Объединение учителей Санкт-Петербурга. Емкостное реактивное сопротивление


Реактивное сопротивление конденсатора

Конденсатор в цепи синусоидального тока оказывает токоограничивающий эффект, который вызван встречным действием напряжения при изменении знака заряда. Этот токоограничивающий эффект принято выражать как емкостное реактивное сопротивление (емкостной реактанс) XC.

Величина емкостного реактанса XC зависит от величины емкости конденсатора, измеряемой в Фарадах, и частоты приложенного напряжения переменного тока. В случае синусоидального напряжения имеем

 

XC = 1 ¤ (wC) = 1 ¤ (2pfC),3.7

где XC - реактивное емкостное сопротивление, Ом,

C - емкость конденсатора, Ф,

w = 2pf -угловая частота синусоидального напряжения (тока).

Когда известны действующие значения тока в конденсаторе и падения напряжения на нем от этого тока, реактивное емкостное сопротивление можно вычислить по закону Ома:

 

XC = UCm ¤ ICmили XC = UC ¤ IC.3.8

Емкостному реактансу часто присваивают знак «– » в отличие от индуктивного реактанса, которому приписывают знак «+».

Напряжение и ток катушки индуктивности

Когда к катушке индуктивности подведено синусоидальное напряжение, ток в ней отстает от синусоиды напряжения на ней на 900. Соответственно, мгновенное значение тока достигает амплитудного значения на четверть периода позже, чем мгновенное значение напряжения (рис. 3.4). В этом рассуждении пренебрегается активным сопротивлением катушки.

Рис. 3.4

Реактивное сопротивление катушки индуктивности

Катушка индуктивности в цепи переменного тока оказывает токоограничивающий эффект благодаря индуктируемой в ней противоЭДС. Этот токоограничивающий эффект принято выражать как индуктивное реактивное сопротивление (индуктивный реактанс) XL.

Величина индуктивного реактанса XL зависит от величины индуктивности катушки, измеряемой в Генри, и частоты приложенного напряжения переменного тока. В случае синусоидального напряжения имеем

 

XL = wL = 2pfL ,3.9

где XL - реактивное индуктивное сопротивление, Ом,

L -индуктивность катушки, Гн.

Если активное сопротивление катушки мало и им можно пренебречь, то реактивное (индуктивное) сопротивление можно определить через действующие значения или амплитуды напряжения и тока:

 

XL = UL ¤ IL или XL = ULm ¤ ILm. 3.10

Последовательное соединение конденсатора и катушки индуктивности. Понятие о резонансе напряжений

Когда по цепи (рис. 3.5.) с последовательным соединением конденсатора и катушки индуктивности протекает один и тот же синусоидальный токI,напряжение на конденсаторе UC отстает от тока I на 900, а напряжение на катушке индуктивности UL опережает ток на 900. Эти напряжения находятся в противофазе (повернуты относительно друг друга на 1800).

Рис. 3.5.

 

Когда одно из напряжений больше другого, цепь оказывается либо преимущественно индуктивной (рис. 3.6.), либо преимущественно емкостной (рис. 3.7.). Если напряжения ULиUС имеют одинаковые значения и компенсируют друг друга, то суммарное напряжение на участке цепи L – C оказывается равным нулю. Остается только небольшая составляющая напряжения на активном сопротивлении катушки и проводов. Такое явление называется резонансом напряжений (рис. 3.8.).

     
Рис. 3.6. Рис. 3.7. Рис. 3.8.

При резонансе напряжений реактивное сопротивление цепи

 

X = XL – XC3.11

оказывается равным нулю. При заданных значениях L и C резонанс может быть получен путем изменения частоты.

Поскольку XL = wL, а XC = 1 / wC, то резонансная частота w0 может быть определена из уравнения:

w0L –1/ w0C =0, 3.12

откуда

и . 3.13

 

Полное сопротивление цепи при резонансе оказывается равным небольшому активному сопротивлению катушки, поэтому ток в цепи совпадает по фазе с напряжением и может оказаться довольно большим даже при маленьком приложенном напряжении. При этом напряжения UL и UC могут существенно (в десятки раз!) превышать приложенное напряжение.

 

Экспериментальная часть

 

Задание 1

Выведите на экран виртуального осциллографа синусоидальные токи и напряжение на резисторе и определите следующие величины:

- амплитудное значение напряжения Um,

- амплитудное значение тока I m,

- действующее значение напряжения U,

- действующее значение тока I,

- период T,

- частота f,

- угловую частоту w,

- фазовый сдвигj,

- мгновенное значение напряжения uв моментвремени t = T / 3.

lektsia.com

Формула емкостного сопротивления

Содержание:
  1. Емкостное сопротивление конденсатора
  2. Емкостное сопротивление в цепи переменного тока
  3. Видео

Одним из основных устройств в электронике и электротехнике является конденсатор. После замыкания электрической цепи начинается зарядка, после чего он сразу же становится источником тока и напряжения, в нем возникает электродвижущая сила – ЭДС. Одно из основных свойств конденсатора очень точно отражает формула емкостного сопротивления. Данное явление возникает в результате противодействия ЭДС, направленного против источника тока, используемого для зарядки. Источник тока может преодолеть емкостное сопротивление лишь путем существенных затрат его собственной энергии, которая становится энергией электрического поля конденсатора.

При разрядке устройства вся эта энергия возвращается обратно в цепь, превращаясь в энергию электрического тока. Поэтому емкостное сопротивление можно отнести к реактивному, не вызывающему безвозвратных энергетических потерь. Зарядка конденсатора происходит до того уровня напряжения, которое отдается источником питания.

Емкостное сопротивление конденсатора

Конденсаторы относятся к наиболее распространенным элементам, используемым в различных электронных схемах. Они разделяются на типы, обладающие характерными особенностями, параметрами и индивидуальными свойствами. Простейший конденсатор состоит из двух металлических пластин – электродов, разделенных слоем диэлектрика. На каждом из них имеется собственный вывод, через который осуществляется подключение к электрической цепи.

Существуют качества, присущие только конденсаторам. Например, они совершенно не пропускают через себя постоянный ток, хотя и заряжаются от него. После полной зарядки емкости, течение тока полностью прекращается, а внутреннее сопротивление устройства принимает бесконечно высокое значение.

Совершенно по-другому на конденсатор воздействует переменный ток, вполне свободно протекающий через емкость. Подобное состояние объясняется постоянными процессами зарядки-разрядки элемента. В этом случае действует не только активное сопротивление проводников, но и емкостное сопротивление самого конденсатора, возникающее как раз в результате его постоянной зарядки и разрядки.

Электрические параметры и свойства конденсаторов могут отличаться, в зависимости от различных факторов. В первую очередь они зависят от размеров и формы изделия, а также от типа диэлектрика. В разных типах устройств диэлектриком может служить бумага, воздух, пластик, стекло, слюда, керамика и другие материалы. В электролитических конденсаторах используются алюминий-электролит и тантал-электролит, что обеспечивает им повышенную емкость.

Названия других элементов определяются материалами обычных диэлектриков. Поэтому они относятся к категории бумажных, керамических, стеклянных и т.д. Каждый из них, в соответствии с характеристиками и особенностями, применяется в конкретных электронных схемах, с разными параметрами электротока.

В связи с этим, применение керамических конденсаторов необходимо в тех цепях, где требуется фильтрация высокочастотных помех. Электролитические устройства, наоборот, фильтруют помехи при низких частотах. Если же соединить параллельно оба типа конденсаторов, получится универсальный фильтр, широко применяемый во всех схемах. Несмотря на то, что их емкость является фиксированной величиной, существуют устройства с переменной емкостью, которая достигается путем регулировок за счет изменение взаимного перекрытия пластин. Типичным примером служат конденсаторы для подстройки, используемые при регулировке радиоэлектронной аппаратуры.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного тока, на протяжении короткого периода времени будет наблюдаться течение по цепи зарядного тока. По окончании зарядки, когда напряжение конденсатора будет соответствовать напряжению источника тока, кратковременное течение тока в цепи прекратится. Таким образом, полностью заряженный конденсатор при постоянном токе будет своеобразным разрывом цепи или сопротивлением с бесконечно большим значением. При переменном токе конденсатор будет вести себя совершенно иначе. Его зарядка в такой цепи будет осуществляться поочередно в разных направлениях. Течение переменного тока в цепи в это время не прерывается.

Более подробное рассмотрение этого процесса указывает на нулевое значение напряжения в конденсаторе в момент его включения. После поступления к нему переменного напряжения сети начнется зарядка. В это время сетевое напряжение будет возрастать на протяжении первой четверти периода. По мере того как на обкладках накапливаются заряды, происходит увеличение напряжения самого конденсатора. После того как сетевое напряжение в конце первой четверти периода станет максимальным, зарядка прекращается и значение тока в цепи станет равным нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q является количеством электричества, протекающим по цепи в течение промежутка времени t. В соответствии с законами электростатики, количество электричества в устройстве составит: q = C x Uc = C x U. В этой формуле С будет емкостью конденсатора, U – напряжением сети, Uc – напряжением на обкладках элемента. В окончательном виде формула тока в цепи будет выглядеть следующим образом: i = C x (∆Uc/∆t) = C x (∆U/∆t).

При наступлении второй четверти периода произойдет уменьшение сетевого напряжения и начнется разрядка конденсатора. Ток в цепи изменит свое направление и будет течь в обратную сторону. В следующей половине периода направление сетевого напряжения изменится, наступит перезарядка элемента, а потом он вновь начнет разряжаться. Ток, присутствующий в цепи с конденсаторной емкостью, будет опережать по фазе напряжение на обкладках на 90 градусов.

Установлено что изменения тока конденсатора происходят со скоростью, находящейся в пропорциональной зависимости с угловой частотой ω. Поэтому в соответствии с уже известной формулой тока в цепи i = C x (∆U/∆t), аналогично получается, что действующее значение тока также будет представлять собой пропорцию между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

Далее уже совсем несложно установить значение емкостного сопротивления или реактивного сопротивления емкости: xc = 1/2π x f x C = 1/ ω x C. Данный параметр вычисляется, когда конденсаторная емкость включается в цепь переменного тока. Поэтому в соответствии с законом Ома в цепи переменного тока с включенным конденсатором, значение силы тока будет следующим: I = U/xc, а напряжение на обкладках составит: Uc = Ic x xc.

Часть сетевого напряжения, приходящаяся на конденсатор, получила название емкостного падения напряжения. Она известна также, как реактивная слагающая напряжения, обозначаемая символом Uc. Величина емкостного сопротивления хс, так же, как и значение индуктивного сопротивления xi напрямую связана с частотой переменного тока.

electric-220.ru

Реактивное сопротивление

Реактивное сопротивление – это сопротивление прохождению переменного электрического тока в электрической цепи, обусловленное наличием в ней индуктивности или конденсатора.

Дело в том, что для постоянного тока индуктивность является обычным проводником и поэтому сопротивление его прохождению в цепи ничтожно мало. Конденсатор при тех же условиях для постоянного тока является диэлектриком – его электрическое сопротивление бесконечно велико.

Если же мы имеем дело с переменным током, то в этом случае сопротивление его прохождению по цепи индуктивности  или конденсатора зависит от множества факторов: частоты самого тока, емкости конденсатора или индуктивности катушки.

Очень часто конденсатор и индуктивность из-за наличия в них реактивного сопротивления называют реактивными элементами или реактивными электронными компонентами.

Чем обусловлено реактивное сопротивление

В катушке

При протекании переменного электрического тока через катушку, он создает в ее витках магнитное поле, а оно в свою очередь обуславливает создание электродвижущей силы. Эта ЭДС направлена против внешнего тока, поэтому препятствует ему, то есть создает сопротивление. Как правило, реактивное сопротивление индуктивности называют еще индуктивным.

В конденсаторе

При протекании переменного тока через цепь конденсатора происходят процессы накопления и отдачи электрического заряда, связанные с действием в цепи электрического поля. Его действие также противоположно по направлению к внешнему току и поэтому создает для него сопротивление. Это сопротивление еще называют емкостным.

Интересно

Реактивное сопротивление катушки с увеличением ее индуктивности (количества витков) будет увеличиваться. В конденсаторе же рост емкости (увеличение площади электродов) приводит к прямо противоположному эффекту – уменьшению реактивного сопротивления.

< Предыдущая Следующая >
 

scsiexplorer.com.ua

Емкостное и индуктивное сопротивление в цепи переменного тока.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного напряже­ния сила тока I=0, а при включении конденсатора в цепь пере­менного напряжения сила тока I ? 0. Следовательно, конденса­тор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.

Мгновенное значение напряжения равно  .

Мгновенное значение силы тока равно: 

Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2.

Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: , где  - емкостное сопротивление.

Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты).

Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току).

Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной.

 

Индуктивное сопротивление в цепи переменного тока

В катушке, включенной в цепь переменного напряжения, си­ла тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи посто­янного напряжения.

Мгновенное значение силы тока: 

Мгновенное значение напряжения можно установить, учиты­вая, что u = - εi, где u – мгновенное значение напряжения, а εi – мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению.

 

.

Следовательно , где  амплитуда напряжения.

Напряжение опережает ток по фазе на π/2.

Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим: - закон Ома для цепи с чисто индуктивной нагрузкой.

Величина  - индуктивное сопротивление.

Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления.

В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка.

 

Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной.

 

www.eduspb.com

Реактивное сопротивление – что это?

Человек уже давно применяет для своих нужд электрическую, химическую, атомную энергию. Для технического описания любой из них имеется набор понятий, позволяющих характеризовать их суть. Например, такие признаки, как мощность, напряженность, плотность и др., широко применяются при изучении не только электрической, но и других известных видов энергии. Одним из таких универсальных понятий является широко применяемый в электричестве термин «сопротивление». В других областях имеются его аналоги – поглощение, рассеяние, отражение и т.д. «Сопротивление» - это, фактически, и есть характеристика потерь энергетического поля. Цель науки и техники в том и состоит, чтобы определить, в чем состоит причина сопротивления.

Сопротивление в электрических цепях имеет двоякую сущность - говорят, активное и реактивное сопротивление. Для проводника электрическое сопротивление является основной характеристикой и обусловлено противодействием материала проводника перемещению носителей тока. Причины этого противодействия могут быть разными, чем и объясняется его разное название. Сопротивление всегда сопровождается превращением одного вида энергии в другие за счет уменьшения энергии основного источника. Для случая электрической энергии этот переход означает превращение энергии источника эдс в тепловую, магнитную или электрическую энергию.

Исторически, первым в биографии сопротивления было изучение активного сопротивления, которое обусловлено превращением энергии источника в нагрев проводника. Происходит это по той причине, что заряды (а это электроны) под действием поля эдс источника перемещаются по проводнику, образно говоря, «расталкивая» кристаллы или молекулы вещества. При этом взаимные обмен-передача энергии приводят к повышению температуры проводника, т.е. налицо преобразование электрической энергии в тепловую. Если источник эдс не меняет своей величины U и направления, то ток в цепи I называется постоянным, а сопротивление R такой цепи рассчитывают, исходя из закона Ома: R = U / I .

Сопротивление цепи постоянного тока может быть только активным. Реактивное сопротивление «дает о себе знать» только в цепях переменного тока, которые содержат вполне конкретную индуктивность (катушка) или емкость (конденсатор). Строго говоря, любой проводник имеет некоторую индуктивность и емкость, но обычно они столь ничтожно малы, что ими пренебрегают. Индуктивность и емкость при протекании по ним электрических зарядов преобразуют их энергию в магнитное поле катушки или электрическое поле диэлектрика. Запасенная таким образом энергия, при перемене знака источника эдс, возвращается обратно в виде энергии движения зарядов, откуда и название - «реактивное сопротивление».

Индуктивность в цепи переменного тока «оказывает сопротивление» протекающему току через явление самоиндукции: изменение тока, порожденное изменением эдс источника, приводит к изменению электромагнитного поля так, что оно пытается поддерживать ток в цепи за счет запасенной энергии магнитного поля. Мера запасенной энергии является мерой индуктивности цепи L, которая зависит от частоты f переменного тока. Реактивное сопротивление катушки индуктивности определяют по следующей формуле:

XL = 2 * π * f * L.

Конденсатор в цепи переменного тока накапливает энергию электрического поля путем заряда диэлектрика. При изменении величины и/или направления эдс источника напряжение на обкладках конденсатора поддерживается спадающим током, причем тем дольше, чем больше емкость С конденсатора.

Реактивное сопротивление конденсатора, также частотнозависимое, вычисляется по формуле:

Xc = 1 / (2 *π * f * С).

Из этого выражения видно, что с ростом частоты и/или емкости сопротивление уменьшается. Таким образом, для цепи переменного тока, где имеются резистор, катушка индуктивности и конденсатор, необходимо определять некое суммарное активное и реактивное сопротивление. В общем случае, формула для расчета полного сопротивления имеет «пифагоровский привкус»:

Zv2= Rv2 + (XL + Xc) v2

*примечание: знак «v» следует читать «Z в квадрате» и т.д.

И окончательно формула полного сопротивления выглядит следующим образом:

Z =√(squarte) Rv2 + (XL + Xc) v2.

fb.ru

АКТИВНОЕ И РЕАКТИВНОЕ СОПРОТИВЛЕНИЯ

Электрического сопротивле­ние - величина, характеризующая противодействие элемента электрической цепи электрическому току. Сопро­тивление обусловлено преобразованием электрической энергии в другие виды энергии. В цепях переменного тока различают необратимое преобразование энергии и обмен энергией

между элементами электрической цепи. При необратимо преобразовании электрической энер­гии в другие виды энергии сопротивление элемента, на котором эти преобразования происходят, называется активным, а в случае обмена энергией между источ­ником и элементом цепи — реактивным сопротив­лением.

В электроплитке электроэнергия преобразуется в теп­ловую энергию необратимо, поэтому электроплитка обла­дает активным сопротивлением R. Активное сопротивле­ние имеют также элементы, в которых происходит пре­образование электроэнергии в световую (электролампы), механическую (электродвигатели) энергию и т. д.

В катушке индуктивности переменный ток периоди­чески образует магнитное поле. В момент времени, когда i = Im, энергия магнитного поля Wм = LI2m/2 максималь­на, а когда i= 0, Wм= 0.

Под действием переменного тока в катушке возникает ЭДС самоиндукции. Эта ЭДС, направлена встречно току при его возра­стании и в одну сторону с током при его убывании. Таким образом, ЭДС самоиндукции противодействует измене­нию тока, обусловливая индуктивное сопротив­ление XLкатушки. За счет ЭДС самоиндукции про­исходит возврат энергии магнитного поля катушки в электрическую цепь. В результате источник и катушка обмениваются энергией, подобно маятнику, при колебани­ях которого происходит взаимное преобразование кинети­ческой и потенциальной энергии. Значит, индуктивное сопротивление катушки является реактивным сопротивлением.

При постоянном токе ЭДС самоиндукции не возни­кает, поэтому индуктивное сопротивление равно нулю. В конденсаторе, подключенном к источнику перемен­ного напряжения (см. рис. 4.14), изменяется заряд q = Си, и, следовательно, в элементах цепи между источником и конденсатором проходит переменный ток. При этом в момент времени, когда конденсатор полностью заряжен, u—Umи энергия электрического поля конденсатора

Wb= CU2m/2 максимальна.

Току цепи оказывает противодействие напряжение конденсатора, обусловливающее емкостное сопротивление Хс. Это сопротивление ввиду обмена энергией между источ­ником и конденсатором является реактивным.

После зарядки конденсатора в цепи постоянного тока напряжение электрического поля конденсатора уравно­вешивает напряжение источника

(Uc = U) и ток отсут­ствует, т. е. сопротивление конденсатора в цепи постоян­ного тока равно бесконечности.

Сравнивая энергию магнитного поля WM= LI2/2 и электрического поля

Wэ= CU2/2 с кинетической энер­гией WK = mv2/2 в механике, делаем вывод, что подобно тому как масса т является мерой инерции при энер­гетических преобразованиях в маятнике, индуктивность L и емкость С являются мерой инерции (мерой сопро­тивляемости) при энергетических преобразованиях в электрической цепи переменного тока.

Это отражается в формулах XL = ωL и Хс = 1/(ωС)

Отметим также, что катушка и конденсатор при пере­менном токе в течение периода работают то в режиме потребителя, когда запасают энергию магнитного или электрического поля, то в режиме генератора, когда возвращают эту энергию назад в электрическую цепь.

Можно сказать обобщенно, что физическим смыслом как активного, так и реактивного сопротивления является противодействие току падения напряжения на элементе цепи. При этом мгновенное значение падения напряже­ния на активном сопротивлении направлено всегда встреч­но току, а на реактивном сопротивлении — согласно или встречно току, в обоих случаях противодействуя изме­нению тока.

Реальные элементы цепи обладают активным, индук­тивным и емкостным сопротивлением одновременно. Однако в ряде случаев одним или двумя из этих сопро­тивлений можно пренебречь из-за их малых значений.

Так, как конденсатор обладает только емкостным сопротивлением (если пренебречь потерями энергии в нем), лампы накаливания – только активным, а обмотки двигателя и трансформатора – активным и индуктивным.

Похожие статьи:

poznayka.org

Реактивное сопротивление - это... Что такое Реактивное сопротивление?

  • РЕАКТИВНОЕ СОПРОТИВЛЕНИЕ — величина, характеризующая сопротивление, оказываемое переменному току электрической емкостью и индуктивностью цепи (ее участка). Реактивное сопротивление синусоидальному току при последовательном соединении индуктивного и емкостного элементов… …   Большой Энциклопедический словарь

  • реактивное сопротивление — Параметр пассивного двухполюсника, равный квадратному корню из разности квадратов полного и активного электрических сопротивлений двухполюсника, взятому со знаком плюс, если электрический ток отстает по фазе от электрического напряжения, и со… …   Справочник технического переводчика

  • реактивное сопротивление КЗ — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN short circuit reactance …   Справочник технического переводчика

  • реактивное сопротивление — 147 реактивное сопротивление Параметр пассивного двухполюсника, равный квадратному корню из разности квадратов полного и активного электрических сопротивлений двухполюсника, взятому со знаком плюс, если электрический ток отстает по фазе от… …   Словарь-справочник терминов нормативно-технической документации

  • реактивное сопротивление — величина, характеризующая сопротивление, оказываемое переменному току электрической ёмкостью и индуктивностью цепи (её участка). Реактивное сопротивление синусоидальному току при последовательном соединении индуктивного и ёмкостного элементов… …   Энциклопедический словарь

  • реактивное сопротивление — reaktyvioji varža statusas T sritis automatika atitikmenys: angl. reactance; reactive resistance vok. Blindwiderstand, m; imaginärer Widerstand, m; Reaktanz, f; reaktiver Widerstand, m rus. реактивное сопротивление, n pranc. réactance, f …   Automatikos terminų žodynas

  • реактивное сопротивление — reaktyvioji varža statusas T sritis Standartizacija ir metrologija apibrėžtis Kintamosios srovės grandinės varža, sudaryta iš induktyviosios ir talpinės varžų. atitikmenys: angl. reactance; reactive resistance vok. Blindwiderstand, m; Reaktanz, f …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • реактивное сопротивление — reaktyvioji varža statusas T sritis Standartizacija ir metrologija apibrėžtis Kompleksinės elektrinės varžos menamoji dalis. atitikmenys: angl. reactance; reactive resistance vok. Blindwiderstand, m; Reaktanz, f rus. реактанс, m; реактивное… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • реактивное сопротивление — reaktyvioji varža statusas T sritis chemija apibrėžtis Sistemos kintamosios srovės varža, sudaryta iš induktyviosios ir talpinės varžų. atitikmenys: angl. reactance; reactive resistance rus. реактанс; реактивное сопротивление ryšiai: sinonimas –… …   Chemijos terminų aiškinamasis žodynas

  • реактивное сопротивление — reaktyvioji varža statusas T sritis fizika atitikmenys: angl. reactance; reactive resistance vok. Blindwiderstand, m; imaginärer Widerstand, m; Reaktanz, f; reaktiver Widerstand, m rus. реактанс, m; реактивное сопротивление, n pranc. réactance,… …   Fizikos terminų žodynas

  • dic.academic.ru


    Видеоматериалы

    24.10.2018

    Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

    Подробнее...
    23.10.2018

    Соответствует ли вода и воздух установленным нормативам?

    Подробнее...
    22.10.2018

    С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

    Подробнее...
    22.10.2018

    Столичный Водоканал готовится к зиме

    Подробнее...
    17.10.2018

    Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

    Подробнее...

    Актуальные темы

    13.05.2018

    Формирование энергосберегающего поведения граждан

     

    Подробнее...
    29.03.2018

    ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

    Подробнее...
    13.03.2018

    Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

    Подробнее...
    11.03.2018

    НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

     
    Подробнее...

    inetpriem

    
    << < Ноябрь 2013 > >>
    Пн Вт Ср Чт Пт Сб Вс
            1 2 3
    4 5 6 7 8 9 10
    11 12 13 14 15 16 17
    18 19 20 21 22 23 24
    25 26 27 28 29 30  

    calc

    banner-calc

    .