08.02.2025

Формула мощность трехфазная: Мощность трехфазного тока | Трехфазные цепи переменного тока

Содержание

Мощность трехфазной сети: расчет полной мощности формулой

В подавляющем большинстве случаев в домах и квартирах используется трехфазная сеть. Однако часто применяются приборы, которым необходимо однофазное питание. Чтобы лучше разбираться в особенностях использования трехфазной сети, нужно понимать, как она работает. В статье подробно рассмотрено, как правильно определить ее мощность и каким образом это можно использовать.

Что такое трехфазная сеть в электричестве

Многофазная электрическая сеть переменного тока была создана благодаря американскому ученому Н. Тесле. В России ученый М. Доливо-Добровольский разработал и содействовал повсеместному внедрению трехфазной электросети.

Соединение источника и потребителей

Подаются три фазы переменного тока, которые равны по амплитуде и сдвинуты друг относительно друга на 120°. Фазы могут быть соединены между собой несколькими способами. Самыми распространенными из них являются «звезда» и «треугольник».

В первом случае у них имеется один общий провод. При таком варианте использования появляется возможность подавать линейное или фазовое напряжение. В квартире первое равно 380 В, второе — 220 В. Общий провод обычно соединен с землей, хотя существуют схемы подключения, в которых это не так.

К сведению! При подключении «треугольником» каждый выход фазы соединен с одним выходом другой фазы.

Трехфазная линия передачи

Свойства трехфазной сети

Использование трехфазного электропитания завоевало широкую популярность по следующим причинам:

  • таким способом минимизируются потери при передаче электроэнергии на большие расстояния;
  • трехфазные схемы требуют для реализации меньшего количества деталей и материалов по сравнению с однофазными;
  • есть возможность обеспечить в сети питание 380 В или 220 В.

Обратите внимание! Трехфазное напряжение часто используется для питания асинхронных двигателей, некоторых теплонагревательных приборов, для работы мощных устройств.

Четыре провода питания

Какая сила тока трехфазной сети

На практике часто мощность электроприбора является известной величиной. Поскольку в большинстве случаев для питания используется напряжение 220 В, то имеются все необходимые данные для расчета силы тока. Эта величина важна, чтобы сравнить ее с предельно допустимой для используемых проводов, розеток и удлинителей.

Важно! Слишком сильный ток может вызвать перегорание предохранителей или порчу используемого удлинителя.

Трехфазная система с нейтралью

Для определения силы тока можно воспользоваться формулой мощности: P = кв. корень(3) * U(l) * I(l) * cos(«фи«).

Здесь можно использовать известные данные:

  • P — мощность электроприбора, известная из его инструкции по эксплуатации;
  • U(l). В большинстве случаев речь идет о напряжении 220 В (для устройств с трехфазным питанием эта величина будет равна 380 В).

Значение и формула для cos («фи») обычно точно неизвестны. Их берут из технического паспорта прибора или обращаются за этой информацией к справочникам. Как правило, для определенных типов приборов такая величина известна. Например, она близка к 1 у нагревательных приборов, а у электродвигателей равна 0,7-0,9.

Таким образом на основе приведенной формулы можно посчитать силу тока на основании известных данных.

Прибор для измерения мощности — ваттметр

Какая стандартная потребляемая ее мощность

Чтобы рассчитать электрическую мощность, потребляемую квартирой или частным домом, нужно учесть потребление энергии всеми используемыми электроприборами. Это удобно делать в два этапа:

  1. Рассмотреть все те приборы, которым необходимо питание, использующее три фазы.
  2. Просуммировать потребляемую мощность однофазных устройств.

Искомые значения можно взять либо из техпаспорта электроприбора, либо из технического справочника. При необходимости эту величину можно рассчитывать на основе сделанных измерений. В реальной жизни устройства практически никогда не включаются одновременно.

Обратите внимание! Знание предельной величины потребляемой энергии позволит правильно организовать электроснабжение дома или квартиры.

На основе полученных данных можно, используя формулы мощности, вычислить, какова предельно допустимая сила тока в трехфазной сети, которую должна выдерживать электропроводка. Это позволит правильно подобрать предохранители и используемые во внутренней электросети провода.

Принцип действия трехфазного генератора

Как правильно рассчитать мощность трехфазной сети

Если трехфазная сеть использует соединение «треугольник», то потребители могут получать однофазное напряжение фазное или линейное. При этом оно будет иметь разную величину: первое будет меньше второго примерно в 1,71 раза (точное значение равно квадратному корню из 3). Силу тока в первом и втором случаях легко рассчитать — будет одинаковой.

К сведению! Если используется вариант соединения «треугольником», то линейное и фазовое напряжения будут равны. Однако фазовый ток будет меньше линейного в 1,71 раза.

Характеристики трехфазных цепей

Далее рассказано, как рассчитать мощность трехфазной сети. Для этого необходимо просуммировать мощности всех трех фаз. В качестве примера соединение «треугольником». В этом случае для каждой фазы эта характеристика определяется по следующей формуле: P1 = U(f) * I(f) * cos(«фи«).

В формуле расчета мощности трехфазной сети использованы такие обозначения:

  • P1 — мощность каждой из трех фаз;
  • U (f) — фазовое напряжение;
  • I (f) — фазовая сила тока;
  • «фи» — угол, определяемый соотношением активной и реактивной мощности.

Мощность, выделяющаяся на нагрузке, включает в себя активную и реактивную компоненты. Между ними существует сдвиг фаз «фи». Его смысл состоит в том, что при помощи указанного коэффициента определяется доля реактивной мощности в ее суммарной величине.

Чтобы определить мощность трехфазной сети, нужно просуммировать мощность всех трех фаз. Формула выглядит следующим образом: P = 3 * (U (f) * I(f) * cos(«фи»)). P означает искомую величину. Эту величину при расчете можно определить с помощью линейных величин силы тока и напряжения. Поскольку U(f) = U(l) / кв. корень(3), а I(f) = I(l), то мощность можно будет вычислять таким образом.

P = 3 * (U(f) * I(f) * cos(«фи»)) = 3 * (U(l) * I(l) * cos(«фи») / кв. корень(3)) = кв. корень(3) * U(l) * I(l) * cos(«фи«).

При подключении с помощью схемы «треугольник» вычисления выполняются аналогичным образом. При расчете активной мощности в трехфазной сети нужно учитывать, что фазовое и линейное напряжения будут равны, но фазовая сила тока будет в кв. корень (3) меньше линейной.

Обратите внимание! После выполнения преобразований формула мощности трехфазного тока будет такой же, как и для соединения «звездой».

Счетчик электроэнергии

Использование трехфазных сетей имеет свои важные преимущества и является широко распространенным. Чтобы грамотно их эксплуатировать, необходимо знать характеристики и формулы для расчета напряжения.

Расчет мощности трехфазного тока

В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P. Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3UфIф

cosфи=3UфIcosфи. При соединении в треугольник P=3UфIфcosфи=3UIфcosфи. На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/3, а во второе …

В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P.

Мощность трехфазного тока равна тройной мощности одной фазы.

При соединении в звезду PY=3UфIфcos=3UфIcos.

При соединении в треугольник P=3UфIфcos=3UIфcos.

На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/3, а во второе Iф=I/3, получим общую формулу P=3UI cos.

Примеры

1. Какую мощность P1 берет из сети трехфазный асинхронный двигатель, показанный на рис. 1 и 2, при соединении в звезду и треугольник, если линейное напряжение U=380 В, а линейный ток I=20 А при cos=0,7?

Вольтметр и амперметр показывают линейные значения, действующие значения.

Рис. 1.

Рис. 2.

Мощность двигателя по общей формуле будет:

P1=3UI cos=3380200,7=9203 Вт=9,2 кВт.

Если подсчитать мощность через фазные значения тока и напряжения, то при соединении в звезду фазный ток равен Iф=I=20 А, а фазное напряжение Uф=U/3=380/3,

значит, мощность

P1=3UфIф cos=3U/3Icos=3380/3200,7;

P1=3380/1,73200,7=9225 Вт 9,2 кВт.

При соединении в треугольник фазное напряжение Uф=U, а фазный ток Iф=I/3=20/3; таким образом,

P1=3UфIф cos=3UI/3cos;

P1=338020/1,730,7=9225 Вт 9,2 кВт.

2. В четырехпроводную сеть трехфазного тока между линейными и нулевым проводами включены лампы, а к трем линейным проводам подключается двигатель Д, как показано на рис. 3.

Рис. 3.

На каждую фазу включены 100 ламп по 40 Вт каждая и 10 двигателей мощностью по 5 кВт. Какие активную и полную мощности должен отдавать генератор Г при sin=0,8? Каковы токи фазный, линейный и в нулевом проводе генератора при линейном напряжении U=380 В?

Общая мощность ламп Pл=310040 Вт =12000 Вт =12 кВт.

Лампы находятся под фазным напряжением Uф=U/3=380/1,73=220 В.

Общая мощность трехфазных двигателей Pд=105 кВт =50 кВт.

10.12.2016

Без рубрики

Мощность трехфазной электрической цепи — FREEWRITERS

Трехфазная электрическая цепь является совокупностью трех однофазных, поэтому активная и реактивная мощности трехфазной цепи равняются сумме соответствующих мощностей отдельных фаз. 

Для схемы соединения фаз потребителя «звездой» активная мощность трехфазной электрической цепи ; для схемы соединения «треугольником» . Активная мощность фазы потребителя

Реактивная мощность для схемы «звезда»: , для «треугольника»: . 

Реактивная мощность фазы

Полная мощность трехфазной цепи

Комплексная форма мощности схемы «звезда»

,

для схемы «треугольник»

.

У симметричного потребителя мощности всех фаз одинаковы. Тогда

Мощность симметричного потребителя определяется также через линейные напряжения и токи. При соединении «звезда» , поэтому

При соединении «треугольник» ; мощности — совпадают с формулой

 

Таким образом, для симметричного потребителя формулы мощности не зависят от схемы соединения потребителя. В трехфазной симметричной системе сумма мгновенных значений мощностей — величина постоянная и равняется активной мощности трехфазной цепи:

Мощность симметричной или несимметричной трехпроводной системы может измеряться всего двумя ваттметрами. Действительно, поскольку , то 

Один ваттметр включают под ток ia и напряжение uac, второй — под ток ib и напряжение ubc (рис. 1).

Рис. 1.

Для измерения активной мощности в четырехпроводной несимметричной системе необходимо три ваттметра — по одному в каждой фазе.

Реактивную мощность Q трехфазной симметричной электрической цепи измеряют одним ваттметром, предназначенным для измерения активной мощности, если его включить так, как показано на рис. 2, а. 

Рис. 2.

Действительно, из векторной диаграммы, (рис. 2, б) и схемы включения (а) следует, что ваттметр показывает:

Чтобы найти реактивную мощность всей симметричной цепи, достаточно показания ваттметра умножить на .

В автономной энергосистеме (рис. 3) механическая энергия привода мощностью 30 кВт преобразуется в трехфазном генераторе в электрическую — мощностью 26,4 кВт (КПД генератора 0,88).

Рис. 3.

По трехпроводной линии эта энергия поступает к потребителю для освещения и на приводы трехфазных двигателей. Чтобы повысить (до 0,9) коэффициент мощности  нагрузки (двигатели имеют  0,5 и 0,85), параллельно потребителю включена батарея конденсаторов ( по 160 мкФ в каждой фазе). Наличие двух уровней напряжений в зависимости от включения потребителя дает возможность включать без трансформатора потребители с разными номинальными напряжениями: к трехпроводной линии с напряжением UЛ = 220 В по схеме «звезда» подключим двигатель с номинальными напряжениями (220/380) В. Осветительная нагрузка равномерно распределяется между фазами А, В, С и включена по схеме «треугольник» на номинальное напряжение 220 В. Три батареи конденсаторов включены по схеме «треугольник», что дает возможность, в сравнении со схемой «звезда», при той же самой реактивной мощности конденсаторов QC втрое уменьшить емкость. Из выражений

получается, что .

Для определения емкостей рассчитывается:

активная мощность

реактивная мощность

и полная мощность  всех потребителей без батарей емкостей. 

Угол  до компенсации:

Для желаемого угла  по формуле определяется емкость для каждой батареи:

В автономной трехфазной системе выполняется условие баланса трех мощностей: активной, реактивной и полной.

Для системы (рис.3) Рист = 26,4 кВт равняется суммарной активной мощности потребителя.

Как рассчитать потребляемую мощность двигателя

В этой статье мы разберем, что такое мощность трехфазного асинхронного двигателя и как ее рассчитать.

Понятие мощности электродвигателя

Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.

На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.

Электрическая (потребляемая) мощность двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. В данном случае справедлива формула:

Р2 = Р1 · ƞ

КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Приведенная формула справедлива для активной потребляемой мощности. Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S (с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ). С её учетом формула номинальной мощности двигателя выглядит так:

Р2 = Р1 · ƞ = S · ƞ · cosϕ

Мощность и нагрев двигателя

Номинальная мощность обычно указывается для температуры окружающей среды 40°С и ограничена предельной температурой нагрева. Поскольку самым слабым местом в двигателе с точки зрения перегрева является изоляция, мощность ограничивается классом изоляции обмотки статора. Например, для наиболее распространенного класса изоляции F допустимый нагрев составляет 155°С при температуре окружающей среды 40°С.

В документации на электродвигатели приводятся данные, из которых видно, что номинальная мощность двигателя падает при повышении температуры окружающей среды. С другой стороны, при должном охлаждении двигатели могут длительное время работать на мощности выше номинала.

Мы рассмотрели потребляемую и отдаваемую мощности, но следует сказать, что реальная рабочая потребляемая мощность P (мощность на валу двигателя в данный момент) всегда должна быть меньше номинальной:

Р 2 1

Это необходимо для предотвращения перегрева двигателя и наличия запаса по перегрузке. Кратковременные перегрузки допустимы, но они ограничены прежде всего нагревом двигателя. Защиту двигателя по перегрузке также желательно устанавливать не по номинальному току (который прямо пропорционален мощности), а исходя из реального рабочего тока.

Современные производители в основном выпускают двигатели из ряда номиналов: 1,5, 2,2, 5,5, 7,5, 11, 15, 18,5, 22 кВт и т.д.

Расчет мощности двигателя на основе измерений

На практике мощность двигателя можно рассчитать, прежде всего, исходя из рабочего тока. Ток измеряется токовыми клещами в максимальном рабочем режиме, когда рабочая мощность приближается к номинальной. При этом температура корпуса двигателя может превышать 100 °С, в зависимости от класса нагревостойкости изоляции.

Измеренный ток подставляем в формулу для расчета реальной механической мощности на валу:

Р = 1,73 · U · I · cosϕ · ƞ, где

  • U – напряжение питания (380 или 220 В, в зависимости от схемы подключения – «звезда» или «треугольник»),
  • I – измеренный ток,
  • cosϕ и ƞ – коэффициент мощности и КПД, значения которых можно принять равными 0,8 для маломощных двигателей (менее 5,5 кВт) или 0,9 для двигателей мощностью более 15 кВт.

Если нужно найти номинальную мощность двигателя, то полученный результат округляем в бОльшую сторону до ближайшего значения из ряда номиналов.

Р2 > Р

Если необходимо рассчитать потребляемую активную мощность, используем следующую формулу:

Р1 = 1,73 · U · I · ƞ

Именно активную мощность измеряют счетчики электроэнергии. В промышленности для измерения реактивной (и полной мощности S) применяют дополнительное оборудование. При данном способе можно не использовать приведенную формулу, а поступить проще – если двигатель подключен в «звезду», измеренное значение тока умножаем на 2 и получаем приблизительную мощность в кВт.

Расчет мощности при помощи счетчика электроэнергии

Этот способ прост и не требует дополнительных инструментов и знаний. Достаточно подключить двигатель через счетчик (трехфазный узел учета) и узнать разницу показаний за строго определенное время. Например, при работе двигателя в течении часа разница показаний счетчика будет численно равна активной мощности двигателя (Р1). Но чтобы получить номинальную мощность Р2, нужно воспользоваться приведенной выше формулой.


Другие полезные материалы:
Степени защиты IP
Трехфазный двигатель в однофазной сети
Типичные неисправности электродвигателей

Калькулятор перевода силы тока в мощность (амперы в киловатты)

Мощность — энергия, потребляемая нагрузкой от источника в единицу времени (скорость потребления, измеряется в Ватт). Сила тока — количество энергии, прошедшей за величину времени (скорость прохождения, измеряется в амперах).

Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения.

Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.

Если сеть трехфазная, то I = P/(√3xU), поскольку нужно учесть напряжение в каждой из фаз. Корень из трех приблизительно равен 1,73. Чтобы перевести ток в мощность (узнать, сколько в 1 ампере ватт), надо применить формулу:

P = I * U или P = √3 * I * U, если расчеты проводятся в 3-х фазной сети 380 V.

Таблица перевода Ампер – Ватт:

220 В

380 В

 

100 Ватт

0,45

0,15

Ампер

200 Ватт

0,91

0,3

Ампер

300 Ватт

1,36

0,46

Ампер

400 Ватт

1,82

0,6

Ампер

500 Ватт

2,27

0,76

Ампер

600 Ватт

2,73

0,91

Ампер

700 Ватт

3,18

1,06

Ампер

800 Ватт

3,64

1,22

Ампер

900 Ватт

4,09

1,37

Ампер

1000 Ватт

4,55

1,52

Ампер

Допустим, что вы живете в квартире со старым электросчетчиком, и у вас установлена автоматическая пробка на 16 Ампер. Чтобы определить, какую мощность «потянет» пробка, нужно перевести Амперы в киловатты. Для удобства расчетов принимаем cosФ за единицу. Напряжение нам известно – 220 В, ток тоже, давайте переведем: 220*16*1=3520 Ватт или 3,5 киловатта – ровно столько вы можете подключить единовременно.

Сложнее дело обстоит с электродвигателями, у них есть такой показатель как коэффициент мощности. Если полная мощность двигателя 5,5 киловатт, то потребляемая активная мощность 5,5*0,87= 4,7 киловатта.  Стоит отметить, что при выборе автомата и кабеля для электродвигателя нужно учитывать полную мощность, поэтому нужно брать ток нагрузки, который указан в паспорте к двигателю. И также важно учитывать пусковые токи, так как они значительно превышают рабочий ток двигателя.

формула, единицы измерения. Формула мощности тока

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок — см. приложения ниже.

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P
    , единица измерения: Ватт
  2. Реактивная мощность: обозначение Q
    , единица измерения: ВАр
    (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S
    , единица измерения: ВА
    (Вольт Ампер)
  4. Коэффициент мощности: обозначение k
    или cosФ
    , единица измерения: безразмерная величина

Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S

Также cosФ
называется коэффициентом мощности (Power Factor
PF
)

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) — в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

2. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

3. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

Приложение

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)

АОСН-2-220-82
Латр 1.25АОСН-4-220-82
Латр 2.5АОСН-8-220-82
АОСН-20-220
АОМН-40-220

http://www. gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)

http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. — в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности) .

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

http://www. silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс)
– если суммарное реактивное сопротивление является индуктивным (пример: PF=+0. 5). Фаза тока отстаёт от фазы напряжения на угол Ф.

— (минус)
– если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

Дополнение 6

Дополнительные вопросы

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:

Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными .

Замечание:

Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др. ). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e»+ie»
  4. Магнитная проницаемость m=m»+im»
  5. и др.

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

Ответ:

Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

Вопрос 3:

Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:

Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

См. дополнительную литературу, например:

Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

Электричество само по себе невидимо, хотя от этого его опасность ничуть не меньше. Даже наоборот: как раз потому и опаснее. Ведь если бы мы его видели, как видим, например, воду, льющуюся из крана, то наверняка бы избежали множества неприятностей.

Вода. Вот она, водопроводная труба, и вот закрытый кран. Ничего не течет, не капает. Но мы точно знаем: внутри вода. И если система исправно работает, то вода эта там находится под давлением. 2, 3 атмосферы, или сколько там? Неважно. Но давление там есть, иначе система бы не работала. Где-то гудят насосы, гонят воду в систему, создают это самое давление.

А вот наш провод электрический. Где-то далеко, на другом конце тоже гудят генераторы, вырабатывают электричество. И в проводе от этого тоже давление… Нет-нет, не давление, конечно, тут в этом проводе напряжение
. Оно тоже измеряется, но в своих единицах: в вольтах.

Давит в трубах на стенки вода, никуда не двигаясь, ждет, когда найдется выход, чтобы ринуться туда мощным потоком. И в проводе молча ждет напряжение, когда замкнется выключатель, чтобы потоки электронов двинулись выполнять свое предназначение.

И вот открылся кран, потекла струя воды. По всей трубе течет, двигаясь от насоса к расходному крану. А как только замкнулись контакты выключателя, в проводах потекли электроны. Что это за движение? Это ток
. Электроны текут
. И это движение, этот ток тоже имеет свою единицу измерения: ампер.

И еще есть сопротивление
. Для воды это, образно говоря, размер отверстия в выпускном кране. Чем больше отверстие, тем меньше сопротивление движению воды. В проводах почти также: чем больше сопротивление провода, тем меньше ток.

Вот, как-то так, если образно представлять себе основные характеристики электричества. А с точки зрения науки все строго: существует так называемый закон Ома. Гласит он следующим образом: I = U/R
.
I
— сила тока. Измеряется в амперах.
U
— напряжение. Измеряется в вольтах.
R
— сопротивление. Измеряется в омах.

Есть еще одно понятие — мощность, W. С ним тоже просто: W = U*I
.
Измеряется в ваттах.

Собственно, это вся необходимая и достаточная для нас теория. Из этих четырех единиц измерения в соответствии с вышеприведенными двумя формулами можно вывести некоторое множество других:

ЗадачаФормулаПример
1Узнать силу тока, если известны напряжение и сопротивление.I = U/R
I = 220 в / 500 ом = 0.44 а.
2Узнать мощность, если известны ток и напряжение.W = U*I
W = 220 в * 0.44 а = 96.8 вт.
3Узнать сопротивление, если известны напряжение и ток.R = U/I
R = 220 в / 0.44 а = 500 ом.
4Узнать напряжение, если известны ток и сопротивление.U = I*R
U = 0.44 а * 500 ом = 220 в.
5Узнать мощность, если известны ток и сопротивление.W = I 2 *R
W = 0.44 а * 0.44 а * 500 ом = 96.8 вт.
6Узнать мощность, если известны напряжение и сопротивление.W = U 2 /R
W = 220 в * 220 в / 500 ом = 96.8 вт.
7
Узнать силу тока, если известны мощность и напряжение.I = W/U
I = 96.8 вт / 220 в = 0,44 а.
8Узнать напряжение, если известны мощность и ток.U = W/I
U = 96.8 вт / 0. 44 а = 220 в.
9Узнать сопротивление, если известны мощность и напряжение.R = U 2 /W
R = 220 в * 220 в / 96.8 вт = 500 ом.
10Узнать сопротивление, если известны мощность и ток.R = W/I 2
R = 96.8 вт / (0,44 а * 0,44 а) = 500 ом.

Ты скажешь: — Зачем мне это все надо? Формулы, цифры… Я ж не собираюсь заниматься расчетами.

А я так отвечу: — Перечитай предыдущую статью . Как можно быть уверенным, не зная простейших истин и расчетов? Хотя, собственно, в бытовом практическом плане наиболее интересна только формула 7, где определяется сила тока при известных напряжении и мощности. Как правило, эти 2 величины известны, а результат (сила тока) безусловно необходим для определения допустимого сечения провода и для выбора защиты .

Есть еще одно обстоятельство, о котором следует упомянуть в контексте этой статьи. В электроэнергетике используется так называемый «переменный» ток. То есть, те самые электроны движутся в проводах не всегда в одном направлении, они постоянно меняют его: вперед-назад-вперед-назад… И эта смена направления движения — 100 раз в секунду.

Погоди, но ведь везде говорится, что частота 50 герц! Да, именно так и есть. Частота измеряется в количестве периодов за секунду, но в каждом периоде ток меняет свое направление дважды. Иначе сказать, в одном периоде две вершины, которые характеризуют максимальное значение тока (положительное и отрицательное), и именно в этих вершинах происходит смена направления.

Не будем вдаваться в подробности более глубоко, но все же: почему именно переменный, а не постоянный ток?

Вся проблема в передаче электроэнергии на большие расстояния. Тут как раз вступает в силу неумолимый закон Ома. При больших нагрузках, если напряжение 220 вольт, сила тока может быть очень большой. Для передачи электроэнергии с таким током потребуются провода очень большого сечения.

Выход здесь только один: поднять напряжение. Седьмая формула говорит: I = W/U
. Совершенно очевидно, что если мы будем подавать напряжение не 220 вольт, а 220 тысяч вольт, то сила тока уменьшится в тысячу раз. А это значит, что сечение проводов можно взять намного меньше.

Поиск по сайту.
Вы можете изменить поисковую фразу.

Подключение к бытовой или промышленной электрической сети потребителя, мощность которого больше той, на которую рассчитан кабель или провод чревато самыми неприятными, а порой и катастрофическими, последствиями. При правильной организации электропроводки внутри жилого помещения будут постоянно срабатывать автоматические выключатели или перегорать плавкие предохранители (пробки).

Если защита выполнена неправильно или вообще отсутствует, это может привести:

  • к перегоранию питающего провода или кабеля;
  • оплавлению изоляции и короткому замыканию между проводами;
  • перегреву медных или алюминиевых кабельных жил провода и пожару.

Поэтому перед подключение потребителя к электросети желательно знать не только его паспортную электрическую мощность, но и потребляемый от сети ток.


Расчет потребляемой мощности

Формула расчета мощности по току и напряжению знакома еще из школьного курса физики. Расчет мощности электрического тока (в ваттах) для однофазной сети проводится по выражению:

  • в котором U – напряжение в вольтах
  • I – ток в амперах;
  • Cosφ – коэффициент мощности, зависящий от характера нагрузки.

Может возникнуть вопрос – а зачем нужна формула расчета мощности по току, когда ее можно узнать из паспорта подключаемого устройства? Определение электрических параметров, включая мощность и потребляемый ток необходим на стадии проектирования электропроводки. По максимальному току, протекающему в сети определяется сечение провода или кабеля. Для расчета тока по мощности можно использовать преобразованную формулу:

Коэффициент мощности зависит от типа нагрузки (активная или реактивная). При бытовых расчетах его величину рекомендуется принимать равной 0,90…0,95. Однако при подключении электроплит, обогревателей, ламп накаливания, нагрузка которых считается активной этот коэффициент можно считать равным 1.

Вышеприведенные формулы расчета мощности по току и напряжению можно использовать для однофазной сети напряжением 220,0 вольт. Для трехфазной сети они имеют несколько модифицированный вид.

Расчет мощности трехфазных потребителей

Определение потребляемой мощности для трехфазной сети имеет свою специфику. Формула расчёта мощности электрического тока трехфазных бытовых потребителей имеет вид:

Р=3,00,5 ×U×I×Cosφ или 1,73×U×I×Cosφ,

Особенности расчета

Вышеприведенные формулы предназначены для упрощенных бытовых расчетов. При определении действующих параметров необходимо учитывать реальное подключение. Характерный пример – расчет потребляемой мощности от аккумулятора. Так как ток в цепи протекает постоянный, то коэффициент мощности не учитывается, так как характер нагрузки не влияет на потребляемую мощность. И для активных и реактивных потребителей его значение принимают равным 1,0.

Вторым нюансом, который следует учитывать пи проведении бытовых электрических расчетов – реальное значение напряжения. Не секрет, что в сельской местности сетевое напряжение может колебаться в достаточно широких пределах. Поэтому пи использовании расчетных формул в них необходимо подставлять реальные значения параметров.

Еще сложнее задача расчета трехфазных потребителей. При определении протекающего тока в сети необходимо дополнительно учитывать вид подключения — «звезда» или «треугольник».


Мощность электрического тока – скорость выполняемой цепью работы. Простое определение, морока с пониманием. Мощность подразделяется на активную, реактивную. И начинается…

Работа электрического тока, мощность

При движении заряда по проводнику поле выполняет над ним работу. Величина характеризуется напряжением, в отличие от напряженности в свободном пространстве. Заряды двигаются в сторону убывания потенциалов, для поддержания процесса требуется источник энергии. Напряжение численно равно работе поля при перемещении на участке единичного заряда (1 Кл). В ходе взаимодействий электрическая энергия переходит в другие виды. Поэтому необходим ввод универсальной единицы, физической свободно конвертируемой валюты. В организме мерой выступает АТФ, электричестве — работа поля.

Электрическая дуга

На схеме момент превращения энергии отображается в виде источников ЭДС. Если у генераторов направлены в одну сторону, у потребителя – обязательно в другую. Наглядным фактом отражается процесс расхода мощности, отбора у источников энергии. ЭДС несет обратный знак, часто называется противо-ЭДС. Избегайте путать понятие с явлением, возникающим в индуктивностях при выключении питания. Противо-ЭДС означает переход электрической энергии в химическую, механическую, световую.

Потребитель хочет выполнить работу за некоторую единицу времени. Очевидно, газонокосильщик не намерен ждать зимы, надеется управиться к обеду. Мощность источника должна обеспечить заданную скорость выполнения. Работу осуществляет электрический ток, следовательно, понятие также относится. Мощность бывает активной, реактивной, полезной и мощностью потерь. Участки, обозначаемые физическими схемами сопротивлениями, на практике вредны, являются издержками. На резисторах проводников выделяется тепло, эффект Джоуля-Ленца ведет к лишнему расходу мощности. Исключением назовем нагревательные приборы, где явление желательно.

Полезная работа на физических схемах обозначается противо-ЭДС (обычный источник с обратным генератору направлением). Для мощности имеется несколько аналитических выражений. Иногда удобно использовать одно, в других случаях – иное (см. рис.):

Выражения мощности тока

  1. Мощность – скорость выполнения работы.
  2. Мощность равна произведению напряжения на ток.
  3. Мощность, затрачиваемая на тепловое действие, равна произведению сопротивления на квадрат тока.
  4. Мощность, затрачиваемая на тепловое действие, равна отношению квадрата напряжения к сопротивлению.

Запасшемуся токовыми клещами проще использовать вторую формулу. Вне зависимости от характера нагрузки посчитаем мощность. Только активную. Мощность определена многими факторами, включая температуру. Под номинальным для прибора значением понимаем, развиваемое в установившемся режиме. Для нагревателей следует применять третью, четвертую формулу. Мощность зависит целиком и полностью от параметров питающей сети. Предназначенные для работы со 110 вольт переменного тока в европейских условиях быстро сгорят.

Трехфазные цепи

Новичкам трехфазные цепи представляются сложными, на деле это более элегантное техническое решение. Даже электричество домом поставляют тремя линиями. Внутри подъезда делят по квартирам. Больше смущает то, что некоторые приборы на три фазы лишены заземления, нулевого провода. Схемы с изолированной нейтралью. Нулевой провод не нужен, ток возвращается источнику по фазным линиям. Разумеется, нагрузка здесь на каждую жилу повышенная. Требования ПУЭ отдельно оговаривают род сети. Для трехфазных схем вводятся следующие понятия, о которых нужно иметь представление, чтобы правильно посчитать мощность:

Трехфазная цепь с изолированной нейтралью

  • Фазным напряжением, током называют, соответственно, разницу потенциалов и скорость передвижения заряда меж фазой и нейтралью. Понятно, в оговоренном выше случае с полной изоляцией формулы будут недействительны. Поскольку нейтрали нет.
  • Линейным напряжением, током называют, соответственно, разницу потенциалов или скорость перемещения заряда меж любыми двумя фазами. Номера понятны из контекста. Когда говорят о сетях 400 вольт, подразумевают три провода, разница потенциалов с нейтралью равна 230 вольт. Линейное напряжение выше фазного.

Меж напряжением и током существует сдвиг фаз. О чем умалчивает школьная физика. Фазы совпадают, если нагрузка 100% активная (простые резисторы). Иначе появляется сдвиг. В индуктивности ток отстает от напряжения на 90 градусов, в емкости — опережает. Простая истина легко запоминается следующим образом (плавно подходим к реактивной мощности). Мнимая часть сопротивления индуктивности составляет jωL, где ω – круговая частота, равная обычной (в Гц), помноженной на 2 числа Пи; j – оператор, обозначающий направление вектора. Теперь пишем закон Ома: U = I R = I jωL.

Из равенства видно: напряжение нужно отложить вверх на 90 градусов при построении диаграммы, ток останется на оси абсцисс (горизонтальная ось Х). Вращение по правилам радиотехники происходит против часовой стрелки. Теперь очевиден факт: ток отстает на 90 градусов. По аналогии проведем сравнение для конденсатора. Сопротивление переменному току в мнимой форме выглядит так: -j/ωL, знак указывает: откладывать напряжение нужно будет вниз, перпендикулярно оси абсцисс. Следовательно, ток опережает по фазе на 90 градусов.

В реальности параллельно с мнимой частью присутствует действительная – называют активным сопротивлением. Проволока катушки представлена резистором, будучи свитой, приобретает индуктивные свойства. Поэтому реальный угол фаз будет не 90 градусов, немного меньше.

А теперь можно переходить к формулам мощности тока трехфазных цепей. Здесь линия формирует сдвиг фаз. Меж напряжением и током, и относительно другой линии. Согласитесь, без заботливо изложенных авторами знания факт нельзя осознать. Меж линиями промышленной трехфазной сети сдвиг 120 градусов (полный оборот – 360 градусов). Обеспечит равномерность вращения поля в двигателях, для рядовых потребителей безразличен. Так удобнее генераторам ГЭС – нагрузка сбалансированная. Сдвиг идет меж линиями, в каждой ток опережает напряжение или отстает:

  1. Если линия симметричная, сдвиги меж любыми фазами по току составляют 120 градусов, формула получается предельно простой. Но! Если нагрузка симметрична. Посмотрим изображение: фаза ф не 120 градусов, характеризует сдвиг меж напряжением и током каждой линии. Предполагается, включили двигатель с тремя равноценными обмотками, получается такой результат. Если нагрузка несимметрична, потрудитесь провести вычисления для каждой линии отдельно, затем сложить результаты воедино для получения общей мощности тока.
  2. Вторая группа формул приведена для трехфазных цепей с изолированной нейтралью. Предполагается, ток одной линии утекает по другой. Нейтраль отсутствует за ненадобностью. Поэтому напряжения берутся не фазные (не от чего отсчитывать), как предыдущей формулой, а линейные. Соответственно, цифры показывают, какой параметр следует взять. Повремените пугаться греческих букв – фазы меж двумя перемножаемыми параметрами. Цифры меняются местами (1,2 или 2,1), чтобы правильно учесть знак.
  3. В асимметричной цепи вновь появляются фазные напряжение, ток. Здесь расчет ведется отдельно для каждой линии. Никаких вариантов нет.

На практике измерить мощность тока

Намекнули, можно воспользоваться токовыми клещами. Прибор позволит определить крейсерские параметры дрели. Разгон можно засечь только при многократных опытах, процесс чрезвычайно быстрый, частота смены индикации не выше 3-х раз в секунду. Токовые клещи демонстрируют погрешность. Практика показывает: достичь погрешности, указанной в паспорте, сложно.

Чаще для оценки мощности используют счетчики (для выплат компаниям-поставщикам), ваттметры (для личных и рабочих целей). Стрелочный прибор содержит пару неподвижных катушек, по которым течет ток цепи, подвижную рамку, для заведения напряжения путем параллельного включения нагрузки. Конструкция рассчитана сразу реализовать формулу полной мощности (см. рис.). Ток умножается на напряжение и некий коэффициент, учитывающий градуировку шкалы, также на косинус сдвига фаз между параметрами. Как говорили выше, сдвиг умещается в пределах 90 — минус 90 градусов, следовательно, косинус положителен, крутящий момент стрелки направлен в одну сторону.

Отсутствует возможность сказать индуктивная ли нагрузка или емкостная. Зато при неправильном включении в цепь показания будут отрицательными (завал набок). Произойдет аналогичное событие, если потребитель вдруг станет отдавать мощность обратно нагрузке (бывает такое). В современных приборах происходит нечто подобное же, вычисления ведет электронный модуль, интегрирующий расход энергии, либо считывающий показания мощности. Вместо стрелки присутствует электронный индикатор и множество других полезных опций.

Особые проблемы вызывают измерения в асимметричных цепях с изолированной нейтралью, где нельзя прямо складывать мощности каждой линии. Ваттметры делятся принципом действия:

  1. Электродинамические. Описаны разделом. Состоят из одной подвижной, двух неподвижных катушек.
  2. Ферродинамические. Напоминает двигатель с расщепленным полюсом (shaded-pole motor).
  3. С квадратором. Используется амплитудно-частотная характеристика нелинейного элемента (например, диода), напоминающая параболу, для возведения электрической величины в квадрат (используется в вычислениях).
  4. С датчиком Холла. Если индукцию сделать при помощи катушки пропорциональной напряжению магнитного поля в сенсоре, подать ток, ЭДС будет результатом умножения двух величин. Искомая величина.
  5. Компараторы. Постепенно повышает опорный сигнал, пока не будет достигнуто равенство. Цифровые приборы достигают высокой точности.

В цепях с сильным сдвигом фаз для оценки потерь применяется синусный ваттметр. Конструкция схожа с рассмотренной, пространственное положение таково, что вычисляется реактивная мощность (см. рис.). В этом случае произведение тока и напряжения домножим на синус угла сдвига фаз. Реактивную мощность измерим обычным (активным) ваттметром. Имеется несколько методик. Например, в трехфазной симметричной цепи нужно последовательную обмотку включить в одну линию, параллельную – в две другие. Затем производятся вычисления: показания прибора умножаются на корень из трех (с учетом, что на индикаторе произведение тока, напряжения и синуса угла между ними).

Для трехфазной цепи с простой асимметрией задача усложняется. На рисунке показана методика двух ваттметров (ферродинамических или электродинамических). Начала обмоток указаны звездочками. Ток проходит через последовательные, напряжение с двух фаз подается на параллельную (одно через резистор). Алгебраическая сумма показаний обоих ваттметров складывается, умножается на корень из трех для получения значения реактивной мощности.

Прохождение электрического тока через любую проводящую среду объясняется наличием в ней некоторого количества носителей заряда: электронов – для металлов, ионов – в жидкостях и газах. Как найти её величину, определяет физика силы тока.

В спокойном состоянии носители движутся хаотично, но при воздействии на них электрического поля движение становится упорядоченным, определяемым ориентацией этого поля – возникает сила тока в проводнике. Количество носителей, участвующих в переносе заряда, определяется физической величиной – силой тока.

От концентрации и заряда частиц-носителей, или количества электричества, напрямую зависит сила тока, проходящего через проводник. Если принять во внимание время, в течение которого это происходит, тогда узнать, что такое сила тока, и как она зависит от заряда, можно, используя соотношение:

Входящие в формулу величины:

  • I – сила электрического тока, единицей измерения является ампер, входит в семь основных единиц системы Си. Понятие «электрический ток» ввёл Андре Ампер, единица названа в честь этого французского физика. В настоящее время определяется как ток, вызывающий силу взаимодействия 2×10-7 ньютона между двумя параллельными проводниками, при расстоянии 1 метр между ними;
  • Величина электрического заряда, применённая здесь для характеристики силы тока, является производной единицей, измеряется в кулонах. Один кулон – это заряд, проходящий через проводник за 1 секунду при токе 1 ампер;
  • Время в секундах.

Сила тока через заряд может вычисляться с применением данных о скорости и концентрации частиц, угла их движения, площади проводника:

I = (qnv)cosαS.

Также используется интегрирование по площади поверхности и сечению проводника.

Определение силы тока с использованием величины заряда применяется в специальных областях физических исследований, в обычной практике не используется.

Связь между электрическими величинами устанавливается законом Ома, который указывает на соответствие силы тока напряжению и сопротивлению:

Сила электрического тока здесь как отношение напряжения в электрической цепи к её сопротивлению, эти формулы используются во всех областях электротехники и электроники. Они верны для постоянного тока с резистивной нагрузкой.

В случае косвенного расчета для переменного тока следует учитывать, что измеряется и указывается среднеквадратичное (действующее) значение переменного напряжения, которое меньше амплитудного в 1,41 раза, следовательно, максимальная сила тока в цепи будет больше во столько же раз.

При индуктивном или емкостном характере нагрузки вычисляется комплексное сопротивление для определённых частот – найти силу тока для такого рода нагрузок, используя значение активного сопротивления постоянному току, невозможно.

Так, сопротивление конденсатора постоянному току практически бесконечно, а для переменного:

Здесь RC – сопротивление того же конденсатора ёмкостью С, на частоте F, которое во многом зависит от его свойств, сопротивления разных типов ёмкостей для одной частоты значительно различаются. В таких цепях сила тока по формуле, как правило, не определяется – используются различные измерительные приборы.

Для нахождения значения силы тока при известных значениях мощности и напряжения, применяются элементарные преобразования закона Ома:

Тут сила тока – в амперах, сопротивление – в омах, мощность – в вольт-амперах.

Электрический ток имеет свойство разделяться по разным участкам цепи. Если их сопротивления различны, то и сила тока будет разной на любом из них, так находим общий ток цепи.

Измерение мощности трехфазной системы

Электрическая мощность измеряется ваттметром . Ваттметр состоит из катушки тока, соединенной последовательно с нагрузкой, а другая потенциальная катушка соединена параллельно с нагрузкой.

Измерение мощности в трехфазной системе (на фото: традиционный измеритель мощности)

В зависимости от силы каждого движения магнитного поля на него воздействует указатель. Истинная или реальная мощность непосредственно отображается в ваттметре. В трехфазных системах мощность может быть измерена несколькими способами. Для временных измерений может использоваться один ваттметр.

Однако для постоянных измерений используется трехфазный ваттметр с двумя элементами, который показывает как сбалансированные, так и неуравновешенные нагрузки.

Для несимметричной нагрузки необходимо использовать два ваттметра, как показано на рисунке 1 .

Суммарная мощность рассчитывается путем добавления показаний измерений, данных двумя ваттметрами. С помощью этого метода можно также получить коэффициент мощности.

При использовании метода с двумя ваттметрами важно отметить, что показание одного ваттметра должно быть отменено, если коэффициент мощности системы меньше 0, 5 . В таком случае выводы одного ваттметра, возможно, придется обратить вспять, чтобы получить положительное значение. В случае коэффициента мощности менее 0, 5, данные должны быть вычтены вместо добавления.

Коэффициент мощности трехфазной системы, используя метод двух ваттметров (W1 и W2), можно рассчитать следующим образом:

Поскольку сумма и вычитание отсчетов выполняются для расчета полной истинной мощности трехфазной системы, показанные методы практически не используются в промышленности.

Используются более трехфазные анализаторы мощности, которые более удобны для пользователя.

Измерение активной мощности методом трёх ваттметров

Метод трёх ваттметров применяется для измерения мощности трёхфазной цепи при несимметричной нагрузке в четырёхпроводной системе (иногда применяется и в

трёхпроводной). Каждый из ваттметров включается в одну из фаз и измеряет мощность этой фазы, а сумма показаний всех трёх ваттметров равна активной мощности трёхфазной цепи:

.

Типы ваттметров

Измерению мощности предшествует измерение силы тока и напряжения исследуемого участка цепи.

В зависимости способов измерения, преобразования данных и показа итоговой информации, ваттметры делятся на аналоговые и цифровые.

Аналоговые ваттметры бывают показывающие и самопишущие и отражают активную мощность участка цепи. Табло показывающего прибора имеет полукруглую шкалу и поворачивающуюся стрелку. Деления шкалы отградуированы в соответствии с определенными величинами мощности, измеряемой в ваттах (Вт).

Цифровые ваттметры измеряют как активную, так и реактивную мощность. Кроме того, на дисплей прибора могут выводиться (кроме показания мощности) также и сила тока, напряжение, и расход энергии по времени. Данные измерений можно вывести удаленно на компьютер оператора.

Видео о ваттметре из Китая:

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

Цифровой ваттметр Аналоговый ваттметр

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Схема включения ваттметра при симметричной нагрузке

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Расчет погрешностей и округление результатов измерений

Правила округления результатов и погрешностей измерений:

1. Результат измерения округляют до того же десятичного знака, которым оканчивается округленное значение абсолютной погрешности. Лишние цифры в целых числах заменяют нулями. Если десятичная дробь в числовом значении результата измерений оканчивается нулями, то нули отбрасывают до того разряда, который соответствует разряду числового значения погрешности

Пример

. Результат 4,0800, погрешность 0,001. Решение. Результат округляют до 4,080

2. Если цифра старшего из отбрасываемых разрядов меньше 5, то остальные цифры числа не изменяют. Лишние цифры в целых числах заменяют нулями, а в десятичных дробях отбрасывают.

Пример

. Число 174437 при сохранении четырех значащих цифр должно быть округлено до 174400, число 174,437 — до 174,4.

3. Если цифра старшего из отбрасываемых разрядов больше или равна 5, но за ней следуют отличные от нуля цифры, то последнюю сохраняемую цифру увеличивают на единицу.

Пример.

При сохранении трех значащих цифр число 12567 округляют до 12600, число 125,67 до 126.

4. Если отбрасываемая цифра равна 5, а следующие за ней — неизвестны или нули, то последнюю сохраняемую цифру не изменяют, если она четная, и увеличивают на единицу, если она нечетная.

Пример

. Число 232,5 при сохранении двух значащих цифр округляют до 232, а число 233,5 до 234.

5. Погрешность результата измерения указывают двумя

значащими цифрами, если первая из них равна 1 или 2, и
одной
— если первая цифра равна 3 или более.

6. Округление результатов измерений производят лишь в окончательном ответе, а все предварительные вычисления проводят с одним-двумя лишними знаками

Если руководствоваться этими правилами округления, то количество значащих цифр в числовом значении результата измерений дает возможность ориентировочно судить о точности измерения. Это связано с тем, что предельная погрешность, обусловленная округлением, равна половине единицы последнего разряда числового значения результата измерения.

Основная задача физических измерений состоит в том, чтобы дать оценку истинного значения измеряемой величины и определить погрешность измерения.

Результаты измерений принято записывать в следующей форме:

где Хизм

— измеряемая физическая величина,
Х
— оценка её истинного значения, Dx — абсолютная погрешность.

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

– отклонение результата измерения
Х
от истинного значения
Хи
измеряемой величины:

О точности измерения удобно судить по относительной погрешности. ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

– отношение абсолютной погрешности измерения к истинному значению измеряемой величины:

Если абсолютная погрешность измерения не известна, то относительная погрешность равна:

где – это первая значащая цифра числа a

,
n
– общее число значащих цифр в этом числе.

ПРИВЕДЕНАЯ ПОГРЕШНОСТЬ

– отношение абсолютной погрешности измерительного прибора к нормирующему значению
ХN
. Приведенную погрешность также выражают в процентах

ТОЧНОСТЬ ИЗМЕРЕНИЯ

– качество измерения, отражающее близость его результата к истинному значению измеряемой величины.

ПОПРАВКА

– равна систематической погрешности по величине и обратна ей по знаку .

где Х

п – значение ФВ снятое с прибора.

ЦЕНА ДЕЛЕНИЯ ШКАЛЫ

:

где С

– цена деления;
Хк
– конечное значение;
N
– полное число делений на шкале прибора.

где n

– порядковый номер деления.

Формулы для оценки абсолютной и относительной погрешности для значения функции и переменных

1. Температура в масляном термостате измеряется образцовым палочным стеклянным термометром и поверяемым парогазовым термометром. Первый показал 111 °С, второй 110 °С. Определите истинное значение температуры, погрешность поверяемого прибора, поправку к его показаниям и оцените относительную погрешность термометра.

Формулы для реактивной мощности

Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2 )

квар = √ (кВА 2 – кВт 2 )

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Задачи с решениями

Мир, окружающий нас, – это, прежде всего, мир физических величин, реально существующих в широчайшем диапазоне их значений от микромира до макромира в масштабе Вселенной. Физические величины являются характеристиками объектов материального мира и процессов, характеризующих различные взаимодействия этих объектов между собой или их изменения во времени.

Вся история человеческой цивилизации – это история становления и развития измерительной культуры, это процесс непрерывного совершенствования методов и средств измерения и систем обеспечения единства измерений на основе повышения их необходимой точности, единообразия мер, постоянного укрепления положения служб образцовых измерений как необходимого базиса не только экономики, но и государственной власти.

Измерение активной мощности в трехфазных цепях

Измерение активной мощности в трехфазных цепях производят с помощью трех, двух или одного ваттметров, используя различные схемы их включения. Схема включения ваттметров для измерения активной мощности определяется схемой сети (трехили четырехпроводная), схемой соединения фаз приемника (звезда или треугольник), характером нагрузки (симметричная или несимметричная), доступностью нейтральной точки.

При несимметричной нагрузке в четырехпроводной цепи активную мощность измеряют тремя ваттметрами (рис. 19), каждый из которых измеряет мощность одной фазы – фазную мощность.

Рассмотрим трехфазную систему питания

Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или А, В, С.

Схема соединения звезда:

Схема соединения фаз в звезду

Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:

В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:

Фазное напряжение в цепи

Линейное – между фазами:

Линейное напряжение

Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:

Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:

Или:

Соответственно для активной:

Для реактивной:

Применение

Сфера применения DPM

Создан для использования в системах управления энергоснабжением, где имеются высокие требования к качеству управления энергией.

  • Системы анализа потребления электроэнергии.
  • В распределительных щитах среднего и низкого напряжения.
  • Системы управления энергоснабжением.
  • В системах компенсации реактивной мощности.

Устройство и принцип действия

Аналоговые ваттметры

Наиболее распространенными и точными аналоговыми ваттметрами являются приборы электродинамической системы.

Принцип работы основан на взаимодействии двух катушек. Одна из них – неподвижная, имеет толстую обмотку с небольшим числом витков и малое сопротивление. Подключается последовательно с нагрузкой. Вторая катушка – подвижная.

Ее намотка выполнена из тонкого провода и имеет большое количество витков, поэтому и сопротивление у нее высокое.

Подключается она параллельно нагрузке и снабжается еще добавочным сопротивлением (для исключения короткого замыкания между катушками).

При подключении прибора к сети, в катушках образуются магнитные поля. Их взаимодействие создает вращающий момент, который отклоняет подвижную катушку с подсоединенной к ней стрелкой на определенный угол.

Величина угла эквивалентна произведению силы тока и напряжения в данный момент времени.

Цифровые ваттметры

В основе работы цифрового ваттметра лежит предварительное измерение силы тока и напряжения. Для этого на входе устанавливаются: последовательно нагрузке – датчик тока, параллельно – датчик напряжения. Они могут выполняться на базе термисторов, измерительных трансформаторов, термопар и других элементов.

Мгновенные значения полученных величин тока и напряжения посредством аналого-цифрового преобразователя передаются к встроенному микропроцессору. Здесь производятся необходимые вычисления (находится активная и реактивная мощности) и выдаются в виде итоговой информации на дисплей и подключенные внешние устройства.

Рисунок — Схема подключения Ваттметра

Как узнать свою схему

Для правильного определения и расчета мощности требуется знание нескольких факторов:

  • Количества фаз питания;
  • Способа соединения потребителей.

При однофазном подключении используется два провода:

  • Фазный провод;
  • Нулевой провод.

Для трехфазной сети характерно наличие трех или четырех проводников (подключение с заземленной нейтралью). При этом используется две различных схемы включения:

  • «Треугольник». Каждая нагрузка подсоединяется с двумя соседними. Напряжение каждой фазы подводится к точкам соединения потребителей.
  • «Звезда». Все три потребителя соединяются в одной точке. Ко вторым концам подключаются фазы питания. Это схема с изолированной нейтралью. В схеме с заземленной нейтралью точка соединения потребителей подключается к нулевому проводнику.

Подключение Ваттметра

Ваттметры имеют четыре клеммы (2 входа, 2 выхода) для подключения. Две из них используют при сборе последовательной (токовой) цепи – ее подключают первой, а две – для параллельной (цепи напряжения).

Начало цепи напряжения (вход) подключают к началу токовой цепи (соединить клеммы перемычкой), соединенному с одним зажимом сети. Конец цепи напряжения (выход) соединяют с другим зажимом сети.

Рассмотрим несколько ваттметров разного исполнения и разных производителей:

Многофункциональный цифровой ваттметр СМ3010 класса точности 0,1

Предназначен для измерения активной мощности, тока, напряжения и частоты в цепях постоянного тока и в однофазных цепях переменного тока; для поверки ваттметров, амперметров, вольтметров класса 0,3 и ниже, частотомеров класса 0,01 и ниже.

Комментарии к статье “ Мощность трехфазной сети ”

В формуле мощности при соединении треугольником надо дописать что Iф= КОРЕНЬ из I ЛИНЕЙНОГО, а значит окончательнаяф формула принимает вид почти ТАКОЙ ЖЕ как и для мощности при соединении звездой — Р=КОРЕНЬ из ТРЁХ * Uфазное * I линейное*соs f

При чём U фазное = U линейное. То есть в обеих случаях формула мощности одна и та же.

ПОдскажите , клещами на проводниках 3 полючного автомата померили ток, получили значения. Как считать мощность через. корень квадратный? или как для однофазки P=UI

Все зависит от того, какую мощность вы хотите посчитать. Если полную, то да, S = UI. Для других мощностей нужно использовать другие формулы.

Добавить комментарий Отменить ответ

  • Автоматизация технологических процессов (121)
  • Альтернативная энергетика (32)
  • Интернет вещей (IoT) (90)
  • Микроконтроллеры (31)
  • Моделирование электромеханических систем (22)
  • Новости партнеров (1)
  • Новости электроники (155)
  • Основы электричества (27)
  • Реактивная мощность (12)
  • Робототехника (26)
  • Станки с ЧПУ (36)
  • Схемотехника (83)
  • Теория автоматического управления (14)
  • Электрика в быту (60)
  • Электрические машины и аппараты. Трансформаторы (69)
  • Электропривод (115)
  • Электроснабжение (78)
  • Электротехника (102)
  • Энергосбережение (81)
  • Магнитные пускатели — 87 814
  • Что такое активная, реактивная и полная мощность — 70 907
  • Логические элементы и их схемная реализация — 70 663
  • Механические характеристики при торможении синхронных машин — 55 792
  • Подключение амперметров к сети — 51 391
  • Соотношение между фазными и линейными напряжениями. Номинальные напряжения — 49 617
  • Что такое категории надежности электроснабжения? — 46 151
  • Мощность трехфазной сети — 45 560
  • Ввод и распределение электроэнергии в многоквартирном доме — 45 114
  • В чем разница между NPN и PNP транзисторами? — 42 238

Three-Phase Power Equations

Большая часть энергии переменного тока сегодня вырабатывается и распределяется как трехфазная, где три синусоидальных напряжения генерируются в противофазе друг с другом. При однофазном питании переменного тока существует только одно синусоидальное напряжение.

Реальная мощность

Линейное напряжение:

Вт приложено = 3 1/2 U ll I cos Φ

= 3 1/2 U ll I PF (1)

где

Вт приложено = активная мощность (Вт, ватты)

U ll = линейное напряжение (В, вольт)

I = ток (А, амперы)

PF = cos Φ = коэффициент мощности (0. 7 — 0,95)

Напряжение между фазой и нейтралью:

Вт приложено = 3 U ln I cos Φ (2)

где

U ln = напряжение между фазой и нейтралью (В, вольт)

Для чисто резистивной нагрузки: PF = cos Φ = 1

  • резистивная нагрузка преобразует ток в другие формы энергии, такие как тепло
  • индуктивные нагрузки используют магнитные поля, такие как двигатели , соленоиды и реле

Коэффициент мощности

Типичные коэффициенты мощности:

Устройство Коэффициент мощности
Лампа люминесцентная без компенсации 0.5
Лампа с люминесцентной компенсацией 0,93
Лампа накаливания 1
Двигатель, индукционная 100% нагрузка 0,85
Двигатель, индукционная нагрузка 50%

Двигатель, индукционная нагрузка 0% 0,17
Двигатель, синхронный 0,9
Духовка, резистивный нагревательный элемент 1
Духовка с индукционной компенсацией 0. 85
Чистая резистивная нагрузка 1
Пример — Чистая резистивная нагрузка

Для чисто резистивной нагрузки и коэффициента мощности = 1 фактическая мощность при напряжении 400/230 (от линии к линии / линии к нейтрали) 20 ампер Цепь можно рассчитать как

Вт применяется = 3 1/2 (400 В) (20 А) 1

= 13856 W

= 13.9 кВт

Общая мощность

Вт = 3 1/2 UI (2)

Тормозная мощность

Вт л.с. = 3 1/2 UI PF μ / 746 (3)

где

Вт л.с. = тормозная мощность (л.с.)

μ = КПД устройства

3-фазный вычислитель мощности + формула (кВт до ампер, ампер до кВт)

Довольно легко преобразовать кВт в амперы и амперы в кВт в простой однофазной цепи постоянного тока (по сравнению с расчетом трехфазной мощности). Для этого нужен только основной закон Ома; вы можете просто использовать наш калькулятор из кВт в амперы для преобразования.

В трехфазной сети переменного тока (обычно это трехфазный двигатель) преобразовать ток в кВт и кВт в ток не так просто. Чтобы все упростить, мы создали 2 вычислителя трехфазной мощности:

  1. Первый 3-фазный вычислитель мощности преобразует кВт в амперы . Для этого мы используем формулу для трехфазной мощности с коэффициентом 1,732 и коэффициентом мощности (мы также рассмотрим формулу).Здесь вы можете перейти к трехфазному калькулятору от кВт до ампера.
  2. Второй 3-фазный счетчик мощности преобразует ампер в кВт почти таким же образом. Мы применяем классическую формулу расчета тока трехфазного двигателя . Здесь вы можете перейти к трехфазному усилителю, формуле кВт и калькулятору.

Чтобы получить представление о том, как работают эти калькуляторы, вот скриншот калькулятора трехфазной мощности:

Пример того, как работает 1-й калькулятор: 3-фазный двигатель, который потребляет 90 А и работает от цепи 240 В с 0. 8 будет производить 29,93 кВт электроэнергии.

Прежде чем мы рассмотрим основы, давайте рассмотрим быстрый пример, чтобы проиллюстрировать, как работает расчет мощности на однофазной цепи по сравнению с трехфазной схемой .

Пример: Допустим, у нас есть кондиционер на 6 кВт в цепи 120 В. Вот сколько ампер он потребляет:

  • В однофазной цепи , 6 кВт потребляет 50 ампер .
  • В трехфазной цепи (с коэффициентом мощности 1,0 ) калькулятор трехфазной мощности показывает, что тот же прибор мощностью 6 кВт потребляет 28.87 ампер .
  • В трехфазной цепи (с коэффициентом мощности 0,6 ) вычислитель трехфазной мощности показывает, что тот же прибор мощностью 6 кВт потребляет 48,11 ампер .

Чтобы понять, почему мы получаем разную силу тока в трехфазной цепи, давайте сначала проверим, как рассчитывается этот ток, используя формулу трехфазной мощности:

Формула трехфазного питания

Вот простая формула, которую мы используем для расчета мощности в однофазной цепи постоянного и переменного тока:

P (кВт) = I (Ампер) × V (Вольт) ÷ 1000

По сути, мы просто умножаем ампер на вольты. Фактор «1000» используется для преобразования Вт в кВт; мы хотим, чтобы результирующая мощность была в киловаттах. 1 кВт = 1000 Вт.

По сравнению с этим формула трехфазной мощности немного сложнее. Вот уравнение трехфазной мощности:

P (кВт) = ( I (А) × V (В) × PF × 1,732) ÷ 1000

Как видим, электрическая мощность в цепи 3-х фазного переменного тока зависит от:

  • I (Ампер) : Электрический ток , измеренный в амперах.Чем больше у нас ампер, тем больше мощности в трехфазной цепи.
  • В (Вольт) : Электрический потенциал , измеренный в вольтах. Чем больше у нас вольт, тем больше мощность в трехфазной цепи.
  • PF : Коэффициент мощности , это число от -1 до 1 (на практике 0 и 1). Коэффициент мощности определяется как отношение реальной мощности к полной мощности. Если ток и напряжение совпадают по фазе, коэффициент мощности равен 1. В трехфазной цепи ток и напряжение не совпадают по фазе; таким образом, коэффициент мощности будет в пределах от 0 до 1.Это учитывает отношение реальной / полной мощности и иногда выражается как действующий ток. Чем выше коэффициент мощности, тем больше кВт у трехфазной цепи.
  • 1,732 коэффициент : Это константа при расчете трехфазной мощности. Это происходит из вывода этого уравнения. Если быть точным, мы получаем квадратный корень из 3 (√3).
  • Фактор 1000 : Это еще одна константа. Он преобразует ватты в киловатты, потому что мы обычно предпочитаем иметь дело с киловаттами вместо Вт.

Поскольку нам необходимо использовать коэффициент мощности для расчета мощности в кВт, эта формула также известна как «формула трехфазного коэффициента мощности».

Мы можем использовать это уравнение для разработки первого вычислителя: вычислителя трехфазной мощности (см. Ниже).

Примечание. Позже мы также увидим, как можно использовать формулу трехфазного тока для разработки калькулятора силы тока трехфазного двигателя. Он преобразует кВт в токи в трехфазных цепях, что очень важно в конструкции электродвигателей.

3-фазный калькулятор мощности: амперы на кВт (1-й калькулятор)

Вы можете свободно использовать этот калькулятор для преобразования ампер в кВт в трехфазной цепи. Вам необходимо ввести ток, напряжение и коэффициент мощности (от 0 до 1, индивидуально для каждой цепи):

Как видите, чем больше у вас ампер и вольт, тем мощнее трехфазный электродвигатель.Точно так же более высокий коэффициент мощности пропорционален более высокой выходной мощности.

Вы можете использовать этот пример, чтобы увидеть, как работает калькулятор 3-фазной мощности: Двигатель 100 А в 3-фазной цепи 240 В с коэффициентом мощности 0,9 вырабатывает 37,41 кВт электроэнергии. Вставьте эти 3 величины в калькулятор, и вы должны получить тот же результат.

Теперь по формуле расчета тока трехфазного двигателя:

Формула трехфазного тока

Как мы видели, эта формула трехфазной мощности вычисляет, сколько кВт электроэнергии будет отдавать двигатель при его токе:

P (кВт) = ( I (А) × В (В) × PF × 1. 732) ÷ 1,000

Чтобы выяснить, сколько ампер у двигателя с определенной мощностью в кВт, мы должны немного изменить это уравнение. Получаем формулу трехфазного тока так:

I (Амперы) = P (кВт) × 1000 ÷ (В (В) × PF × 1,732)

Используя эту формулу мощности, мы можем, например, вычислить мощность трехфазного двигателя в кВт / амперах. Обратите внимание, что если трехфазный двигатель с более низким напряжением и более низким коэффициентом мощности будет потреблять больше ампер для получения такой же выходной мощности.

Вот калькулятор на основе формулы трехфазного тока:

Расчет силы тока трехфазного двигателя: от кВт до ампера (2-й калькулятор)

Чтобы рассчитать ток из кВт, необходимо ввести кВт, напряжение и коэффициент мощности трехфазного двигателя. Калькулятор будет динамически рассчитывать ток (в амперах) на основе ваших входных данных:

Вы можете использовать этот пример, чтобы проверить, правильно ли вы используете калькулятор трехфазного тока: Допустим, у нас есть двигатель 200 кВт в трехфазной цепи 480 В с 0. 8 коэффициент мощности . Такой мотор имеет тягу 300,70 А. Вы можете вставить эти числа в калькулятор и посмотреть, получите ли вы правильный результат.

В целом, мы надеемся, что эти калькуляторы помогут вам определить характеристики мощности и тока электродвигателей. Если у вас есть какие-либо вопросы, вы можете использовать комментарии ниже, и мы постараемся вам помочь.

Электроэнергия в 3-фазных и 1-фазных системах ~ Изучение электротехники

Мощность в электрической цепи или системе определяется:

Где:

I = ток в амперах

V = Напряжение в вольтах

Единица мощности — ватт (Вт).Мощность также может быть выражена в вольтах-амперах (ВА), как правило, в системах переменного тока.

В системе постоянного тока ток и напряжение не меняются во времени. Следовательно, произведение напряжения и тока дает нам мощность в ваттах.

В системах переменного тока значения напряжения и тока постоянно изменяются синусоидальным образом, как показано ниже:

Форма кривой напряжения и тока переменного тока

Следовательно, в системе переменного тока произведение тока и напряжения не дает мощности в ваттах, а дает мощность в ВА (вольт-амперах). Мощность в ваттах для однофазной системы переменного тока определяется выражением:

Где:

P = мощность в ваттах

Iphase = фазный ток

Vphase = фазное напряжение

Cosф = коэффициент мощности

В трехфазной электросети:

Мощность = 3 x мощность в одной фазе:

Соединение треугольником (сеткой) и звездой в трехфазных системах переменного тока

Электроэнергия переменного тока (АС) часто подается и потребляется в трехфазных системах, которые обычно соединяются треугольником (сеткой) или звездой:

Рисунок 1: Соединения звездой и треугольником в трехфазной сети A.Цепи C

Соединение на Рисунке 1a выше известно как соединение треугольником, потому что диаграмма очень похожа на греческую букву Δ, называемую дельта. Другой тип соединения на рисунке 1b известен как соединение звездой или звездой. Соединение «звезда» отличается от соединения «треугольник» тем, что в нем последовательно соединены две фазы. Общая точка «O» трех обмоток называется нейтралью, потому что между этой точкой и любой из трех фаз существует равное напряжение. Этот пункт обычно обоснован.Обычно трансформаторы, двигатели и генераторы можно подключать по схеме звезды или треугольника.

Соотношение напряжения и тока в системах, соединенных треугольником и звездой

(a) Система с подключением по схеме треугольника

В системе, соединенной треугольником (см. Рис. 1а выше):

Фазное напряжение = линейное напряжение:

Линейный ток = 1,732-кратный фазный ток, т.е.

(b) Система с соединением звездой или звездой

В системе с соединением звездой (см. Рисунок 1b выше):

Линейный ток = Фазный ток

Напряжение сети = 1.732 раза Фазное напряжение

Мы видели, что мощность в 3-фазной системе определяется выражением:

Подстановка значений фазного тока и фазного напряжения для системы, соединенной треугольником и звездой, в приведенную выше формулу дает мощность в ваттах в трехфазной цепи переменного тока, подключенной либо треугольником, либо звездой, как:

Таким образом, зная линейное напряжение и линейный ток в любой трехфазной цепи переменного тока, а также коэффициент мощности, можно легко рассчитать мощность, подаваемую в систему.

Electric Power Одно- и трехфазная мощность Активная Реактивная кажущаяся

Комплексная мощность

Это очень концептуально и важно для понимания. Чтобы установить выражение комплексной мощности , мы должны сначала рассмотреть однофазную сеть, напряжение и ток которой могут быть представлены в сложной форме как V.e и I.e . Где α и β — углы, которые составляют вектор напряжения и вектор тока относительно некоторой опорной оси соответственно.Активную мощность и реактивную мощность можно рассчитать, найдя произведение напряжения на сопряжение тока. Это означает, что

Это (α — β) не что иное, как угол между напряжением и током, следовательно, это разность фаз между напряжением. и ток, который обычно обозначается как φ.
Следовательно, приведенное выше уравнение можно переписать как

Где, P = VIcosφ и Q = VIsinφ.
Эта величина S называется комплексной мощностью .
Величина комплексной мощности i.е. | S | = (P 2 + Q 2 ) ½ известна как полная мощность , и ее единица измерения — вольт-ампер. Эта величина является произведением абсолютного значения напряжения и тока. Опять же, абсолютное значение тока напрямую связано с эффектом нагрева согласно закону нагрева Джоуля. Следовательно, номинальные характеристики электрической машины обычно определяются ее полной допустимой мощностью в пределах допустимого температурного предела.
Следует отметить, что в уравнении комплексной мощности член Q [= VIsinφ] положителен, когда φ [= (α — β)] положительно, то есть ток отстает от напряжения, что означает, что нагрузка является индуктивной по своей природе. .Снова Q отрицательно, когда φ отрицательно; то есть ток ведет к напряжению, что означает, что нагрузка емкостная.

Однофазное питание

Однофазная система электропередачи практически недоступна, но все же мы должны знать базовую концепцию однофазного питания , прежде чем проходить через современную трехфазную систему питания. Прежде чем переходить к подробностям об однофазном питании, давайте попробуем разобраться в различных параметрах энергосистемы. Три основных параметра системы электроснабжения — это электрическое сопротивление, индуктивность и емкость.

Сопротивление

Сопротивление является неотъемлемым свойством любого материала, благодаря которому он сопротивляется протеканию тока, препятствуя движению электронов через него из-за столкновения с неподвижными атомами. Тепло, выделяемое в результате этого процесса, рассеивается и называется омической потерей мощности. Пока ток протекает через резистор, между напряжением и током не будет разницы фаз, что означает, что ток и напряжение находятся в одной фазе; фазовый угол между ними равен нулю.Если ток I протекает через электрическое сопротивление R в течение t секунд, то общая энергия, потребляемая резистором, равна I 2 .R.t. Эта энергия известна как активная энергия , а соответствующая мощность известна как активная мощность .

Индуктивность

Индуктивность — это свойство, благодаря которому индуктор накапливает энергию в магнитном поле в течение положительного полупериода и отдает эту энергию во время отрицательного полупериода однофазного источника питания.Если через катушку с индуктивностью L Генри протекает ток «I», энергия, запасенная в катушке в виде магнитного поля, определяется выражением

Мощность, связанная с индуктивностью, составляет , реактивная мощность .

Емкость

Емкость — это свойство, благодаря которому конденсатор накапливает энергию в статическом электрическом поле во время положительного полупериода и отдает во время отрицательного полупериода питания. Энергия, накопленная между двумя параллельными металлическими пластинами с разностью электрических потенциалов V и емкостью между ними C, выражается как

Эта энергия сохраняется в форме статического электрического поля.Мощность, связанная с конденсатором, также равна , реактивная мощность .

Активная мощность и реактивная мощность

Рассмотрим схему однофазного питания , в которой ток отстает от напряжения на угол φ.
Пусть мгновенная разность электрических потенциалов v = V m .sinωt
Тогда мгновенный ток можно выразить как i = I m . sin (ωt — φ).
Где, V m и I m — максимальные значения синусоидально изменяющейся разности электрических потенциалов и тока соответственно.
Мгновенная мощность цепи определяется выражением

Активная мощность

Резистивная мощность

Давайте сначала рассмотрим условие, когда однофазная силовая цепь является полностью резистивной по своей природе, что означает фазовый угол между напряжением и током, т. Е. Φ = 0 и, следовательно,

Из приведенного выше уравнения ясно, что каким бы ни было значение ωt, значение cos2ωt не может быть больше 1; следовательно, значение p не может быть отрицательным. Значение p всегда положительно независимо от мгновенного направления напряжения v и тока i, это означает, что энергия течет в обычном направлении, т. е.е. от источника к нагрузке, а p — уровень потребления энергии нагрузкой, который называется активной мощностью . Поскольку эта мощность потребляется из-за резистивного эффекта электрической цепи, поэтому иногда ее также называют Resistive Power .

Реактивная мощность

Индуктивная мощность

Теперь рассмотрим ситуацию, когда однофазная силовая цепь полностью индуктивна, то есть ток отстает от напряжения на угол φ = + 90 o . Положив φ = + 90 o

В приведенном выше выражении обнаружено, что мощность течет в альтернативных направлениях.С 0 o до 90 o он будет иметь отрицательный полупериод, от 90 o до 180 o он будет иметь положительный полупериод, от 180 o до 270 o он будет снова иметь отрицательную половину цикл и от 270 o до 360 o он снова будет иметь положительный полупериод. Следовательно, эта мощность является альтернативной по своей природе с частотой, вдвое превышающей частоту питающей сети. Поскольку мощность течет в переменном направлении, то есть от источника к нагрузке в одном полупериоде и от нагрузки к источнику в следующем полупериоде, среднее значение этой мощности равно нулю.Следовательно, эта сила не делает никакой полезной работы. Эта мощность известна как , реактивная мощность . Поскольку объясненное выше выражение реактивной мощности относится к полностью индуктивной цепи, эта мощность также называется индуктивной мощностью .

Из этого можно сделать вывод, что если цепь является чисто индуктивной, энергия будет накапливаться в виде энергии магнитного поля в течение положительного полупериода и отдаваться в течение отрицательного полупериода и скорости, с которой эта энергия изменяется, выраженной как реактивной мощности индуктора или просто индуктивная мощность , и эта мощность будет иметь равный положительный и отрицательный цикл, а чистое значение будет равно нулю.

Емкостная мощность

Давайте теперь рассмотрим, что однофазная силовая цепь полностью емкостная, то есть ток опережает напряжение на 90 o , поэтому φ = — 90 o .

Следовательно, в выражении емкостной мощности также обнаруживается, что мощность течет в альтернативных направлениях. С 0 o до 90 o он будет иметь положительный полупериод, от 90 o до 180 o он будет иметь отрицательный полупериод, от 180 o до 270 o он будет снова иметь положительную половину цикл и от 270 o до 360 o он снова будет иметь отрицательный полупериод.Таким образом, эта мощность также является альтернативной по своей природе с частотой, вдвое превышающей частоту питания. Следовательно, как индуктивная мощность, емкостная мощность не выполняет никакой полезной работы. Эта мощность также является реактивной мощностью.

Активная составляющая и реактивная составляющая мощности

Уравнение мощности можно переписать как

Это выражение выше имеет две согласные; Первый — V м . I m . cosφ (1 — cos2ωt), который никогда не становится отрицательным, поскольку значение (1 — cos2ωt) всегда больше или равно нулю, но не может иметь отрицательного значения.

Эта часть уравнения однофазной мощности представляет выражение реактивной мощности, которая также известна как активная мощность или истинная мощность. Среднее значение этой мощности, очевидно, будет иметь какое-то ненулевое значение, мощность физически выполняет некоторую полезную работу, и поэтому эту мощность также называют реальной мощностью или иногда ее называют истинной мощностью. Эта часть уравнения мощности представляет реактивную мощность, которая также известна как активная мощность или истинная мощность.
Второй член — V м .I m .sinφsin2ωt, у которого будут отрицательные и положительные циклы. Следовательно, среднее значение этого компонента равно нулю. Этот компонент известен как реактивный компонент, поскольку он перемещается вперед и назад по линии, не выполняя никакой полезной работы.
И активная мощность , и реактивная мощность имеют одинаковые размеры в ваттах, но чтобы подчеркнуть тот факт, что реактивная составляющая представляет собой неактивную мощность, она измеряется в единицах реактивной мощности вольт-ампер или коротко VAR.
Однофазное питание относится к распределительной системе, в которой: все напряжения меняются в унисон.Он может быть получен простым вращением движущейся катушки в магнитном поле или движением поля вокруг неподвижной катушки. Произведенное таким образом переменное напряжение и переменный ток называют однофазным напряжением и током. Различные типы цепей по-разному реагируют на подачу синусоидального сигнала. Мы рассмотрим все типы цепей по очереди, которые включают только электрическое сопротивление, только емкость и только индуктивность, а также их комбинацию и попытаемся установить уравнение мощности для однофазной цепи .

Уравнение однофазной мощности для чисто резистивной цепи

Давайте рассмотрим расчет однофазной мощности для чисто резистивной цепи. Цепь, состоящая из чистого омического сопротивления, проходит через источник напряжения V, как показано ниже на рисунке.

Где, В (t) = мгновенное напряжение.
В м = максимальное значение напряжения.
ω = угловая скорость в радианах / секундах.

Согласно закону Ома,

Подставляя значение V (t) в вышеприведенное уравнение, мы получаем,

Из уравнений (1.1) и (1.5) видно, что V (t) и I R синфазны. Таким образом, в случае чистого омического сопротивления нет разницы фаз между напряжением и током, то есть они находятся в фазе, как показано на рисунке (b).

Мгновенная мощность,

Из уравнения однофазной мощности (1.8) ясно, что мощность состоит из двух членов: одна постоянная часть, то есть

, а другая — колеблющаяся, то есть

Это значение равно нулю для полного цикла. Таким образом, мощность через чисто омический резистор дается как и показано на рис. (C).

Однофазное уравнение мощности для чисто индуктивной цепи

Индуктор — это пассивный компонент. Всякий раз, когда переменный ток проходит через катушку индуктивности, он противодействует протеканию тока через нее, создавая обратную ЭДС. Таким образом, приложенное напряжение, а не падение на нем, должно уравновешивать производимую обратную ЭДС. Схема, состоящая из чистого индуктора, подключенного к источнику синусоидального напряжения V rms , показана на рисунке ниже.

Мы знаем, что напряжение на катушке индуктивности задается как,

Таким образом, из приведенного выше уравнения однофазной мощности видно, что I отстает от V на π / 2 или, другими словами, V отстает от I на π / 2, когда переменный ток проходит через индуктор i.е. I и V не в фазе, как показано на рис. (Е).

Мгновенная мощность определяется выражением,

Здесь формула однофазной мощности состоит только из колеблющегося члена, а значение мощности для полного цикла равно нулю.

Однофазное уравнение мощности для чисто емкостной цепи

Когда переменный ток проходит через конденсатор, он сначала заряжается до максимального значения, а затем разряжается. Напряжение на конденсаторе задается как

Таким образом, из приведенного выше расчета однофазной мощности I (t) и V (t) ясно, что в случае конденсаторного тока опережает напряжение на угол π / 2.

Мощность через конденсатор состоит только из непостоянного члена, а значение мощности для полного цикла равно нулю.

Однофазное уравнение мощности для цепи RL

Чисто омический резистор и катушка индуктивности подключены последовательно ниже, как показано на рис. (G), через источник напряжения V. Тогда падение на R будет V R = IR и на L будет V L = IX L .

Эти падения напряжения показаны в виде треугольника напряжения, как показано на рис. (I).Вектор OA представляет собой падение на R = IR, вектор AD представляет собой падение на L = IX L , а вектор OD представляет собой результат V R и V L .

— полное сопротивление цепи RL.
Из векторной диаграммы видно, что V ведет I и фазовый угол φ определяется как,

Таким образом, мощность состоит из двух членов, одного постоянного члена 0,5 В м I м cosφ и другого члена флуктуации 0,5 В м I м cos (ωt — φ), значение которого равно нулю для всего цикла.
Таким образом, это единственная постоянная часть, которая влияет на фактическое потребление энергии.
Таким образом, мощность, p = VI cos Φ = (среднеквадратичное напряжение × среднеквадратичный ток × cosφ) Вт
Где cosφ называется коэффициентом мощности и определяется выражением,

I может быть разделен на две прямоугольные составляющие Icosφ вдоль V и Isinφ перпендикулярно V. Только Icosφ вносит вклад в активную мощность. Таким образом, только VIcosφ называется полностью заполненным компонентом или активным компонентом, а VIsinφ называется безводным компонентом или реактивным компонентом.

Однофазное уравнение мощности для RC-цепи

Мы знаем, что ток чистой емкости, напряжение проводов и чистое омическое сопротивление синфазны.Таким образом, чистый ток опережает напряжение на угол φ в RC-цепи. Если V = V m sinωt и I будет I m sin (ωt + φ).

Мощность такая же, как и в случае цепи R-L. В отличие от схемы R-L коэффициент мощности является ведущим в схеме R-C.

Определение трехфазной мощности

Было обнаружено, что выработка трехфазной мощности более экономична, чем выработка однофазной энергии. В трехфазной системе электроснабжения три формы волны напряжения и тока смещены во времени на 120 в каждом цикле питания.Это означает; каждая форма волны напряжения имеет разность фаз 120 o относительно другой формы волны напряжения, и каждая форма волны тока имеет разность фаз 120 o относительно другой формы волны тока. Определение трехфазной мощности гласит, что в электрической системе три отдельных однофазных мощности передаются тремя отдельными силовыми цепями. Напряжения этих трех мощностей в идеале находятся на расстоянии 120 o друг от друга по фазе времени. Точно так же токи этих трех мощностей также идеально разнесены друг от друга на 120 o .Идеальная трехфазная система питания подразумевает сбалансированную систему.

Трехфазная система считается несбалансированной, когда либо хотя бы одно из трех фазных напряжений не равно другому, либо фазовый угол между этими фазами не совсем равен 120 o .

Преимущества трехфазной системы

Есть много причин, по которым эта мощность более предпочтительна, чем однофазная.

  1. Уравнение однофазной мощности:

    , которое зависит от времени.Тогда как уравнение трехфазной мощности — это

    , которое является постоянной функцией, не зависящей от времени. Следовательно, однофазное питание пульсирует. Обычно это не влияет на двигатель с низким номиналом, но в двигателе с более высоким номиналом вызывает чрезмерную вибрацию. Таким образом, трехфазное питание более предпочтительно для силовой нагрузки с высоким напряжением.

  2. Мощность трехфазной машины в 1,5 раза выше, чем у однофазной машины того же размера.
  3. Однофазный асинхронный двигатель не имеет пускового момента, поэтому мы должны предоставить некоторые вспомогательные средства запуска, но трехфазный асинхронный двигатель самозапускается и не требует никаких вспомогательных средств.
  4. Коэффициент мощности и КПД выше в случае трехфазной системы.

Уравнение трехфазной мощности

Для определения выражения уравнения трехфазной мощности , т. Е. Для расчета трехфазной мощности , мы должны сначала рассмотреть идеальную ситуацию, когда трехфазная система сбалансирована. Это означает, что напряжение и токи в каждой фазе отличаются от их соседних фаз на 120 o , а также амплитуда каждой волны тока одинакова и аналогично амплитуда каждой волны напряжения одинакова. Теперь угловая разница между напряжением и током в каждой фазе трехфазной энергосистемы равна φ.

Тогда напряжение и ток фазы красный будут
соответственно.
Напряжение и ток фазы , желтый, , будут равны
соответственно.
А напряжение и ток синей фазы будут —
соответственно.
Следовательно, выражение мгновенная мощность в красной фазе —

Аналогично выражение мгновенная мощность в желтой фазе —

Точно так же выражение мгновенная мощность в синей фазе —

Общая трехфазная мощность системы складывается из индивидуальная мощность в каждой фазе —

Приведенное выше выражение мощности показывает, что общая мгновенная мощность постоянна и равна трехкратной реальной мощности на фазу.В случае выражения для однофазной мощности мы обнаружили, что существуют компоненты как реактивной мощности, так и активной мощности, но в случае выражения для трехфазной мощности мгновенная мощность постоянна. Фактически в трехфазной системе реактивная мощность в каждой отдельной фазе не равна нулю, но их сумма в любой момент равна нулю.

Реактивная мощность — это форма магнитной энергии, протекающей в единицу времени в электрической цепи. Его единица измерения — VAR (вольт-ампер, реактивный). Эту мощность нельзя использовать в цепи переменного тока.Однако в электрической цепи постоянного тока он может быть преобразован в тепло, поскольку, когда заряженный конденсатор или индуктор подключается к резистору, энергия, запасенная в элементе, преобразуется в тепло. Наша энергосистема работает от сети переменного тока, и большинство нагрузок, используемых в повседневной жизни, являются индуктивными или емкостными, поэтому реактивная мощность является очень важным понятием с точки зрения электричества.

Коэффициент электрической мощности любого оборудования определяет количество реактивной мощности , которое ему требуется.Это отношение реальной или истинной мощности к полной полной мощности, необходимой электрическому устройству. Эти мощности можно определить как,

, где θ — это разность фаз между напряжением и током, а cosθ — коэффициент электрической мощности нагрузки.

Реактивная мощность всегда присутствует в цепи, где есть разность фаз между напряжением и током в этой цепи, например, все наши бытовые нагрузки являются индуктивными. Таким образом, существует разница фаз между напряжением и током, и ток отстает от напряжения на определенный угол во временной области.Индуктивный компонент принимает отстающую реактивную мощность, а емкостной компонент поглощает ведущую реактивную мощность, здесь отстающая реактивная мощность относится к магнитной энергии, а ведущая реактивная мощность относится к электростатической энергии.

В типичной цепи переменного тока, такой как цепь RL (резистивная + индуктивная) или RC-цепь (резистивная + емкостная), реактивная мощность берется из источника питания в течение полупериода и возвращается в источник питания в течение следующего полупериода. Например, мощность, потребляемая для нагрузки RL, определяется как:

V = V m sinωt, I = I m sin (ωt — θ)

Здесь Q 1 sin2ωt — реактивная мощность, которая является средним значением. равен нулю, это означает, что реактивная мощность никогда не используется.

Использование реактивной мощности

В электрической машине для преобразования энергии требуется магнитный домен, чтобы преобразовать ее форму. В электродвигателе необходимый магнитный домен создается за счет реактивной мощности, которую он получает от источника питания. Сегодня почти каждой электрической нагрузке требуется реактивная мощность для работы, несмотря на реальную мощность. Даже в электрическом трансформаторе, который является основным элементом энергосистемы, первичный входной ток отстает, поскольку требуется запаздывающая VAR для намагничивания его сердечника и передачи мощности посредством взаимной индукции.

Реактивная мощность в линиях передачи

В линии передачи электроэнергии поток реактивной мощности в линии определяет напряжение на принимающей стороне. Управление уровнем напряжения на приемном конце очень важно, так как более высокое напряжение может повредить оборудование потребителя и привести к большим потерям. Во многих случаях мы видим внезапное повышение или падение напряжения из-за удара молнии или из-за неисправности исправных фаз, и в любом случае происходит повреждение оборудования. Посмотрим, как напряжение зависит от реактивной мощности.
Реактивная мощность принимающей стороны определяется выражением,

Где, θ — угол мощности, который поддерживается на очень низком уровне из-за соображений стабильности, X l — реактивное сопротивление линии передачи, V s — напряжение передающей стороны и V r — напряжение на приемном конце.
Итак, Q r становится,

Теперь уравнение формируется как,

Решая, мы получаем,

Математически выражение, данное для реактивной мощности
Примечание: мы не принимали отрицательный знак, поскольку тогда V r будет становятся нулевыми, когда Q r равно нулю, что невозможно.
Пусть Q 1 будет реактивной мощностью, требуемой нагрузкой на принимающей стороне, а Q 2 будет источником реактивной мощности от генерирующей или отправляющей стороны. Тогда Q r будет (Q 1 — Q 2 ).

Случай — 1
Когда подача Q 2 равна потребности Q 1 , тогда V s = V r , напряжение на принимающей стороне будет равно конечному напряжению отправки, что желательно.

Случай — 2
Когда спрос больше, а предложение меньше, Q r становится отрицательным.Таким образом, напряжение на принимающей стороне становится меньше, чем на стороне отправки.

Случай — 3
Когда спрос меньше, предложение высокое, Q r становится положительным. Таким образом, напряжение на принимающей стороне становится больше, чем на стороне отправки, что очень опасно.
Таким образом, мы увидели, как напряжение (и управление его уровнем), которое является основным требованием любой электрической нагрузки; зависит от реактивной мощности. В дневное время потребность в реактивной мощности увеличивается, поэтому происходит провал напряжения. С другой стороны, в утреннее время потребность в реактивной мощности меньше, поэтому происходит повышение уровня напряжения. Для поддержания уровня напряжения необходимо сделать Q 1 = Q 2 .

Компенсация реактивной мощности

Как уже обсуждалось, необходимо контролировать как превышение реактивной мощности, так и ее дефицит. Для этого производится компенсация с помощью различных устройств. Здесь реактор поглощает избыточную реактивную мощность, тогда как конденсатор обеспечивает компенсацию реактивной мощности в случаях высокого потребления.
Для нагрузок с низким коэффициентом мощности потребность в реактивной мощности очень высока. Следовательно, нам нужно увеличить коэффициент мощности, используя конденсаторную батарею. Это снижает потребность в переменном токе за счет подачи на нагрузку соответствующего количества реактивной мощности. Другие методы включают использование шунтирующего конденсатора, синхронных фазовых модификаторов, трансформатора с переключением ответвлений под нагрузкой и шунтирующего реактора. Синхронный двигатель с перевозбуждением используется параллельно с нагрузкой. Он служит конденсатором и также называется синхронным конденсатором.Шунтирующий реактор используется для снижения коэффициента электрической мощности. В трансформаторах с переключением ответвлений под нагрузкой коэффициент трансформации регулируется соответствующим образом для поддержания желаемого уровня напряжения, поскольку разность напряжений между передающей и принимающей сторонами определяет реактивную мощность.
Математически выражение для реактивной мощности (Q), необходимой для увеличения коэффициента электрической мощности с cosθ 1 до cosθ 2 , дается как,

Где, P — реальная потребляемая мощность нагрузки (в ваттах). .
В случае, если коэффициент электрической мощности должен быть уменьшен с cosθ 2 до cosθ 1 , реактивная мощность, которая должна быть поглощена шунтирующим реактором на конце нагрузки, определяется как,

Значения емкости или индуктивности, таким образом, необходимое можно рассчитать с помощью,

Объяснение формулы сбалансированной трехфазной мощности — Wira Electrical

Давайте теперь рассмотрим сбалансированную трехфазную систему питания.

Начнем с исследования мгновенной мощности, потребляемой нагрузкой.

О том, что такое трехфазная схема, лучше сначала почитать.

После того, как мы узнаем о трехфазной цепи, мы узнаем:

  1. Сбалансированное трехфазное напряжение
  2. Сбалансированное трехфазное питание
  3. Несбалансированное трехфазное питание
  4. Измерение трехфазной мощности

Формула сбалансированной трехфазной мощности

Это требует, чтобы анализ проводился во временной области. Для нагрузки, подключенной по схеме Y, фазные напряжения равны

(1)

, где коэффициент √2 необходим, потому что V p было определено как действующее значение фазы. Напряжение.

Если Z Y = Z∠θ, фазные токи отстают от соответствующих фазных напряжений на θ. Таким образом,

(2)

, где I p — действующее значение фазного тока.

Полная мгновенная мощность нагрузки — это сумма мгновенных мощностей в трех фазах; то есть

(3)

Применение тригонометрической идентичности

900

(4)
(5)

Таким образом, общая мгновенная мощность в сбалансированной трехфазной системе постоянна — она ​​не изменяется со временем, как мгновенная мощность каждой фазы.

Этот результат верен независимо от того, подключена ли нагрузка по схеме Y или ∆.

Это одна из важных причин использования трехфазной системы для генерации и распределения энергии. Чуть позже мы рассмотрим другую причину.

Поскольку общая мгновенная мощность не зависит от времени, средняя мощность на фазу P p для нагрузки, подключенной по ∆, или нагрузки, подключенной по оси Y, равна p / 3, или

( 6)

и реактивная мощность на фазу

(7)

Полная мощность на фазу

Комплексная мощность на фазу составляет

(9)

где В p и I p — фазное напряжение и фазный ток с величинами V p и I p соответственно.

Общая средняя мощность — это сумма средних мощностей в фазах:

(10)

Для нагрузки с Y-соединением I L = I p но V L = √3V p , тогда как для ∆-подключенной нагрузки I L = √3I p , но V L = V p .

Таким образом, уравнение (10) применимо как для нагрузок, подключенных по схеме Y, так и для нагрузок, подключенных по схеме ∆. Аналогичным образом, общая реактивная мощность составляет

(11)

, а общая комплексная мощность составляет

9164

9164

p = Z p ∠θ — полное сопротивление нагрузки на фазу. ( Z p может быть Z Y или Z ∆)

В качестве альтернативы мы можем записать уравнение (12) как

(12)

Помните, что все V p , I p , V L и I L являются среднеквадратичными значениями, а θ — это угол импеданса нагрузки или угол между фазным напряжением и фазным током.

Второе важное преимущество трехфазных систем для распределения энергии состоит в том, что в трехфазной системе используется меньшее количество проводов, чем в однофазной системе для того же сетевого напряжения V L и такой же потребляемой мощности P L. .

Мы сравним эти случаи и предположим, что в обоих случаях провода сделаны из одного и того же материала (например, медь с удельным сопротивлением ρ), одинаковой длины l и что нагрузки являются резистивными (т. Е. С единичным коэффициентом мощности).

Для двухпроводной однофазной системы на рисунке (1a), I L = P L / V L , поэтому потери мощности в двух проводах составляют

(13)
(14)

Для трехпроводной трехфазной системы на рис.(1b), I ’ L = | I a | = | I b | = | I c | = P L / √3V L из уравнения. (10)

Рисунок 1. Сравнение потерь мощности в (а) однофазной системе и (б) в трехфазной системе. фазовая система.

Потери мощности в трех проводах составляют

(15)

Уравнения. (14) и (15) показывают, что для той же полной мощности P L и того же сетевого напряжения V L ,

(16)

R = ρ l / πr 2 и R ‘= ρ l / πr 2 , где r и r’ — радиусы проволок. Таким образом,

(17)

Если одинаковая потеря мощности допустима в обеих системах, то r 2 = 2r ’ 2 .Соотношение требуемого материала определяется количеством проволок и их объемами, поэтому

(18)

, поскольку r 2 = 2r ’ 2 . Уравнение (18) показывает, что однофазная система использует на 33 процента больше материала, чем трехфазная система, или что трехфазная система использует только 75 процентов материала, используемого в эквивалентной однофазной системе.

Другими словами, для обеспечения такой же мощности с трехфазной системой требуется значительно меньше материала, чем требуется для однофазной системы.

Формула мощности для примеров сбалансированной системы

Для лучшего понимания рассмотрим приведенные ниже примеры:
1. См. Схему на рисунке (2). Определите общую среднюю мощность, реактивную мощность и комплексную мощность в источнике и на нагрузке.

Рисунок 2

Решение:
Достаточно рассмотреть одну фазу, так как система сбалансирована. Для фазы a ,

Таким образом, в источнике комплексная подаваемая мощность составляет

Реальная или средняя подаваемая мощность составляет -2087 Вт, а реактивная мощность составляет -834.6 ВАР.

При нагрузке комплексная потребляемая мощность составляет

, где Z p = 10 + j8 = 12,81∠38,66 ° и I p = I a = 6,81∠ − 21,8 °.

Следовательно,

Фактическая потребляемая мощность составляет 1391,7 Вт, а потребляемая реактивная мощность составляет 1113,3 ВАр.

Разница между двумя комплексными мощностями поглощается импедансом линии (5 — j2) Ом.

Чтобы показать, что это так, мы находим комплексную мощность, потребляемую линией, как

, которая представляет собой разницу между S s и S L , то есть S s + S l + S L = 0, как и ожидалось.

2. Трехфазный двигатель можно рассматривать как сбалансированную Y-нагрузку. Трехфазный двигатель потребляет 5,6 кВт при напряжении в сети 220 В и токе в сети 18,2 А. Определите коэффициент мощности двигателя.

Решение:
Полная мощность составляет

Поскольку фактическая мощность равна

, коэффициент мощности составляет

3. Две симметричные нагрузки подключены к линии 240 кВ (среднеквадратичное значение) 60 Гц, как показано на рисунке . (3а).

Нагрузка 1 потребляет 30 кВт при коэффициенте мощности 0.6 отстает, а нагрузка 2 потребляет 45 кВАр при коэффициенте мощности 0,8 с запаздыванием.

Предполагая последовательность abc , определите:

(a) комплексную, реальную и реактивную мощность, потребляемую комбинированной нагрузкой,

(b) линейные токи и

(c) номинальную мощность в кВАр. три конденсатора, подключенные по схеме ∆ параллельно нагрузке, увеличивают коэффициент мощности до 0,9 и емкость каждого конденсатора.

Рисунок 3

Решение:
(a) Для нагрузки 1, учитывая, что P 1 = 30 кВт и cos θ 1 = 0.6, тогда sin θ 1 = 0,8.

Следовательно,

и Q 1 = S 1 sin θ 1 = 50 (0,8) = 40 кВАр. Таким образом, комплексная мощность нагрузки 1 равна

(3. 1)

Для нагрузки 2, если Q 2 = 45 кВАр и cos θ 2 = 0,8, то sin θ 2 = 0,6. Находим

и P 2 = S 2 cos θ 2 = 75 (0,8) = 60 кВт.Следовательно, комплексная мощность, обусловленная нагрузкой 2, составляет

(3.2)

Из уравнений (3.1) и (3.2) общая комплексная мощность, потребляемая нагрузкой, составляет

(3,3)

с коэффициентом мощности cos 43,36 ◦ = 0,727 с запаздыванием. Реальная мощность тогда составляет 90 кВт, а реактивная мощность — 85 кВАр.

(b) Поскольку S = √3V L I L , линейный ток равен

(3. 4)

Мы применяем это к каждой нагрузке, учитывая, что для обеих нагрузок V L = 240 кВ. Для нагрузки 1:

Поскольку коэффициент мощности отстает, линейный ток отстает от сетевого напряжения на θ 1 = cos −1 0,6 = 53,13 ◦. Таким образом,

Для нагрузки 2,

и линейный ток отстает от линейного напряжения на θ 2 = cos −1 0,8 = 36,87 ◦.
Следовательно,

Общий линейный ток равен

В качестве альтернативы, мы могли бы получить ток из общей комплексной мощности, используя уравнение.(3.4) как

и

, то же самое, что и раньше. Другие линейные токи, I b2 и I ca , могут быть получены в соответствии с последовательностью abc (т.е. I b = 297,82∠ − 163,36 ◦ мА и I c = 297,82∠76,64 ◦ мА).

(c) Мы можем найти реактивную мощность, необходимую для доведения коэффициента мощности до 0,9 с запаздыванием,

, где P = 90 кВт, θ старый = 43,36 ° и θ новый = cos −1 0. 9 = 25,84 °.

Следовательно,

Это реактивная мощность для трех конденсаторов. Для каждого конденсатора номинал Q ’ C = 13,8 кВАр. Требуемая емкость составляет

Поскольку конденсаторы подключены по схеме ∆, как показано на рисунке (3b), В действующее значение в приведенной выше формуле — это линейное или линейное напряжение, которое составляет 240 кВ.

Таким образом,

Трехфазное напряжение + расчеты

Электричество трехфазное. В этом уроке мы узнаем больше о трехфазном электричестве.Мы расскажем, как генерируются 3 фазы, что означают цикл и герц, изобразим форму волны напряжения по мере ее генерации, вычислим однофазное и трехфазное напряжения.

Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube по трехфазному напряжению + расчеты

Итак, в нашем последнем трехфазном руководстве мы рассмотрели основы того, что происходит внутри трехфазных систем электроснабжения, и в этом руководстве мы сделаем шаг вперед и немного глубже рассмотрим, как эти системы работают, и основные математика позади них.

Мы используем розетки в наших домах для питания наших электрических устройств. Напряжение от этих вилок варьируется в зависимости от того, где мы находимся. Например: в Северной Америке используется ~ 120 В, в Европе ~ 230 В, в Австралии и Индии ~ 230 В, а в Великобритании ~ 230 В.
Это стандартные напряжения, установленные правительственными постановлениями каждой страны. Вы можете найти их в Интернете, или мы можем просто измерить их дома, если у вас есть подходящие инструменты.

Находясь в Великобритании, я измерил напряжение в стандартной домашней розетке.Вы можете видеть, что я получаю около 235 В на этой вилке, используя простой счетчик энергии. В качестве альтернативы я могу использовать мультиметр, чтобы прочитать это. Значение немного меняется в течение дня, иногда выше, а иногда ниже, но остается в определенных пределах.

Если у вас нет счетчика энергии или мультиметра, они очень дешевые и очень полезные, поэтому я рекомендую вам их приобрести.

Сейчас эти напряжения в розетках в наших домах однофазные от соединения звездой. Они возникают при соединении одной фазы с нейтралью или, другими словами, только одной катушкой от генератора.
Но мы также можем подключиться к двум или трем фазам одновременно, то есть к двум или трем катушкам генератора, и если мы это сделаем, мы получим более высокое напряжение.

В США мы получаем 120 В от одной фазы или 208 В от двух или трех фаз.
Европа мы получаем однофазный 230 В или 400 В
Австралия и Индия получаем однофазный 230 В или 400 В

Если я подключу осциоскоп к однофазной сети, я получу синусоидальную волну. Когда я подключаюсь ко всем трем фазам, я получаю три синусоиды подряд.

Итак, что здесь происходит, почему у нас разные напряжения?
и почему мы получаем эти синусоидальные волны?

Итак, резюмируем.Получаем полезную электроэнергию, когда много
электроны движутся по кабелю в том же направлении. Мы используем медные провода, потому что
каждый из миллиардов атомов внутри медного материала имеет слабосвязанные
электрон в самой внешней оболочке. Этот слабо связанный электрон может свободно перемещаться.
между другими атомами меди, и они действительно движутся все время, но случайным образом
направления, которые нам не нужны.

Чтобы заставить их двигаться в одном направлении, мы перемещаем магнит по медной проволоке. Магнитное поле заставляет свободные электроны двигаться в одном направлении.Если мы намотаем медную проволоку в катушку, мы сможем поместить больше атомов меди в магнитное поле и сможем переместить больше электронов. Если магнит движется вперед только в одном направлении, тогда электроны текут только в одном направлении, и мы получаем постоянный или постоянный ток, это очень похоже на воду, текущую в реке прямо из одного конца в другой. Если мы перемещаем магнит вперед, а затем назад, мы получаем переменный или переменный ток, при котором электроны движутся вперед, а затем назад. Это очень похоже на морской прилив, вода постоянно течет назад и вперед снова и снова.

Вместо того, чтобы целый день двигать магнитом вперед и назад,
инженеры вместо этого просто вращают его, а затем помещают катушку медной проволоки вокруг
улица. Мы разделяем катушку на две, но держим их соединенными, а затем размещаем
один сверху и один снизу, чтобы закрыть магнитное поле.

Когда генератор запускается, северный и южный полюсы магнита находятся непосредственно между катушками, поэтому катушка не испытывает никакого эффекта и электроны не движутся. Когда мы вращаем магнит, северная сторона проходит через верхнюю катушку, и это толкает электроны вперед.По мере того, как магнитное поле достигает своего максимума, все больше и больше электронов начинают течь, но затем оно проходит максимум и снова направляется к нулю. Затем южный магнитный полюс встречает и тянет электроны назад, и снова количество движущихся электронов меняется, так как сила магнитного поля изменяется во время вращения.

Если мы построим график изменения напряжения во время вращения, то мы получим синусоидальную волну, в которой напряжение начинается с нуля, увеличивается до максимума, а затем уменьшается до нуля.Затем входит южный полюс и тянет электроны назад, поэтому мы получаем отрицательные значения, снова увеличиваясь до максимального значения, а затем снова опускаясь до нуля.

Эта схема дает нам однофазное питание. Если мы добавим
вторая катушка вращается на 120 градусов относительно первой, тогда мы получаем вторую фазу.
Эта катушка испытывает изменение магнитного поля в разное время по сравнению с
к первой фазе, поэтому форма волны будет такой же, но с задержкой.
Форма волны фазы 2 и не начинается, пока магнит не вращается в
Вращение на 120 градусов.Если мы затем добавим третью катушку, вращающуюся на 240 градусов от
сначала мы получаем третью фазу. Снова эта катушка испытает изменение
магнитное поле в другое время по сравнению с двумя другими, поэтому его волна будет равна
к остальным, за исключением того, что он будет отложен и начнется при 240 градусах
вращение. Когда магнит вращается несколько раз, он в конечном итоге просто образует
непрерывное трехфазное питание с этими тремя формами волны.

Когда магнит совершает 1 полный оборот, мы называем это циклом. Мы измеряем циклы в герцах или Гц.Если вы посмотрите на свои электрические устройства, вы увидите 50 Гц или 60 Гц — это производитель, который сообщает вам, к какому типу источника питания необходимо подключить оборудование. Некоторые устройства могут быть подключены к любому из них.

Каждая страна использует 50 Гц или 60 Гц. Северная Америка, некоторые из
Южная Америка и пара других стран используют 60 Гц в остальном мире
использует 50 Гц. 50 Гц означает, что магнит совершает 50 оборотов в секунду, 60 Гц означает
магнит совершает 60 оборотов в секунду.

Если магнит совершает полный оборот 50 раз в секунду, что составляет 50 Гц, то катушка в генераторе испытывает изменение полярности магнитного поля 100 раз в секунду (север, затем юг или положительный, затем отрицательный), поэтому напряжение изменяется между положительное значение и отрицательное значение 100 раз в секунду.Если это 60 Гц, то напряжение будет изменяться 120 раз в секунду. Поскольку напряжение подталкивает электроны к созданию электрического тока, электроны меняют направление 100 или 120 раз в секунду.

Мы можем рассчитать, сколько времени требуется для завершения одного поворота, используя формулу Time T = 1 / f.
f = частота. Таким образом, источник питания с частотой 50 Гц занимает 0,02 секунды или 20 миллисекунд, а источник питания 60 Гц — 0,0167 секунды или 16,7 миллисекунды.

Раньше мы видели, что напряжение в розетках
разные во всем мире.

Эти напряжения известны как среднеквадратичное значение или среднеквадратичное значение. Мы рассчитаем это немного позже в видео. Напряжение, выходящее из розеток, не может быть постоянно 120, 220, 230 или 240 В. Мы видели по синусоиде, что она постоянно меняется между положительными и отрицательными пиками.

Например, пики на самом деле намного выше.
В США напряжение в розетке достигает 170 В
Европа достигает 325 В
Индия и Австралия достигает 325 В

Мы можем рассчитать это пиковое или максимальное напряжение по формуле:

Поскольку три фазы испытывают магнитное поле в разное время, если мы сложим их мгновенные напряжения вместе, мы просто получим ноль, потому что они компенсируют друг друга, мы рассмотрим это позже.

К счастью, одному умному человеку пришла в голову идея использовать среднеквадратичное значение напряжения, которое равно средней мощности, рассеиваемой чисто резистивной нагрузкой, которая питается током постоянного тока.

Другими словами, они рассчитали напряжение, необходимое для питания ограничительной нагрузки, такой как нагреватель, питаемый от источника постоянного тока. Затем они выяснили, каким должно быть переменное напряжение, чтобы выделять такое же количество тепла.

Давайте очень медленно повернем магнит в генераторе, а затем вычислим напряжения для каждого сегмента и посмотрим, как это формирует синусоидальную волну для каждой фазы.

ЭКОНОМИЯ ВРЕМЕНИ: Загрузите нашу трехфазную таблицу Excel здесь
USA 👉 http://engmind.info/3-Phase-Excel-Sheet
EU 👉 http://engmind.info/3-Phase-Excel-EU
ИНДИЯ 👉 http://engmind.info/3-Phase-Excel-IN
UK 👉 http://engmind.info/3-Phase-Excel-UK
АВСТРАЛИЯ 👉 http://engmind. info/3-Phase- Excel-AU

Если разделить окружность генератора на
сегментов, разнесенных на 30 градусов, что дает нам 12 сегментов, мы можем видеть, как каждая волна
сделал. Я также нарисую график с каждым из сегментов, чтобы мы могли вычислить
напряжение и построить это.Кстати, вы можете разделить это на столько сегментов, сколько
хотите, чем меньше отрезок, тем точнее расчет.

Сначала нам нужно преобразовать каждый сегмент из градусов в радианы. Мы делаем это по формуле:

Для первой фазы мы рассчитываем мгновенное напряжение на каждом сегменте по формуле.
(мгновенное напряжение просто означает напряжение в данный момент времени)

Так, например, при повороте на 30 градусов или 0,524 радиана мы должны получить значение
84.85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Просто выполните этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Синусоидальные напряжения фазы 1 на 30-градусных сегментах

Теперь, если мы построим график, то мы получим синусоидальную волну, показывающую
напряжение в каждой точке во время вращения. Вы видите, что значения увеличиваются по мере того, как
магнитное поле становится сильнее и заставляет течь больше электронов, затем оно
уменьшается, пока не достигнет нуля, где магнитное поле находится точно между
север и юг через катушку, поэтому это не имеет никакого эффекта.Затем наступает южный полюс
и начинает тянуть электроны назад, поэтому мы получаем отрицательное значение, и оно
увеличивается с изменением напряженности магнитного поля южных полюсов.

Для фазы 2 нам нужно использовать формулу

«(120 * pi / 180))» эта конечная часть просто учитывает задержку, потому что катушка находится на 120 градусов от первой.

Пример при 30 градусах для фазы 2 мы должны получить значение
-169,71 для источника питания 120 В
-311,13 для источника питания 220 В
-325. 27 для питания 230 В
339,41 для питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Для фазы 3 нам нужно использовать формулу

Пример: при 30 градусах для фазы 3 мы должны получить значение
84,85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Теперь мы можем построить график, чтобы увидеть форму волны фаз 1.2 и 3 и то, как меняются напряжения. Это наш трехфазный источник питания, показывающий напряжение на каждой фазе при каждом повороте генератора на 30 градусов.

Если мы затем попытаемся суммировать мгновенное напряжение для всех
фазы на каждом сегменте, мы видим, что они компенсируют друг друга. Так что вместо
мы собираемся использовать эквивалентное среднеквадратичное напряжение постоянного тока.

Чтобы сделать это для фазы 1, мы возводим в квадрат мгновенное значение напряжения для каждого сегмента.Сделайте это для всех сегментов для полного цикла.

Затем сложите все эти значения вместе и затем разделите это число на количество сегментов, которое у нас есть, в данном случае у нас есть 12 сегментов. Затем извлекаем квадратный корень из этого числа. Это дает нам среднеквадратичное значение напряжения 120, 220, 230 В или 240 В в зависимости от того, для какого источника питания вы рассчитываете.

Это фазное напряжение. Это означает, что если мы подключим устройство
между любой фазой и нейтралью, тогда мы получаем среднеквадратическое напряжение 120, 220, 230 или
240 В, как если бы у вас дома была розетка.

Сделаем то же самое для двух других фаз. Возведите в квадрат значение каждого мгновенного напряжения.

Если нам нужно больше мощности, мы подключаем между двумя или тремя
фазы. Мы рассчитываем подаваемое напряжение, возводя в квадрат каждый из мгновенных значений.
напряжения на фазу, затем сложите все три значения на сегмент и затем возьмите
квадратный корень из этого числа.

Вы увидите, что трехфазное напряжение выходит на

.

208 В для источника питания 120 В
380 В для источника питания 220 В
398 В для источника питания 230 В
415 В для источника питания 240 В

Мы можем получить два напряжения от трехфазного источника питания.
Мы называем меньшее напряжение нашим фазным напряжением и получаем его, подключая любую фазу к нейтрали. Вот как мы получаем напряжение от розеток в наших домах, потому что они подключены только к одной фазе и нейтрали.

Мы называем большее напряжение линейным напряжением и получаем его, соединяя любые две фазы. Так мы получаем больше энергии от источника питания.

В США, например, многим приборам требуется 208 В, потому что 120 В просто недостаточно мощно, поэтому нам приходится подключаться к двум фазам.В Северной Америке мы также можем найти системы на 120/240 В, которые работают по-другому. Мы рассмотрим это в другом уроке.


Что такое коэффициент мощности? | Как рассчитать формулу коэффициента мощности

Как понять коэффициент мощности

Пиво — это активная мощность (кВт) — полезная мощность или жидкое пиво — это энергия, которая выполняет работу. Это то, что вам нужно.

Пена — это реактивная мощность (кВАр) — пена — это потраченная впустую или потерянная мощность.Вырабатываемая энергия не выполняет никакой работы, например, вырабатывает тепло или вибрацию.

Кружка — кажущаяся мощность (кВА) — кружка — это потребляемая мощность или мощность, отдаваемая коммунальным предприятием.

Если бы схема была эффективна на 100%, потребляемая мощность была бы равна доступной мощности. Когда спрос превышает доступную мощность, на энергосистему оказывается нагрузка. Многие коммунальные предприятия добавляют плату за спрос к счетам крупных потребителей, чтобы компенсировать разницу между спросом и предложением (когда предложение ниже спроса).Для большинства коммунальных предприятий потребность рассчитывается на основе средней нагрузки, размещенной в течение 15–30 минут. Если требования к нагрузке нерегулярны, коммунальное предприятие должно иметь больше резервных мощностей, чем если бы требования к нагрузке оставались постоянными.

Пик спроса — это период наибольшего спроса. Перед коммунальными предприятиями стоит задача предоставить мощность, чтобы справиться с пиковыми потребностями каждого клиента. Использование электроэнергии в тот момент, когда она пользуется наибольшим спросом, может нарушить общее предложение, если не будет достаточно резервов. Таким образом, коммунальные услуги выставляют счет за пиковый спрос. Для некоторых более крупных клиентов коммунальные предприятия могут даже использовать самый большой пик и применять его в течение всего расчетного периода.

Коммунальные предприятия применяют надбавки к компаниям с более низким коэффициентом мощности. Издержки более низкой эффективности могут быть огромными — сродни вождению автомобиля, потребляющего много бензина. Чем ниже коэффициент мощности, тем менее эффективна схема и тем выше общие эксплуатационные расходы. Чем выше эксплуатационные расходы, тем выше вероятность того, что коммунальные предприятия накажут клиента за чрезмерную загрузку. В большинстве цепей переменного тока коэффициент мощности никогда не бывает равным единице, потому что на линиях электропередачи всегда присутствует некоторое сопротивление (помехи).

Как рассчитать коэффициент мощности

Для расчета коэффициента мощности вам понадобится анализатор качества электроэнергии или анализатор мощности, который измеряет как рабочую мощность (кВт), так и полную мощность (кВА), а также рассчитывает соотношение кВт / кВА.

Формулу коэффициента мощности можно выразить другими способами:

PF = (Истинная мощность) / (Полная мощность)

OR

PF = W / VA

Где ватты измеряют полезную мощность, а VA измеряют потребляемую мощность. Отношение этих двух значений по существу представляет собой полезную мощность к подаваемой мощности, или:

Как показывает эта диаграмма, коэффициент мощности сравнивает реальную потребляемую мощность с полной мощностью или потребляемой нагрузкой.Мощность, доступная для выполнения работы, называется реальной мощностью. Вы можете избежать штрафов за коэффициент мощности, корректируя коэффициент мощности.

Низкий коэффициент мощности означает, что вы используете электроэнергию неэффективно. Это имеет значение для компаний, поскольку может привести к:

  • Тепловому повреждению изоляции и других компонентов схемы
  • Уменьшению доступной полезной мощности
  • Требуемое увеличение размеров проводов и оборудования

Наконец, коэффициент мощности увеличивает общая стоимость системы распределения энергии, потому что более низкий коэффициент мощности требует более высокого тока для питания нагрузок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *