компаса, расположенного вблизи этого проводника, из чего следовало, что электрические и магнитные явления взаимосвязаны.
Французский физик и математик А. Ампер в 1824 г. дал математическое описание взаимодействия проводника тока с магнитным полем (см. Закон Ампера).
В 1831 г. английский физик М. Фарадей экспериментально обнаружил и дал математическое описание явления электромагнитной индукции — возникновения электродвижущей силы в проводнике, находящемся под действием изменяющегося магнитного поля.
В 1864 г. Дж. Максвелл создаёт теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого — электромагнитного поля. Эта теория с единой точки зрения объясняла результаты всех предшествующих исследований в области электродинамики, и, кроме того, из неё вытекало, что любые изменения электромагнитного поля должны порождать электромагнитные волны, распространяющиеся в диэлектрической среде (в том числе, в пустоте) с конечной скоростью, зависящей от диэлектрической и магнитной проницаемости этой среды. Для вакуума теоретическое значение этой скорости было близко к экспериментальным измерениям скорости света, полученным на тот момент, что позволило Максвеллу высказать предположение (впоследствии подтвердившееся), что свет является одним из проявлений электромагнитных волн.
Теория Максвелла уже при своем возникновении разрешила ряд принципиальных проблем электромагнитной теории, предсказав новые эффекты и дав надежную и эффективную математическую основу описанию электромагнитных явлений. Однако при жизни Максвелла наиболее яркое предсказание его теории — предсказание существования электромагнитных волн — не получило прямых экспериментальных подтверждений.
В 1887 г. немецкий физик Г. Герц поставил эксперимент, полностью подтвердивший теоретические выводы Максвелла. Его экспериментальная установка состояла из находящихся на некотором расстоянии друг от друга передатчика и приёмника электромагнитных волн, и фактически представляла собой исторически первую систему радиосвязи, хотя сам Герц не видел никакого практического применения своего открытия, и рассматривал его исключительно как экспериментальное подтверждение теории Максвелла.
В XX в. развитие представлений об электромагнитном поле и электромагнитном излучении продолжилось в рамках квантовой теории поля, основы которой были заложены великим немецким физиком Максом Планком. Эта теория, в целом завершенная рядом физиков около середины XX века, оказалась одной из наиболее точных физических теорий, существующих на сегодняшний день.
Во второй половине XX века (квантовая) теория электромагнитного поля и его взаимодействия была включена в единую теорию электрослабого взаимодействия и ныне входит в так называемую стандартную модель в рамках концепции калибровочных полей (электромагнитное поле является с этой точки зрения простейшим из калибровочных полей — абелевым калибровочным полем).
Электромагнитное поле с современной точки зрения есть безмассовое[~ 3] абелево[~ 4]векторное[~ 5]калибровочное[~ 6] поле. Его калибровочная группа — группа U(1).
Среди известных (не гипотетических) фундаментальных полей электромагнитное поле — единственное, относящееся к указанному типу. Все другие поля такого же типа (которые можно рассматривать, по крайней мере, чисто теоретически) — (были бы) полностью эквивалентны электромагнитному полю, за исключением, быть может, констант.
Физические свойства Править
Физические свойства электромагнитного поля и электромагнитного взаимодействия - предмет изучения электродинамики, с классической точки зрения оно описывается классической электродинамикой, а с квантовой - квантовой электродинамикой. В принципе, первая является приближением второй, заметно более простым, но для многих задач - очень и очень хорошим.
В рамках квантовой электродинамики электромагнитное излучение можно рассматривать как поток фотонов. Частицей-переносчиком электромагнитного взаимодействия является фотон (частица, которую можно представить как элементарное квантовое возбуждение электромагнитного поля) — безмассовый векторный бозон. Фотон также называют квантом электромагнитного поля (подразумевая, что соседние по энергии стационарные состояния свободного электромагнитного поля с определенной частотой и волновым вектором различаются на один фотон).
Электромагнитное взаимодействие — это один из основных видов дальнодействующих фундаментальных взаимодействий, а электромагнитное поле — одно из фундаментальных полей.
Существует теория (входящая в Стандартную модель), объединяющая электромагнитное и слабое взаимодействие в одно — электрослабое. Также существуют теории, объединяющие электромагнитное и гравитационное взаимодействие (например, теория Калуцы-Клейна). Однако последняя, при её теоретических достоинствах и красоте, не является общепринятой (в смысле её предпочтительности), так как экспериментально не обнаружено ее отличий от простого сочетания обычных теорий электромагнетизма и гравитации, а также теоретических преимуществ в степени, заставившей бы признать её особенную ценность. Это же (в лучшем случае) можно сказать пока и о других подобных теориях: даже лучшие из них, по меньшей мере, недостаточно разработаны, чтобы считаться вполне успешными.
Безопасность электромагнитных полей Править
В связи со всё большим распространением источников ЭМП в быту (СВЧ-печи, мобильные телефоны, теле-радиовещание) и на производстве (оборудование ТВЧ, радиосвязь), большое значение приобретают нормирование уровней ЭМП и изучение возможного влияния ЭМП на человека[1]. Нормирование уровней ЭМП проводится раздельно для рабочих мест и санитарно-селитебной зоны.
Контроль за уровнями ЭМП возложен на органы санитарного надзора и инспекцию электросвязи, а на предприятиях — на службу охраны труда.
Предельно-допустимые уровни ЭМП в разных радиочастотных диапазонах различны[2].
- ↑ Для вакуума, для которого формулируются фундаментальные уравнения, напряжённость магнитного поля и магнитная индукция — по сути одно и то же, хотя в некоторых системах единиц (в том числе в СИ) могут отличаться постоянным множителем и даже единицами измерения.
- ↑ Подразумевается распространение со слабым убыванием по интенсивности; в вакууме подразумевается убывание с расстоянием от источника медленнее, чем убывание статического (кулоновского) поля; плоская электромагнитная волна — пока приближение плоской волны верно и в пренебрежении поглощением (или в идеальном вакууме) — вообще не убывает по амплитуде, сферическая — убывает медленнее, чем соответственно напряженность или потенциал в законе Кулона.
- ↑ Параметр m (масса) в уравнении Клейна-Гордона для электромагнитного поля равен нулю (иначе говоря, это означает, что электромагнитный потенциал подчиняется — в определённой калибровке — просто волновому уравнению. С этим связан факт, что фотон (в вакууме) нельзя — как и любую безмассовую частицу — остановить , он всегда движется с одной и той же скоростью — скоростью света.
- ↑ В наиболее простой интерпретации это означает, что электромагнитное поле непосредственно не взаимодействует само с собой, то есть что электромагнитное не имеет электрического заряда. Фотон не может сам непосредственно излучить или поглотить другой фотон.
- ↑ При применении терминов в узком смысле калибровочными считаются только векторные поля; но мы, во всяком случае, обозначим здесь векторный характер электромагнитного поля явно.
- ↑ Калибровочным электромагнитное поле является при рассмотрении его во взаимодействии с электрически заряженными частицами; понятие калибровочного поля всегда подразумевает подобное взаимодействие (подобное в каком-то смысле; конкретный способ взаимодействия может заметно отличаться).
- ↑ Ю. А. Холодов. Мозг в электромагнитных полях. — М.: Наука, 1982. — P. 123. — (Человек и окружающая среда).
- ↑ Предельно допустимые уровни (ПДУ) воздействия электромагнитных полей (ЭМП) диапазона частот 10-60 КГц (утв. Минздравом СССР 31.07.1991 № 5803-91), по состоянию на 12 октября 2007 года.
- Страница 0 - краткая статья
- Страница 1 - энциклопедическая статья
- Разное - на страницах: 2 , 3 , 4 , 5
- Прошу вносить вашу информацию в «Электромагнитное поле 1», чтобы сохранить ее
ru.science.wikia.com
Электромагнитное поле — Википедия РУ
Электромагнитное поле (и его изменение со временем) описывается в электродинамике в классическом приближении посредством системы уравнений Максвелла. При переходе от одной инерциальной системы отсчета к другой электрическое и магнитное поле в новой системе отсчета — каждое зависит от обоих — электрического и магнитного — в старой, и это ещё одна из причин, заставляющая рассматривать электрическое и магнитное поле как проявления единого электромагнитного поля.
В современной формулировке электромагнитное поле представлено тензором электромагнитного поля, компонентами которого являются три компонента напряжённости электрического поля и три компонента напряжённости магнитного поля (или — магнитной индукции), а также четырёхмерным электромагнитным потенциалом — в определённом отношении ещё более важным.
Действие электромагнитного поля на заряженные тела описывается в классическом приближении посредством силы Лоренца.
Квантовые свойства электромагнитного поля и его взаимодействия с заряженными частицами (а также квантовые поправки к классическому приближению) — предмет квантовой электродинамики, хотя часть квантовых свойств электромагнитного поля более или менее удовлетворительно описывается упрощённой квантовой теорией, исторически возникшей заметно раньше.
Возмущение электромагнитного поля, распространяющееся в пространстве, называется электромагнитной волной (электромагнитными волнами)[~ 1]. Любая электромагнитная волна распространяется в пустом пространстве (вакууме) с одинаковой скоростью — скоростью света (свет также является электромагнитной волной). В зависимости от длины волны электромагнитное излучение подразделяется на радиоизлучение, свет (в том числе инфракрасный и ультрафиолет), рентгеновское излучение и гамма-излучение.
История открытия
Известные ещё со времён античности электричество и магнетизм до начала XIX в. считались явлениями, не связанными друг с другом, и рассматривались в разных разделах физики.
В 1819 г. датский физик Г. Х. Эрстед обнаружил, что проводник, по которому течёт электрический ток, вызывает отклонение стрелки магнитного компаса, расположенного вблизи этого проводника, из чего следовало, что электрические и магнитные явления взаимосвязаны.
Французский физик и математик А. Ампер в 1824 г. дал математическое описание взаимодействия проводника тока с магнитным полем (см. Закон Ампера).
В 1831 г. английский физик М. Фарадей экспериментально обнаружил и дал математическое описание явления электромагнитной индукции — возникновения электродвижущей силы в проводнике, находящемся под действием изменяющегося магнитного поля.
В 1864 г. Дж. Максвелл создаёт теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого — электромагнитного поля. Эта теория с единой точки зрения объясняла результаты всех предшествующих исследований в области электродинамики, и, кроме того, из неё вытекало, что любые изменения электромагнитного поля должны порождать электромагнитные волны, распространяющиеся в диэлектрической среде (в том числе, в пустоте) с конечной скоростью, зависящей от диэлектрической и магнитной проницаемости этой среды. Для вакуума теоретическое значение этой скорости было близко к экспериментальным измерениям скорости света, полученным на тот момент, что позволило Максвеллу высказать предположение (впоследствии подтвердившееся), что свет является одним из проявлений электромагнитных волн.
Теория Максвелла уже при своем возникновении разрешила ряд принципиальных проблем электромагнитной теории, предсказав новые эффекты и дав надежную и эффективную математическую основу описанию электромагнитных явлений. Однако при жизни Максвелла наиболее яркое предсказание его теории — предсказание существования электромагнитных волн — не получило прямых экспериментальных подтверждений.
В 1887 г. немецкий физик Г. Герц поставил эксперимент, полностью подтвердивший теоретические выводы Максвелла. Его экспериментальная установка состояла из находящихся на некотором расстоянии друг от друга передатчика и приёмника электромагнитных волн, и фактически представляла собой исторически первую систему радиосвязи, хотя сам Герц не видел никакого практического применения своего открытия, и рассматривал его исключительно как экспериментальное подтверждение теории Максвелла.
В XX в. развитие представлений об электромагнитном поле и электромагнитном излучении продолжилось в рамках квантовой теории поля, основы которой были заложены великим немецким физиком Максом Планком. Эта теория, в целом завершенная рядом физиков около середины XX века, оказалась одной из наиболее точных физических теорий, существующих на сегодняшний день.
Во второй половине XX века (квантовая) теория электромагнитного поля и его взаимодействия была включена в единую теорию электрослабого взаимодействия и ныне входит в так называемую стандартную модель в рамках концепции калибровочных полей (электромагнитное поле является с этой точки зрения простейшим из калибровочных полей — абелевым калибровочным полем).
Классификация
Электромагнитное поле с современной точки зрения есть безмассовое[~ 2] абелево[~ 3]векторное[~ 4]калибровочное[~ 5] поле. Его калибровочная группа — группа U(1).
Среди известных (не гипотетических) фундаментальных полей электромагнитное поле — единственное, относящееся к указанному типу. Все другие поля такого же типа (которые можно рассматривать, по крайней мере, чисто теоретически) — (были бы) полностью эквивалентны электромагнитному полю, за исключением, быть может, констант.
Физические свойства
Физические свойства электромагнитного поля и электромагнитного взаимодействия — предмет изучения электродинамики, с классической точки зрения оно описывается классической электродинамикой, а с квантовой — квантовой электродинамикой. В принципе, первая является приближением второй, заметно более простым, но для многих задач — очень и очень хорошим.
В рамках квантовой электродинамики электромагнитное излучение можно рассматривать как поток фотонов. Частицей-переносчиком электромагнитного взаимодействия является фотон (частица, которую можно представить как элементарное квантовое возбуждение электромагнитного поля) — безмассовый векторный бозон. Фотон также называют квантом электромагнитного поля (подразумевая, что соседние по энергии стационарные состояния свободного электромагнитного поля с определённой частотой и волновым вектором различаются на один фотон).
Электромагнитное взаимодействие — это один из основных видов дальнодействующих фундаментальных взаимодействий, а электромагнитное поле — одно из фундаментальных полей.
Существует теория (входящая в Стандартную модель), объединяющая электромагнитное и слабое взаимодействие в одно — электрослабое. Также существуют теории, объединяющие электромагнитное и гравитационное взаимодействие (например, теория Калуцы-Клейна). Однако последняя, при её теоретических достоинствах и красоте, не является общепринятой (в смысле её предпочтительности), так как экспериментально не обнаружено её отличий от простого сочетания обычных теорий электромагнетизма и гравитации, а также теоретических преимуществ в степени, заставившей бы признать её особенную ценность. Это же (в лучшем случае) можно сказать пока и о других подобных теориях: даже лучшие из них, по меньшей мере, недостаточно разработаны, чтобы считаться вполне успешными.
Безопасность электромагнитных полей
В связи со всё большим распространением источников ЭМП в быту (СВЧ-печи, мобильные телефоны, теле-радиовещание) и на производстве (оборудование ТВЧ, радиосвязь), большое значение приобретают нормирование уровней ЭМП и изучение возможного влияния ЭМП на человека[1]. Нормирование уровней ЭМП проводится раздельно для рабочих мест и санитарно-селитебной зоны.
Контроль за уровнями ЭМП возложен на органы санитарного надзора и инспекцию электросвязи, а на предприятиях — на службу охраны труда.
Предельно-допустимые уровни ЭМП в разных радиочастотных диапазонах различны.
См. также
Примечания
- ↑ Подразумевается распространение со слабым убыванием по интенсивности; в вакууме подразумевается убывание с расстоянием от источника медленнее, чем убывание статического (кулоновского) поля; плоская электромагнитная волна — пока приближение плоской волны верно и в пренебрежении поглощением (или в идеальном вакууме) — вообще не убывает по амплитуде, сферическая — убывает медленнее, чем соответственно напряженность или потенциал в законе Кулона.
- ↑ Параметр m (масса) в уравнении Клейна-Гордона для электромагнитного поля равен нулю (иначе говоря, это означает, что электромагнитный потенциал подчиняется — в определённой калибровке — просто волновому уравнению. С этим связан факт, что фотон (в вакууме) нельзя — как и любую безмассовую частицу — остановить, он всегда движется с одной и той же скоростью — скоростью света.
- ↑ В наиболее простой интерпретации это означает, что электромагнитное поле непосредственно не взаимодействует само с собой, то есть что электромагнитное не имеет электрического заряда. Фотон не может сам непосредственно излучить или поглотить другой фотон.
- ↑ При применении терминов в узком смысле калибровочными считаются только векторные поля; но мы, во всяком случае, обозначим здесь векторный характер электромагнитного поля явно.
- ↑ Калибровочным электромагнитное поле является при рассмотрении его во взаимодействии с электрически заряженными частицами; понятие калибровочного поля всегда подразумевает подобное взаимодействие (подобное в каком-то смысле; конкретный способ взаимодействия может заметно отличаться).
Литература
Ссылки
- ↑ Ю. А. Холодов. Мозг в электромагнитных полях. — М.: Наука, 1982. — P. 123. — (Человек и окружающая среда).
http-wikipediya.ru
электромагнитное поле - это... Что такое электромагнитное поле?
электромагнитное поле06.01.03 электромагнитное поле [ electromagnetic field]: Поле, определяемое электрическими и магнитными компонентами, которые характеризуются четырьмя векторными величинами, связанными со свойствами материальной среды или вакуума:
Е - вектор напряженности электрического поля;
D - вектор электрической индукции;
Н - вектор напряженности магнитного поля;
В - вектор магнитной индукции.
Рисунок 1 - Электромагнитное поле
Примечание - Термин и его определение модифицированы по отношению к термину 705-01-07 по МЭК 60050-705:1995.
8 Электромагнитное поле
[ГОСТ Р52002-2003, пункт 1]
Вид материи, определяемый во всех точках двумя векторными величинами, которые характеризуют две его стороны, называемые «электрическое поле» и «магнитное поле», оказывающий силовое воздействие на электрически заряженные частицы, зависящее от их скорости и электрического заряда
электромагнитное поле: Вид материи, определяемый во всех точках двумя векторными величинами, которые характеризуют две его стороны, называемые «электрическое поле» и «магнитное поле», оказывающий силовое воздействие на электрически заряженные частицы, зависящее от их скорости и электрического заряда.
[ГОСТ 52002-2003, пункт 2.1]
Электромагнитное поле - совокупность как переменного электрического, так и неразрывно с ним связанного магнитного поля.
1 электромагнитное поле
Вид материи, определяемый во всех точках двумя векторными величинами, которые характеризуют две его стороны, называемые «электрическое поле» и «магнитное поле», оказывающий силовое воздействие на электрически заряженные частицы, зависящее от их скорости и электрического заряда
Смотри также родственные термины:
Электромагнитное поле (ЭМП) - переменное поле, представляющее собой совокупность изменяющихся вовремени взаимно связанных и взаимно обусловленных электрического и магнитного полей.
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
- Электромагнитное перемешивающее устройство
- Электромагнитное поле (ЭМП)
Смотреть что такое "электромагнитное поле" в других словарях:
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, один из видов поля физического. Характеризуется напряженностями (или индукциями) электрического поля и магнитного поля. Переменное электромагнитное поле может распространяться в виде электромагнитных волн. Электромагнитное… … Современная энциклопедия
Электромагнитное поле — ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, один из видов поля физического. Характеризуется напряженностями (или индукциями) электрического поля и магнитного поля. Переменное электромагнитное поле может распространяться в виде электромагнитных волн. Электромагнитное… … Иллюстрированный энциклопедический словарь
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — физ. поле, взаимодействующее с электрически заряж. частицами вещества, а также с частицами, имеющими собственные дипольные и мультипольные электрич. и магн. моменты. Концепция поля для описания электрич. и магн. явлений [первонач. в форме… … Физическая энциклопедия
электромагнитное поле — Вид материи, определяемый во всех точках двумя векторными величинами, которые характеризуют две его стороны, называемые «электрическое поле» и «магнитное поле», оказывающий силовое воздействие на электрически заряженные… … Справочник технического переводчика
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — см. (13, 15) … Большая политехническая энциклопедия
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — особая форма материи. Посредством электромагнитного поля осуществляется взаимодействие между заряженными частицами. Характеризуется напряженностями (или индукциями) электрических и магнитных полей … Большой Энциклопедический словарь
Электромагнитное поле — ЭЛЕКТРОМАГНИТНЫЙ, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ — особая форма материи, посредством к рой осуществляется вз ствие между электрически заряж. ч цами (см. ПОЛЯ ФИЗИЧЕСКИЕ). Э. п. в вакууме характеризуется вектором напряжённости электрич. поля Е и магн. индукцией В, к рые определяют силы,… … Физическая энциклопедия
Электромагнитное поле — совокупность как переменного электрического, так и неразрывно с ним связанного магнитного поля... Источник: МСанПиН 001 96. Санитарные нормы допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях.… … Официальная терминология
Электромагнитное поле — Классическая электродинамика … Википедия
электромагнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Характеризуется напряжённостями (или индукциями) электрического и магнитного полей. * * * ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ, особая… … Энциклопедический словарь
normative_reference_dictionary.academic.ru
Электромагнитное поле — Викизнание... Это Вам НЕ Википедия!
Электромагнитное поле - это фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, представимое как совокупность электрического и магнитного полей, которые могут при определённых условиях порождать друг друга. Электромагнитное поле (и его изменение со временем) описывается в электродинамике в классическом приближении посредством системы уравнений Максвелла. При переходе от одной инерциальной системы отсчета к другой электрическое и магнитное поле в новой системе отсчета — каждое зависит от обоих — электрического и магнитного — в старой, и это ещё одна из причин, заставляющая рассматривать электрическое и магнитное поле как проявления единого электромагнитного поля.
В современной формулировке электромагнитное поле представлено тензором электромагнитного поля, компонентами которого являются три компоненты напряжённости электрического поля и три компоненты напряжённости магнитного поля (или — магнитной индукции)[1], а также четырёхмерным электромагнитным потенциалом — в определённом отношении ещё более важным.
Действие электромагнитного поля на заряженные тела описывается в классическом приближении посредством силы Лоренца.
Квантовые свойства электромагнитного поля и его взаимодействия с заряженными частицами (а также квантовые поправки к классическому приближению) — предмет квантовой электродинамики, хотя часть квантовых свойств электромагнитного поля более или менее удовлетворительно описывается упрощённой квантовой теорией, исторически возникшей заметно раньше.
Возмущение электромагнитного поля, распространяющееся на далёкие расстояния, называется электромагнитной волной (электромагнитными волнами)[2]. Любая электромагнитная волна распространяется в пустом пространстве (вакууме) с одинаковой скоростью — скоростью света (свет также является электромагнитной волной). В зависимости от длины волны электромагнитное излучение подразделяется на радиоизлучение, свет (в том числе инфракрасный и ультрафиолет), рентгеновское излучение и гамма-излучение.
Электромагнитное поле в микромире[править]
Как утверждает полевая теория элементарных частиц каждая элементарная частица состоит из переменного электромагнитного поля с постоянной составляющей. Постоянная составляющая создает магнитные поля элементарных частиц, поле электрического заряда заряженных элементарных частиц, а также дипольное электрическое поле нейтральных элементарных частиц. Основная энергия (до 98%) сосредоточена во вращающемся переменном электромагнитном поле. От величины энергии постоянного магнитного поля зависит обладание элементарной частицей ядерными силами.
auto.wiki-wiki.ru
Электромагнитное поле. Измерение электромагнитного поля
Главная / Информация / Статьи / Электромагнитное поле. Измерение электромагнитного поляЭлектромагнитное поле - это фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, представимое как совокупность электрического и магнитного полей, которые могут при определенных условиях порождать друг друга. Электромагнитное поле (его изменение со временем) описывается в электродинамике в классическом приближении посредством системы уравнений Максвелла. При переходе от одной инерциальной системы отсчета к другой электрическое и магнитное поле в новой системе отсчета - каждое зависит от обоих - электрического и магнитного - в старой, и это еще одна из причин, заставляющая рассматривать электрическое и магнитное поле как проявления единого электромагнитного поля.
В современной формулировке электромагнитное поле представлено тензором электромагнитного поля, компонентами которого являются три компоненты напряженности электрического поля и три компоненты напряженности магнитного поля (или - магнитной индукции), а также четырехмерным электромагнитным потенциалом - в определенном отношении еще более важным.
Действие электромагнитного поля на заряженные тела описывается в классическом приближении посредством силы Лоренца. Квантовые свойства электромагнитного поля и его взаимодействия с заряженными частицами (а также квантовые поправки к классическому приближению) - предмет квантовой электродинамики, хотя часть квантовых свойств электромагнитного поля более или менее удовлетворительно описывается упрощенной квантовой теорией, исторически возникшей заметно раньше.
Распространение возмущений электромагнитного поля на далекие расстояния называется электромагнитной волной (электромагнитными волнами). Любая электромагнитная волна распространяется в пустом пространстве (вакууме) с одинаковой скоростью - скоростью света (свет также является электромагнитной волной). В зависимости от длины волны электромагнитное излучение подразделяется на радиоизлучение, свет (в том числе инфракрасный и ультрафиолет), рентгеновское излучение и гамма-излучение.
История открытия:
В 1819г. датский физик Г. Х. Эрстед обнаружил, что проводник, по которому течёт электрический ток, вызывает отклонение стрелки магнитного компаса, из чего следовало, что электрические и магнитные явления взаимосвязаны.
Французский физик и математик А. Ампер в 1824г. дал математическое описание взаимодействия проводника тока с магнитным полем.
В 1831г. английский физик М. Фарадей экспериментально обнаружил и дал математическое описание явления электромагнитной индукции - возникновения электродвижущей силы в проводнике, находящемся под действием изменяющегося магнитного поля.
В 1864г. Дж. Максвелл создаёт теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого - электромагнитного поля. Эта теория с единой точки зрения объясняла результаты всех предшествующих исследований в области электродинамики, и, кроме того, из неё вытекало, что любые изменения электромагнитного поля должны порождать электромагнитные волны, распространяющиеся в диэлектрической среде (в том числе, в пустоте) с конечной скоростью, зависящей от диэлектрической и магнитной проницаемости этой среды. Для вакуума теоретическое значение этой скорости, было близко к экспериментальным измерениям скорости света, полученным на тот момент, что позволило Максвеллу высказать предположение (впоследствии подтвердившееся), что свет является одним из проявлений электромагнитных волн.
В 1887г. немецкий физик Г. Герц поставил эксперимент, полностью подтвердивший теоретические выводы Максвелла. Его экспериментальная установка состояла из находящихся на некотором расстоянии друг от друга передатчика и приёмника электромагнитных волн, и фактически представляла собой исторически первую систему радиосвязи.
В связи со всё большим распространением источников электромагнитного поля в быту (СВЧ-печи, мобильные телефоны, теле-радиовещание) и на производстве (оборудование ТВЧ, радиосвязь), большое значение приобретает измерение и нормирование уровней ЭМП. Нормирование уровней ЭМП проводится раздельно для рабочих мест и санитарно-селитебной зоны. Контроль за уровнями ЭМП возложен на органы санитарного надзора и инспекцию электросвязи, а на предприятиях - на службу охраны труда.
Предельно-допустимые уровни ЭМП в разных радиочастотных диапазонах различны.
Измерение электромагнитного поля целесообразно проводить для определения его интенсивности, ведь любой человек подвержен его интенсивному воздействию. Измерение электромагнитного излучения позволяет оценить степень возмущения электрических и магнитных полей, которые образуются около работающих систем радиосвязи, бытовой техники, производственного оборудования и т. д.Измерение электромагнитного излучения - очень важный момент, так как это излучение не вполне изучено, но доказано учёными, что оно влияет на живые организмы и может являться причиной повышенной утомляемости, слабости, скачков артериального давления и многих других неприятностей со здоровьем. Узнать, является ли уровень электромагнитного излучения в Вашем доме нормальным, можно с помощью измерения электромагнитного поля вокруг бытовых и радио проборов с помощью специальных устройств, а именно, измерителей напряжённости электромагнитных полей.
www.eurolab.ru
Электро-магнитное поле - это... Что такое Электро-магнитное поле?
Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение электрических и магнитных полей.
Характеристики электромагнитного излучения
Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны зависит от скорости распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света (принцип максимальности скорости света не нарушается, так как скорость переноса энергии и информации в любом случае не превышает световой скорости).
Описанием свойств и параметров электромагнитного излучения занимается электродинамика.
Существуют различные теории, позволяющие смоделировать и исследовать свойства и проявления электромагнитного излучения. Наиболее фундаментальной из них является квантовая электродинамика, из которой путём тех или иных упрощений можно в принципе получить все перечисленные ниже теории, имеющие широкое применение в своих областях. Для описания относительно низкочастотного электромагнитного излучения в макроскопической области используют, как правило, классическую электродинамику, основанную на уравнениях Максвелла, причём существуют упрощения в прикладных применениях. Для оптического излучения (вплоть до рентгеновского диапазона) применяют оптику (в частности, волновую оптику, когда размеры некоторых частей оптической системы близки к длинам волн; квантовую оптику, когда существенны процессы поглощения, излучения и рассеяния фотонов; геометрическую оптику — предельный случай волновой оптики, когда длиной волны излучения можно пренебречь). Гамма-излучение чаще всего является предметом ядерной физики, с других позиций изучается воздействие электромагнитного излучения в радиологии.
Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:
- наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.
- Электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум.
Диапазоны электромагнитного излучения
Электромагнитное излучение принято делить по частотным диапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.
Радиоволны. Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые (микрометровые). Волны с длиной λ < 1 м (ν > 300 МГц) принято также называть микроволнами или волнами сверхвысоких частот (СВЧ). Деление радиоволн на диапазоны см. в статьях Радиоизлучение и Диапазоны частот.
Ионизирующее электромагнитное излучение. К этой группе традиционно относят рентгеновское и гамма-излучение, хотя, строго говоря, ионизировать атомы может и ультрафиолетовое излучение, и даже видимый свет. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ — 0,1 МэВ, а энергия гамма-квантов — больше 0,1 МэВ. В узком смысле гамма-излучение испускается ядром, а рентгеновское — атомной электронной оболочкой при выбивании электрона с низколежащих орбит, хотя эта классификация неприменима к жёсткому излучению, генерируемому без участия атомов и ядер (например, синхротронному или тормозному излучению).
Радиоволны
Из-за больших значений λ распространение радиоволн можно рассматривать без учёта атомистического строения среды. Исключение составляют только самые короткие радиоволны, примыкающие к инфракрасному участку спектра. В радиодиапазоне слабо сказываются и квантовые свойства излучения, хотя их всё же приходится учитывать, в частности, при описании квантовых генераторов и усилителей сантиметрового и миллиметрового диапазонов, а также молекулярных стандартов частоты и времени, при охлаждении аппаратуры до температур в несколько кельвинов.
Радиоволны возникают при протекании по проводникам переменного тока соответствующей частоты. И наоборот, проходящая в пространстве электромагнитная волна возбуждает в проводнике соответствующий ей переменный ток. Это свойство используется в радиотехнике при конструировании антенн.
Естественным источником волн этого диапазона являются грозы. Считается, что они же являются источником стоячих электромагнитных волн Шумана.
Микроволновое излучение
Инфракрасное излучение (Тепловое)
Видимое излучение (Оптическое)
Прозрачная призма разлагает луч белого цвета на составляющие его лучи.Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова. Выделение такой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования и разработанных исторически главным образом при изучении видимого света (линзы и зеркала для фокусирования излучения, призмы, дифракционные решётки, интерференционные приборы для исследования спектрального состава излучения и пр.).
Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины — с молекулярными размерами и межмолекулярными расстояниями. Благодаря этому в этой области становятся существенными явления, обусловленные атомистическим строением вещества. По этой же причине, наряду с волновыми, проявляются и квантовые свойства света.
Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов и светит ярко-белым светом (максимум непрерывного спектра солнечного излучения расположен в "зелёной" области 550 нм, где находится и максимум чувствительности глаза). Именно потому, что мы родились возле такой звезды, этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.
Излучение оптического диапазона возникает, в частности, при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул. Чем сильнее нагрето тело, тем выше частота, на которой находится максимум спектра его излучения (см. Закон смещения Вина). При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие (см. Болометрия).
Оптическое излучение может создаваться и регистрироваться в химических и биологических реакциях. Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии. Источником энергии для большинства живых существ на Земле является фотосинтез — биологическая реакция, протекающая в растениях под действием оптического излучения Солнца.
Ультрафиолетовое излучение
Жёсткое излучение
В области рентгеновского и гамма-излучения на первый план выступают квантовые свойства излучения. Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов. Гамма-излучение появляется в результате процессов, происходящих внутри атомных ядер, а также в результате превращения элементарных частиц. Оно появляется и при торможении быстрых заряженных частиц.
Особенности электромагнитного излучения разных диапазонов
Распространение электромагнитных волн, временны́е зависимости электрического и магнитного полей, определяющий тип волн (плоские, сферические и др.), вид поляризации и прочие особенности зависят от источника излучения и свойств среды.
Электромагнитные излучения различных частот взаимодействуют с веществом также по-разному. Процессы излучения и поглощения радиоволн обычно можно описать с помощью соотношений классической электродинамики; а вот для волн оптического диапазона и, тем более, жестких лучей необходимо учитывать уже их квантовую природу.
История исследований
В 1800 году английский учёный У. Гершель открыл инфракрасное излучение.
Существование электромагнитного излучения теоретически предсказал английский физик Фарадей в 1832 году.
В 1865 году английский физик Дж. Максвелл рассчитал теоретически скорость электромагнитных волн в вакууме.
В 1888 году немецкий физик Герц подтвердил теорию Максвелла опытным путём. Интересно, что Герц не верил в существование этих волн и проводил свой опыт с целью опровергнуть выводы Максвелла.
Электромагнитная безопасность
Излучения электромагнитного диапазона при определённых уровнях могут оказывать отрицательное воздействие на организм человека, животных и других живых существ, а также неблагоприятно влиять на работу электрических приборов. Различные виды неионизирующих излучений (электромагнитных полей, ЭМП) оказывают разное физиологическое воздействие. На практике выделяют диапазоны магнитного поля (постоянного и квазипостоянного, импульсного), ВЧ- и СВЧ-излучений, лазерного излучения, электрического и магнитного поля промышленной частоты от высоковольтного оборудования, СВЧ-излучения и др..
Влияние на живые существа
Существуют национальные и международные гигиенические нормативы уровней ЭМП, в зависимости от диапазона, для селитебной зоны и на рабочих местах.
Оптический диапазон
Существуют гигиенические нормы освещённости; также разработаны нормативы безопасности при работе с лазерным излучением.
Радиоволны
Допустимые уровни электромагнитного излучения (плотность потока электромагнитной энергии) отражаются в нормативах, которые устанавливают государственные компетентные органы, в зависимости от диапазона ЭМП. Эти нормы могут быть существенно различны в разных странах.
Нахождение в зоне с повышенными уровнями ЭМП в течение определённого времени приводит к ряду неблагоприятных последствий: наблюдается усталость, тошнота, головная боль. При значительных превышениях нормативов возможны повреждение сердца, мозга, центральной нервной системы. Излучение может влиять на психику человека, появляется раздражительность, человеку трудно себя контролировать. Возможно развитие трудно поддающихся лечению заболеваний, вплоть до раковых. В частности, корреляционный анализ показал прямую средней силы корреляцию заболеваемости злокачественными заболеваниями головного мозга с максимальной нагрузкой от ЭМИ даже от использования такого маломощного источника, как мобильные радиотелефоны.[1] Эти данные не должны быть причиной для радиофобии, однако очевидна необходимость в существенном углублении сведений о действии ЭМИ на живые организмы.
В России действует СанПиН 2.2.4.1191—03 Электромагнитные поля в производственных условиях, на рабочих местах. Санитарно-эпидемиологические правила и нормативы, а также гигиенические нормативы ГДР (ПДУ) 5803-91 (ДНАОП 0.03-3.22-91) Предельно допустимые уровни (ПДУ) воздействия электромагнитных полей (ЭМП) диапазона частот 10—60 кГц Промышленное электроснабжение 50 Гц [2][3]
- Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в некоторых странах заметно различаются:
Параллельное развитие гигиенической науки в СССР и западных странах привело к формированию разных подходов к оценке действия ЭМИ. Для части стран постсоветского пространства сохраняется преимущественно нормирование в единицах плотности потока энергии (ППЭ), а для США и стран ЕС типичным является оценка удельной мощности поглощения (мобильных радиотелефонов (МРТ) не позволяют прогнозировать все неблагоприятные последствия, многие аспекты проблемы не освещены в современной литературе и требуют дополнительных исследований. В связи с этим, согласно рекомендациям ВОЗ, целесообразно придерживаться предупредительной политики, т. е. максимально уменьшить время использования сотовой связи.»
Проникающая неионизирующая радиация
Допустимые нормативы регулируются нормами радиационной безопасности — НРБ-99.
Влияние на радиотехнические устройства
Существует административные и контролирующие органы — инспекция по радиосвязи (на Украине, например, Укрчастотнадзор), которая регулирует распределение частотных диапазонов для различных пользователей, соблюдение выделенных диапазонов, отслеживает незаконное пользование радиоэфиром.
См. также
Ссылки
Литература
- Физика. Большой энциклопедический словарь/Гл. ред. А. М. Прохоров. — 4-е изд. — М.: Большая Российская энциклопедия, 1999. — С. 874—876. ISBN 5-85270-306-0 (БРЭ)
- Кудряшов Ю. Б., Перов Ю. Ф. Рубин А. Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения. Учебник для ВУЗов. — М.: ФИЗМАТЛИТ, 2008. — 184 с — ISBN 978-5-9221-0848-5
Примечания
- ↑ В. Н. Дунаев «Электромагнитные излучения и риск популяционному здоровью при использовании средств сотовой связи» //Гигиена и санитария, № 6, 2007, с. 56—57
- ↑ ПДУ магнитных полей частот 50 Гц. Харьков, 1986, СН-3206-85.2
- ↑ Методические указания но гигиенической оценке основных параметров полей частотой 50Гц. Харьков, 1986. СН 3207-85
Wikimedia Foundation. 2010.
dic.academic.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.