22.11.2024

Фаза электрическая это: Что такое фаза, ноль, земля в электрике и зачем они нужны

Содержание

Что такое фаза, ноль, земля в электрике и зачем они нужны

Известно, что электрическая энергия вырабатывается на электрических станциях при помощи генераторов переменного тока. Затем, по линиям электропередач от трансформаторных подстанций электроэнергия поступает потребителям. Разберем подробнее, каким образом энергия подводится к подъездам многоэтажных домов и частным домам. Это даст понять даже чайникам в электрике, что такое фаза, ноль и заземление и зачем они нужны.

Простое объяснение

Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза — это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру. Помимо этого назначение нуля в электропроводке — выравнивание фазного напряжения. Заземляющий провод, называемый так же землей, не находится под напряжением и предназначен для защиты человека от поражения электрическим током. Подробнее о заземлении вы можете узнать в соответствующем разделе сайта.

Надеемся, наше простое объяснение помогло разобраться в том, что такое ноль, фаза и земля в электрике. Также рекомендуем изучить цветовую маркировку проводов, чтобы понимать, какого цвета фазный, нулевой и заземляющий проводник!

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено. Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током.

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:

Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику«!

Рекомендуем также прочитать:

Ноль и фаза, что это такое?

Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза — это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру.

Такой вопрос иногда возникает у начинающих электриков или владельцев квартир, которые хорошо владеют набором ремонтных инструментов, но раньше особо не вникали в устройство электропроводки. И вот наступил момент, когда перестала работать розетка или светиться лампочка в люстре, а звать электрика не хочется и есть огромное желание сделать все самому.

В этом случае первоочередная задача домашнего мастера заключается не в устранении возникшей неисправности, как кажется на первый взгляд, а в соблюдении правил электробезопасности, исключения возможности попасть под действие электрического тока. Почему-то об этом многие забывают, пренебрегая своим здоровьем.

Все токоведущие части проводки должны быть надежно заизолированы, а контакты розеток спрятаны вглубь корпуса так, чтобы к ним не было возможности случайного прикосновения открытыми участками тела. Даже механическая конструкция вилки, вставляемой в розетку, продумана таким образом, что держаться рукой за оба контакта и попасть под действие электрического тока довольно проблематично.

В обыденной жизни мы этого не замечаем и в сознании уже сложилась привычка не обращать внимания на электричество, которая может пагубно сказаться при проведении ремонтных работ с электроприборами. Поэтому изучите основные правила безопасности и будьте внимательны при обращении с электричеством.

Как устроена бытовая электропроводка

Электроэнергия в жилой дом приходит от трансформаторной подстанции, которая преобразует высоковольтное напряжение промышленной электросети в 380 вольт. Вторичные обмотки трансформатора соединены по схеме «звезда», когда выполнено подключение трех выводов к одной общей точке «0», а три оставшихся выведены на клеммы «А», «В», «С» (для увеличения нажмите на рисунок).

Соединенные вместе концы «0» подключены к контуру заземления подстанции. Здесь же выполнено расщепление нуля на;

  • рабочий ноль, показанный на картинке синим цветом;
  • защитный РЕ-проводник (желто-зеленая линия).

По этой схеме создаются все вновь строящиеся дома. Она называется системой TN-S. У нее на вход внутри распределительный щита дома подводятся три фазных провода и оба перечисленных нуля.

В зданиях старой постройки еще часто встречаются случаи отсутствия РЕ-проводника и четырех-, а не пятипроводная схема, которую обозначают индексом TN-C.

Фазы и ноли с выходной обмотки ТП воздушными проводами или подземными кабелями подводятся к вводному щиту многоэтажного дома, образуя трехфазную систему напряжения 380/220 вольт. Она разводится по подъездным щиткам. Внутрь жилой квартиры поступает напряжение одной фазы 220 вольт (на картинке выделены провода «А» и «О») и защитный проводник РЕ.

Последний элемент может отсутствовать, если не проведена реконструкция старой электропроводки здания.

Таким образом, «нулем» в квартире называют проводник, соединенный с контуром земли в трансформаторной подстанции и используемый для создания нагрузки от «фазы», подключенной к противоположному потенциальному концу обмотки на ТП. Защитный ноль, называемый еще РЕ-проводником, исключен из схемы электропитания и предназначен для ликвидации последствий возможных неисправностей и аварийных ситуаций с целью отвода возникающих токов повреждений.

Нагрузки в такой схеме распределяются равномерно за счет того, что на каждом этаже и стояках выполнена разводка и подключение определенных квартирных щитков к конкретным линиям 220 вольт внутри подъездного распределительного щита.

Система подводимых напряжений к дому и подъезду представляет собой равномерную «звезду», повторяющую все векторные характеристики ТП.

Когда в квартире выключены все электроприборы, а в розетках нет потребителей и напряжение к щитку подведено, то ток в этой цепи протекать не будет.

Сумма токов трехфазной сети складывается по законам векторной графики в нулевом проводе, возвращаясь к обмоткам трансформаторной подстанции величиной I0, или как еще ее называют 3I0.

Это рабочая, оптимальная и отработанная длительными годами система электроснабжения. Но, в ней тоже, как и в любом техническом устройстве, могут возникать поломки и неисправности. Чаще всего они связаны с низким качеством контактных соединений или же полным обрывом проводников в различных местах схемы.

Чем сопровождается обрыв провода в нуле или фазе

Оторвать или просто забыть подключить проводник к какому-нибудь устройству внутри квартиры не сложно. Такие случаи происходят так же часто, как и отгорания металлических тоководов при плохом электрическом контакте и повышенных нагрузках.

Если внутри квартирной проводки пропало соединение любого электроприемника с квартирным щитком, то этот прибор не будет работать. И абсолютно не важно, что разорвано: цепь нуля или фазы.

Такая же картина проявляется в случае, когда происходит обрыв проводника любой фазы, питающей внутридомовой или подъездный электрощит. Все квартиры, подключенные к этой линии с возникшей неисправностью, перестанут получать электроэнергию.

При этом в двух других цепочках все электроприборы будут функционировать нормально, а ток рабочего нулевого проводника I0 суммируется из двух оставшихся составляющих и будет соответствовать их величине.

Как видим, все перечисленные обрывы проводов связаны с отключением электропитания с квартиры. Они не вызывают повреждения бытовых приборов. Самая же опасная ситуация возникает при исчезновении соединения между контуром заземления трансформаторной подстанции и средней точкой подключения нагрузок внутридомового или подъездного электрощита.

Такая ситуация может возникнуть по разным причинам, но чаще всего она проявляется при работе бригад электриков, владеющих смежной специальностью дегустаторов…

В этом случае пропадает путь прохождения токов по рабочему нулю к контуру заземления (А0, В0, С0). Они начинают двигаться по внешним контурам АВ, ВС, СА к которым подключено суммарное напряжение 380 вольт.

На правой части картинки показано, что ток IАВ возник при подключении линейного напряжения к последовательно соединенным нагрузкам Ra и Rв двух квартир. В этой ситуации один хозяин может экономно отключить все электроприборы, а другой — использовать их по максимуму.

В результате действия закона Ома U=I∙R на одном квартирном щитке может оказаться очень маленькая величина напряжения, а на втором — близкая к линейному значению 380 вольт. Оно вызовет повреждение изоляции, работу электрооборудования при нерасчетных токах, повышенный нагрев и поломки.

Для предотвращения подобных случаев служат защиты от повышения напряжения, которые монтируются внутри квартирного щитка или дорогостоящих электроприборов: холодильников, морозильников и подобных устройств известных мировых производителей.

Как определить ноль и фазу в домашней проводке

При возникновении неисправностей в электрической сети чаще всего домашние мастера используют дешевую отвертку-индикатор напряжения китайского производства, показанную на верхней части картинки.

Она работает по принципу прохождения емкостного тока через тело оператора. Для этого внутри диэлектрического корпуса размещены:

  • оголенный наконечник в виде отвертки для присоединения к потенциалу фазы;
  • токоограничивающий резистор, снижающий амплитуду проходящего тока до безопасной величины;
  • неоновая лампочка, свечение которой при протекании тока свидетельствует о наличии потенциала фазы на проверяемом участке;
  • контактная площадка для создания цепи тока сквозь тело человека на потенциал земли.

Квалифицированные электрики используют для проверки наличия фазы более дорогостоящие многофункциональные индикаторы в форме отверток со светодиодом, свечением которого управляет транзисторная схема, питаемая от двух встроенных батареек, создающих напряжение 3 вольта.

Такие индикаторы кроме определения потенциала фазы способны выполнять другие дополнительные задачи. У них нет контактной площадки, к которой необходимо прикасаться при замерах.

Способ проверки наличия и отсутствия напряжения в гнездах обыкновенной розетки простым индикатором показан на фотографиях ниже.

На левом снимке хорошо видно, что свечение индикаторной лампочки при дневном свете плохо заметно, поэтому требует повышенного внимания при работе.

Контакт, на котором индикатор засвечивается, является фазой. На рабочем и защитном нуле неоновая лампочка не должна светиться. Любое обратное действие индикатора свидетельствует о неисправностях в схеме подключения.

При эксплуатации такой отвертки необходимо обращать внимание на целостность изоляции и не прикасаться к оголенному выводу индикатора, находящемуся под напряжением.

На следующих фотографиях показан способ определения напряжения в той же розетке с помощью старого тестера, работающего в режиме вольтметра.

Стрелка прибора показывает:

  • 220 вольт между фазой и рабочим нулем;
  • отсутствие разницы потенциалов между рабочим и защитным нулем;
  • отсутствие напряжения между фазой и защитным нулем.

Последний случай является исключением. Стрелка в нормальной схеме должна тоже показывать напряжение 220 вольт. Но оно в нашей розетке отсутствует по той причине, что здание старой постройки еще не прошло этап реконструкции электропроводки, а хозяин квартиры, выполнивший последний ремонт, сделал разводку РЕ-проводника в своих помещениях, но не подключил его к заземляющим контактам розеток и шинке РЕ-проводника квартирного щитка.

Эта операция будет проводиться после перевода здания с системы TN-C на TN-C-S. Когда он завершится, стрелка вольтметра будет находиться в положении, отмеченном красной линией, показывать 220 вольт.

Особенности поиска неисправностей

Простое определение наличия или отсутствия напряжения не всегда позволяет точно определить состояние схемы. Наличие различных положений выключателей может ввести мастера в заблуждение. Например, на картинке ниже показан типичный случай, когда при отключенном выключателе на фазном проводе светильника в точке «К» не будет напряжения даже при исправной схеме.

Поэтому при проведении замеров и поисках неисправностей следует внимательно анализировать все возможные случаи.

Ранее ЭлектроВести писали, что в Энергодаре Запорожской области на тепловой электростанции была авария, в результате которой город и еще несколько населенных пунктов находились без света.

По материалам: electrik.info.

Что такое фаза и ноль в электрике: назначение, отличие

К такому явлению как электричество уже давно все привыкли. Многие термины мы употребляем в обиходе, обладая лишь поверхностным пониманием. Между тем, путь пройденный электричеством от электростанции до вашей розетки непрост.

Существует множество факторов, влияющих на бесперебойную подачу электроэнергии к конечному потребителю. Все нюансы рассматривать в данной статье не будем, ограничимся лишь такими терминами как “ФАЗА” и “НОЛЬ”.

Итак, для чего нужны фаза и ноль в электрике, и что это вообще такое. Для более полного понимания вернемся опять к электростанции. Берем в качестве примера некую электростанцию, на которой происходит следующее:

  1. 1. Трехфазные генераторы переменного тока вырабатывают ток
  2. 2. По линиям электропередач ток поступает на трансформаторные подстанции
  3. 3. С трансформаторных подстанций ток поступает в дома и т.д.

Теперь немного подробнее. Сначала напрашивается вопрос: почему мы используем именно переменный ток? Все очень просто: переменный ток можно передавать на большие расстояния, а с постоянным это довольно проблематично. Вопрос второй: как так получается, что к трансформатору приходит три фазы, а в квартире получается однофазная сеть?

Дело в том, что на электрощиток многоквартирного дома приходит три фазы, ноль и заземление. Далее, вводно-распределительные устройства (ВРУ) разделяют все три фазы, при этом каждый фазный провод получает свое заземление и свой ноль.

Понятное дело, что без подготовки эту информацию не усвоить, поэтому ниже мы остановимся и расскажем об этом более подробно.

Что представляет собой фаза и ноль в трехфазной сети

Как мы знаем из школьного курса физики – электрический ток движется только в замкнутом контуре. То есть по одному проводу он должен прийти, а по другому уйти. Чтобы не морочить голову, сразу даем определение:

  • — Фаза – проводник, по которому к потребителю приходит ток;
  • — Ноль – проводник, по которому ток уходит от потребителя.

Для правильной работы электрическому току всегда необходим замкнутый контур. Ток течет в одном направлении. Фазный провод – провод, по которому ток приходит к любой нагрузке, будь-то электрочайник или холодильник, неважно. Ноль – провод, по которому ток возвращается.

 

Кроме этого нулевой провод выполняет еще одну полезную функцию – выравнивает фазное напряжение. Заземление – провод, на котором нет напряжения. Он служит резервным проводом для того, чтобы в случае утечки тока защитить человека от удара.

Теперь возьмем трансформатор, который питает дом. Трансформатор – устройство, повышающее, либо понижающее напряжение в сети. Чтобы конечный потребитель получил питание, к обмоткам низкого напряжения подключаются четыре провода. К выводам трансформаторной обмотки подключаются три провода (это и есть наши фазы), а ноль (еще называют “общий”) берется из точки соединения трансформаторных обмоток.

Теперь рассмотрим еще два термина и сразу дадим им определения:

  1. 1. Линейное напряжение – напряжение, возникающее между фазными проводами в трехфазной электросети. Номинальное значение линейного напряжения – 380 вольт.
  2. 2. Фазное напряжение – напряжение между одним фазным проводом и нулем. Номинальное значение такого напряжения – 220 вольт.

Существуют системы, в которых заземление присоединяют именно к нулевому проводу. Такая система носит название “глухозаземленная нейтраль”.

Делается это так: обмотки в трансформаторе соединяются по типу “звезда” (есть еще и соединение “треугольник”, а такде различные сочетания этих соединений, но об этом в другой раз). После этого нейтраль заземляют. Тогда наш ноль одновременно служит и заземлением (совмещенный нейтральный проводник, PEN).

Такой тип заземления практиковали в советское время при постройке жилых домов. Проще говоря, в таких домах электрощиток зануляют. Однако такой метод достаточно опасен, поскольку в некоторых случаях ток может пройти через ноль, возникнет отличный от нуля потенциал, результат варьируется от удара током до небольшого опасного фейерверка.

В наше время к жилым домам также подводят три фазы, но помимо трех фазных проводов, между трансформатором и домом также присутствуют отдельно нулевой провод отдельно провод заземления. На каждой подстанции имеется контур заземления: в случае утечки тока в электросистеме жилого дома — ток возвращается к заземлению на подстанции.

При монтаже такой сети необходимо учитывать, что в электрощите должны присутствовать отдельные шины для фаз, отдельная шина для нуля, отдельная шина для заземления. Внимание, при монтаже заземления не забудьте о том, что шина заземления должна быть соединена металлически с корпусом электрощитка.

На самом деле, аварийные ситуации, так или иначе связанные с отсутствием заземления или с совмещением нуля и заземления, в трехфазных сетях происходят периодически, поэтому заземление действительно необходимо. Немного отвлечемся и посмотрим, какие ситуации наиболее часто распространены.

Для правильной эксплуатации вся нагрузка должна быть равномерно распределена между фазами. Такое бывает редко, да и неизвестно, что именно будет подключать потребитель. Если возникает ситуация, при которой нагрузка на одну из фаз увеличивается, на другую – уменьшается, а к третьей – вообще непонятно что подключают, тогда происходит смещение нейтрали.

Из-за этого смещения между нулевым проводом и проводом заземления появляется разность потенциалов. Если же нулевой провод имеет сечение, которого недостаточно, то пресловутая разность потенциалов увеличивается.

А когда фазы теряют связь с нейтральным проводником, получаются две следующих ситуации:

  1. 1. Если фазы нагружены до предела, то напряжение падает до нуля;
  2. 2. Если фазы наоборот не нагружены, то напряжение растет до 380.

Как видите, такое напряжение явно уничтожит бытовую технику, рассчитанную на сети в 220 вольт. Помимо этого, в таких ситуациях металлические корпуса электрооборудования тоже будут под напряжением.

Отсюда следует, что использование раздельного варианта нуля и заземления более предпочтительно, так как позволяет обойтись без таких аварийных случаев.

Назначение фазы и нуля

Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.

Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.

Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.

Чтобы этого избежать, подводим к кастрюле третью трубу. Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.

Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.

Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.

Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность. Тут хорошо работает правило: доверяй, но проверяй!

По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.

Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.

Способы определения фазы и нуля

Как вы уже поняли, фаза и ноль в электричестве отличаются с помощью цветовой маркировки, но этот способ может быть ошибочным из-за изначально неверного монтажа.

Для более точного определения фазного провода существует отвертка-индикатор. Просто прикоснитесь ею к проводам по очереди. На нулевой провод отвертка никак не отреагирует, но при прикосновении к фазному проводу индикатор загорится. Если же индикатор вообще не сработал, значит ваша электросеть вышла из строя, напряжение в сети отсутствует.

Если же индикатор отреагировал на оба провода, значит в нулевом проводе произошел обрыв.

«Фаза» в электрике обозначается латинской буквой «L» производная от «Line» (линия). Обычно это коричневый или белый провод. «Ноль» обозначается буквой «N» от английского — Neutral (нейтральный). Цвет нулевого провода, как правило, синий или белый но синими полосами по всей длине.

Заземляющий проводник в электрике маркируют как «PE» – Protective Earthing. Он имеет желто-зеленый цвет.

Фаза и ноль в электропроводке

Выше мы уже объяснили, что такое фаза и ноль в электрике, а также принцип их работы. В электропроводке фаза и ноль работают точно также. По фазному проводу производится подача тока, по нулевому – ток возвращается обратно.

Поэтому достаточно один раз понять принцип работы фазы и нуля, и тогда вас не смутит никакая электропроводка, а также вы сможете правильно объяснить соседу, что такое фаза и ноль в электропроводке.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Электрика — «фаза» и «ноль»


В повседневной жизни человек очень часто встречается с электричеством. Более того, электрические приборы сопровождают нас каждый день. Помимо того, что мы постоянно пользуемся электрическим оборудованием, так еще и приходит время их поломки, следовательно, дальнейшей починки. И прежде чем приступить к работе с электричеством нужно, как минимум, знать теоретическую базу, не говоря уже о практике. Конечно, во избежание причинения вреда имуществу и вашему бесценному здоровью разумнее было бы обратиться за помощью к специалисту. Но если Вы хотите сами научиться понимать и разбираться в столь сложном деле как электричество, необходимо начать с самого главного.



Фаза и ноль – знакомые на слух, но чужие для понимания понятия



Данные понятия нередко встречались каждому человеку, и каждый предполагал, что это каким-то образом связано с электричеством. Знать и понимать, что такое «фаза» и «ноль» крайне необходимо, чтобы заниматься электромонтажными работами (например, самая простая установка светильника, бра или люстры). Перед тем, как прикоснуться к электричеству, необходимо обязательно восполнить все пробелы в знаниях. Понимать, что такое фаза и ноль нужно хотя бы для того, чтобы правильно подсоединить провода.



Существует три главных провода: фаза, ноль и заземление. Определить где и какой проводок можно при помощи подручных средств или по цвету. Специалисты различают провода с первого взгляда, а обычному человеку нужно времени побольше, особенно, если отсутствуют необходимые для этого приборы. На самом деле, способов распознавания кабелей не очень много, тем более безопасных. Именно поэтому чаще всего провода различают по цвету.

Цвет — главный ориентир при распознавании проводов


Самый простой и безопасный метод. Для того, чтобы правильно выделить фазу и ноль, нужно знать какой цвет чему принадлежит. Лучше всего найти достоверную информацию, где четко обозначены принятые в конкретной стране стандарты. Каждый проводок имеет свой определенный цвет, следовательно, найти ноль будет на так уж сложно. Все полученные при поиске информации знания пойдут на пользу и помогут быстро справиться с работой.



Данный метод очень актуален в новостройках, поскольку электропроводка протягивается квалифицированными специалистами, которые соблюдают все установленные стандарты. Например, в нашей стране в 2004 году был принят стандарт IEC 60446, в котором регламентируются все процессы деления фазы, заземления, нуля по цвету.


Обязательно нужно учитывать следующее:

  • синий (сине-белый) цвет провода – рабочий ноль;
  • желто-зеленый цвет – защитный ноль;
  • иные цвета – фаза (красный, коричневый, белый, черный и др. ). 


Именно такие обозначения используются чаще всего. Если же проводка в Вашем доме плохая и старая и ее монтажом занимались непрофессионалы, то правильнее будет воспользоваться другими методами.



Поиск фазы и ноля подручными средствами


По мнению специалистов первоначально нужно найти фазу, чтобы облегчить дальнейшее определению. Данный метод возможно применять наряду с предыдущим.


Индикаторная отвертка – неотъемлемый инструмент в бытовом наборе любого домашнего умельца.  Ее предназначение заключается как в проведении электромонтажных работ, так и в процессе обычной замены лампочек или при монтаже осветительных приборов.



Метод настолько простой, что справится с ним может абсолютно любой человек. В момент касания отверткой цветного провода под напряжением индикатор должен загореться. То есть, поступает сигнал о присутствии сопротивления, следовательно, исследуемый кабель – фаза.


Суть данного метода заключается в присутствии внутри отвертки лампочки и резистора. В момент замыкания электрической цепи сигнал загорается. Процедура проходит абсолютно безопасно для человека, поскольку в инструменте имеется сопротивление, которое понижает ток до минимума.

Контрольная лампа – еще один способ определения проводов



Данный способ применим для распознавания кабелей в трехпроводной сети. При использовании этого метода нужно быть очень осторожным и внимательным, поскольку подразумевается создание контрольной лампы.


Процесс заключается в следующем:

  • в патрон помещается обыкновенная лампа;
  • в клеммах располагаются провода без изоляции на концах;
  • поочередное присоединение проводов по цвету.



Если нет возможности создать подобную конструкцию, можно применить обычную настольную лампу с электрической вилкой. Нужно знать, что при таком методе можно определить лишь приблизительное присутствие среди проводов фазного. Сигнал контрольной лампы показывает, что с высокой вероятностью какой-то провод – ноль, а какой-то – фаза. Если свет не загорается, значит фазного провода среди исследуемых нет. Но может быть, что нет именно нулевого провода.



Таким образом, данный способ целесообразен в большей степени для того, чтобы определить правильность монтажа и рабочее состояние проводки.

Как определить сопротивление петли «фаза-ноль»



Периодическое проведение замеров сопротивления петли «фаза-ноль» гарантирует бесперебойную работу электроприборов и проверку автоматов. Это необходимо делать, поскольку самыми главными предпосылками поломок являются перегрузки электрических сетей и короткие замыкания.  Именно замеры сопротивления позволяют избежать подобных ситуаций.



Немногие знают, что такое петля «фаза-ноль», но понимать это крайне необходимо. Под этим понятием подразумевается обозначение контура, возникающего в итоге соединения нулевого провода, который располагается в заземленной нейтрали. Именно замыкание данной электросети и образует петлю.


Для измерения сопротивления в петле «фаза-ноль» существуют следующие методы:

  • падение напряжения в отключенной цепи;
  • падение напряжения при сопротивлении возрастающей нагрузки – самый часто используемый способ, поскольку выгодно отличается от других удобством, быстрым измерением, безопасностью;
  • использование специального прибора, который интерпретирует замыкание в цепи. 

мир электроники — Что такое фаза в электрике и как её определить

Практическая электроника 

 материалы в категории

Все мы конечно слышали такие слова как фаза и ноль в электрике. Многие из нас даже знают что фазовый провод ни в коем случае нельзя трогать- может и током шарахнуть. ..

А вот что это такое- фаза и ноль знают далеко не все…
Этакая аксиома (выражение не требующее доказательств): все знают что это есть, но не все знают что это такое…

Давайте попробуем разобраться: по определению фазой или фазовым смещением называют параметр отставания во времени. Применительно к электрическим машинам получается так: допустим мы имеем генератор переменного тока с двумя выводами.
Если ни один из этих выводов не заземлен то на них будет присутствовать переменное напряжение, причем значения потенциалов на выводах будут противоположны.

Не совсем понятно? Тогда немного по другому: переменное напряжение потому и называют переменным потому что оно постоянно меняет полярность. Ну то есть изменяется во времени от положительного потенциала к отрицательному и наоборот. Причем такие колебания происходят очень быстро- 50 раз в секунду (в некоторых странах 60 раз в секунду).
Возьмем, к примеру, самый обычный трансформатор (для простоты будем считать что он имеет всего лишь одну вторичную обмотку): если его включить в сеть переменного тока то на вторичной обмотке появится напряжение. Так вот: напряжение будет присутствовать на обеих концах вторичной обмотки, но потенциалы будут прямо-противоположны: когда на одном выводе «+», то на другом будет «-» и наоборот.
Вот это как раз и называется смещение по фазе.

Нетрудно догадаться что понятие фаза приемлемо лишь по отношению к переменному току.

Поехали дальше….
Если на электрической машине один из выводов заземлить, то напряжение останется лишь на одном проводе и будет оно изменяться уже относительно земли. Вот как раз такой провод в электрике и назвали фаза.

Что будет если вдруг мы коснемся фазы? Получится что образуется электрическая цепь между вами и землей и вы в этом случае будете нагрузкой!
Думаю нет нужды говорить что это опасно для жизни, поэтому при работе с промышленной сетью нужно уметь определить фазу.

Как определить фазу

Самый простой способ определить фазовый провод это конечно пробник. Промышленность всегда выпускала такие пробники а в наше время, благодаря китайским производителям, стоимость у них просто смешная…
Выглядит такой пробник как обыкновенная отвертка, но он прозрачный и имеет внутри неоновую лампочку. Его, кстати, так и называют- индикаторная отвертка

Для того чтобы определить фазу при помощи такой индикаторной отвертки нужно просто прикоснуться ею к проводу, но при этом еще необходимо держать палец на металлической верхушке индикатора. Включаясь таким образом мы создаем электрическую цепь между фазой и землей, но при этом мы не пострадаем так как индикаторная отвертка имеет внутри высокоомный ограничительный резистор.
Наличие фазы можно будет определить по свечению неоновой лампочки внутри индикатора.

Чуть выше я не зря упомянул о китайских производителях: пользоваться индикатором как отверткой нельзя- слишком хрупкий материал.

Второй способ определить определить фазу это при помощи мультиметра.

Как определить фазу мультиметром

Фазовый провод можно определить и мультиметром.
Делается это так: ставим мультиметр в режим проверки переменного напряжения.
Затем: к одному из щупов прикасаемся пальцем а вторым щупом- к проверяемому проводу. При наличие фазы на этом проводе на дисплее мультиметра будет показано напряжение:

Что делать если вдруг под рукою нет ни индикаторной отвертки ни мультиметра но фазу определить просто необходимо?

Можно определить фазу при помощи лампочки.
Потребуется немного: самая обыкновенная лампа накаливания, патрон и пара проводов.
Один из проводов нужно заземлить. В квартире для этой цели можно использовать батарею центрального отопления.
Заземлив один провод вторым касаемся к проверяемой цепи. Свечение лампочки укажет на присутствие фазы.

Примечание: изображения и основная часть материала взята с сайта Практическая электроника

Фаза и ноль — что такое, как определить фазу и ноль в электричестве

Далеко не всегда хочется вызывать специалистов при необходимости заменить люстру, повесить бра или дополнительный светильник. Но когда электромонтажными работами занимаешься впервые, так или иначе начинаешь задаваться вопросом, что представляют собой такие понятия как «ноль» и «фаза».

Разбираться в этих обозначениях необходимо хотя бы для того, чтобы правильно подключить провода. Желательно восполнить пробелы в знаниях об электричестве, при отсутствии опыта в данной сфере, перед началом работ.

Выделяют три обозначения проводов:

  • фаза
  • ноль
  • заземление

Определить, какой кабель в розетке или осветительном приборе к чему относится, можно подручными средствами или по цвету. Под понятием «ноль», как правило, подразумевают «рабочий ноль», «фаза» — «фазные провода», а под «заземлением» — «защитный ноль».

Профессиональные электрики могут различать кабели с первого взгляда. А вот для рядового человека различать данные обозначения немного сложно. Тем более что специальные инструменты, позволяющие определить, где фаза и ноль, имеются далеко не у всех.

В реальности способов распознания проводов не так уж и много. А безопасных – еще меньше. Поэтому чаще всего определяют кабели по цвету.

Маркировка кабелей по цвету

Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.

Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки.

Особенно актуален этот способ для новостроек. Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.

Стоит учесть, что:

  • если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это – рабочий ноль
  • защитный ноль представлен кабелями в желто-зеленой оболочке
  • другие цвета характерны для фазы. Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.

Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.

Самостоятельное определение фазы и ноля при помощи подручных средств

Специалисты рекомендуют для облегчения определения проводов начинать именно с распознавания фазы. Этот способ можно использовать совместно с предыдущим (по цвету).

Индикаторная отвертка непременно найдется в арсенале каждого домашнего мастера. Она необходима как для проведения комплекса работ по электромонтажу, так и при элементарной замене ламп либо установке осветительных приборов.

Метод до смешного прост. При касании жалом индикаторной отвертки провода определенного цвета, находящегося под напряжением, и одномоментного прикосновения контакта на инструменте, должен загореться индикатор. Он сигнализирует о наличии сопротивления. Значит, проверяемый провод является фазным.

Определение при помощи этого метода строится на том, что внутри инструмента располагается лампочка и резистор (сопротивление). Когда электрическая цепь замыкается, загорается сигнал. Именно наличие в индикаторной отвертке сопротивления и позволяет производить процедуру совершенно безопасно для человека, способствуя снижению тока до минимальных значений.

Метод определения фазы и ноля при помощи контрольной лампы

Этот способ подразумевает использование контрольной лампы для определения проводов определенного цвета в трехпроводной сети. Применять данный метод следует с особой осторожностью. 

Применение этого метода подразумевает создание контрольной лампы. Для этого в патрон вкручивается обычная лампочка. В клеммах патрона размещаются провода, на концах которых отсутствует изоляция. При отсутствии возможности создать такую конструкцию допустимо использовать традиционную настольную лампу, оснащенную электрической вилкой. Теперь для определения необходимо поочередно, по цветам присоединять провода.

Стоит отметить, что использование данного метода позволяет определить, присутствует ли среди пары проверяемых проводов фазный. А какой именно из этих двух – фаза, распознать будет непросто. Загорание контрольной лампы означает, что с высокой долей вероятности одни провод – фаза, а другой – ноль.

Отсутствие света говорит о том, что фазный провод среди проверяемых отсутствует. Хотя возможен вариант, что нет именно нуля. Поэтому применение этого метода целесообразно, скорее всего, для определения правильности монтажа и работоспособности проводки.

Определение сопротивления петли фаза-ноль

Для обеспечения нормального функционирования электрических приборов и проверки автоматов необходимо периодически проводить замеры сопротивления петли фаза-ноль. Потому как первоочередными причинами поломок осветительных приборов являются перегрузки сети и короткое замыкание. Измерение сопротивления позволяет в кратчайшие сроки выявить неисправность и предотвратить подобную ситуацию.

Далеко не все знают, что представляет собой понятие «петля фаза-ноль». Под этой фразой скрывается контур, образованный в результате соединения нулевого провода, находящегося в заземленной нейтрали. Замыкание этой электрической сети образует петлю фаза-ноль.

Измеряют сопротивление в этом контуре следующими методами:

  • падением уровня напряжения в отключенной цепи
  • падением уровня напряжения в результате сопротивления возрастающей нагрузки
  • использованием профессионального инструмента, интерпретирующего короткое замыкание в цепи

Второй способ используется чаще всего, так как отличается удобством, возможностью быстро измерить сопротивление, а также безопасностью.

Что такое фаза и ноль в электричестве простыми словами | Антиплагиату.НЕТ

Электричество давно стало важной частью нашей жизни. Вместе с тем оно сохранило свою сложность и таинственность. Для того, чтобы понимать, о чём идёт речь, нужно понять смысл основных понятий. Только разобравшись в том, что такое электрический ток, разность потенциалов, чем отличаются фаза и ноль, можно продолжить изучение электричества дальше.

фаза и ноль

фаза и ноль

Чтобы лучше узнать, что представляет собой электричество, нужно начать с фундаментальных понятий — заряда и электрического тока. Изучив их, можно будет понять, что представляют собой фаза и ноль.

Электрический ток и электрический заряд

Имея электрический заряд, физическое тело получает способность создавать электрическое поле. Как известно, всё вокруг нас состоит из атомов и вращающихся вокруг них электронов. Ядро атома имеет положительный заряд, а электроны — отрицательный. Заряд этой частицы равен -1,6, умноженное на 10 в -19 степени Кулона. Это очень маленькая величина.

Предметы могут приобрести как положительный, так и отрицательный заряд. Этого можно, например, добиться, если потереть эбонитовую палочку о шерсть. После этого она приобретёт отрицательный электрический заряд. Это происходит потому, что в эбонитовой палочке образуется избыток электронов.

Можно привести примеры того, как аналогичным образом возникает положительный заряд. Например, если на волосах накапливается статическое электричество, то это связано с потерей некоторого количества электронов. Из-за этого заряд будет положительным.

Теперь можно более точно понять, что представляет собой это понятие. Заряд — это скалярная величина, которая определяет способность создавать электрическое поле.

Теперь можно разобраться в том, что представляет из себя электрический ток. С ним неразрывно связаны понятия напряжения и сопротивления, о которых можно подробно узнать, прочитав нашу статью о них.

Электрические заряды способны перемещаться вдоль проводника. Это упорядоченное движение называют током. Оно возникает благодаря электромагнитному полю. Различают постоянный и переменный ток. В первом случае ток движется, не меняя скорости и направления. Во втором он меняется с течением времени.

В качестве примера источника постоянного тока можно привести батарейку. Переменный ток имеется в бытовых розетках, присутствующих в каждом доме. Его проще передавать на значительные расстояния, поэтому на практике его используют практически везде.

Особую роль играет синусоидальный переменный ток. Он изменяется периодически. Сначала нарастает, достигая максимума, затем спадает, меняет направление и начинает увеличиваться. После достижения предельного значения уменьшается. Затем этот цикл повторяется.

Фаза и ноль в электричестве на примере

Теперь можно объяснить, что представляют из себя фаза, нулевой провод или заземление. Наиболее распространённой на практике является однофазная цепь. Для неё обычно используются три провода: фазовый, нулевой и заземление. По первому из них ток поступает к потребителю. Через нулевой провод он идёт обратно.

пример определения фазы и ноля

пример определения фазы и ноля

Заземление используется для обеспечения безопасности при пользовании электричеством. Избыток электричества с его помощью сможет стекать в землю. Иногда при наличии неисправности оно может скапливаться на электроприборе. Если человек прикоснётся к нему в этот момент, он получит удар электрическим током. Заземление позволяет избежать появления такого электрического заряда.

Фазой называют провод, через который электричество поступает в розетку. Через ноль ток возвращается обратно. Оба провода необходимы для того, чтобы создать ток. Нулевой провод уходит на трансформаторную подстанцию. Там он заземляется.

В трёхфазной сети имеется три фазовых провода и один обратный. Таким способом электрическая энергия доставляется в квартиры. В каждую розетку выходит одна из фаз и нулевой провод. Также существуют специальные трёхфазные розетки, которые используются наиболее мощными электрическими приборами.

В фазовых проводах потенциал имеется в любой момент времени. Когда электрический прибор подключают в розетку, он замыкает собой цепь.

Переменный ток в розетках является синусоидальным. Частота его изменения равна 50 Гц. В однофазных розетках напряжение равно 220 В. Такие розетки используются на территории СНГ. На территории других стран могут действовать другие стандарты. Например, в США в бытовых розетках напряжение 100-127 В с частотой 60 Гц.

Нужно понимать, что несмотря на похожие функции, между нулевым проводом и заземлением имеется разница. Когда в квартиру поступает трёхфазное электричество, разность потенциалов между любой из трёх фаз и нулём всегда равна 220 В. Если вместо последнего использовать заземление, то она может быть другой, создавая риск для работы электроприбора.

При использовании переменного тока фазу и ноль путать нельзя. В противном случае может произойти короткое замыкание. Для этого нужно помнить, что провода имеют разную окраску. Нулевой провод, как правило имеет голубой или синий цвет. Для фазы могут использоваться несколько цветов — чёрный, красный или белый. Если есть провод жёлто-зелёного цвета, то можно быть уверенным, что это заземление.

Сегодня вы разобрались в том, что такое электричество, для чего предназначены фаза и ноль, почему необходимо заземление. Надеемся, что для некоторых эти знания были нужными и интересными. Если речь пойдёт о фазе или нуле, то теперь вы не будете испытывать затруднений в понимании сказанного.

Если потребуется сделать расчёты однофазной или трёхфазной цепи, вы можете обратиться к нашим специалистам. Обратившись в наш сервис, вы убедитесь, что нам можно доверить решение ваших задач.

Знайте разницу между трехфазным и однофазным питанием

По всей Северной Америке дома питаются от однофазной электросети напряжением 120 вольт. Типичная коробка автоматического выключателя в жилых помещениях показывает четыре провода, идущие в наши дома: два «горячих» провода, нейтральный провод и заземление. Два «горячих» провода несут 240 В переменного тока, который используется для тяжелых бытовых приборов, таких как электрические плиты и сушилки. Однако напряжение между горячим проводом и нулевым проводом составляет 120 В переменного тока, от которого питается все остальное в наших домах.

Однако производственные предприятия по производству электроэнергии в Северной Америке передают трехфазную энергию сверхвысокого напряжения в диапазоне от 230 кВ до 500 кВ. При внимательном рассмотрении линий электропередач высокого напряжения можно обнаружить три отдельных проводника, каждый из которых проводит ток, а также нейтральный провод. Распределение трехфазной энергии обходится дешевле, поскольку линии передачи для трехфазной энергии не нуждаются в медных проводах такого же диаметра, как в однофазной линии передачи. Кроме того, трехфазное соединение обеспечивает гибкость при подключении к сервису и может предоставить клиентам не только обычную услугу 120 В переменного тока, но также и 208 В переменного тока. Практически каждое промышленное здание, включая ваше, получает трехфазное питание, так как оно имеет много преимуществ перед однофазным.

Проектирование или переоборудование центра обработки данных для использования трехфазного питания окупается, но некоторые центры не понимают преимуществ, которые дает трехфазное питание. Давайте посмотрим на различия между однофазным и трехфазным питанием, чтобы понять, почему трехфазное питание не только обеспечивает реальную экономию затрат, но и создает более эффективный центр обработки данных.

Проблема с однофазным двигателем

Обычная однофазная сеть на 120 В переменного тока, работающая при 60 Гц, не может обеспечить непрерывное питание.На этой частоте синусоидальная волна переменного тока пересекает нулевую точку 120 раз в секунду. Лучше всего понимать, что мощность измеряется в ваттах, а ватты — это произведение приложенного напряжения на амперы тока, протекающего в цепи (W = V x A).

Когда напряжение или ток пересекает нулевую точку, подаваемая электрическая мощность падает до нуля. На практике эти мгновенные падения до нуля заметно не влияют на оборудование в цепи. Если оборудование, например, двигатель, механическая инерция его вращающегося якоря «проезжает» через нулевые точки.(Однако эти пересечения нулевой точки действительно складываются. Двигатели, работающие на однофазном питании, имеют более короткий срок службы, чем двигатели, рассчитанные на трехфазное питание). Точно так же, если оборудование, находящееся под нагрузкой, представляет собой твердотельную электронику, сглаживающие конденсаторы в фильтре источника питания «буферизуют» эти нулевые точки.

Трехфазное питание, с другой стороны, состоит из трех синусоид, разделенных на 120 градусов. Эта форма мощности создается генератором переменного тока с тремя независимыми обмотками, каждая из которых находится на расстоянии 120 градусов друг от друга.Каждый ток (фаза) проходит по отдельному проводнику. Из-за фазового соотношения ни напряжение, ни ток, приложенные к IT-нагрузке, никогда не падают до нуля. Это означает, что трехфазное питание при заданном напряжении может обеспечить большую мощность. Фактически, это примерно в 1,7 раза больше мощности однофазного источника питания.

В последние годы увеличилась вычислительная мощность, которую можно сконфигурировать в одной стойке. Не так давно в стойке могло быть до десяти серверов, потребляющих 5 кВт. Теперь, из-за непрекращающейся миниатюризации и неудержимого развития технологий, та же самая стойка может вмещать четыре или пять десятков серверов и потреблять более 15 кВт.

Для однофазного питания стойки мощностью 15 кВт при 120 В переменного тока требуется 125 А. Медь, необходимая для безопасного проведения этого тока, AWG 4, имеет диаметр почти четверть дюйма. [1] С ним сложно работать, и это дорого. Понятно, что однофазный режим для таких нагрузок нецелесообразен. Однако в трехфазной системе каждый проводник AWG 11 диаметром всего 0,09 дюйма может выдерживать только около 42 ампер. Если вы заинтересованы в более подробном изучении арифметики, стоящей за этим, прочтите наш блог «Демистификация трехфазных разветвителей питания на 208 В (стоечные блоки распределения питания), часть II: понимание емкости».

Как трехфазное питание может помочь

Ваш выбор энергосистемы может принести вам эффективность и экономию или негибкость и чрезмерные затраты. Однофазное питание идеально подходит для бытовых пользователей, у которых наибольшая нагрузка приходится на сушилку или электрическую плиту. Однако центрам обработки данных необходимо учитывать преимущества трехфазного питания. К ним относятся:

  • Может работать как с устройствами на 120 В переменного тока, так и на 208 В переменного тока от одного источника питания, при необходимости смешивая и согласовывая блоки PDU.
  • Трехфазный позволяет вам сегодня использовать все ваши устройства при напряжении 120 В переменного тока, но можно выполнить обновление до 208 В переменного тока, просто заменив блоки распределения питания, что можно сделать быстро и без значительных простоев.
  • Стоимость кабельной разводки резко снижается, если трехфазное питание подается непосредственно в серверные шкафы.
  • Уменьшаются объемы работы электриков, устанавливающих кабели переменного тока, и общее время монтажа.

Если вы ищете способы обеспечить соответствие вашего центра обработки данных требованиям будущего, используя трехфазное питание, узнайте, как блоки распределения питания вписываются в набор необходимых вам решений.

Спонсором этого сообщения в блоге является Raritan.

Разница между однофазной и трехфазной системой питания

Однофазное электричество

Однофазная система является наиболее распространенной и в основном используется в домах, тогда как трехфазная система распространена в промышленных или коммерческих зданиях, где требуются большие мощности.

Однофазные системы используют электроэнергию переменного тока (AC), в которой напряжение и ток меняются по величине и направлению циклически, обычно от 50 до 60 раз в секунду. В Великобритании однофазное напряжение составляет 230 вольт.

В электротехнике однофазная электроэнергия относится к распределению с использованием системы, в которой все напряжения источника питания изменяются в унисон.

Проще говоря, однофазное электричество можно рассматривать как каноэ для одного человека.Лопатка входит в воду, чтобы передать мощность, а затем покидает воду, прежде чем вторая лопасть снова войдет в воду, чтобы передать больше мощности, что приведет к изменению мощности.

Иногда будет нулевая выходная мощность, а в цикле будет два пиковых выхода мощности, см. Диаграмму ниже.

Рисунок 9: График однофазной мощности

Однофазное распределение используется, когда нагрузки, в основном, освещают и обогревают, с небольшим количеством крупных электродвигателей. Однофазный источник питания, подключенный к электродвигателю переменного тока, не создает вращающегося магнитного поля; Однофазные двигатели нуждаются в дополнительных цепях для запуска, и такие двигатели редко встречаются с номинальной мощностью выше 10 или 20 кВт.

Специальные однофазные тяговые электрические сети могут работать на частоте 16,67 Гц или других частотах для питания электрических железных дорог.

Трехфазное электричество

Проще говоря, трехфазное электричество можно рассматривать как три однофазных источника электроэнергии, которые подают свою пиковую мощность на расстоянии 120 ° друг от друга.

В качестве аналогии рассмотрим каноэ с тремя каноэ, гребущими на каноэ поочередно. В отличие от одного каноиста, всегда есть выходная мощность и никогда не бывает нулевой выходной мощности, что делает этот источник питания более подходящим для промышленных двигателей и оборудования.

Рисунок 10: График трехфазной мощности

Однофазный Vs. Объяснение трехфазного питания

Источник питания переменного тока — наиболее распространенный вид электроснабжения жилых и коммерческих зданий. Это позволяет часто менять направление тока. Есть два типа систем электроснабжения — однофазные и трехфазные. Основное различие между однофазным и трехфазным трансформатором заключается в том, что первый используется в домах и жилых зданиях, а второй — на заводах и коммерческих зданиях с большой силовой нагрузкой.

Под фазным током в электрических трансформаторах понимается ток или напряжение в существующем проводе и нейтральном кабеле. Таким образом, фаза — это распределение силовой нагрузки между одним проводом в однофазном трансформаторе и тремя проводами в трехфазном трансформаторе.

Однофазное питание состоит из одного провода и одного проводника для регулирования и распределения силовой нагрузки. С другой стороны, трехфазный состоит из трех проводов и одного нулевого провода для замыкания цепи.

Разница между однофазным и трехфазным питанием

И однофазные, и трехфазные используют источник питания переменного тока для управления протеканием тока. Ток, который использует мощность переменного тока, имеет переменное направление. Давайте посмотрим на некоторые из основных различий между этими двумя типами электрических трансформаторов —

.

Однофазный источник питания

Самый распространенный тип малогабаритных источников питания с однофазным питанием по одному проводнику. Одновременно происходит изменение всех питающих напряжений. Основное преимущество использования однофазного источника питания в том, что он может эффективно справляться с нагрузкой бытовой техники, у которой есть двигатель тепла и молнии.

В однофазном электрическом трансформаторе нет вращающегося магнитного поля. Для работы требуется дополнительный контур. Прямое питание не обеспечивает стабильности в однофазной системе питания. Он может выдерживать напряжение 230 В, наиболее распространенное в жилых домах. Конструкция источника питания менее сложна, поскольку в нем отсутствует магнитное вращение.Он также дешевле в установке, но имеет минимальную мощность передачи. Блок питания отлично подходит для работы двигателей мощностью до 5 лошадиных сил.

Трехфазное питание

Трехфазный источник питания в основном используется в промышленных помещениях и на заводах, которым требуется большая мощность. Он имеет 4 провода — 3 жилы и один нейтральный провод. 3 проводника расположены под фазовым углом 120 градусов друг к другу.

Основным преимуществом является то, что для малой нагрузки можно использовать однофазный источник питания переменного тока от трехфазного трансформатора.Он обеспечивает постоянное питание и не опускается до нулевого значения. Трехфазная система не имеет катушки. Это чрезвычайно эффективная и экономичная система питания переменного тока для тяжелых нагрузок. По большей части, трехфазный источник питания используется в промышленных двигателях, электрических сетях, самолетах, центрах обработки данных, кораблях и системах, которые должны нагружать более 1000 Вт.

Если вы хотите преобразовать однофазный источник питания в трехфазный, это не составит особого труда. Вы можете использовать статический преобразователь, вращающийся фазовый преобразователь или преобразователь частотно-регулируемого привода.Для более высоких требований к мощности рекомендуется использовать 3-фазные трансформаторы для получения эффективных результатов.

Почему мы используем трехфазное питание?

Большинство электроприборов, используемых в домах и на предприятиях, работают с переменным током (AC), что означает, что подаваемое напряжение является пульсирующим, в отличие от постоянной выходной мощности батареи (постоянный ток, DC). В США напряжение, подаваемое коммунальными предприятиями, имеет частоту 60 Гц, что означает, что оно переключается между положительной и отрицательной полярностью 60 раз в секунду.

Большинство источников питания переменного тока можно разделить на однофазные или трехфазные, в зависимости от характеристик подаваемого напряжения. Как следует из названия, трехфазная система имеет три отдельных напряжения переменного тока, каждое с частотой 60 Гц. Однако эти напряжения чередуются между положительным и отрицательным в последовательности, а не одновременно, обеспечивая постоянный источник питания, который невозможен в однофазной системе.


Планируете строительный проект? Получите профессиональный электротехнический дизайн.


Как трехфазное питание снижает стоимость электроустановок

Емкость систем питания переменного тока измеряется в вольт-амперах (ВА) и рассчитывается путем умножения напряжения и тока.

  • Например, цепь на 120 В с проводкой 20 А может выдерживать 2400 ВА.
  • Трехфазная цепь с проводкой 20 А может выдерживать 7200 ВА.

Учтите, что вам потребуются нейтральный провод и заземляющий провод в обоих случаях в дополнение к одному токоведущему проводнику для каждого выхода напряжения.Это означает, что вам потребуется три провода для однофазной системы и пять проводов для трехфазной системы. Другими словами, трехфазная система имеет 300% мощности однофазной системы, при этом используются только два дополнительных провода (всего на 67% больше меди). Если учесть сокращение проводки за счет использования трехфазного источника питания в большом коммерческом или промышленном объекте, экономия будет значительной.

Однофазное питание обычно используется в жилых помещениях, где нагрузка слишком мала, чтобы оправдать сложность трехфазной системы. Однако однофазные источники питания для индивидуальных жилых домов обычно производятся от трехфазной системы большего размера.

  • Дома на одну семью и другие небольшие постройки получают однофазное питание от трехфазной распределительной системы, принадлежащей коммунальной компании.
  • Более крупные многоквартирные дома обычно имеют собственный трехфазный служебный вход.

Преимущества трехфазного оборудования в производительности

Помимо экономии на электропроводке, трехфазные системы имеют заметные преимущества в производительности по сравнению с однофазными аналогами.Особенно это касается электродвигателей:

  • Для данной номинальной мощности трехфазные двигатели имеют более высокий КПД, чем однофазные. Учитывая высокие цены на киловатт-час в Нью-Йорке, это значительное преимущество.
  • Трехфазные двигатели также имеют более высокий коэффициент мощности, что означает, что они потребляют меньше вольт-ампер при заданной нагрузке и эффективности. Некоторые тарифы на электроэнергию включают плату за недостаточный коэффициент мощности, и трехфазные двигатели могут помочь снизить их.
  • Поскольку однофазные системы выдают пульсирующую мощность, двигатели, как правило, испытывают повышенную вибрацию, в то время как постоянное питание трехфазных систем обеспечивает более стабильную работу.
  • Однофазные двигатели не могут запуститься сами по себе, требуются внешние устройства. С другой стороны, трехфазные двигатели могут запускаться только от источника питания, и он может даже изменить направление, если вы переключите два проводника друг с другом.

Трехфазная система также более универсальна, чем однофазная.Если вам нужно запустить однофазное устройство с трехфазным питанием, вы можете использовать только один из трех проводов. Однако обратное не действует: трехфазные приборы не могут работать от однофазного источника питания. Исключение составляют двигатели: вы можете запускать трехфазный двигатель от однофазного источника питания, но его механическая мощность резко снижается, а срок его службы резко сокращается.

Требования к цвету проводки

Национальный электротехнический кодекс устанавливает требования к цвету проводки для электрических систем.Это упрощает идентификацию проводников, снижает вероятность ошибки человека и повышает безопасность. Требования кратко изложены в следующей таблице.

Проводник
Описание

Трехфазные системы,
Номинальное напряжение 120/208/240 В

Трехфазные системы,
Номинальное напряжение 277/480 В

Токоведущий провод № 1

Черный

Коричневый

Токоведущий провод №2

Красный

Оранжевый

Токоведущий провод № 3

Синий

Желтый

Нейтральный провод

Белый

Серый

Заземляющий провод

Зеленый, голый или зеленый и желтый

Зеленый, голый или зеленый и желтый

Когда трехфазная система питает как трехфазные, так и однофазные нагрузки, рекомендуется уравновешивать однофазные нагрузки между тремя фазами. Несбалансированное напряжение питания может быть вредным для некоторых типов оборудования. Нейтральный проводник также несет более высокий ток, когда система плохо сбалансирована, и это вызывает потери мощности в виде рассеивания тепла.

Обратите внимание, что проводка — не единственный элемент схемы, который меняется между однофазной и трехфазной установками. Такие компоненты, как защитные устройства, распределительные щиты и трансформаторы, также построены по-другому. В случае трансформаторов вы можете использовать три однофазных блока для повышения или понижения трехфазного напряжения, но трехфазный трансформатор в большинстве случаев дешевле и компактнее.

О фазах переменного тока

Что такое фазы?

Если вы посмотрите на бытовую электрическую мощность переменного тока через осциллограф,
вы бы увидели синусоидальную волну:

Вы увидите, как электроэнергия повторяет свой «цикл». В домашнем хозяйстве
мощность это происходит 50 или 60 раз за одну секунду. Если у нас будет больше, чем
одна из этих синусоидальных волн немного смещена, мы называем каждую из них отдельной «фазой».

В простой модели, приведенной выше, это показывает, что электрическая мощность увеличивается до
значение «+» 170 вольт, а затем падение обратно до нуля и обратная полярность
на «-» 170 вольт.Фактическая мощность, которую мы можем получить от этого, составляет 120 вольт,
это потому, что мы используем измерение среднеквадратичной мощности на маршруте (RMS).
Узнайте, как рассчитать
Мощность RMS здесь>

Эта идеальная форма волны, конечно, теоретически, потому что в действительности
что переходные процессы, гармоники, индукторы,
все емкостные эффекты делают свое дело по искажению формы волны. Волна
приведенная выше форма однофазная и это тип питания, который у вас есть
домашнее хозяйство.Мощность увеличивается вверх и обратно до нуля и т. Д., Однако это
не лучший вид мощности для передачи на большие расстояния. Инженеры
выяснили, что мы можем получить больше энергии от генератора, если он разделен
на три фазы. Как вы можете видеть ниже, три фазы создают почти
постоянный поток мощности (аналогично мощности постоянного тока). Расчет мощности переменного тока,
особенно трехфазное питание переменного тока требует сложных уравнений, поскольку оно описывает
продвинутая физика.

Почему мы используем трехфазную систему питания
сегодня?

Лайонел Бартольд, пионер инженерных систем, описывает
почему мы используем 3 фазы.Он исследовал другие системы в своей компании.
PTI и пришел к выводу, что 3 фазы по-прежнему являются лучшим способом
транспортировка электроэнергии переменного тока на короткие расстояния (HVDC лучше для больших расстояний).

Генераторы:

Трехфазные генераторы имеют катушки под углом 120 градусов друг к другу, поэтому
Для генераторов вполне естественно вырабатывать трехфазную мощность. Перед AC
генераторы энергии нуждались в коммутаторе, чтобы исправить реверс мощности
и сделать постоянный ток.

История:

Первый переменный ток был однофазным. Ипполит
Pixii разработала первый генератор переменного тока, но рано
изобретателям было сложно понять, как использовать созданную им силу, потому что
власть меняла бы каждый цикл. Большинство изобретателей считали кондиционер бесполезным для
совсем немного времени. В 1870-х годах Отто Блати, Микса Дери и Кароли
Зиперновски был пионером в использовании переменного тока
в Будапеште, Венгрия.Они сделали циклы так быстро, что появились огни
постоянно гореть. Они использовали трансформаторы
что может изменить напряжение для передачи на большие расстояния. Уильям
Стэнли усовершенствовал полезный трансформатор, когда зажег Грейт-Баррингтон.
в 1886 г. Он использовал однофазный генератор Сименса.

Однофазное питание переменного тока оказалось полезным в 1886 году с демонстрацией Стэнли,
однако у него была главная проблема, заключающаяся в том, что он не мог приводить в действие двигатели. AC
двигатели нужно было «подтолкнуть», чтобы начать работу.Без хорошего мотора
AC не мог конкурировать с с системами постоянного тока, которые уже находились в тяжелом состоянии.
использование на фабриках, тележках и коммерческих
здания.

Полифазная электроэнергия была решением этой проблемы. Происхождение
о многофазном питании не ясно, как писали в Европе
еще в 1882 году. Николе Тесла сегодня уделяется наибольшее внимание полифазности,
однако в то время он был не единственным сторонником многофазных систем.

В 1888 году решение большой проблемы с двигателями появилось, когда
Двигатели переменного тока, когда Галилео Феррарис
изобрел многофазный асинхронный двигатель.
Этот двухфазный электродвигатель может запускаться как двигатель постоянного тока. Тесла
придумал свою версию 8 месяцев спустя и быстро заработал на продаже
патенты на Westinghouse. С этого начались улучшения за несколько лет. Westinghouse
использованные электростанции, такие как Эймс в Теллурайде
для проверки 2-х фазных систем питания.

Первые трехфазные системы:

Мы можем считать C.S. Bradley изобретением первых трех фаз.
генератор в 1887 году, однако только в 1891 году мир увидел полную
Функциональная 3-х фазная система питания. Франкфурт
демонстрация, разработанная Добровольским, укрепила полезность
Электропитание переменного тока и положило конец Войне токов.

Чарльз Стейнмец и Альберт
Халл в исследовательской лаборатории GE экспериментировал с моноциклической мощностью переменного тока
в 1908 и 1930-х годах, но пришли к такому же выводу, что 3 фазы были
лучше.

С тех пор различные
компании пытались экспериментировать с другими вариантами многофазного
электроэнергии, однако это не оказывается рентабельным. Единственный
система, которая действительно угрожает свергнуть доминирующую трехфазную систему,
HVDC. HVDC эффективно передает мощность на большие расстояния
с одним сплошным кабелем вместо 3. Постоянный ток также может питать дома и
экономия затрат, поскольку в проводниках используется только часть меди.Поскольку сырье продолжает дорожать, зарождается идея мира постоянного тока.
чтобы выглядеть более привлекательно. Читать далее о
будущее в DC с этой статьей IEEE>

Назад к основам электричества

Связанные темы:

Трансмиссия

М. Уилан

Фото / Графика:
Технический центр Эдисона

Источники:
Интервью с В.Kornrumpf. Технический центр Эдисона. 2013
Интервью с Томом Блалоком. Технический центр Эдисона. 2014
Интервью с Лайонелом Бартольдом. Технический центр Эдисона. 2011
Школа физики UNSW, Сидней, Австралия
Интервью в San Miguel Power Assc. Технический центр Эдисона. 2014 г.

У вас однофазное или трехфазное питание?

Как определить однофазное или трехфазное питание

  • Вторник, 2 февраля 2021 г.

Одно- и трехфазное питание — это термин, который не используется в повседневной беседе.Поэтому многие из нас не до конца понимают, что это такое и как работает.

Что такое «однофазное» и «трехфазное» питание?

Одно- или трехфазное питание относится к источнику питания, поступающему в вашу собственность по подземным или воздушным линиям с улицы. Большинство домов обычно имеют однофазное питание. Трехфазное питание обычно используется в коммерческих / промышленных ситуациях и в больших домах с несколькими крупными электрическими приборами, потребляющими большие токи электроэнергии.Если ваша собственность потребляет много электроэнергии, будет установлено трехфазное питание, чтобы избежать колебаний мощности.

Как узнать, какая у меня фазная мощность?

  1. Просто найдите распределительный щит, обычно он находится рядом с фасадом дома или внутри в шкафу для белья
  2. В распределительном щите будет несколько автоматических выключателей. Разрыв цепи под названием «Главный выключатель» позволяет определить, какая фазная мощность доступна.
  3. Если имеется одиночный автоматический выключатель (как показано на рисунке ниже), это одно (1) фазное питание.Если есть три автоматических выключателя, соединенных одним переключателем (как показано на рисунке ниже), это трех (3) фазное питание.

Однофазный автоматический выключатель Трехфазный автоматический выключатель


Зачем нашему дому трехфазное питание?

Как упоминалось выше, трехфазное питание необходимо только в больших домах с несколькими электрическими приборами. Вам понадобится три фазы, если у вас есть:

  • Большая печь для керамики.
  • Большой канальный кондиционер с холодопроизводительностью более 15 киловатт.
  • Электродвигатели большие, обычно более 2 киловатт.
  • Сварочные аппараты или другое оборудование для гаражных мастерских.
  • Большой дом, в котором много людей используют электронные устройства в часы пик.
  • Дома с бассейнами с большими фильтрующими насосами, требующими питания.
  • Дома с несколькими холодильниками и морозильниками, требующими много энергии.

Если вы пытаетесь отключить эти машины или устройства от однофазного источника питания, автоматический выключатель продолжит отключаться, поскольку для удовлетворения потребности в питании недостаточно энергии.

Как работает одно- и трехфазное питание?

Электроснабжение в дом идет по проводам от ЛЭП по ул. Однофазный имеет два провода: активный и нейтральный. Нейтральный провод заземляется на распределительном щите. У трех фаз четыре провода: три активных (называемых фазами) и одна нейтраль. Нейтральный провод заземлен на распределительном щите.

Существует ли двухфазное питание?

Да. Двухфазное питание обычно устанавливается, если требования к однофазному питанию превышают максимальное потребление, рассчитанное электриком.Однако установка трехфазного источника питания не требует дополнительных затрат, поэтому более выгодно установить трехфазное питание, поскольку оно потенциально может быть использовано в будущем.

Однофазное и трехфазное питание. Объяснение

Однофазный источник питания используется в большинстве домов и на малых предприятиях, поскольку его установка относительно проста и недорога. Коммерческие и промышленные предприятия с большими потребностями в электроэнергии предпочитают трехфазное питание, потому что оно более эффективно и дешевле в эксплуатации.Но в чем именно разница между однофазным и трехфазным питанием?

Трехфазная и однофазная

Чтобы проиллюстрировать разницу между однофазным и трехфазным питанием, представьте одинокого гребца в каноэ. Он может двигаться только вперед, пока его весло движется по воде. Когда он поднимает весло из воды, чтобы подготовиться к следующему гребку, мощность, подаваемая на каноэ, равна нулю.

А теперь представьте себе ту же каноэ с тремя гребцами. Если их гребки синхронизированы, так что каждый из них разделен на 1/3 цикла гребка, каноэ получает постоянное и последовательное движение по воде.Прибавляется больше мощности, и каноэ движется по воде более плавно и эффективно.

Однофазное питание

  • Однофазное электричество используется в большинстве домов и на малых предприятиях
  • Обеспечивает достаточную мощность для большинства небольших потребителей, включая дома и небольшие непромышленные предприятия
  • Подходит для работы двигателей мощностью до 5 лошадиных сил; Однофазный двигатель потребляет значительно больше тока, чем эквивалентный трехфазный двигатель, что делает трехфазный двигатель более эффективным выбором для промышленного применения

3 фазы питания

  • Распространено в крупных компаниях, а также в промышленности и производстве по всему миру
  • Все более популярны в энергоемких центрах обработки данных с высокой плотностью данных
  • Дорогое преобразование из существующей однофазной установки, но трехфазная установка позволяет использовать меньшую, менее дорогую проводку и более низкое напряжение, что делает ее безопаснее и дешевле в эксплуатации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *